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Abstract

Under a cutoff policy, taxpayers can either report income asusual and run the risk of being
audited, or report a “cutoff” income and hence pay a threshold tax that guarantees not being
audited. Whereas the mainstream literature in this field assumes risk neutrality of taxpayers – with
some notable exceptions like Chu (1990) and Glen Ueng and Yang (2001) – this paper assumes
risk aversion instead: taxpayers have a Constant Relative Risk Aversion (CRRA) utility function
and differ in terms of their relative risk aversion coefficient and income. The novel contribution of
this work is that, under certain conditions, the cutoff is accepted by taxpayers with intermediate
characteristics in terms of income and relative risk aversion. Contrary to the standard result in
the literature, a full separation of types (the rich who accept the cutoff versus the poor who refuse
it) does not arise. However, our results confirm that the cutoff policy violates equity, as only
some taxpayers directly benefit. Nonetheless, the perception of this drawback may in practice be
obfuscated because that exclusion does not necessarily affect only the poor.

JEL Classification Numbers: H260, D890, K420.
Key words: cutoff, tax evasion, relative risk aversion.

1 Introduction

Under a cutoff policy, the Tax Administration audits, with agiven probability, each taxpayer reporting
income below a given threshold; no audit takes place, instead, of taxpayers whose income report
meets the threshold. If taxpayers are risk-neutral, and theexpected sanction for evasion large enough,
the effect of the cutoff rule is that taxpayers whose income (and thus whose tax1) is lower than the
threshold pay their tax due, thereby risking audits, while those who owe tax equal to or higher than
the threshold pay the threshold tax and avoid audits. The overall payments made by taxpayers are non
decreasing in income. Many different aspects of this approach have been examined in the literature
(see,e.g., Reinganum and Wilde, 1985, Scotchmer, 1987, Cremer, Marchand and Pestieau,1990,
Sanchez and Sobel 1993, and, for a generalization, Chander and Wilde, 1998), where it is by and large
considered as an efficient strategy in agency models in whichthe Tax Administration as a principal can
commit to a given audit policy. The cutoff rule entails efficiency gains as long as it secures savings in
terms of audit costs that exceed the revenue losses in taxation. It has, however, been criticized from an
equity point of view, because it introduces a regressive bias, as taxpayers’ payments strictly increase
in income only until the threshold level.

∗Dept. of Public Policy and Public ChoicePolis, Università del Piemonte Orientale; e-mail fabio.privileggi@unipmn.it
1For the sake of simplicity the income tax is described as a function of reported income, disregarding possible differ-

ences between reported (gross) income and net taxable income due to exemptions, deductions etc.
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While the aforementioned literature focusses upon the efficient design of the whole tax system,
including the choice of tax rates, penalties etc., Chu (1990) studies the cutoff policy as a reform
that can be applied to actual tax systems. He assumes that taxpayers are risk averse, while the tax
rate and the enforcement parameters are given and are such that the expected yield of tax evasion
is positive. Chu shows that the introduction of a scheme implementing the cutoff policy2 gives rise
to a Pareto improvement. In fact, when taxpayers evade and are risk averse, the cutoff system can
play a role which is impossible under risk neutrality: that of collecting risk premia for the insurance
against audits provided by the cutoff. This characteristicmay render the cutoff policy profitable even
disregarding the benefits in terms of reducing the number of (costly) audits to be run. On the other
hand, the cutoff policy still implies a regressive bias.

The Chu model has been generalized by Glen Ueng and Yang (2001). They show that the lump
sum nature of the threshold tax implies that the cutoff is also efficiency improving when income
depends on the labor-leisure choice of the agent. Moreover their approach allows for heterogeneous
preferences. The authors, however, do not investigate thoroughly along this direction, thus failing
to ascertain some aspects specifically related to heterogeneity of preferences. In their brief mention
to the heterogeneous framework (Remark 1, p. 88) it is implicitly assumed that the highest income
taxpayer contributes the highest expected tax revenue (including sanctions) in a standard tax system.
This feature, that they show to hold under homogeneous preferences, is implicitly maintained also
when preferences are heterogeneous (see also note 9, p. 93).In the latter case, however, the expected
tax revenue depends on both the taxpayer’s income and on her preferences, and thus a monotonic
relationship between expected tax revenue and income mightnot hold any more. If this possibility is
taken into account, the design of a Pareto improving cutoff policy becomes more demanding in terms
of information: it is not enough to rely upon data pertainingto the income distribution. Preferences
must be considered as well. Moreover, in this more general model, the consequences of the cutoff
policy in terms of equity also deserve a closer examination.

In this paper, by building upon the models of Chu (1990) and ofGlen Ueng and Yang (2001), we
aim at studying the cutoff policy by explicitly taking into consideration heterogeneity of preferences.
We assume that taxpayers differ in relative risk-aversion coefficient and in income, which are treated
as exogenous continuous variables. To overcome the technical difficulties that ensue, the taxpayers’
utility function is assumed to be CRRA (Constant Relative Risk-Aversion). We believe, however,
that this loss of generality with respect to the Glen Ueng andYang model, which refers to the whole
family of utilities exhibiting risk-aversion, is adequately compensated by our main finding (Propo-
sition 1), which heavily exploits the advantage of having a measure of heterogeneity of preferences
expressed by means of relative risk-aversion coefficients.Moreover, such parametrization allows for
the representation of a continuum of taxpayers, thus enabling us from this point of view to follow a
more general approach3 with respect to Glen Ueng and Yang, who assume a finite set of taxpayers.

The main new finding of this work pertains to the reaction of taxpayers who are requested to
make a cutoff payment larger than the tax they would pay underthe standard tax rule. We show that
acceptance of the threshold tax among this group might leaveaside two tails: the poorest with high
risk-aversion and the richest with low risk-aversion. Hence the cutoff policy introduces a trade-off
between efficiency advantages (Government revenue increases thanks to taxpayers’ voluntary pay-
ments) and negative effects in terms of equity. The latter, however, differ from those pointed out in
previous models, which predict that the cutoff policy is accepted by (all) the richest.

The paper is organized as follows. In Section 2 we describe the taxpayer’s problem with reference

2The so called FATOTA scheme provides that taxpayers can either pay a fixed amount of taxes (FAT), being exempted
from tax audits, or pay taxes as usual, running the risk of taxaudits (TA).

3The continuum representation is mainly followed in the literature; see,e.g., Chander and Wilde (1998), who shortly
review the previous studies.
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to both the optimal income report and the conditions needed for acceptance of a cutoff proposal.
In Section 3 we characterize those who pay the threshold tax,in terms of both true income and
relative risk-aversion. Section 4 contains two examples that illustrate the main result of Section 3.
Section 5 discusses the relevance of our result: while the drawbacks in terms of equity introduced
by cutoff programs already known in the literature are confirmed, our contribution provides a more
detailed and complex scenario in which emerges that equity is not being affected, as widely assumed,
monotonically; specifically, when taxpayers are heterogeneous and have CRRA preferences some
rich taxpayers may not benefit from the cutoff. Finally, the whole Section 6 is devoted to the technical
proof of our main result.

2 The Taxpayer’s Problem

Consider an economy in which there is a continuum of taxpayers. The utility that each taxpayer
enjoys out of her exogenously given and non observable incomew is assumed to be of the standard
CRRA form, with constant relative risk-aversion coefficient α:

u (w) =
w1−α − 1

1 − α
. (1)

In class (1) we also include the caseα = 1 by takingu (w) = limα→1 (w1−α − 1) / (1 − α) = lnw.
Hence, the taxpayers populating our economy are indexed by their relative risk-aversion coefficient
α > 0.

2.1 Facing the Standard Tax Rule

Let us examine the taxpayer’s optimal report, making reference only to general tax rules and setting
aside the cutoff policy for the moment. A proportional tax system is considered: the income tax is
given byt (y) = ty, wherey denotes thereported incomeand0 < t < 1. We also assume that the
sanction to be paid in case of audit4 is proportional to the amount of the evaded tax:

S (w, y) = (1 + s) t (w − y) , (2)

wheres > 0 is a penalty rate.
As we rule out rewards to honest taxpayers by assumption,5 a taxpayer will reporty ≤ w, where

w > 0 denotes thetrue income. A rational taxpayer who earned a true incomew will choose to report
the incomey∗ that maximizes her expected utility

Eu (y) =
(1 − p) (w − ty)1−α + p [w − ty − (1 + s) t (w − y)]1−α − 1

1 − α
(3)

with respect toy, where0 < p < 1 is the probability of detection. Note that, by consideringu (w) =
lnw whenα = 1, Eu (y) is well defined for allα > 0 and for all feasibley.

The feasible set contains values fory such that(1 + s) t (w − y) < w − ty; that is, we assume
that the taxpayer can always bear the loss in case of detectedevasion. A lower bound for the feasible

4We maintain the standard assumption that detection of tax evasion occurs with probability1 whenever the tax report
is false and an audit is run.

5This is also a standard assumption, even if the theory of optimal auditing provides reasons in favor of rewards to
audited honest risk-averse taxpayers (see Mookherjee and Png, 1989).
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reported incomey is thusmw = [(1 + s) t− 1]w/ (ts). Since we are interested in a strictly positive
income report,y > 0, we shall assume that

(1 + s) t > 1. (4)

This implies that sanctions are large enough to exclude fullevasion.6 Therefore, the feasible set of
values for the reported incomey is the interval(mw, w], withmw > 0.

In accordance with empirical evidence, we assume that the tax system parameters have values
such that cheating in reporting income has a positive expected return. In other words, the expected
sanction is assumed to be less than the expected gain for eachdollar invested in tax evasion:

sp < 1 − p. (5)

Hence, the case of full compliance,y = w, is also ruled out, as can readily be seen by noting that the
limit of the marginal expected utility[Eu (y)]′ asy → w− is negative whenever (5) holds.

Since, on the other hand,limy→m+
w

[Eu (y)]′ = +∞ andEu (y) is strictly concave over(mw, w)
for all α > 0, there exists a unique (interior) valuey∗, mw < y∗ < w, that maximizes the expected
utility, which is completely characterized in terms of F.O.C. applied to (3):

w − ty∗ − (1 + s) t (w − y∗)

w − ty∗
=

(
ps

1 − p

) 1
α

. (6)

By solving (6) fory∗, the optimal reported income proves to be a fixed share of the taxpayer’s true
incomew, which depends on the risk-aversion coefficientα:

y∗ =
(1 + s) t+

(
ps

1−p

) 1
α − 1

t

[
s+

(
ps

1−p

) 1
α

] w. (7)

Note that a higher risk-aversion implies a larger share. Unlike Glen Ueng and Yang (2001) approach,
in our setting a richer taxpayer (endowed with a largerw), might have a lower reported income if
her relative risk-aversion coefficientα is lower. The F.O.C. condition in (7) allows for a substantial
refinement of the representation of the population of taxpayers in the economy by adding a dimension
to their relative risk-aversion coefficient indexα.

An inverse formulation of (7), which will be exploited lateron, gives a relation expressing the
true income of (optimizing) taxpayers, which is private information, as a function of their relative
risk-aversion coefficientα for any given optimal reporty∗:

w (y∗, α) =

[
s+

(
ps

1−p

) 1
α

]
ty∗

(
ps

1−p

) 1
α

+ (1 + s) t− 1

. (8)

As can easily be checked, the functionw (y∗, α) in (8) is strictly decreasing with respect toα.

6The literature that considers optimal income reporting under risk aversion has routinely focussed upon strictly positive
reports, see,e.g., Allingham and Sandmo (1972). For the role of the assumption(1 + s) t > 1 in order to ensure an internal
solution, also see the Appendix in Chu (1990).
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2.2 Introducing a Cutoff

Now, let us assume that the Tax Administration offers the possibility of paying the cutoff amountc in
order to avoid audits with certainty. To facilitate the description of the reaction to this proposal by a
taxpayer who would pay an amountty∗ under general rules, let us break downc as follows:

c = ty∗ + x. (9)

Wheneverx is negative, that is the cutoff is lower than the ordinary tax, the trivial implication is that
the taxpayer chooses the cutoff.7 On the contrary, if the taxpayer cannot afford payingx, that is:

x ≥ w − ty∗

she always prefers ordinary taxation.
We will focus upon the most interesting case:x is positive and the taxpayer can afford it. In this

case, the taxpayer will accept the offer if she is at least indifferent as to whether to pay the requested
amountc or to pay onlyty∗ and risk an audit. Thus, for a givenx > 0, she chooses to pay the
threshold tax if

[w − (ty∗ + x)]1−α

1 − α
≥ (1 − p) (w − ty∗)1−α + p [w − ty∗ − (1 + s) t (w − y∗)]1−α

1 − α
, (10)

where the additive constants− (1 − α)−1 have already been dropped from both sides.
By jointly considering the optimal condition (8) and the threshold condition (10), we are led to

the following system:




w =

{[
s+

(
ps

1−p

) 1
α

]
ty∗

}/ [(
ps

1−p

) 1
α

+ (1 + s) t− 1

]

(w − ty∗ − x)1−α

1 − α
≥ (1 − p) (w − ty∗)1−α + p [w − ty∗ − (1 + s) t (w − y∗)]1−α

1 − α

(11)

The first equation of system (11) links the taxpayer’s true incomew to y∗ according to (8) –
or, equivalently, according to (6). The second equation is the weak preference condition for paying
the threshold tax instead of reportingy∗ and risking an audit. All pairs(α,w) solving system (11)
characterize in terms of relative risk-aversionα and true incomew the subset of taxpayers whose
optimal report isy∗ and who prefer to pay the threshold taxc although it is larger than the tax they
would pay under general rules.

In the following sections we will take the optimal reporty∗ and the ‘premium’x as given andα
andw as the unknowns and provide a characterization of the set of taxpayers accepting the cutoff.

3 The Main Result

By plugging the first equality in system (11) into the second inequality, after some tedious algebra we
obtain a single inequality where the unknown is the sole variableα:

x ≤ (1 + s) (1 − t) ty∗

(
ps

1−p

) 1
α

+ (1 + s) t− 1



1 −

[
1 − p + p

(
ps

1 − p

) 1−α
α

] 1
1−α



 . (12)

7The cutoff is always preferred as long as it is lower thanty∗ + p (1 + s) t (w − y∗), i.e., the expected payment in
terms of taxes and fines. While writingc = ty∗ + p (1 + s) t (w − y∗) + x would be preferable in order to highlight the
possible request of a risk premium, we choose a simpler breaking up of termc in (9) to ease algebraic reduction.
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Inequality (12) characterize all taxpayers with relative risk-aversion indexα who (optimally) reported
incomey∗ and choose to participate in the cutoff program for an extra amountx when0 < t < 1 is
the tax rate,s > 0 is the penalty rate and0 < p < 1 is the probability of detection under general rules.

For future algebraic convenience we introduce the following changes of parameters:

β =
x

(1 − t) y∗
; (13)

γ = ln

(
ps

1 − p

)
; (14)

δ =
1

(1 + s) t
=

p

t [p+ (1 − p) eγ ]
. (15)

Parameterβ transforms componentx in percentage terms with respect to the reported income after
taxation under general rules, we shall assumeβ ≤ 1; γ is a transformation of the sanction rates
which takes into account also the probability of detectionp (γ andp will be the key parameters in our
analysis); finally,δ transforms the tax ratet and the sanction rates and, by using (14), can be written
as a function ofγ and the probability of detectionp, a form that will be exploited in Section 6.

Consider the function of the sole variableα defined by

τ (α) =

1 − exp




ln

(
1 − p+ peγ 1−α

α

)

1 − α





1 − δ
(
1 − e

γ
α

) . (16)

Since, by l’Hôpital’s rule,limα→1

[
ln

(
1 − p+ peγ 1−α

α

)
/ (1 − α)

]
= pγ, whenα = 1 (16) boils

down to

τ (1) =
1 − epγ

1 − δ (1 − eγ)
.

In order to letτ be defined for allα > 0 we shall take into account the discussion on parametersx,
s, p andt developed in the the previous section, which translates into the following conditions which
will hold throughout the paper:0 < β ≤ 1, γ < 0 and0 < δ < 1. Specifically,γ < 0 follows from
(5) andδ < 1 is a consequence of (4).

The numberτ (α) can be interpreted as the individual (percent) threshold value for the taxpayer
characterized by coefficient of risk aversionα: if β is smaller or equal toτ (α) such taxpayer opts for
the cutoff. Inequality (12) is thus equivalent to the following:

τ (α) ≥ β, (17)

whose solution set contains all taxpayers characterized byrelative risk aversion coefficientα who
chooses (or are indifferent to) to pay the cutoff rather thanincurring the risk of being audited when
the (percent) cutoff offered by the tax administration isβ. Note that parameterβ embeds the optimal
report in absence of cutoff,y∗, which, in turn, depends on the true incomew; therefore, the only
relevant independent variable left is the relative risk aversion coefficientα representing heterogeneity
in the population of taxpayers.

For each given value0 < β ≤ 1, inequality (17) defines theupper contour setof β for the
function τ ; our goal is to show that, under some conditions on the parameters, such upper contour
sets are intervals not necessarily having zero as their leftendpoint. While we will be able to prove
thatτ is quasiconcave in some cases [when values ofβ large enough,β > sup {τ (α) : α > 0}, are
allowed], in the general case we will establish the desired property of the upper contour sets only for
values ofβ not too large [β < sup {τ (α) : α > 0}].

The following technical assumption further restricts the admissible values of the parameters.
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A. 1 Parametersβ andγ have values in the following ranges:0 < β ≤ 1 and8 6/
(√

3 − 3
)
≤ γ ≤

−2. Moreover, the probability of detectionp and the tax ratet must satisfy

δ =
p

t [p+ (1 − p) eγ ]
≤ 1 +

γeγ

(1 − eγ)2 . (18)

Note that the RHS in (18) is less than1 asγ is negative. By explicitingp, (18) assumes the
following more cumbersome form which separates parameterp from t andγ:9

p ≤

[
1 + γeγ

(1−eγ)2

]
eγt

1 −
[
1 + γeγ

(1−eγ)2

]
(1 − eγ) t

. (19)

Proposition 1 Suppose Assumption A.1 holds true.

i) If γ = −2 and

β ≤ 1 − exp
(
−√

3.9781p
)

1 − δ
, (20)

then the upper contour sets ofτ defined in (16) are intervals. Forβ large enough, such intervals
are disjoint from the origin, i.e., their left endpoint is strictly positive.

ii) If 6/
(√

3 − 3
)
≤ γ < −2, then, for eachβ satisfying

β ≤
1 − exp

{
2 ln [1 + (1 + γ/2) pγ]

2 + γ

}

1 − (1 − e−2) δ
, (21)

the solution set of inequality (17) is a nonempty interval. Again, for β large enough, such
interval is disjoint from the origin, i.e., its left endpoint is strictly positive.

Section 6 is entirely devoted to the proof of Proposition 1.
Note that (21) is more restrictive than (20); specifically, as it will be seen in the proof, the RHS

in (21) is always less thansup {τ (α) : α > 0}. On one side this is sufficient for nonemptiness of the
solution of (17), but is not enough to establish thatτ is quasiconcave.

4 Two Numerical Examples

Let us apply Proposition 1 for the following values of parameters:γ = −4.0644, p = 0.01, to which
corresponds a sanction rates = (1 − p) eγ/p ≃ 1.7, andt = 0.44. Assumption A.1 is satisfied as
δ = p/ {t [p+ (1 − p) eγ ]} ≃ 0.8417 < 0.9277 ≃ 1 + γeγ/ (1 − eγ)2. Sinceγ < −2, part (ii) of
Proposition 1 is involved and we have only to establish the upper bound for the (percent) cutoff value

given by condition (21):β ≤ β =
{

1 − e
2 ln[1+(1+γ/2)pγ]

2+γ

}/
[1 − (1 − e−2) δ] ≃ 0.1434; for example,

by (13),β corresponds to a valuex = (1 − t) y∗β ≃ 80.299 wheny∗ = 1000. Therefore, any fixed
(percent) premium that satisfiesβ ≤ 0.1434 produces a nonempty interval – either of the form(0, αr]

8Note that6/
(√

3 − 3
)
≃ −4.7321.

9As prescribed by (14), parameterγ actually contains parameterp in its expression; however, rather than being a
function ofp, γ must be interpreted as a function of the original sanction rate s for any given value ofp, and thus as a
parameter which is independent of parameterp itself. In this perspective, we can say thatp andγ are “separated” in the
RHS of (19).
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or of the form[αℓ, αr] with αℓ > 0 – of relative risk-aversion coefficients characterizing agents who
pay the threshold tax. For example, withβ = 0.13 (corresponding tox = 72.8 wheny∗ = 1000), the
interval hasαℓ ≃ 0.53 > 0 andαr ≃ 3.93 as endpoints, as shown in figure 1 where the functionτ
defined in (16) is plotted for our values for the parameters. If y∗ = 1000 these two values, correspond
to a minimum true income10 w ≃ 1664 (corresponding toαr ≃ 3.93) and a maximum true income
w ≃ 3969 (corresponding toαℓ ≃ 0.53), which imply evasion (in terms of share of concealed income
wheny∗ is reported) of around40% and around75% respectively.

0

0.05

0.1

0.13

0.15

0.2

0.25

0.53 1 2 3 3.93 5
α

β

τ

FIGURE 1: the solution set of inequality (17) forγ = −4.0644, p = 0.01, s = 1.7, t = 0.44 andβ = 0.13.

Figure 1 shows that more than the statement of part (ii) of Proposition 1 is true; the shape of
functionτ is striking: it is clearly a quasiconcave function, that is,its upper level sets are intervals for
all β ≤ max {τ (α) : α > 0} ≃ 0.26, not only forβ ≤ 0.1434. However, we have not been able to
establish this property in general, at least forγ < −2. Only whenγ = −2 and part (i) of Proposition
1 applies, and thusβ turns out to be constrained by the much looser condition (20)rather than by
condition (21), it can be established thatτ is actually quasi concave for some cases, as it may happen
thatmax {τ (α) : α > 0} is smaller than the RHS in (20).

For example, withγ = −2, p = 0.05, to which corresponds a sanction rates = (1 − p) e−2/p ≃
2.57, andt = 0.44, Assumption A.1 is satisfied asδ = p/ {t [p+ (1 − p) e−2]} ≃ 0.6364 < 0.638 ≃
1 − 2e−2/ (1 − e−2)

2. Part (i) of Proposition 1 applies and the upper bound for the(percent) cutoff
value given by condition (20) isβ ≤ β =

[
1 − exp

(
−√

3.9781p
)]/

(1 − δ) ≃ 0.9895. Figure 2
shows thatmax {τ (α) : α > 0} ≃ 0.23, well belowβ ≃ 0.9895; in this case part (i) of Proposition 1
can be restated by saying that the functionτ is quasiconcave for these values of parameters.

10Recall that the true income of (optimizing) taxpayers as a function of their relative risk aversionα is given by (8).
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FIGURE 2: plot of the functionτ for γ = −2, p = 0.05, s = 2.57 andt = 0.44.

5 Equity Considerations

If the solution set of inequality (17) is of the form(0, αr] – like, for instance, in the first example of
Section 4 wheneverβ . 0.06, as can be understood from Figure 1 – relatively rich taxpayers with
low risk-aversion,i.e.,with α ≤ αr, pay the threshold tax, while relatively poor ones with highrisk-
aversion, that is withα > αr, do not accept the cutoff. The latter prefer to submit their optimal report
y∗, which, by (7), conceals only a relatively small income amount, thereby risking audits. This result
can be explained as follows. As reported incomey∗ approaches true incomew for very risk averse
taxpayers, the expected sanction decreases, while the riskpremium under a CRRA utility function
does not increase enough to counter the former effect.

If the solution set of inequality (17) is of the form[αℓ, αr] with αℓ > 0 – like in the first example
of Section 4 withβ = 0.13 – in addition to the reaction just discussed, the cutoff is also refused by
taxpayers with a risk-aversion coefficient below some lowerboundαℓ, whose optimal income report
y∗, again by (7), conceals a relatively large income amount. These taxpayers, too, prefer risking audits
rather than paying the threshold tax. In this case there are two groups of taxpayers who refuse the
cutoff when it includes a premium, one characterized by relatively high true income and the other by
relatively low true income. It is clear from both figures 1 and2 that this last situation may happen only
if the premium componentβ is large enough, while, at the same time, sufficiently small to allow for
participation in the cutoff proposal, as part (ii) of Proposition 1 guarantees nonemptiness whenever
condition (21) is satisfied.

In other words, we conclude that, as intuition suggests, theset of participants in the cutoff program
shrinks as the premium asked by the tax administration to buyan insurance against the possibility
of being audited increases. However, the novel contribution of the present work is that, contrary
to conjectures hitherto formulated by the mainstream literature, such ‘shrinking’ does not follow a
simple monotonic pattern. Specifically, we have shown that,when taxpayers have CRRA preferences,
above some threshold value forβ not only less and less poor taxpayers (identified by the decreasing
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right endpointαr of relative risk aversion index which bounds the set of participants from above)
choose the cutoff because of its growing price, but also some(very) rich taxpayers characterized by
low risk aversion coefficients,11 0 < α < αℓ, start refusing the offer as well.

Therefore, our result confirms the widely accepted criticism toward cutoff programs: equity is
adversely affected. Nonetheless, such drawback assume a more multi-faceted pattern when taxpayers
are risk averse, heterogeneous and endowed with a CRRA utility function. We showed that, whenever
the cost of entering the cutoff is high enough, the well knownregressive bias is mitigated by the refusal
of the cutoff by two tails of taxpayers, the relatively poor and the relatively rich, who do not receive
suitable insurance offers.

6 Proof of Proposition 1

The proof of Proposition 1 will be accomplished through several steps. First of all we restate inequal-
ity (17) – that is, (12) – in a more convenient form. By using (16) and rearranging terms in (17) we
get

ln
(
1 − p + peγ 1−α

α

)

1 − α
≤ ln

{
1 − β

[
1 − δ

(
1 − e

γ
α

)]}
,

which is equivalent to the following system:




ln
(
1 − p+ peγ 1−α

α

)
≤ (1 − α) ln

[
1 − (1 − δ)β − δβe

γ
α

]
if 0 < α < 1

ln
(
1 − p+ peγ 1−α

α

)
≥ (1 − α) ln

[
1 − (1 − δ)β − δβe

γ
α

]
if α > 1.

(22)

Definef : R++ → R by
f (α) = φ (α) + ψ (α) − (1 − p) , (23)

where12

φ (α) = exp
{

(1 − α) ln
[
1 − (1 − δ)β − δβe

γ
α

]}
, (24)

ψ (α) = −peγ 1−α
α . (25)

Then system (22) – and thus inequalities (12) and (17) – can bewritten as
{
f (α) ≥ 0 if 0 < α < 1
f (α) ≤ 0 if α > 1.

(26)

The functionf defined in (23) is a smooth function defined for allα > 0. Note thatf equals
zero inα = 1 (corresponding to logarithmic utility in our model) for allvalues of parametersp, β,
γ andδ satisfying Assumption A.1; as a matter of fact, consistently with the algebraic manipulations
of inequality (17) required to obtain system (26), the pointα = 1 is being explicitly excluded from
(26), as it does not carry useful information on its solutionset. However, as the original functionτ in
(16) is continuous inα = 1, this point must be taken into consideration. Since the solution set of (26)
is nonempty whenf crosses the horizontal axis from above atα = 1, we shall includeα = 1 in the
solution set as long asf ′ (1) ≤ 0.13

11Recall that, by (8), smaller values ofα correspond to larger levels of true incomew.
12Sinceγ/α < 0 for all α > 0, 1 − (1 − δ) β − δβe

γ

α turns out to be always positive and thusφ (α) in (24) is well
defined for allα > 0.

13More precisely, a sufficient (but not necessary) condition for a nontrivial –i.e., with positive Lebesgue measure –
solution set of (26) isf ′ (1) < 0.
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In principle, the conditionf ′ (1) ≤ 0 does not rule out the possibility that the solution set is a dis-
joint union of intervals; in the rest of this section we shallprove that this cannot be the case whenever
Assumption A.1 and either condition (20) or condition (21) hold, regardless of the sign off ′ (1). This
will be achieved by partitioningR++ into a number of subintervals and by studying monotonicity and
curvature properties of the two functionsφ andψ, defined in (24) and (25) respectively, over each
subinterval. First, we need some preliminary lemmas.

6.1 Preliminary results

We start by studying the functionφ defined in (24). In the sequel we shall often split it into the
compositionφ (α) = exp [g (α)], with

g (α) = (1 − α) ln
(
A− Be

γ
α

)
, (27)

where constantsA andB are introduced in order to ease notation and are defined by:

A = 1 − (1 − δ) β, (28)

B = δβ. (29)

Note that, under Assumption 1, the following holds:

0 < B < A < 1. (30)

Moreover, also the functiong will be sometimes written as the productg (α) = (1 − α)h (α), where

h (α) = ln
(
A− Be

γ
α

)
. (31)

Note thath (α) < 0 for all α > 0.

Lemma 1 Let Assumption 1 holds. Theng′ (α) > 0 for all α > 0, and thus the functionφ is strictly
increasing.

Proof. g′ has the following expression:

g′ (α) = −h (α) + (1 − α)h′ (α) , (32)

where

h′ (α) =
γBe

γ
α

α2
(
A− Be

γ
α

) (33)

is clearly negative sinceγ < 0. As bothh andh′ are negative, the lemma is true wheneverα ≥ 1.
Hence, let us assume0 < α < 1 and look for a lower bound forg′ which is independent ofα.

We first compute a lower bound forh′. A direct computation ofh′′yields:

h′′ (α) = − γBe
γ
α

α2
(
A− Be

γ
α

)
[

2

α
+

γ

α2
+

γBe
γ
α

α2
(
A− Be

γ
α

)
]

= −
(
2 +

γ

α

) h′ (α)

α
− [h′ (α)]

2
.

Since by Assumption 1γ ≤ −2, 2 + γ/α ≤ 0 holds for all0 < α < 1 and thush′′ turns out to
be strictly negative; that is,h′ is strictly decreasing and we can takeh′ (1) = (A− Beγ)−1 γBeγ ,
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which is independent ofα, as its lower bound. As1 − α < 1 andh′ (1) < 0, the second term in
(32) is bounded from below byh′ (1). Moreover, since−h is an increasing function ofα [recall that
h′ < 0], −h (α) > limα→0+ [−h (α)] = − lnA for all 0 < α < 1. Hence,g′ is bounded from below
by − lnA+ h′ (1), that is,

g′ (α) > − lnA +
γBeγ

A−Beγ
, (34)

where the RHS is independent ofα.
The first term in the RHS of (34) is positive, while the second term is negative; thus, now we

need to find conditions under which the RHS is nonnegative. Specifically, by expanding constantsA
andB as in (28) and (29) respectively, we must find for what values of parametersp, β, γ andδ the
following inequality holds:

− ln [1 − (1 − δ) β] +
γδβeγ

1 − (1 − δ)β − δβeγ
≥ 0. (35)

Since it clearly holds (with equality) forβ = 0, a sufficient condition is that the derivative with respect
to β of the LHS be nonnegative for all0 < β ≤ 1. A direct computation yields

∂

∂β

{
− ln [1 − (1 − δ) β] +

γδβeγ

1 − (1 − δ)β − δβeγ

}
=

1 − δ

1 − (1 − δ) β
+

γδeγ

[1 − (1 − δ)β − δβeγ]2
;

in order to guarantee that such expression is nonnegative, we rearrange terms and study the following
inequality:

1 − δ

γδeγ
+

1 − (1 − δ) β

[1 − (1 − δ) β − δβeγ]2
≤ 0. (36)

We now show that the second term in the LHS of (36) is increasing in β:

∂

∂β

{
1 − (1 − δ)β

[1 − (1 − δ)β − δβeγ ]2

}
=

(1 − δ) [1 − (1 − δ) β] + [2 − (1 − δ) β] δeγ

[1 − (1 − δ) β − δβeγ]3
> 0,

as both the numerator and the denominator in the RHS are positive. Thus, an upper bound for the
LHS in (36) is obtained by lettingβ = 1:

1 − δ

γδeγ
+

1 − (1 − δ)β

[1 − (1 − δ)β − δβeγ ]2
≤ 1 − δ

γδeγ
+

δ

(δ − δeγ)2 =
1 − δ

γδeγ
+

1

δ (1 − eγ)2 .

Therefore, a sufficient condition for (36) is the following:

1 − δ

γδeγ
+

1

δ (1 − eγ)2 ≤ 0 ⇐⇒ δ ≤ 1 +
γeγ

(1 − eγ)2 ,

which is condition (18) of Assumption 1. Since (36) is itselfa sufficient condition for (35), which,
through (34), establishes thatg′ (α) > 0 for 0 < α < 1, the proof is complete.

Lemma 2 Under Assumption 1 there is a unique valueα̂ > 0 such thatg′′ (α̂) = 0, g′′ (α) < 0 for
0 < α < α̂ andg′′ (α) > 0 for α > α̂; α̂ is the unique number satisfying14

α̂ = − γA

(2 − γ)A− 2Be
γ
α̂

. (37)

14The exact solution̂α of (37) involves theLambert W function(see,e.g., Corless et al., 1996); specifically,̂α =
−γ/

[
LambertW

(
−2Beγ−2/A

)
+ 2 − γ

]
.
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Useful bounds for the value of̂α, as functions of the sole parameterγ, are given by:

1

2
≤ γ

γ − 2
< α̂ <

γ

γ − 2 + 2eγ
< 1. (38)

Hence,g is strictly concave for0 < α < α̂ and it is strictly convex forα > α̂, whileφ turns out to be
strictly convex forα > α̂, but no conclusion can be drawn on its curvature properties for 0 < α < α̂.

Proof. By using the notation (31),g′′ can be written as follows:

g′′ (α) = −h′ (α)

{
2 + (1 − α)

[
h′ (α) +

2α + γ

α2

]}
. (39)

Sinceh′ < 0, it is enough to study the sign of the term in curly brackets, which is the same as that of
the following expression, obtained by using (33) and after rearranging terms:

ζ (α) = 2
(
A− Be

γ
α

)
α + (1 − α) γA. (40)

It is easily seen that any root̂α of ζ must satisfy (37).
To show that̂α is unique, firstly note thatlimα→0+ ζ (α) = γA < 0; moreover, since the first term

in the RHS of (40) is positive andγ < 0, ζ (α) > 0 certainly holds forα ≥ 1. Thus, it is sufficient
to establish that the functionζ defined in (40) is strictly increasing for0 < α < 1. To see this, let us
differentiate it with respect toα:

∂

∂α
ζ (α) = 2

(
A− Be

γ
α

)
− γ

(
A− 2

α
Be

γ
α

)
;

as the first term on the RHS is positive andγ < 0, we just need to establish that

A− 2

α
Be

γ
α > 0 ⇐⇒ e

γ
α

α
<

A

2B
(41)

for 0 < α < 1. As (∂/∂α)
(
e

γ
α/α

)
= −

(
e

γ
α /α2

)
(1 + γ/α), the LHS of the last inequality is

increasing whenever1 + γ/α < 0 ⇐⇒ α < −γ; but this is certainly the case since0 < α < 1 and
γ ≤ −2. Thus, a sufficient condition for (41) iseγ < A/ (2B), which definitely holds since, by (30),
A/B > 1 andeγ ≤ e−2 < 1/2. This establishes uniqueness of the rootα̂ satisfying (37).

Let us now turn our attention to the bounds in (38). As far as the lower bound is concerned,
note that, since−2Be

γ
α̂ < 0 in the denominator of (37),̂α > −γ (2 − γ)−1 = γ (γ − 2)−1, and,

asγ ≤ −2, γ (γ − 2)−1 ≥ 1/2. The upper bound requires some more work. First note thatα̂ =
−γA/

[
−γA + 2

(
A− Be

γ
α̂

)]
< 1, since−γA > 0 and2

(
A− Be

γ
α̂

)
> 0. Hence, let us assume

0 < α ≤ 1. As−2Be
γ
α is decreasing for0 < α ≤ 1, a first upper bound for̂α is given by

− γA

(2 − γ)A− 2Beγ
, (42)

which is independent ofα. In order to let it be independent of parametersβ andδ as well, we expand
constantsA andB as in (28) and (29) respectively and differentiate with respect toβ:

∂

∂β

{ −γ [1 − (1 − δ) β]

(2 − γ) [1 − (1 − δ)β] − 2δβeγ

}
=

−2γδeγ

{(2 − γ) [1 − (1 − δ)β] − 2δβeγ}2 ,

which is clearly positive. Hence, an upper bound of (42), andthus ofα̂ as well, is given by (42) itself
evaluated atβ = 1:

− γA

(2 − γ)A− 2Beγ
≤ − γ

2 − γ − 2eγ
,

which is the upper bound in (38), and the proof is complete.
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Lemma 3 Under Assumption 1,g′′′ (α) ≥ 0 for γ (γ − 2)−1 ≤ α ≤ 1, which, by condition (38) of
Lemma 2, implies thatg′′′ (α) ≥ 0 for α̂ ≤ α ≤ 1.

Proof. By using the notation (31),g′′′ can be written as follows:

g′′′ (α) = −3h′′ (α) + (1 − α)h′′′ (α) ,

which, since

h′′ (α) = −h
′ (α)

α2

[
h′ (α)α2 + 2α+ γ

]
, (43)

h′′′ (α) = −h
′′ (α)

α2

[
2h′ (α)α2 + 2α+ γ

]
+ 2

α+ γ

α3
h′ (α) , (44)

can be expanded to

g′′′ (α) = −
{

3 +
1 − α

α2

[
2h′ (α)α2 + 2α + γ

]}
h′′ (α) + 2

(1 − α) (α + γ)

α3
h′ (α) ,

where (44) has been used. To study the inequalityg′′′ (α) ≥ 0, we multiply the last expression byα2

and substituteh′′ (α) as in (43) to get:

{
3α2 + (1 − α)

[
2h′ (α)α2 + 2α + γ

]} h′ (α)

α2

[
h′ (α)α2 + 2α + γ

]
+ 2

1 − α

α
(α + γ) h′ (α) ≥ 0,

which, multiplying both sides byα2/h′ (α) and recalling thath′ (α) < 0, reduces to

{
3α2 + (1 − α)

[
2h′ (α)α2 + 2α + γ

]} [
h′ (α)α2 + 2α+ γ

]
+ 2α (1 − α) (α + γ) ≤ 0. (45)

In order to solve (45), first note that, sinceγ ≤ −2 andh′ < 0, for α ≤ 1 the second factor in
the first term of the LHS,h′ (α)α2 + 2α + γ, and the second term in the sum,2α (1 − α) (α + γ),
are negative and nonpositive respectively. Therefore, we only need to establish for what values of
0 < α ≤ 1 the first factor in the first term of the sum,3α2 + (1 − α) [2h′ (α)α2 + 2α+ γ], turns out
to be nonnegative;i.e., after substitutingh′ (α) as in (33) and some rearrangements, we must solve
the following inequality:

α2 + 2α+ (1 − α) γ
A+Be

γ
α

A− Be
γ
α

≥ 0,

which, sinceA−Be
γ
α > 0, is equivalent to

(
α2 + 2α

) (
A−Be

γ
α

)
+ (1 − α) γ

(
A +Be

γ
α

)
≥ 0. (46)

We now show that the LHS of (46) is increasing inα. A direct computation of the derivative with
respect toα of the LHS leads to the following inequality:

(2α + 2)
(
A− Be

γ
α

)
− γ

(
A+Be

γ
α

)
+

2 + γ

α
γBe

γ
α +

(
1 − γ

α2

)
γBe

γ
α ≥ 0, (47)

where all terms on the LHS are positive but the last one. Since

∂

∂α

[(
1 − γ

α2

)
γBe

γ
α

]
=

(
−α2 + 2α+ γ

) γ2Be
γ
α

α4
< 0,
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asγ2Be
γ
α/α4 > 0 while−α2 + 2α + γ < 0 for γ ≤ −2, a lower bound for the LHS in (47) is given

by:

(2α+ 2)
(
A− Be

γ
α

)
− γ

(
A+Be

γ
α

)
+

2 + γ

α
γBe

γ
α + (1 − γ) γBeγ

≥ (2α+ 2)
(
A−Be

γ
α

)
− γ

(
A+Be

γ
α

)
+ (1 − γ) γBeγ

= 2α
(
A− Be

γ
α

)
+ A+ (1 − γ)A− (2 + γ)Beγ + (1 − γ) γBeγ

≥ 2α
(
A−Be

γ
α

)
+ A + (1 − γ) (A+ γBeγ) , (48)

where in the second line we dropped the third term of the first line (being it nonnegative) and in the
fourth line we dropped− (2 + γ)Beγ ≥ 0. The first two terms in (48) are clearly positive; thus, as
1 − γ > 0, we want to establish thatA + γBeγ > 0, or, equivalently, that−γeγ < A/B. Since,
by (30),A/B > 1, a sufficient condition is−γeγ < 1; as(∂/∂γ) (−γeγ) = − (1 + γ) eγ > 0 for
γ ≤ −2, it is enough that2e−2 < 1, which is true. Hence, we have just established that the LHS of
(46) is increasing inα.

Therefore, in order to inequality (46) to hold true forγ (γ − 2)−1 ≤ α ≤ 1, it is sufficient that it
holds inα = γ (γ − 2)−1. By substitutingα = γ (γ − 2)−1 in (46) and rearranging terms we get:

3γ − 4

γ − 2

(
A− Beγ−2

)
− 2

(
A+Beγ−2

)
≥ 0,

which is convenient to rewrite as
3γ − 4

γ − 2
≥ 2

A+Beγ−2

A−Beγ−2
. (49)

As the LHS is strictly decreasing inγ, we can letγ = −2 into the LHS and get the following sufficient
condition for (49):

A+Beγ−2

A− Beγ−2
≤ 5

4
. (50)

In order to find an upper bound for the LHS in (50), we substitute the constantsA andB as in
(28) and (29) respectively and differentiate with respect to β; after rearranging terms we get:

∂

∂β

[
1 − (1 − δ) β + δβeγ−2

1 − (1 − δ) β − δβeγ−2

]
=

2δeγ−2

[1 − (1 − δ) β − δβeγ−2]2
,

which is clearly positive. Thus, we can setβ = 1 in the LHS of (50) so to get

1 + eγ−2

1 − eγ−2
≤ 5

4
,

which boils down toγ ≤ 2 − ln 9 ≃ −0.197, which clearly holds under Assumption 1.
This is enough to establish inequality (46), which, in turn,is sufficient for inequality (45) to hold;

therefore,g′′′ (α) ≥ 0 for γ (γ − 2)−1 ≤ α ≤ 1 and the proof is complete.

Corollary 1 Under Assumption 1, the functionφ (α) defined in (24) is such thatφ′′′ (α) > 0 for
α̂ ≤ α ≤ 1.

Proof. It is immediately seen that the third derivative ofφ can be written as follows:

φ′′′ (α) = eg(α)
{
g′′′ (α) + 3g′′ (α) g′ (α) + [g′ (α)]

3
}
,

which is positive for̂α ≤ α ≤ 1 as, by Lemma 3,g′′′ (α) ≥ 0 and, by Lemmas 1 and 2, alsog′ (α) > 0
(and thus[g′ (α)]3 > 0) andg′′ (α) ≥ 0.

Now we turn our attention to the functionψ defined in (24).
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Lemma 4 Under Assumption 1, the following holds for the functionψ (α) = −peγ 1−α
α defined in

(24):

i) ψ′ (α) < 0 for α > 0;

ii) ψ′′ (α) < 0 for 0 < α < −γ/2, ψ′′ (α) > 0 for α > −γ/2 andψ′′ (−γ/2) = 0;

iii) ψ′′′ (α) < 0 for 0 < α < α̃, ψ′′′ (α) > 0 for α̃ < α ≤ −γ/2 andψ′′′ (α̃) = 0, where

α̃ = −3 −
√

3

6
γ. (51)

Note that, under Assumption 1,6/
(√

3 − 3
)
≤ γ ≤ −2 implies that15

0 < 1 − 1/
√

3 ≤ α̃ ≤ 1. (52)

Thus,ψ is strictly decreasing, it is concave for0 < α < −γ/2 and convex forα > −γ/2, while
its second derivative is decreasing for0 < α < α̃ and increasing for̃α ≤ α ≤ −γ/2.

Proof. Direct computation yields:

ψ′ (α) =
pγ

α2
eγ 1−α

α , (53)

ψ′′ (α) = −pγ
α4
eγ 1−α

α (2α + γ) , (54)

ψ′′′ (α) =
pγ

α6
eγ 1−α

α

(
6α2 + 6γα+ γ2

)
.

Condition (i) holds asγ < 0. Since− (pγ/α4) eγ 1−α
α > 0, the sign ofψ′′ is entirely determined by

the sign of2α + γ and condition (ii) follows accordingly. Similarly, as(pγ/α6) eγ 1−α
α < 0, the sign

of ψ′′′ is entirely determined by the sign of6α2 + 6γα+ γ2, which has the two roots−γ
(
3 −

√
3
)
/6

and−γ
(
3 +

√
3
)
/6; since−γ/2 < −γ

(
3 +

√
3
)
/6, condition (iii) is established.

6.2 Case (i) of Proposition 1:γ = −2

In this section we start to assemble all the information gathered in the last section in order to prove
the first part of Proposition 1. First of all, notice that whenγ = −2, −γ/2 = 1, and thus Lemma 4 (ii)
establishes thatψ is strictly convex forα ≥ 1; coupled with Lemma 2, which implies thatφ is strictly
convex forα ≥ 1 as well, this is enough to guarantee that the functionf (α) = φ (α)+ψ (α)−(1 − p)
defined in (23) is strictly convex on[1,+∞). As f (1) = 0, this means that the solution of the
second inequality of system (26) is a nontrivial interval ifand only if f ′ (1) < 0. Note that, as
limα→+∞ f (α) = +∞, any such interval is always closed and has1 as its left endpoint.

More problematic is the analysis over(0, 1], that is, the study of the first inequality of system (26).
Recalling that, from (38) in Lemma 2,1/2 < α̂ < 1, the idea underlying the proof is to partition(0, 1]
into two subintervals,(0, α̂] and [α̂, 1], and then exploit the monotonicity and curvature properties
which are specific for the functionsφ andψ on such subintervals, as established by the lemmas in the
previous section. We start with two lemmas which are specificfor the scenario in whichγ = −2.

Lemma 5 Whenγ = −2, if both Assumption 1 and condition (20) in Proposition 1 (i)hold, then the
functiong defined in (27) has the property thatg′ (α) < 1 for 0 < α ≤ α̂.

15Note that1 − 1/
√

3 ≃ 0.4226.
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Proof. By Lemma 2,g′ is decreasing on(0, α̂], thusg′ (α) < limα→0+ g′ (α) =− ln [1 − (1 − δ)β]
for 0 < α ≤ α̂. Hence we must show that− ln [1 − (1 − δ) β] ≤ 1 ⇐⇒ β ≤ (1 − e−1) / (1 − δ)
holds true. Since, by condition (20),β ≤

[
1 − exp

(
−√

3.9781p
)]
/ (1 − δ), it is sufficient to show

that
1 − exp

(
−√

3.9781p
)

1 − δ
≤ 1 − e−1

1 − δ
⇐⇒ p ≤ 1

3.9781
.

A slightly stronger condition isp ≤ 1/4, which certainly holds under condition (18) of Assumption
1. As a matter of fact, by substitutingγ = −2 into (19) – which is the expanded version of (18) – and
recalling thatt < 1, we find that

p ≤ 0.08634t

1 − 0.13534t
≤ 1

4
<

1

3.9781
,

and the proof is complete.

Lemma 6 Under the same assumptions of Lemma 5, if0 < α0 ≤ α̂ is a stationary point for the
functionf defined in (23),f ′ (α0) = φ′ (α0) + ψ′ (α0) = 0, then a smooth functionfU : (0, α0] → R

exists such thatfU (α0) = f (α0), f ′

U (α0) = f ′ (α0), fU (α) > f (α) for 0 < α < α0 andf ′

U (α) > 0
for 0 < α < α0. In other words, an upper boundfU of f exists on(0, α0] such thatfU is strictly
larger thanf and it is strictly increasing on(0, α0).

Proof. Choose0 < α0 ≤ α̂ such thatf ′ (α0) = φ′ (α0) + ψ′ (α0) = 0. Define the first order
Taylor approximation of the functiong defined in (27) atα = α0:

T0 (α) = g (α0) + g′ (α0) (α− α0) .

By Lemma 2,g is strictly concave on(0, α̂], thusT0 is a strict upper bound ofg on (0, α̂), and
therefore, also the function defined by

φU (α) = eT0(α) = eg(α0)+g′(α0)(α−α0) (55)

is such thatφU ≥ φ on (0, α̂], with strict inequality on(0, α̂). Our goal is to show that the upper
bound of functionf defined on(0, α̂] as

fU (α) = φU (α) + ψ (α) + (1 − p) ,

is strictly increasing on(0, α0), that is,

f ′

U (α) = φ′

U (α) + ψ′ (α) > 0 (56)

for 0 < α < α0.
From Lemma 4 (iii) we know thatψ′ is strictly concave on(0, α̃], whereα̃ is given by (51), as

ψ′′′ < 0 for 0 < α < α̃, while it is strictly convex forα̃ < α ≤ −γ/2 = 1. Whenγ = −2,
however,α̃ = 1 − 1/

√
3 < 1/2 < α̂ [see (38)]; therefore, we need to study separately the two cases

0 < α0 ≤ 1 − 1/
√

3 and1 − 1/
√

3 < α0 ≤ α̂.

1. Assume that0 < α0 ≤ 1 − 1/
√

3 = α̃. Thenψ′ is strictly concave on(0, α0]; φ′

U , however, it
is not, being it an exponential function, as can be seen by differentiatingφU in (55): φ′

U (α) =
g′ (α0) e

T0(α). Therefore, we shall linearize it by taking its first order Taylor approximation at
α = α0:

TL (α) = φ′

U (α0) + φ′′

U (α0) (α− α0) = g′ (α0) e
g(α0) [1 + g′ (α0) (α− α0)] .
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Clearly, beingφ′

U a strictly convex function,TL is a lower bound forφ′

U ; specifically:TL (α0) =
φ′

U (α0) andTL (α) < φ′

U (α) for 0 < α < α0. AsTL is also linear, the function defined by

L (α) = TL (α) + ψ′ (α) , (57)

turns out to be a strictly concave lower bound off ′

U , defined in (56), on(0, α0]: L (α) ≤
f ′

U (α) for 0 < α ≤ α0. Hence, in order to establish thatf ′

U > 0 on (0, α0), it is suf-
ficient to show thatL > 0 on (0, α0). By strict concavity ofL, a sufficient condition is
that min {limα→0+ L (α) , L (α0)} ≥ 0. But, on one hand, as, by (53),limα→0+ ψ′ (α) =

limα→0+ (pγ/α2) eγ 1−α
α = 0,

lim
α→0+

L (α) = lim
α→0+

[TL (α) + ψ′ (α)] = g′ (α0) e
g(α0) [1 − g′ (α0)α0]

is strictly positive since0 < α0 < 1 and, by Lemmas 1 and 5,0 < g′ (α0) < 1. On the other
hand, by construction,L (α0) = φ′ (α0) + ψ′ (α0), which equals zero by assumption. Hence
inequality (56) is established for0 < α0 ≤ 1 − 1/

√
3.

2. Now assume that̃α = 1 − 1/
√

3 < α0 ≤ α̂ and consider again the functionL defined in (57),
which, while being strictly concave on(0, α̃], it turns out to be strictly convex on(α̃, α0] as, by
Lemma 4 (iii),ψ′ is. Our strategy is to extend the argument of the previous point to the whole
interval (0, α0] by showing that, under condition (20) in Proposition 1 (i),L must be strictly
decreasing over(α̃, α0]; therefore, provided thatL′ (α) < 0 for α̃ < α ≤ α0, once again the
conditionmin {limα→0+ L (α) , L (α0)} ≥ 0 guarantees that inequality (56) holds also when
α0 > α̃. Hence, let us study the sign of the derivative of the lower boundL:

L′ (α) = T ′

L (α) + ψ′′ (α) = [g′ (α0)]
2
eg(α0) + 4

p

α4
e−2 1−α

α (α− 1) , (58)

whereψ′′ (α) have been expanded as in (54) computed forγ = −2. We must thus establish that
the RHS in (58) is strictly negative.

As α0 ≤ α̂ < 1, by definition (27)g (α0) < 0, and thuseg(α0) < 1, yielding [g′ (α0)]
2 as

a first upper bound of[g′ (α0)]
2 eg(α0); moreover, since by Lemmas 1 and 2g′ is positive and

decreasing on(0, α̂], an upper bound ofg′ (α0) is limα→0+ g′ (α) = − ln [1 − (1 − δ)β]. Thus,
an upper bound for the first term in the RHS of (58) is{ln [1 − (1 − δ)β]}2.

As far as the second term in the RHS of (58) is concerned, from Lemma 4 (iii) we know thatψ′′

is increasing forα > α̃; therefore a useful upper bound forψ′′ is given by the numberψ′′ (α̂),
which, however, cannot be computed directly. Thus we shall instead employ the upper bound of
α̂ provided in (38) of Lemma 2 forγ = −2: γ/ (γ − 2 + 2eγ) = (2 − e−2)

−1. By substituting
(2 − e−2)

−1 in the argument ofψ′′ (α) in the RHS of (58), after some algebra we get:

ψ′′

(
1

2 − e−2

)
=

(1 − e−2) (2e−2 − 4)
3
e−2(1−e−2)

2
p ≃ −3.9781p.

Using the two upper bounds just found, we get the following inequality which holds on(α̃, α0]:

L′ (α) = T ′

L (α) + ψ′′ (α) < {ln [1 − (1 − δ)β]}2 − 3.9781p;

hence, a sufficient condition forL′ < 0 on (α̃, α0] is {ln [1 − (1 − δ)β]}2 < 3.9781p, which
is condition (20) in Proposition 1 (i). This is enough formin {limα→0+ L (α) , L (α0)} ≥ 0 to
hold true also when1 − 1/

√
3 < α0 ≤ α̂.
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We have thus shown that inequality (56) holds for0 < α < α0, whereα0 can be any stationary
point off in (0, α̂], and the proof is complete.

Corollary 2 Under the assumptions of Lemma 6,f can have at most one stationary pointα0 in (0, α̂]
which must be a maximum, while there cannot be any stationarypoint which is a minimum forf in
(0, α̂]. Eitherf ′ (α) > 0 for 0 < α ≤ α̂, or (a unique)0 < α0 < α̂ exists such thatf ′ (α0) = 0; in
the latter casef turns out to be strictly increasing on(0, α0) and strictly decreasing on(α0, α̂].

Proof. First of all, note thatlimα→0+ f ′ (α) = − [1 − (1 − δ) β] ln [1 − (1 − δ)β] > 0; therefore,
if f has no stationary points on(0, α̂] it must be increasing over there. Now let us suppose that a
stationary point exists and argue by contradiction: let0 < α0 ≤ α̂ be such thatf ′ (α0) = 0 which is a
minimum point off . But, by Lemma 6, an upper boundfU of f exists on(0, α0] such thatfU (α0) =
f (α0) andfU (α) > f (α) for 0 < α < α0 which is strictly increasing on(0, α0); therefore,f itself
must be strictly increasing at least on a (left) neighborhood of α0, which contradicts our assumption.
The same argument rules out existence of multiple maxima on(0, α0] as well, since this would imply
the existence of stationary points which are minima among the maximum points.

Proof of Proposition 1 (i). Corollary 2 states that the functionf defined in (23) is either increasing
or has at most one maximum point on(0, α̂]. Since, forγ = −2, α̃ = 1 − 1/

√
3 < 1/2 < α̂ < 1 =

−γ/2, Corollary 1 and Lemma 4 (iii) establish that bothφ andψ have positive third derivative on
[α̂, 1], and thusf ′′′ > 0 on [α̂, 1] accordingly. Finally, Lemmas 2 and 4 (ii) establish that both φ
andψ are strictly convex forα ≥ 1, which implies thatf is strictly convex on[1,+∞) as well.
By combining these three properties we deduce that the function f can be either increasing on all
(0,+∞), or it can have at most one maximum pointα0 such that0 < α0 < 1 and one minimum point
α1 such thatα1 > α0. More specifically,α0 can either satisfy0 < α0 ≤ α̂ or α̂ < α0 < 1, where the
number̂α is defined in (37) of Lemma 2 and, by calculating the bounds in (38) forγ = −2, is such that
0.5 < α̂ < 0.5363; while α1 can either be such thatα0 < α1 ≤ 1 or α1 > 1, depending on whether
f ′ (1) ≥ 0 or f ′ (1) < 0 respectively. Recalling also thatf (1) = 0 andlimα→+∞ f (α) = +∞, the
following possible scenarios can occur, all defining the solution set of system (26) as either the empty
set or an interval.

1. f is strictly increasing on(0,+∞) and thus it crosses the abscissa onα = 1 from below,i.e.,
f ′ (1) > 0; in this case system (26) has an empty solution set.

2. There is one maximum point0 < α0 < 1 and one minimum pointα1 for f such thatα0 < α1 <
1 andf (α0) < 0; f crosses the abscissa onα = 1 from below,i.e., f ′ (1) > 0, and system (26)
has an empty solution set.

3. There is one maximum point0 < α0 < 1 and one minimum pointα1 for f such thatα0 < α1 <
1 andf (α0) = 0; f crosses the abscissa onα = 1 from below,i.e., f ′ (1) > 0, and the solution
set of (26) is the singleton{α0}.

4. There is one maximum point0 < α0 < 1 and one minimum pointα1 for f such thatα0 < α1 <
1 andf (α0) > 0; sinceα1 < 1, once againf crosses the abscissa onα = 1 from below,i.e.,
f ′ (1) > 0, and the solution set of (26) can be either

(a) the closed interval[αℓ, αr], with 0 < αℓ < α0 < αr < α1 < 1, or

(b) the left-open interval(0, αr], with 0 < α0 < αr < α1 < 1.

5. There is one maximum point0 < α0 < 1 and the minimum point forf is α1 = 1; then
f ′ (1) = 0, and the solution set of (26) can be either
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(a) the closed interval[αℓ, 1], with αℓ > 0, or

(b) the left-open interval(0, 1].

6. There is one maximum point0 < α0 < 1 and one minimum pointα1 for f such thatα1 > 1;
thenf crosses the abscissa onα = 1 from above,i.e., f ′ (1) < 0, and the solution set of (26)
can be either

(a) the closed interval[αℓ, αr], with 0 < αℓ < α0 < 1 < α1 < αr, or

(b) the left-open interval(0, αr], with 0 < α0 < 1 < α1 < αr.

Since the six cases discussed include all possibilities, the proof is complete.

Figure 3 illustrates the last proof by showing some solutionsetsI of system (26) whenγ = −2.
All figures has been plotted using the values of parameters employed in the second example of Section
4: γ = −2, t = 0.44 andp = 0.05; while parameterβ takes decreasing values from figure 3(a) to
Figure 3(f). Figure 3(a) corresponds to case 1 in the proof, while figure 3(b) matches case 2: in both
cases the solution set is empty,I = ∅. Figure 3(c) shows case 3, in whichI is the singleton{α0}.
Figure 3(d) explains case 4a, while figures 3(e) and 3(f) illustrate case 5a, in whichα1 = αr = 1, and
case 6a, in whichαr > 1 (and thusf ′ (1) < 0), respectively: all the last three cases produce a closed
interval as solution set,I = [αℓ, αr], with left endpointαℓ strictly larger than zero. Finally, figure 3(f)
corresponds to case 6b, when the solution set is an interval which is left-open:I = (0, αr].

6.3 Case (ii) of Proposition 1:6/
(√

3−3
)

≤ γ < −2

Sinceγ < −2 implies−γ/2 > 1, by Lemma 4 (ii) the functionψ defined in (25) turns out to be
concave on[1,−γ/2]; however, Lemma 2 states that the functionφ defined in (24) is convex on
[1,−γ/2]. Since no information is available on the sign ofφ′′′ on the interval[1,−γ/2] (note that
Corollary 1 holds only for̂α ≤ α ≤ 1), if γ < −2 in principle nothing can be said on the behavior
of f defined in (23) on the interval[1,−γ/2]. The task of condition (21) in Proposition 1 (ii) is to
overcome this impasse by lettingf to be, if not convex, at least quasiconvex on[1,+∞), so that its
lower contour sets are still intervals. Therefore, under condition (21), the analysis on[1,+∞) remains
the same as in the previous section. However, as we have seen in Section 4, there is a price to pay, as
condition (21) turns out to be much more restrictive than condition (20).

Lemma 7 Under Assumption 1, if condition (21) in Proposition 1 (ii) holds the functionf defined
in (23) is quasiconvex on[1,+∞); specifically, the set{α ≥ 1 : f (α) ≤ 0} is always a nonempty
(nontrivial) closed interval.

Proof. Consider the following linear upper boundχ of functionφ on [1,−γ/2]:

χ (α) = 1 +
exp

{(
1 +

γ

2

)
ln [1 − (1 − δ + e−2δ) β]

}
− 1

−
(
1 +

γ

2

) (α− 1) . (59)

As φ (1) = 1 andφ (−γ/2) = exp {(1 + γ/2) ln [1 − (1 − δ + e−2δ)β]}, χ is the expression of the
line defined by the two points(1, φ (1)) and(−γ/2, φ (−γ/2)). Sinceφ is strictly convex on[1,+∞),
χ is strictly larger thanφ on (1,−γ/2).
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FIGURE 3: the solution setI of system (26) is either empty or a (possibly nontrivial) interval; in (a) and (b)
I = ∅, in (c) I = {α0}, in (d), (e) and (f)I = [αℓ, αr], while in (g)I = (0, αr].
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Define the upper boundf of f as follows:

f (α) =

{
f (α) if 0 < α < 1 andα > −γ/2
χ (α) + ψ (α) − (1 − p) if 1 ≤ α ≤ −γ/2, (60)

whereχ (α) is defined in (59). The functionf defined in (60) is such thatf (1) = f (1), f (−γ/2) =
f (−γ/2), f (α) > f (α) for 1 < α < −γ/2, and is strictly concave on[1,−γ/2]. Therefore, by
assuming that

χ′ (1) + ψ′ (1) ≤ 0, (61)

f turns out to be strictly decreasing on[1,−γ/2], which, sincef (1) = f (1) = 0, in turns implies
that f (α) < 0 on (1,−γ/2]. Since, by Lemmas 2 and 4 (ii),f is strictly convex on(−γ/2,+∞),
condition (61) is thus sufficient to establish thatf is quasiconvex on[1,+∞). Using (53) to evaluate
ψ′ (1) = pγ and after some algebra, (61) boils down to condition (21), and the proof is complete.

Whenγ < −2, however, something changes also on the left ofα = 1. As a matter of fact, the two
constantŝα andα̃ introduced in Lemmas 2 and 4 (iii) both increase asγ decreases, witĥα increasing
faster thañα, as the next lemma explains in detail. This reshuffles the arguments used in the previous
section also on the interval(0, 1], which thus need to be reassessed.

Lemma 8 Under Assumption 1, a unique valueγ∗ < −2 exists such that̃α = α̂ whenγ = γ∗, α̃ < α̂
if γ∗ < γ < −2 and α̃ > α̂ if γ < γ∗, whereα̃ and α̂ are defined in (51) and in (37) respectively.
Bounds independent of the parameters are given by:

−2.7497 ≃ −2

[
1√

3 − 1
+ exp

(
− 6

3 −
√

3

)]
< γ∗ < − 2√

3 − 1
≃ −2.7321. (62)

Proof. By substitutingα̂ with α̃, defined in (51), into the expression (37) and rearranging terms
we consider the following function ofγ:

η (γ) = γ +
2√

3 − 1
+ 2e

−
6

3−
√

3
B

A
= γ +

2√
3 − 1

+
2pβe

−
6

3−
√

3

(1 − β) t [p+ (1 − p) eγ] + pβ
, (63)

where in the last equality the constantsA andB have been expanded as in (28) and (29) respectively
and the definition ofδ in (15) has been used. Direct computation yields:

η′ (γ) = 1 − 2pβe
−

6
3−

√
3 (1 − β) t (1 − p) eγ

{(1 − β) t [p+ (1 − p) eγ ] + pβ}2 ,

which is clearly positive under Assumption 1. Thus, the functionη defined in (63) is strictly increasing
in γ and it can have at most one rootγ∗ in (−∞,−2], which solvesη (γ) = γ + 2/

(√
3 − 1

)
+

2e
−

6
3−

√
3 (B/A) = 0. As 0 < B/A < 1, the bounds in (62) follow immediately.

Note that, since6/
(√

3 − 3
)
≃ −4.7321, by (62) it is immediately seen thatγ∗ > 6/

(√
3 − 3

)

must hold.
By Lemma 8,α̃ ≤ α̂ if γ∗ ≤ γ < −2. This means that the argument developed through Lemmas

5 and 6 and in Corollary 2 in Section 6.2, and thus in the proof of Proposition 1 (i), carries over also
whenγ∗ ≤ γ < −2; we only need to adjust Lemmas 5 and 6 in order let them hold also in this case.
The next Lemma actually generalizes Lemma 5 for all6/

(√
3 − 3

)
≤ γ < −2 under condition (21)

in Proposition 1 (ii), while the following one, Lemma 10, is specific for the caseγ∗ ≤ γ < −2.
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Lemma 9 When6/
(√

3 − 3
)
≤ γ < −2, if both Assumption 1 and condition (21) in Proposition 1

(ii) hold, then the functiong defined in (27) has the property thatg′ (α) < 1 for 0 < α ≤ α̂, whereα̂
is defined in (37).

Proof. Recalling the proof of Lemma 5, we must show thatβ ≤ (1 − e−1) / (1 − δ) holds true
also whenγ∗ ≤ γ < −2. Under condition (21), it is sufficient to show that

1 − exp

{
2 ln [1 + (1 + γ/2) pγ]

2 + γ

}

1 − (1 − e−2) δ
≤ 1 − e−1

1 − δ
,

or, equivalently, that

1 − δ

1 − (1 − e−2) δ

{
1 − exp

[
2 ln (1 + pγ + pγ2/2)

2 + γ

]}
≤ 1 − e−1. (64)

As (1 − δ) / [1 − (1 − e−2) δ] < 1, a sufficient condition for (64) is

exp

[
2 ln (1 + pγ + pγ2/2)

2 + γ

]
≥ e−1 ⇐⇒ p ≤

2
(
e−

2+γ
2 − 1

)

(2 + γ) γ
. (65)

Condition (18) of Assumption 1, or, more precisely, condition (19), provides a useful upper bound
for p; since an upper bound for the RHS in (19) is obtained by letting t = 1 in its expression, we obtain
the following:

p ≤

[
1 + γeγ

(1−eγ)2

]
eγt

1 −
[
1 + γeγ

(1−eγ)2

]
(1 − eγ) t

<

[
1 + γeγ

(1−eγ)2

]
eγ

1 −
[
1 + γeγ

(1−eγ)2

]
(1 − eγ)

=
(1 − eγ)2 + γeγ

(1 − eγ) (1 − eγ − γ)
. (66)

Combining (65) and (66), it is easily seen that

2
(
e−

2+γ
2 − 1

)

(2 + γ) γ
>

(1 − eγ)2 + γeγ

(1 − eγ) (1 − eγ − γ)
(67)

holds true for all6/
(√

3 − 3
)
≤ γ < −2, as can be checked by plotting both terms in (67) as

functions of the only variableγ with Maple software. As (67) implies both (65) and (64), the proof is
complete.

6.3.1 The argument whenγ∗ ≤ γ < −2

The following Lemma exploits both Lemma 9 and condition (21)in Proposition 1 (ii) in order to
extend Lemma 6 to the caseγ∗ ≤ γ < −2.

Lemma 10 Let γ∗ ≤ γ < −2. Under the same assumptions of Lemma 9, if0 < α0 ≤ α̂ is a
stationary point for the functionf defined in (23),f ′ (α0) = φ′ (α0) + ψ′ (α0) = 0, then a smooth
functionfU : (0, α0] → R exists such thatfU (α0) = f (α0), f ′

U (α0) = f ′ (α0), fU (α) > f (α) for
0 < α < α0 andf ′

U (α) > 0 for 0 < α < α0. In other words, an upper boundfU of f exists on(0, α0]
such thatfU is strictly larger thanf and it is strictly increasing on(0, α0).
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Proof. Sinceα̃ < α̂ if γ∗ < γ < −2, the first part of the proof,i.e., the case in which0 <
α0 ≤ α̃, is exactly the same as in the proof of Lemma 6, one has only to replace1 − 1/

√
3 with

α̃ = −
(
3 −

√
3
)
γ/6 and use Lemma 9 instead of Lemma 5. Note that the same argumentworks also

in the special caseγ = γ∗, in which α̃ = α̂.
As far as the second part is concerned,i.e., whenγ∗ < γ < −2 andα̃ < α0 ≤ α̂, we must show

that under condition (21) in Proposition 1 (ii) the functionL defined in (57) is strictly decreasing on
(α̃, α0]. To this purpose, let us study the sign of the derivative ofL as in (58) forγ∗ < γ < −2:

L′ (α) = T ′

L (α) + ψ′′ (α) = [g′ (α0)]
2
eg(α0) − pγ

α4
eγ 1−α

α (2α + γ) , (68)

whereψ′′ (α) have been expanded as in (54). We must establish that the RHS in (68) is strictly
negative. We shall consider the same upper bounds for both the first and the second term in the RHS
of (58): {ln [1 − (1 − δ)β]}2 andψ′′ [γ/ (γ − 2 + 2eγ)] respectively, where the argument ofψ′′ is the
upper bound of̂α provided in (38) of Lemma 2. After some algebra we get:

ψ′′

(
γ

γ − 2 + 2eγ

)
= −p (γ + 2eγ) (γ − 2 + 2eγ)3 e−2(1−eγ)

γ2
.

Therefore, a sufficient condition for having the RHS in (68) strictly negative is

{ln [1 − (1 − δ) β]}2 − p (γ + 2eγ) (γ − 2 + 2eγ)3 e−2(1−eγ)

γ2
≤ 0,

which can be rearranged as follows:

β ≤
1 − exp

[
−

√
p (γ + 2eγ) (γ − 2 + 2eγ)3 e−2(1−eγ)/γ2

]

1 − δ
.

Under condition (21), it is thus sufficient to show that

1 − exp

[
2 ln (1 + pγ + pγ2/2)

2 + γ

]

1 − (1 − e−2) δ
≤

1 − exp

[
−

√
p (γ + 2eγ) (γ − 2 + 2eγ)3 e−2(1−eγ)/γ2

]

1 − δ
,

or, equivalently, that

1 − δ

1 − (1 − e−2) δ

{
1 − exp

[
2 ln (1 + pγ + pγ2/2)

2 + γ

]}
≤

1 − exp

[
−

√
p (γ + 2eγ) (γ − 2 + 2eγ)3 e−2(1−eγ)/γ2

]
.

Since(1 − δ) / [1 − (1 − e−2) δ] < 1, a sufficient condition is

exp

[
2 ln (1 + pγ + pγ2/2)

2 + γ

]
≥ exp

[
−

√
p (γ + 2eγ) (γ − 2 + 2eγ)3 e−2(1−eγ)/γ2

]
,

which, after some algebra, is equivalent to

θ (p, γ) = p−

[
2γ ln (1 + pγ + pγ2/2)

2 + γ

]2

(γ + 2eγ) (γ − 2 + 2eγ)3 e−2(1−eγ)
≥ 0.
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Note that the LHS of the last inequality depends only on the two parametersp andγ; hence we can
label it as a function of two variables,θ (p, γ). Since its expression is too tough to handle analytically
we rely on graphic inspection by means of Maple software, which confirms thatθ (p, γ) ≥ 0 for all
0 < p < 1 andγ < −2. This completes the proof as it is sufficient for condition (68) to hold true.

Proof of Proposition 1 (ii) for γ∗ ≤ γ < −2. With Lemmas 9 and 10 replacing Lemmas 5
and 6 in Section 6.2, Corollary 2 still applies, and the proofremains identical to that for case (i) of
Proposition 1 on(0, 1]. Moreover, Lemma 7 extends the argument in the proof of Proposition 1 (i) also
on the interval[1,+∞) by establishing that, if condition (21) holds true, the set{α ≥ 1 : f (α) ≤ 0}
is always a nonempty (nontrivial) closed interval. Note that under condition (21) the solution set of
system (26) cannot be empty.

6.3.2 The argument when6/
(√

3−3
)

≤ γ < γ∗

Clearly,γ < γ∗ implies−γ/2 > 1; thus Lemma 7 still applies and condition (21) in Proposition 1
(ii) guarantees that the functionf defined in (23) is quasiconvex on[1,+∞), so that its lower contour
sets are intervals. However, whenγ < γ∗ Lemma 8 states that the constantsα̂ andα̃ defined in (37)
of Lemma 2 and in (51) of Lemma 4 (iii) respectively, are such thatα̂ < α̃. Moreover, asγ becomes
smaller, the constant̃α becomes larger, until it reaches the valueα̃ = 1, which, by definition (51),
corresponds to the value6/

(√
3 − 3

)
for parameterγ. Hence, unlike the caseγ∗ ≤ γ ≤ −2, now the

interval(0, 1] must be partitioned into the following three intervals:

(0, 1] = (0, α̂] ∪ [α̂, α̃] ∪ [α̃, 1] ,

with α̂ < α̃ ≤ 1.
While on(0, α̂] and, wheñα < 1, on [α̃, 1] the arguments discussed in the previous sections still

apply, on[α̂, α̃] not only, as shown in Lemmas 2 and 4 (ii), the functionsφ andψ defined in (24)
and (25) are respectively convex and concave, but also theirthird derivatives have opposite sign, as
prescribed by Corollary 1 and 4 (iii). Therefore, the argument in the proof of case (i) of Proposition
1 does not apply anymore on[α̂, α̃]. We shall follow a new strategy in order to fill this gap: the next
lemma will establish that, if condition (21) holds, the function f turns out to be concave on[α̂, α̃].

Lemma 11 Let 6/
(√

3 − 3
)
≤ γ < γ∗. Under Assumption 1, if condition (21) in Proposition 1 (ii)

holds, then the functionf defined in (23) is strictly concave for̂α ≤ α ≤ α̃, whereα̂ and α̃ are
defined in (37) and (51) respectively, and are such thatα̂ < α̃ ≤ 1.

Proof. Since, by Corollary 1,φ′′′ > 0 for α̂ ≤ α ≤ 1, φ′′ (α) ≤ φ′′ (1) holds true whenever̂α ≤
α ≤ 1. Also, since, by Lemma 4 (iii),ψ′′′ (α) ≤ 0 for 0 < α ≤ α̃, ψ′′ (α) ≤ ψ′′ (α̂) < ψ′′ [γ/ (γ − 2)]
whenever̂α ≤ α ≤ α̃, where the last inequality uses the lower bound forα̂ in (38). Hence, a sufficient
condition forf ′′ (α) = φ′′ (α) + ψ′′ (α) < 0 on [α̂, α̃] is the following:

φ′′ (1) + ψ′′

(
γ

γ − 2

)
< 0,

which can be expanded as

− 2γδβeγ

1 − (1 − δ)β − δβeγ
+ {ln [1 − (1 − δ)β − δβeγ]}2 <

(γ − 2)3 pe−2

γ
, (70)

where the LHS has been obtained by substitutingα = 1 in the expression ofφ′′,

φ′′ (α) = eg(α)
{
g′′ (α) + [g′ (α)]

2
}
,
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with g, g′ and g′′ defined in (27), (32) and (39) respectively, and the RHS has been obtained by
substitutingα = γ/ (γ − 2) in (54).

Let us search for some useful upper bound for the LHS in (70). First note that forγ < −2 the
following inequalities hold:

1

1 − (1 − δ) β − δβeγ
<

1

1 − (1 − δ) β − δβe−2
,

{ln [1 − (1 − δ)β − δβeγ]}2 <
{
ln

[
1 − (1 − δ)β − δβe−2

]}2
,

which provide a first upper bound. Next, note that the RHS in both inequalities above are strictly in-
creasing inβ, therefore we can discard parameterβ by taking its maximum value yielded by condition
(21), so that:

1 − (1 − δ)β − δβe−2 = 1 −
[
1 −

(
1 − e−2

)
δ
]
β = exp

{
2 ln [1 + (1 + γ/2) pγ]

2 + γ

}
,

and thus an upper bound for the LHS in (70) is given by

−
[

2γδeγ

1 − (1 − e−2) δ

] 1 − exp
{

2 ln[1+(1+γ/2)pγ]
2+γ

}

exp
{

2 ln[1+(1+γ/2)pγ]
2+γ

} +

{
2 ln [1 + (1 + γ/2) pγ]

2 + γ

}2

.

Finally, we need to get rid also of parameterδ; to this purpose, since it is immediately seen that
δ/ [1 − (1 − e−2) δ] is increasing inδ, condition (18) of Assumption 1 allows us to replaceδ with
1 + γeγ/ (1 − eγ)2, thus eventually providing our final upper bound for the LHS in (70):

−
{

2γeγ
[
(1 − eγ)2 + γeγ

]
[
(1 − eγ)2 + γeγ

]
e−2 − γeγ

}
1 − exp

{
2 ln[1+(1+γ/2)pγ]

2+γ

}

exp
{

2 ln[1+(1+γ/2)pγ]
2+γ

} +

{
2 ln [1 + (1 + γ/2) pγ]

2 + γ

}2

.

Since the RHS in (70) is increasing inp, there is no hope to discard parameterp from the whole
inequality; as a matter of fact, we shall rely once again on graphic inspection on the relevant ranges
for parametersγ andp. Recall that an upper bound forp is given by condition (19) of Assumption 1
computed int = 1 [see also inequality (66) in the proof of Lemma 9]:

p <
(1 − eγ)2 + γeγ

(1 − eγ) (1 − eγ − γ)
= p (γ) . (71)

To conclude the proof, the plot by Maple software of the difference between the LHS and the RHS
of (70) as a function of the two variablesγ andp shows that it is clearly positive for all the relevant
values, that is, on the ranges16 6/

(√
3 − 3

)
≤ γ ≤ 2/

(
1 −

√
3
)

and0 < p ≤ p (γ), with p (γ)
defined in (71).

Proof of Proposition 1 (ii) for 6/
(√

3−3
)

≤ γ < γ∗. Note that Lemma 6 holds also when
6/

(√
3 − 3

)
≤ γ < γ∗, as the first part of its proof is sufficient to cover the whole interval(0, α̂]

when α̂ < α̃; the only tool required is Lemma 9, which, as a matter of fact,does apply for all
6/

(√
3 − 3

)
≤ γ < −2. Thus, Corollary 2 still applies and states thatf can have, if any, at most

one maximum point in(0, α̂]. Lemma 11 establishes that the functionf is strictly concave on[α̂, α̃],
whereα̃ ≤ 1. As long as̃α < 1, Corollary 1 and Lemma 4 (iii) together state that bothφ andψ have

16Recall that, by Lemma 8,γ∗ < 2/
(
1 −

√
3
)
.
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positive third derivative on[α̃, 1], and thusf ′′′ > 0 on [α̃, 1] accordingly.17 Finally, Lemma 7 covers
the interval[1,+∞) by establishing that, if condition (21) holds true, the set{α ≥ 1 : f (α) ≤ 0} is
always a nonempty (nontrivial) closed interval.

Therefore, if 1)f can have at most one maximum point in(0, α̂], 2) f is strictly concave on[α̂, α̃],
3) f ′′′ > 0 on [α̃, 1] whenever̃α < 1 and 4) the set{α ≥ 1 : f (α) ≤ 0} is a closed interval, then the
behavior off is that described in the proof of Proposition 1 (i) also when6/

(√
3 − 3

)
≤ γ < γ∗,

and the proof is complete. Recall that under condition (21) the solution set of system (26) is always
nonempty.
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