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Abstract 

The most promising and economical approach for detoxifying mycotoxins contaminated feedstuffs 

is the addition of nutritionally inert mineral adsorbents  to animals diets to decrease the 

bioavailability of the mycotoxins during absorption in the gastrointestinal tract thus  preventing 

uptake  into the blood and subsequent distribution to organs. Many adsorbents, mainly activated 

carbon and clay minerals exhibit a high ability to bind most of the mycotoxins. On the other hand, 

adsorbents for fumonisins have been tested in only a few cases, though these mycotoxins are toxic 

to number of animal species. This study reports an investigation on the ability of organically 

modified clays to bind fumonisins B1 (FB1) and B2 (FB2). Organically modified clays are 

commercial materials prepared from natural clays, generally montmorillonite, by exchanging the 

inorganic cation with an ammonium organic cation. A screening experiment conducted on 13 

organically modified clays and 3 non modified clays, used as controls, has confirmed that the 

presence of an organic cation in the clay interlayer promoted the adsorption of both fumonisins. On 

the basis of the results of the screening test, four modified clays and a Na-montmorillonite were 

selected for the determination of the adsorption kinetics and isotherms. On all the tested materials 

adsorption took place within one hour contact with fumonisins solutions. Adsorption isotherms 

have pointed out that the modified clays exhibited a higher adsorptive capacity than the unmodified 

clay. It was also demonstrated that, notwithstanding the reduced structural difference between FB1 

and FB2, they were differently adsorbed on the modified clays. Addition of 2 % modified clays to 

contaminated maize allowed a reduction of more than 70% and 60% of the amount of FB1and FB2 

released in solution. Although in vivo experiments are required to confirm the effectiveness of the 

organically modified clays, these preliminary results suggest that these materials are promising as 

fumonisins binders. 

 

Keywords:  Mycotoxin binders, fumonisins B1 and B2, organically modified clays. 
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Introduction 

Mycotoxins are a relatively large, diverse group of naturally occurring, fungal toxins, many of 

which have been strongly implicated as chemical agents of toxic disease in humans and animals.  

Mycotoxins cause illness in, and can be lethal to, domestic animals fed mouldy feedstuffs. The 

economic impact of lowered productivity, decreased weight gain, decreased feed efficiency, 

increased incidence of disease due to immune system suppression, subtle damage to vital body 

organs, and interference with reproduction is many times greater than that of immediate morbidity 

and lethality. [1] As a result, the feed industry is currently focused on reducing mycotoxin levels in 

feed raw materials and finished feeds. [2]  

Several strategies for reducing the concentration of mycotoxins in food and feed have been 

proposed, including physical, chemical, and biological methods. The most promising and 

economical approach for detoxifying feedstuffs is the addition of nutritionally inert mineral 

adsorbents  to animals diets to decrease the bioavailability of the mycotoxins during absorption in 

the gastrointestinal tract thus  preventing uptake  into the blood and subsequent distribution to 

organs. [3,4]  They can be recommended when all the prevention rules fail and, consequently, 

farmers suspect that feed has been contaminated with mycotoxins. [5]  

Of the mycotoxins found in feedstocks, considerable attention has been given to fumonisins because 

on one hand they are the most diffuse toxins in farm feedstuff; on the other hand  they cause 

leukoencephalomalacia (LEM) in horses and pulmonary oedema in pigs. LEM has been reported in 

many countries including the USA, Argentina, Brazil, Egypt, South Africa and China. Fumonisins 

are also toxic to the central nervous system, liver, pancreas, kidney and lungs in a number of animal 

species. [6]  

Fumonisins B1 (FB1) and B2 (FB2) are metabolites of Fusarium proliferatum and Fusarium 

verticillioides having a long-chain hydrocarbon unit (similar to that of sphingosine and sphinganine) 

which plays a role in their toxicity. [7] FB2 has also been recently detected in Aspergillus niger. [8,9] 
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In vitro and in vivo experiments related to the ability of different adsorbents, mainly activated 

charcoal, aluminosilicates (zeolites, hydrated sodium calcium aluminosilicates (HSCAS) and clays) 

to bind  mycotoxins, [1,3,10-12] have been reported in a number of reviews. However, most of these 

studies concern aflatoxins, zearalenone and deoxinivalenol, adsorbents for fumonisins having been 

tested in only a few cases. Avantaggiato et al. [3] report that activated charcoal and chlorestamine 

showed promising results by binding more than 90 % of FB1. On the other hand, in vivo 

experiments conducted on rats [3,13] and weanling piglets [14] indicated that activated carbon was not 

effective in protecting against the effects of fumonisin consumption. Promising results in binding 

FB1 were obtained using organically modified adsorbents such as organozeolites [15], which had 

previously been successfully tested for the binding of aflatoxin B1, zearalenone, ochratoxin A and 

the ergopeptine alkaloids.[4,16,17] 

Modified clays or organoclays are prepared from natural clays, generally montmorillonite, by 

exchanging the inorganic cation with an ammonium organic cation. Modified clays are also 

effective sorbents for a variety of organic and inorganic contaminants. [18,19] The hydrophobic 

character of the organically modified clays suggests that these materials  could be useful in binding 

mycotoxins and they were successfully tested in vitro as sorbents of zearalenone. [20] A concern 

about the use of organically modified clays as feed additives could be their possible toxicity 

because the cationic surfactants included in the clay structure are known to be toxic for 

microorganisms. Although organoclays are commercially available for a variety of applications, 

such as the production of nano-sized materials, only few studies have been conducted on their 

toxicity. Han et al., [21] working on cells from different organs concluded that the toxicity of two 

organoclays on the viability and membrane damage was not severe. Contrasting results were 

obtained by Lordan et al. [22] in experiments aimed to assess the cytotoxicity of a montmorillonite 

and an organically modified clay by measuring liver cells function and membrane integrity. Both 

materials were cytotoxic but the montmorillonite gave a worse performance than the modified clay 

in two of the three parameters attesting the cytotoxicity. This result indicates that the organoclay 
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should be less toxic than montmorillonite, therefore less toxic than a compound largely used as 

human and animal dietary supplement without any mentioned negative effect. Consequently, 

although further investigation should be useful, there is no evidence of the toxicity of the 

organoclays. This is probably because the organic cation is not released when included in the clay 

structure.  

The scope of this work was to assess the ability of some commercial organically modified clays to 

bind fumonisin B1 and B2, starting from naturally contaminated maize, and to compare the 

performance of these materials with that of unmodified clays. 

 

Materials and methods 

Modified clays.  

The tested clays were natural Na montmorillonites in which the inorganic cation had been 

exchanged with an ammonium organic cation. Unmodified Na clays, Cloisite Na and Dellite LVF 

and a Na fluorotetrasilisic mica synthetic were used as controls. Cloisite Na, 10 A, 15 A, 20 A, 30 

B, 93 A, were obtained from Southern Clay Products, Widnes, UK. Dellite LVF, 67G, 43 B, and 72 

were from obtained from Laviosa, Livorno, Italy. Nanofil 2, 5, 9, 3000, and 3010 were obtained 

from Süd Chemie, Novara, Italy. Somasif MEE and MEE 100 were obtained from Unicoop, Tokyo, 

Japan. The properties of the tested materials, when available from the technical sheet, are reported 

in table 1. 

 

Chemicals.  

All reagents were analytical or LC-MS grade. Fumonisin standard solutions purchased from Sigma-

Aldrich (Milano, Italy) were used to calibrate the LC-MS/MS system. 

 

Preparation of fumonisin aqueous solutions.  
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For the adsorption studies described below, it was decided to extract fumonisin solutions from 

contaminated maize rather than use pure standard solutions, in order to take into consideration the 

possible influence that other components of the maize could have on the interaction. Solutions of 

FB1 and FB2 were obtained by extracting 50 g of naturally contaminated maize grains with 100 ml 

water by mechanical shaking for 2 hours. The liquid phase was separated by filtration through a 

Whatman N°4 filter. The concentration of the solution was determined after purification using 

immunoaffinity columns and LC-MS/MS analysis under the conditions indicated below. Solutions 

of FB1 and FB2 at the required concentrations were prepared by diluting with water.  

Screening of the adsorptive capacity of the modified clays.  

Four ml fumonisin solutions prepared from contaminated maize as described above and containing 

1.8 mg L-1 FB1 and 0.8 mg L-1 FB2 were equilibrated, by mechanical shaking with 0.2 g clay for 24 

hours. After separating the phases by centrifugation (10 min, 3000 rpm), the supernatant was 

purified using an immunoaffinity column and analysed by LC-MS/MS under the conditions 

described below. The amount of bound mycotoxin was calculated as the difference between the 

initial and the final concentration in the solutions 

 

Adsorption kinetics.  

The kinetics of adsorption were determined following equilibration of 0.2 g modified clay and 4 ml 

fumonisins solutions ( 7.5 mg Kg-1 FB1, 4.8 mg Kg-1 FB2), by mechanical shaking for 1, 2 5, 8 and 

24 hours. The supernatant was separated by centrifugation (10 min, 3000 rpm) and analysed to 

determine the concentration of fumonisins under the conditions described above. 

 

Adsorption isotherms.  

Adsorption isotherms were obtained following equilibration of 0.2 g modified clay and 4 ml 

fumonisin solutions at different concentrations (from 8.3 to 1.0 mg L-1 FB1, from 6.9 to 0.5 mg L-1 
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FB2). The supernatant was separated by centrifugation (10 min, 3000 rpm) and analysed to 

determine the concentration of fumonisins under the conditions described below. 

 

Binding of fumonisins by adding modified clays to contaminated maize.  

Fifty g samples of contaminated maize ( 6.9 mg Kg-1 FB1 and 1.8 mg Kg-1 FB2) and 0.25, 0.5 and 

1.0 g modified clays were mixed mechanically in a reciprocating shaker for 24 h. The mixture was 

then extracted for 2 h with 100 ml water. The concentration of FB1 and FB2 in the liquid phase was 

measured under the conditions described below. 

 

Clean-up procedure.  

Fumonisin solutions resulting from the experiments described above were purified on 

immunoaffinity columns using the following procedure: 2 ml solution was diluted with 8 ml 

methanol and 40 ml PBS (pH 7.4). Ten ml of the diluted solution were eluted on a Fumonitest 

immunoaffinity column (Vicam). The column was then eluted with 5 ml PBS  and 2 ml methanol. 

The final fraction was collected for LC-MS/MS analysis. 

 

LC-MS analysis.  

LC-MS/MS analysis was performed using a Varian 310 triple quadrupole mass spectrometer 

(Varian, Italy) equipped with an electrospray ionization ESI source, a 212 LC pump and dedicated 

software. Separation was performed on a Pursuit 5 C18 column (3 µm, 150 mm × 2.0 mm) (Varian, 

Italy). The mobile phase consisted of water (A) and acetonitrile (B), both containing 0.1% (V/V) 

acetic acid delivered at a flow rate of 0.2 ml min-1. The gradient was 20 % B for 2 min then from 20 

% to 80 % B in 8 min.  

Mass spectrometric analyses were performed in the positive-ion mode, the nebulising gas was N2 

(20 psi), the drying gas was N2 (300 °C, 25 psi), the capillary voltage was 67 kV and the collision 

gas was argon set at 1.8 mTorr. The respective ion transitions were as follows: for FB1 m/z 722 → 
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334 (collision energy 36 V) and m/z 722 → 552 (collision energy 32 V), for FB2 m/z 706 → 318 

(collision energy 38 V) and m/z 706 → 336 ( collision energy 36 V). 

 

Statistical analysis.  

Analytical data were evaluated by one-way ANOVA (P<0.005) followed by the Tuckey  test for 

Multiple Comparison Procedures. 

 

Results and discussion 

Screening test.   

The percentages of adsorption of FB1 e FB2 on the tested materials are reported in table 1. The 

unmodified Na montmorillonite Cloisite Na adsorbed both the fumonisins at levels higher than 40 

%. This result confirms that clays are able to bind fumonisins as already attested for other 

mycotoxins such as aflatoxins, [23-28] zearalenone, [29,30] and  deoxynivalenol. [30] On the other hand 

the Na montmorillonite Dellite LVF and the sodium fluorotetrasilisic mica synthetic Somasif MEE 

100 adsorbed about 50 % of FB2 but only 17.5 and 28.3, respectively, of FB1  despite having about 

the same CEC and interlayer spacing  as Cloisite Na. The different ability  of the three  clays to bind 

FB1 could be attributed to other factors, for example particle size, as observed for the adsorption of 

aflatoxin on different clays. [24,25] 

Most of the modified clays tested exhibited a higher adsorptive capacity than the unmodified clays, 

confirming that the presence of the organic cation improves the affinity of the clays for the 

fumonisins. The nature of the organic cation was not responsible for the differences between the 

modified clays as attested by the minor adsorptive capacity of Dellite 72T, especially for FB1, when 

compared to the other clays exchanged with the same cation.  The least active clays were Dellite 

72T and SE 3010 and Somasif MEE, especially as far as FB1 was concerned.  
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Of the modified clays exhibiting a high adsorption percentage, Dellite  67G, Dellite  43B, Cloisite  

30B and Cloisite  93A were selected for further investigation because they represent four different 

cations.  

 

Adsorption kinetics.  

The percentage of FB1 and FB2 adsorbed on the Na montmorillonite and on the modified clays at 

different contact times is reported in tables 2 and 3. The data confirm that there is a higher 

adsorption of both fumonisins on the modified clays than on the montmorillonite. Most adsorption 

took place within the first hour and no significant increase was observed later except in the case of 

FB2 on Cloisite Na where adsorption increased slightly between 8 and 24 hours. The amount of FB1 

adsorbed 24 h after contact ranged between 85%  and 95 %. These values are slightly higher than 

those obtained from the screening experiment. This discrepancy could be due to the fact that the 

kinetics experiment was conducted at a higher FB1 concentration than the screening test (7.5 versus 

1.8 mg Kg-1) and suggests that the extent of adsorption increased as the concentration of the 

solution increased.  FB2 was slightly less adsorbed on the modified clays than FB1 (70-78 % after 

24 h contact), reflecting the results of the screening test. Adsorption of FB2 on Dellite 67G tended 

to be slightly lower than on the other modified clays but no significant differences were found after 

24h.  

 

Adsorption isotherms.  

The adsorption isotherms of FB1 and FB2 on the modified and unmodified clays are illustrated in 

figure 1. The coefficients Kf and 1/n of the Freundlich equation for each isotherm are reported in 

table 4. The adsorption isotherm of FB1 on Cloisite Na was C-type (1/n =1), indicating that the 

amount adsorbed increased linearly to the increase in solution concentration. This agrees with the 

results of Aly et al. [31] showing that the percentage of removing of FB1 from an aqueous solution by 

an Egyptian montmorillonite was nearly not affected by the fumonisin concentration. In contrast, 
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FB1 adsorption isotherms on activated carbon and on several commercial feed additives indicated 

that the binding was a saturable process. [3] The FB2 adsorption isotherm on Cloisite Na was L-type 

(1/n < 1), indicating a progressive saturation of the adsorption sites as the concentration of the 

mycotoxin increased. Although FB2 is usually found in feeds, it has been much less studied, 

probably because is less concentrated compare to FB1 in naturally contaminated feedstuff, and no 

adsorption isotherms are reported in the literature to compare with our results.  

FB1 and FB2 are high molecular weight molecules formed by a 20-carbon aliphatic chain with an 

amino group at one end of the chain and two ester-linked tricarballylic acids at the other branched 

ends. No report concerning the pKs of fumonisins has been found in the literature. On the other 

hand, the pKa values for tricarballylic acid are 3.49, 4.56, and 5.83 [32] and the aliphatic amine group 

would be expected to have a pKa greater than 9. Consequently, the fumonisin molecules will be a 

zwitterion at pHs between 6 and 9, that is, at the pH value (close to 7) of the clay suspension. This 

implies that the molecule is probably bound to the clay adsorption sites through electrostatic 

interactions. A molecular dynamics simulation on FB1 indicates that the molecule in aqueous 

solution exhibits a relatively extended structure, [33] therefore it could penetrate the clay interlayer. 

However, this type of interaction does not explain the different behaviour of the two fumonisins. 

FB2 varies structurally from FB1 with the absence of the hydroxyl group at C-10. It is slightly less 

polar than FB1 but it is not clear why this difference affects its interaction with the clay.  

Adsorption isotherms on the modified clays confirm that the fumonisins behave differently: the 

adsorption curves of FB2 were well fitted to the Freundlich equation as attested by the R2 values > 

0.9 (table 4). On the basis of the shape of the isotherms and the Freundlich coefficients the nature of 

the modified cation did not affect the mechanism and the extent of adsorption. All the isotherms 

were S-type (1/n > 1), indicating that the adsorbed molecules promote adsorption through 

adsorbate-adsorbate interactions. The fact that results are not influenced by the type of cation 

suggests an unspecific adsorption promoted by the affinity of the long aliphatic chain of the 

fumonisin molecule with the C12 to C18 moieties of the hydrogenated tallow. Adsorption isotherms 
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of FB1 on the modified clays were poorly described by the Freundlich equation as attested by the R2 

values < 0.9. These isotherms displayed an S-shape as observed by Lemke et al. [20] in the case of 

adsorption of zearalenone on organically modified montmorillonite. This behaviour was associated 

to specific adsorption sites. The 1/n and Kf  adsorption values of FB1on Cloisite 93A, Dellite 43A 

and Dellite 67G  were not significantly different (95 % confidence) while Cloisite 30B adsorbed 

lower amounts of  FB1 than the other modified clays. The modifying cation of Cloisite 30B is more 

polar than that of the other clays because of the two hydroxyethyl groups. The minor adsorption of 

FB1 when compared with the other clays agrees with the results of Lemke et al. [20] indicating that 

adsorption of zearalenone on organoclays increased as the hydrophobicity of the exchanged cation 

increased. Although FB1 is a more polar and larger molecule than zearalenone it seems that its 

adsorption is also promoted by the presence of the long aliphatic chains of the hydrogenated tallow.   

Adsorption isotherms have indicated that FB1 and FB2 behave differently notwithstanding the 

similarity of their chemical structure. FB2 has been much less studied than FB1 but it has been seen 

to be more cytotoxic. [34] This suggests that more studies regarding FB2 would be useful. 

 

Binding of fumonisins by addition of modified clays to contaminated maize. 

Figure 2 reports the percentage of fumonisins released by water extraction from naturally 

contaminated maize previously mixed mechanically with different amounts of clay. The addition of 

0.5 and 1 % of Cloisite Na and of the four modified clays released more than 70 % of the 

fumonisins in solution, therefore, at these concentrations, the sorbents were not effective as 

fumonisin binders.  The addition of 2 % Cloisite Na did not improve the performance of this 

material, while the modified clays allowed less than 30 % FB1 and less than 40 % FB2 to be 

released in solution. The minor capacity to adsorb FB2 as compared to FB1 reflects the results 

indicated by the screening test and the adsorption isotherms. On the other hand, considering that in 

contaminated cereals, the concentration of FB2 is usually about 1/3 that of FB1, 
[2] the minor efficacy 
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of the clays to capture FB2 should not be a problem in terms of the final concentration of this 

fumonisin.  

 

Conclusions 

The study has indicated that the organically modified clays exhibited a much higher adsorptive 

capacity for both fumonisins B1 and B2 in aqueous solution than a montmorillonite which is a 

typical material used as mycotoxin binder. Moreover, when added to contaminated maize, the 

montmorillonite was not active while 2% addition of some organically modified clays allowed to 

reduce more than 70% and 60% of the amount of FB1 and FB2 released in solution. It was also 

demonstrated that, notwithstanding the reduced structural difference between FB1 and FB2, they 

were differently adsorbed on the modified clays. 

The preliminary experiment conducted on the 2% addition of some organically modified clays to 

the contaminated maize was promising but should be confirmed by further studies attesting that i) 

the materials maintain their adsorptive capacity in the conditions of gastrointestinal tract, ii) they do 

not have any negative effect as for example the binding of nutrients and vitamins, iii) they are 

effective in vivo. 
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Figure Captions 
 
Figure 1. Adsortion isotherms of FB1 (▼) and FB2 (■) on cloisite Na (A), cloisite 30B (B), cloisite 
93A  (C), dellite 43B (D) and dellite 67G ( E) . 
 
Figure 2. Percentage of FB1 and FB2 released in solution from contaminated maize at different 
concentrations of cloisite Na and modified clays. 
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Fig. 1 
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Fig. 2 
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Table 1. Some properties of the modified clays and the percentage of adsorption of FB1 and FB2 . 
(Hydrogenated tallow = CnH(2n+1), (n = 12-18) 
 
Organic modifier Adsorbent CEC or 

modifier 
concentration, 
c.mol.Kg-1  

d001, 
nm 

% adsorption ± SD 

    FB1 FB2  
None 
 
 
 

Cloisite® Na+ 
Dellite® LVF 
Somasif® MEE 100 

0.93 
1.05 
1.15 

1.17 
1.25 
1.22 

53.8 ± 1.2 
17.5 ± 1.3 
28.3 ± 2.5 

42.1 ± 1.4 
51.7 ± 1.8 
52.0 ± 2.3 

Dimethyl, benzyl, 
hydrogenated tallow, 
ammonium  
 
 

Dellite® 43B 
Nanofil® 9 
Nanofil® SE 3010 
Nanofil® 2 

0.95 
- 
- 
- 

1.9 
2.0 
- 
1.8 

80.4 ± 1.4 
51.4 ± 2.4 
21.5 ± 0.8 
70.3 ± 2.3 

67.7 ± 2.6 
74.0 ± 1.0 
42.5 ± 4.8 
68.6 ± 3.2 

Methyl, 
dihydrogenated tallow 
quaternary ammonium  
 

Cloisite® 93A 0.90 2.5 83.8 ± 1.4 84.6 ± 2.9 

Dimethyl, 
dihydrogenated tallow, 
quaternary ammonium 
 
 
 
 
 

Cloisite® 15A 
Cloisite® 20A  
Dellite® 67G  
Dellite® 72T  
Nanofil® 5  
Nanofil® SE 3000 

1.25 
0.95 
- 
- 
- 
0.80 

3.15 
2.42 
3.45 
3.04 
2.8 
3.6 

84.2 ± 3.2 
57.8 ± 2.6 
77.9 ± 1.7 
17.9 ± 1.3 
79.6 ± 3.7 
70.0 ± 5.5 

84.3 ± 4.3 
79.2 ± 1.0 
72.6 ± 0.6 
69.7 ± 4.8 
79.4 ± 18.0 
78.4 ± 3.3 

Methyl, bis-2-
hydroxyethyl, 
hydrogenated tallow 
quaternary ammonium 

Cloisite® 30B  
Somasif® MEE  

0.90 
1.20 

1.85 
- 

79.7 ± 2.7 
28.3 ± 1.9 
 

72.8 ± 2.7 
52.0 ± 2.3 
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Table 2. Influence of the time of contact on the percentage of adsorbed FB1.  
 
Time, hours Cloisite Na Cloisite 30B Cloisite 93A Dellite 43B Dellite 67G 
1 43.8 a ± 4.80 88.7 b ± 1.96 88.8 b ± 1.79 88.3 b ± 2.61 89.4 b ± 0.96 
2 40.1 a ± 5.04 89.6 b ± 2.43 91.3 b ± 1.34 92.6 b ± 0.86 92.3 b ± 1.21 
5 31.0 a ± 4.82 89.7 b ± 1.60 91.3 b ± 1.15 89.8 b ± 2.87 91.0 b ± 2.01 
8 35.2 a ± 8.90 94.0 b ± 1.95 89.8 b ± 0.58 91.3 b ± 0.60 89.6 b ± 1.34 
24 43.9 a ± 4.99 95.8 b ± 2.76 87.8 b ± 2.04 86.2 b ± 2.55 85.9 b ± 3.60 
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Table 3. Influence of the time of contact on the percentage of adsorbed FB2.  
 
Time, hours Cloisite Na Cloisite 30B Cloisite 93A Dellite 43B Dellite 67G 
1 30.5 a ± 2.94 74.2 cd ± 1.24 77.7 c ± 1.28 72.6 cd ± 6.72 64.0 d ± 5.93 
2 32.4 a ± 1.33 79.2 c ± 1.25 81.0 c ± 0.66 76.0 c ± 5.71 64.8 d ± 2.52 
5 39.1 a ± 5.68 74.8 c ± 5.40 73.5 cd ± 5.61 75.1 c ± 6.25 59.9 d ± 2.42 
8 38.0 a ± 3.82 74.9 c ± 5.05 75.6 c ± 5.43 73.2 c ± 5.97 59.2 d ± 1.91 
24 51.8 b ± 5.77 75.1 cd ± 2.74 73.4 cd ± 3.43 77.8 cd ± 4.63 71.0 d ± 3.64 
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Table 4. Freundlich coefficients (± SD) of the adsorption isotherms of FB1 and FB2 on clays. 
 
 
 FB1 FB2 
 Kf 1/n R2 Kf 1/n R2 
Cloisite Na 4.6 ± 0.09 0.99 ± 0.01 0.9995 9.9 ± 0.81 0.55 ± 0.05 0.9162 
Cloisite 30B 82.5 ± 6.43 1.23 ± 0.13 0.8591 43.5 ± 2.47 2.15 ± 0.12 0.9693 
Cloisite 93A 124.3 ± 5.96 1.31 ± 0.13 0.8921 48.2 ± 3.50 1.78 ± 0.14 0.9332 
Dellite 43B 131.4 ± 7.28 1.88 ± 0.23 0.8531 47.0 ± 2.57 2.09 ± 0.12 0.9670 
Dellite 67G 140.1 ± 6.55 1.91 ± 0.20 0.8862 47.5 ± 4.24 2.53 ± 0.23 0.9781 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


