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Abstract 

 

Desorption electrospray ionization (DESI) is an ambient mass spectrometry (MS) technique that 

can be operated in an imaging mode. It is known to provide valuable information on disease state 

and grade based on lipid profiles in tissue sections. Comprehensive exploration of the spatial and 

chemical information contained in 2D MS images requires further development of methods for data 

treatment and interpretation in conjunction with multivariate analysis. In this study, we employ an 

interactive approach based on principal component analysis (PCA) to interpret the chemical and 

spatial information obtained from MSimaging of human bladder, kidney, germ cell and prostate 

cancer and adjacent normal tissues. This multivariate strategy facilitated distinction between tumor 

and normal tissue by correlating the lipid information with pathological evaluation of the same 

samples. Some common lipid ions, such as those of m/z 885.5 and m/z 788.5, nominally PI(18 :

0/20 : 4) and PS(18 : 0/18 : 1), as well as ions of free fatty acids and their dimers, appeared to be 

highly characterizing for different types of human cancers, while other ions, such as those 

of m/z 465.5 (cholesterol sulfate) for prostate cancer tissue and m/z 795.5 (seminolipid 16 : 0/16 :

0) for germ tissue, appeared to be extremely selective for the type of tissue analyzed. These data 

confirm that lipid profiles can reflect not only the disease/health state of tissue but also are 

characteristic of tissue type. The manual interactive strategy presented here is particularly useful to 

visualize the information contained in hyperspectral MS images by automatically connecting 

regions of PCA score space to pixels of the 2D physical object. The procedures developed in this 

study consider all the spectral variables and their inter-correlations, and guide subsequent 

investigations of the mass spectra and single ion images to allow one to maximize characterization 

between different regions of any DESI-MS image. 
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Introduction 

 

Cancer diagnosis is one of the most important challenges in medicine.1 Important aims in cancer 

research include enhancing objective assessments and increasing diagnosis accuracy. Wide-

ranging research efforts have been focused on understanding the biochemical processes occurring 

in cancerous cells in relation to those of normal cells in different tissues, particularly as related to 

changes in lipid, protein and peptide expression.1–4 

Mass spectrometry (MS) imaging is a powerful analytical technique that allows biomolecules 

including proteins, peptides and lipids to be analyzed directly from tissue sections with high 

selectivity. The resulting chemical information is recorded together with spatial distributions on the 

sample surface.5 Therefore, MS imaging has the potential to be used to improve the accuracy of 

histopathological cancer diagnosis by complementing the judgments of expert pathologists1 with 

additional objective chemical information.6 In particular, matrix-assisted laser desorption 

ionization (MALDI) has been used to determine the distribution of proteins and peptides in 

biological tissue , as well as some smaller molecules such as phospholipids.7 More 

recently, desorption electrospray ionization mass spectrometry (DESI-MS) has been used to 

investigate lipid profiles in various types of human cancers, such as kidney, bladder, prostate, brain 

and germ.4,8–11These experiments are done in the open laboratory environment and outcomes of 

such studies suggest that alterations in lipid profiles potentially might serve as biochemical markers 

of cancer.12 Remarkably, in vivo applications are important future perspectives that are made 

possible by ambient ionization techniques such as DESI-MS.13 

As many analytical results are essentially presented as images, processing techniques for 

representation14 and interpretation of multi-dimensional data are necessary. An inherent feature 

of MS hyperspectral image acquisition is the large amount of information contained in each image. 

This information can be explored and interpreted in a deeper and more efficient way by the 

application of multivariate techniques.15–17 Multivariate methods for the treatment of hyperspectral 

data apply multivariate analysis to the full data matrix, in order to consider both the spatial and the 

complete spectral information from the samples studied. These methods have been finding 

application in different fields, including medical diagnostics.18 It has also been successfully applied 

to spectroscopic data in order to investigate physiological and pathological changes in living tissue, 

both animal and human, and to provide information on the health and disease state of tissue.1,19–23 

Multivariate methods have previously been applied to hyperspectral MS imaging data and 

showed their potential in different applications.24–26 In this type of imaging techniques, the 

hyperspectral data matrix contains, for each pixel of the image, hundreds of variables the values of 

which constitute the mass spectra.24Each spectrum acts as a characteristic fingerprint of the 

corresponding pixel and can be used to derive information on the chemical composition and 

properties of the spatial region represented by that pixel. The data matrix – the so-called datacube 
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– has three dimensions: X, Y (spatial domains), and m/z (spectral domain).17Standard multivariate 

techniques can be applied to the datacube for both exploratory and classification purposes.18 This 

approach is advantageous compared to other approaches in which the information contained in the 

imaging dataset is used by extracting selected individual mass spectra or by averaging the mass 

spectra of representative areas (which causes the original spatial information to be disregarded) or 

by plotting the spatial distributions of preselected ions. 

In previous studies, a number of unsupervised techniques, such as principal component 

analysis (PCA) and hierarchical cluster analysis (HCA), were applied to hyperspectral MS imaging 

data in order to extract information from the mass spectra as related to differentiation of tumor and 

normal samples.27 PCA is the technique most commonly used for exploratory investigations of the 

complex information contained in the full mass spectral dataset and, eventually, for 

datareduction.28 HCA allows one to quantify similarities between spectral profiles and to define 

sample groupings on the basis of similarity values.29 For example, these techniques have been 

applied to MALDI-MS imaging data in order to identify areas in the same tissue sample with 

common spectral patterns and to obtain information about features which are characteristic of each 

tissue type.24,29,30 PCA and clustering were also used to confirm characterization of tissues based 

on disease state, made by pathological evaluation.30,31 The strategy of selecting some 

individual spectra of representative pixels in the MALDI image was also used to perform principal 

component analysis-discriminant analysis (PCA-DA), namely to obtain classification rules based on 

the PCs as new variables.32 Application of PCA has also been described for DESI-MS images of 

tumor and normal tissue sections in different types of human cancers.4,8 In these cases, PCA was 

applied to the hyperspectral data using the score values, coded with a color scale, to represent 

multivariate images of the samples investigated. Such false-color images were compared with the 

results of pathological evaluation. 

Supervised techniques, such as partial least squares-discriminant analysis (PLS-DA), have also 

been successfully used to discriminate tumor from normal tissue,33–35 such as kidney and bladder 

cancers using the information provided by DESI-MS on the tissue lipids profiles.4,8 

The support vector machine (SVM) approach has also been applied to MS data, using 

individual mass spectra for each sample to achieve classification.36Recently, the application of 

SVM to MALDI-MS imaging data was proposed for classification of meningiomas in brain 

tissue.37 An SVM algorithm has also been used to generate classification models for human brain 

glioma type, grade and tumor cell concentration based on DESI-MS lipid data.38 

In this study, an interactive exploratory approach was applied to DESI-MS imaging data of 

selected pairs of tumor and normal kidney, prostate, germ and bladder tissue sections. The mass 

spectral data have already been described.4,8,9,11 A PCA-brushing strategy was used to extract 

information on the most highly characterizing compounds for tissue sections, while maintaining 

both the spatial and chemical information of the imaging data. An evaluation of the selectivity of 
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this multivariate strategy in recognizing the tumor tissue in different types of human cancers was 

made by correlating the lipid information and pathological evaluation for the same samples. 

Interactive multivariate exploration of the spatial and chemical information contained in the 

datacube can be proposed as a general strategy for exploring and interpreting any DESI-MS 

images and for characterizing different regions in these images. This can be done as a first step, 

prior to supervised analysis that requires additional levels of information to be applied. In fact, this 

strategy may be useful for adapting further multivariate approaches, such as supervised pattern 

recognition methods, to classification or quantification purposes. 

 

Experimental section 

 

Tissue samples on which MS imaging data were available 

This study used published mass spectral imaging data taken on tissue samples (listed in Table 

S1†). A total of nine pairs for papillary renal cell carcinoma and adjacent normal tissue, seven pairs 

of clear renal cell carcinoma and adjacent normal tissue,4 eight pairs of prostate cancer and 

adjacent normal tissue,9 11 pairs of seminoma and adjacent normal tissue11 and 13 pairs of 

bladder transitional cell carcinoma and adjacent normal tissue,8 imaged by DESI-MS, were used. 

Selection of samples for which data were used in this study was made on the basis of pathological 

diagnosis. In particular, samples with clear recognition of cancer and normal tissue were used. 

Tissue section preparation and DESI-MS 2D imaging experiments are described in detail in the 

ESI†. Note that lipid species were tentatively identified based on collision-induced 

dissociation (CID) tandem MS experiments previously performed and comparison of the generated 

product ion spectra with literature data.4,8,9,11,39 

 

Multivariate method for analysis of hyperspectral data: PCA and brushing procedure 

An in-house program was used to convert the raw MS data files into ASCII files (.txt), and they 

were then imported into Matlab (The MathWorks, Inc., Natick, USA) for subsequent data 

processing. This involved assembly into 2D ion images using a color scale normalized to the 

highest value of absolute intensity for each m/z variable. Interpolation by means of a moving-

window cubic spline was used in order to mathematically increase the image resolution. 

For each DESI-MS image, the information was coded using the corresponding datacube 

(X·Y·m/z) and PCA was performed. To allow this processing, the datacube was first unfolded to a 

standard two-dimensional data matrix, whose rows correspond to the pixels and columns 

correspond to the spectral variables, respectively.18 In addition, the mass range was reduced 

to m/z 150–950 for germ samples and to m/z 200–950 for all other samples, thereby excluding 

uninformative regions of the spectra in which only random noise signal was collected, which 

represent a non-significant contribution to the total ion current (TIC). Therefore, the hypercubes 

javascript:popupOBO('CHEBI:18059','c2an35122f')
javascript:popupOBO('CMO:0000470','c2an35122f')
javascript:popupOBO('CMO:0000049','c2an35122f')
http://pubs.rsc.org/en/content/articlehtml/2012/an/c2an35122f#fn1
http://pubs.rsc.org/en/content/articlehtml/2012/an/c2an35122f#cit4
http://pubs.rsc.org/en/content/articlehtml/2012/an/c2an35122f#cit9
http://pubs.rsc.org/en/content/articlehtml/2012/an/c2an35122f#cit11
http://pubs.rsc.org/en/content/articlehtml/2012/an/c2an35122f#cit8
javascript:popupOBO('CMO:0000484','c2an35122f')
http://pubs.rsc.org/en/content/articlehtml/2012/an/c2an35122f#fn1
javascript:popupOBO('CHEBI:18059','c2an35122f')
javascript:popupOBO('CMO:0001938','c2an35122f')
javascript:popupOBO('CMO:0001938','c2an35122f')
javascript:popupOBO('CMO:0001938','c2an35122f')
javascript:popupOBO('CMO:0000575','c2an35122f')
javascript:popupOBO('CMO:0000800','c2an35122f')
http://pubs.rsc.org/en/content/articlehtml/2012/an/c2an35122f#cit4
javascript:popupOBO('CMO:0001947','c2an35122f')
javascript:popupOBO('CMO:0001302','c2an35122f')
javascript:popupOBO('CMO:0000484','c2an35122f')
javascript:popupOBO('CMO:0001947','c2an35122f')
http://www.chemspider.com/Chemical-Structure.82876.html
http://pubs.rsc.org/en/content/articlehtml/2012/an/c2an35122f#cit18
javascript:popupOBO('CMO:0002389','c2an35122f')


were structured with 9600 (for germ samples) and 9000 (for all others) m/z variables in 

the m/z domain. Before performing PCA, the number of spectral variables was reduced (1 : 4) by a 

consecutive-window averaging algorithm. Then, normalization with respect to the TIC was 

performed in order to correct for instrumental variability. Neither background correction nor 

smoothing filters was applied. 

For each unfolded data matrix, PCA was performed on column-centered data. The principal 

components (PCs) can be considered as orthogonal (i.e., uncorrelated) directions in the 

multidimensional data space that efficiently describes large fractions of the information.40 The 

projections of the data objects onto the PCs are called scores, while the importance of each 

original variable in defining a certain PC is given by the loading coefficient. Both scores and 

loading values can be represented in two-dimensional scatter plots. Interpretation of the 

relationships between scores and loadings – in terms of relative directions – is commonly 

performed by visual examinations of the so-called biplots, which are a superimposition of scores 

and loadings on the same chart. In this study, scores and loadings – being considerably numerous 

– have been represented in two separated but contiguous scatter plots, in order to obtain higher 

readability, but the interpretation is exactly the same as for a biplot.41,42 

An interactive brushing procedure was performed in order to understand the relationships 

between the PC space and the image space, connecting chemical and spatial information.43 In 

particular, the score plot allows a visual inspection of the pixel distribution in PC space. In the 

score plot, it is possible to visualize groupings that indicate similarities among pixels, on the basis 

of the information derived from the mass spectra, and which can be associated with the particular 

characteristics of the samples analyzed. With the brushing procedure, pixels with similar chemical 

profiles can be manually selected from the score plot in order to identify correspondences between 

the groups of points in the PC score plot and particular regions of the DESI-MS image. 

Subsequently, an examination of both the loading plot and the score plot allows chemical 

characterization of the highlighted region of the image to be achieved, revealing which m/z peaks 

are the most important in defining the pixels under consideration. The ESI† includes a video which 

shows this. 

Multivariate data processing was performed by means of in-house Matlab routines. 

 

Results and discussion 

 

DESI-MS images were acquired as described in the original publications and reviewed in the 

ESI† using methanol/water (1 : 1) as the spray solvent. PCA was applied to the datacube, after 

unfolding, in order to extract the greatest amount of useful chemical information. Sample 

UH9812_03 imaged by DESI-MS contains a papillary RCC tissue section (left side, Fig. 1a) and an 

adjacent normal tissue section (right side, Fig. 1a). Diagnosis was confirmed by evaluation by an 
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expert pathologist (Dr Liang Cheng, Department of Pathology and Laboratory Medicine, Indiana 

University School of Medicine, Indianapolis, IN 46202, USA) of H&E stained serial sections. 

Correspondence between the chemical and the spatial information (2D image) was achieved by 

applying the brushing approach. This procedure allows the selection of pixels (typically in the form 

of a cluster) in the score plot and visualization of the corresponding pixels within the image itself. 

Fig. 1b and c show the score and loading plots of the two lower-order PCs (PC1 and PC2), 

respectively. Simultaneous examination of the score and loading plots reveals that the distribution 

of pixels in PC space is in three predominant directions. The relationship between the score and 

loading plots is evident from the co-directionality of objects and variables in these two plots. In 

particular, the pixels highlighted in red – with higher positive values of PC1 and PC2 – represent a 

region of the image clearly characterized by the presence of an ion m/z 885.5 with high relative 

abundance. Conversely, the pixels in black – at low positive and at negative PC1 values – 

represent a region of the image clearly characterized by the presence of an ion m/z 265.2 with high 

relative abundance in the mass spectra. Finally, the green pixels – with positive values for PC1 and 

negative values for PC2 – represent a region of the image clearly characterized by ions such 

as m/z 217.2 and m/z 271.2 being present with high relative abundance. In fact, a visual inspection 

of the loading plot reveals that the loading corresponding to these ions lies in the same spatial 

directions as the green pixels in the score plot, meaning that those pixels are characterized by a 

relatively higher intensity of such m/z variables.  

 

 

 

 

 

Fig. 1 PCA of renal sample UH9812_03. (a) Correspondence (indicated by 

matching colors) between PC scores selected by means of the brushing 

procedure and pixels in the image space (red: tumor section, green: normal 

section). (b) PC1 (42.9% of the total variance) vs. PC2 (20.5% of the total 

variance) score plot. (c) PC1 vs. PC2 loading plot labeled in terms of m/z ratio. 

 

 

The brushing procedure allows one to select a group of points in the score plot and to visualize 

which pixels they correspond to in image space, where they are highlighted in the same color as in 

the score plot. As shown in Fig. 1a and b, the red points correlate to the tumor tissue section, while 
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the green points are related to the normal tissue section. Remarkably, no cross-over was observed 

using particular PC values selected for renal cell carcinoma, even at the individual pixel level. 

However, as it will be shown later, this was not true for germ cell carcinoma. Pixels not selected in 

the score plot (black points) correspond to region of the glass slide not covered with tissue. PC1 

(which explains 42.9% of the total data variance) is able to isolate the uncovered glass signals 

(largely at negative score values) from the signals corresponding to tissue sections; as expected, 

this difference represents the main information (highest variance) encountered in the total 

hyperspectral data. Moreover, PC2 (which accounts for 20.5% of the total variance) is able to 

characterize completely pixels related to the tumor and normal tissue sections, respectively. 

Analogous pixel distributions and spectral information were found for all the papillary RCC samples 

examined in this study, with the exception of the ion m/z 271.2 that did not appear consistently in 

all the samples. In some images, the ion m/z 788.5 also appeared to be important for 

characterizing background, tumor and normal tissue sections. 

The strategy presented supplies a deep interpretation of the information contained in the DESI-

MS images. In particular, the examination of the score plot, along with the brushing procedure, 

allows one to relate pixel structures in the PC space with the spatial domain. The information can 

be scaled down to the single-pixel level. A simultaneous examination of score plot and loading plot 

is indispensable to characterize different clusters of pixels on the basis of their chemical 

information. Examination of score plots alone underutilizes the potential information given by PCA. 

Moreover, this multivariate strategy considers all the spectral variables and their inter-correlations 

and can be used to guide subsequent investigations based on individual mass spectra and single 

ion images, for characterizing different regions of an image. As represented in Fig. 2a–e, the 

investigation of the spectral domain (m/z) in the original datacube allows individual mass spectra or 

an average mass spectrum for selected pixels to be visualized. In the X·Y spatial domain, ion maps 

for particular m/z peaks, highlighted by the previous loading analysis, can be created. In 

particular, Fig. 2c shows the ion map for m/z 885.5 (PI(18 : 0/20 : 4)), while the absolute intensities 

of other particular lipid species, such as m/z 788.5 (PS(18 : 0/18 : 1)) which is higher in cancerous 

tissue, m/z 217.2 which is selective for most normal tissue and m/z810.5 (PS(18 : 0/20 : 4)), a non-

characterizing species showing approximately equal absolute intensity in cancerous and normal 

tissues – are shown in Fig. S1 in the ESI †. 
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Fig. 2 Interactive hyperspectral analysis for renal sample UH9812_03. (a) PC1 

(42.9% of the total variance) vs. PC2 (20.5% of the total variance) score plot. (b) 

Correspondence (indicated by matching colors) between PC scores selected by 

means of the brushing procedure and pixels in the image space and 

representation of the data hypercube (X·Y·m/z). (c) Ion image of m/z 885.5. (d) 

Average mass spectrum normalized to the TIC for red pixels. (e) Average mass 

spectrum normalized to the TIC for green pixels. 

 

 

The multivariate approach is advantageous compared to that based on absolute intensities in 

single ion images, since it provides a global visualization of all the chemical information embodied 

in the data. Furthermore, the strategy followed for normalization of the mass spectra (with respect 

to the total ion current, TIC) allows unwanted variations due to instrumental variability and/or 

irregularities in the sample surface – such as folded tissue – to be minimized. For example, the 

spatial distribution of the green pixels in the PC1 vs. PC2 score plot (Fig. 2a), related to the normal 

tissue section, is different from that of the red pixels and similar to that of other pixels of the normal 

tissue. A comparison between the average mass spectrum, normalized with the TIC, for red and 

green pixels (Fig. 2d–e) confirms these outcomes and it is in agreement with the loading plot, 

previously described. Conversely, the single m/z 885.5 ion map (Fig. 2c) shows similar intensity for 

red and green pixels, according to the color-code. 

The results of these analyses are in agreement with a previous report for this same papillary 

RCC sample4 using both visual inspection of the mass spectra and the supervised PLS-DA 

method, which showed that increased absolute intensities for the lipid species 

at m/z 885.7, m/z 788.5, m/z 773.5 (PG(18 : 1/18 : 1)) and m/z 913.5 (PI(22 : 4/18 : 0)) occur in 

cancerous tissue, while the FA species at m/z 215.3 and m/z 217.2 show increased absolute 

intensity in the normal tissue, correlating inversely with the cancerous tissue. 
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The same multivariate strategy was applied to DESI-MS images of selected tissue sections of 

renal clear cell carcinoma, prostate cancer, seminoma and bladder transitional carcinoma. 

Diagnosis was always confirmed by pathological evaluation of H&E stained serial sections. For the 

clear cell RCC tissue samples, in contrast to the papillary RCC, no clear visual changes between 

the absolute intensities of the lipid species for either the cancerous or normal tissue were 

observable by simple inspection of the mass spectra or by single ion images for many samples, as 

shown for example in Fig. S2† for sample MH0111_10. This emphasizes the need for a 

multivariate exploratory analysis that uses the entirety of the mass spectral data for characterizing 

different regions of the DESI-MS images. Applying PCA and the brushing procedure to the 

hyperspectral image, the score plot and the image with pixels colored on the basis of brushing 

selections (Fig. 3a and b) show that, along the first principal component, it is possible to isolate the 

information on the background (at positive score values) from that related to the tissue sections. 

Conversely, PC2 is able to completely separate pixels related to tumor (left section, Fig. 3a) and 

normal (right section, Fig. 3a) tissues, indicated as red and green pixels respectively. The most 

important ions in the definition of PC2 appear to be m/z 281.5, m/z 885.5, m/z 303.2 and m/z562.9, 

as it can be observed in the PC1 vs. PC2 loading plot (Fig. 3c). It can be noted that, for this type of 

cancer, it was not possible to achieve a complete pixel differentiation between background, tumor 

and normal tissue sections for all the samples investigated when applying the same multivariate 

strategy (see Table 1 in the ESI†). 

 

 

 

 

Fig. 3 PCA for renal sample MH0111_10. (a) Correspondence (indicated by 

matching colors) between PC scores selected by means of the brushing 

procedure and pixels in the image space (red: tumor section, green: normal 

section). (b) PC1 (60.6% of the total variance) vs. PC2 (12.5% of the total 

variance) score plot. (c) PC1 vs. PC2 loading plot labeled in terms of m/z ratios. 

 

 

In the case of prostate cancer, visual inspection of the mass spectra and univariate ion images 

reveals that cholesterol sulfate (CS, m/z 465.5) is present in high relative abundance in 

precancerous lesions or cancerous tissue, while it is undetected in adjacent normal tissue.9 The 

sample UH0002_25 is an example of cancerous prostate tissue (left section, Fig. 5e) showing high 
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relative intensities of CS in regions with high concentration of tumor cells, while the CS signal in 

normal tissue (right section, Fig. 5e) is almost absent. From PCA, the ion m/z 465.5 appears to be 

important in PC2 definition, together with the ions m/z 885.5 and m/z 788.5, as shown in Fig. 4. 

Along this axis, it is possible to visualize the separation between pixels related to tumor and normal 

tissue. By contrast, the first PC explains the difference between pixels of tissue sections and those 

related to the uncovered glass slide. Finally, it is important to highlight that pixels of tumor section 

can be almost completely separated from those of normal tissue in PC1 vs. PC2 score space. Less 

efficient recognition can be achieved in the single ion images which consider the 

ions m/z 465.5, m/z 788.5 and m/z 885.5 individually (Fig. 5b–d). This confirms once again that the 

multivariate strategy permits to extract the highest amount of useful information, offering a global 

chemical characterization of the samples under study. 

 

 

 

 

Fig. 4 PCA for prostate sample UH0002_25. (a) Correspondence (indicated by 

matching colors) between PC scores selected by means of the brushing 

procedure and pixels in the image space (red: tumor section, green: normal 

section). (b) PC1 (47.2% of the total variance) vs. PC2 (16.0% of the total 

variance) score plot. (c) PC1 vs. PC2 loading plot labeled in terms of m/z ratios. 

 

 

 

 

 

Fig. 5 Negative ion mode imaging of prostate tumor tissue and adjacent normal 

tissue of sample UH0002_25. (a) Ion image of m/z 215.2. (b) Ion image 

of m/z465.5. (c) Ion image of m/z 788.5. (d) Ion image of m/z 885.5. (e) H&E 

stained tissue sections of the tumor tissue (left) and normal tissue (right). 

 

 

By examining Fig. 4a, one notices that the manual pixel selection applied, resulted in some 

pixel misrecognitions on the perimeter of the tissue sections. In particular, some pixels on the 

border of the normal tissue are erroneously colored in red. This would have been expected for 
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tumor tissue, but the pathological evaluation indicates no presence of tumor in this sample section. 

A few similar misrecognitions occurred in some other samples, often on the borders of normal 

tissue sections. This may suggest that contaminations on the borders might have occurred during 

tissue cutting/handling. Nevertheless, misleading chemical differences are not unexpected 

between the major surfaces of tissue section and the marginal region due to differences in the 

exposure history of the original sectioned tissue and that of the tissue sections subsequently 

created during cutting/handling operations. 

For germ carcinoma, differently from any other tissue analyzed, mass spectra and single ion 

images show that seminolipid species are found exclusively in normal tubules tissue, while they 

are absent in normal fat or muscles tissue. For instance, sample UH0201_09 consists of a normal 

tubules tissue section (right, Fig. S3a†), which presents a high abundance of m/z 795.5 

(seminolipid 16 : 0/16 : 0), and a seminoma tissue section (left, Fig. S3b†) in which this species is 

completely absent, while higher intensities of the ions m/z 885.5, m/z 788.5 and m/z 175.2 

(ascorbic acid) are mainly observed.11 In Fig. S3†, the score plot and the image with pixels colored 

on the basis of brushing selections show that it is possible to clearly separate information related to 

the normal tissue (green points), tumor tissue (red points), and background (non-selected black 

points) in the PC1 vs. PC2 score space. The loading analysis (Fig. S3c†) confirms that the 

seminolipid m/z 795.5 has a higher relative intensity in the pixels that correspond to normal tissue. 

Conversely, pixels corresponding to tumor tissue are characterized by a higher relative abundance 

of the ions m/z 281.5, m/z 175.2, m/z 788.5 and m/z 885.5. The last three ions are more important 

for achieving characterization of tumor tissue and normal fat or muscles tissue, in which the 

absence of seminolipids is observed, as shown in Fig. S4† for sample UH0201_20. 

Bladder transitional cell carcinoma tissue (left section) and adjacent normal tissue (right section) 

are compared in Fig. S5a† (sample UH0208_18). Also in this case, the PC1 vs. PC2 score space 

(Fig. S5b†) allows characterization of background (black points), tumor tissue (red points), and 

normal tissue (green points). From loading analysis (Fig. S5c†), the most important ions for the 

characterization of tumor tissue appear to be m/z 563.2 and m/z 281.9, while 

theglycerophospholipid (GP) species PS(36 : 1) and PI(38 : 4) are found to be relevant for 

characterizing normal tissue. Increased intensities of free FAs and their dimers were observed 

consistently as the main contributors to the characterization of normal and cancerous tissue for the 

majority of the samples analyzed, while no relevant information can be observed by visual 

inspection of the m/z 788.5 and m/z 885.5 ion images. These outcomes are in agreement with 

previous observations that fatty acids and dimers are the main species responsible for 

characterization of cancer and normal bladder tissue by DESI-MS imaging.8 

Finally, according to the information in the loading plots, it can be noted that in different types of 

human tissue sections, some common ions, such as m/z885.5, m/z 788.5, free FAs and their 

dimers, appear to be important for characterizing between cancer and normal tissue. Other ions, 
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such as m/z 217.2 for kidney, m/z 465.5 for prostate tissue and m/z 795.5 for germ tissue, are 

selective for particular types of tissue, confirming that the information of the entire lipid profile can 

reflect the selectivity of the tissue type and not only the differences between neoplastic and normal 

tissue. 

 

Conclusions and perspectives 

 

MS imaging is a powerful tool that allows lipid species to be detected directly from tissue sections, 

thus giving information on both lipid characterization and spatial distribution on sample surfaces. 

This chemical and spatial information should be processed by means of multivariate analysis. 

In this study, an interactive PCA-brushing approach was applied for the first time to 

hyperspectral DESI-MS imaging data in order to exploit the chemical information provided by mass 

spectrometry, allowing tissue characterization that may be valuable in cancer diagnosis and 

complementary to the traditional histopathological examination. Exploratory analysis is the first 

step necessary for visualizing and understanding the information contained in datacubes. In more 

detail, it allows to perform a thorough chemical characterization of a sample, understanding 

relations between any portion of the sample image and its chemical composition – thanks to the 

combined pixel-score-loading analysis. Data taken for more than 40 samples of tumor and normal 

kidney, prostate, germ and bladder tissue were investigated. Generally, the exploration of the 

PC1 vs. PC2 score space showed clusters of pixels related to uncovered glass slide, tumor and 

normal tissue sections, respectively. At the same time, the PC1 vs. PC2 loading plot showed 

consistently that the m/z variables important for characterizing tumor and normal tissues of a 

particular organ were the same in all the different samples considered. These outcomes confirm 

that an interactive strategy presented can be a tool of general usefulness for the multivariate 

chemical characterization of biological tissues on the basis of hyperspectral MS imaging data. The 

strategy presented can be also used to guide subsequent investigations of the mass spectra and 

single ion images for characterizing different regions of any DESI-MS images which can be 

interpreted according to additional level of information, such as the assignment of health and 

disease state of tissue sections as described in this study. Importantly, the PC scores can be used 

as new variables that may allow efficient applications of more complex chemometric strategies for 

supervised classification. 

Finally, we envision that applying such interactive hyperspectral approaches on DESI-

MS imaging data collected using a “morphologically friendly” (nondestructive) solvent system6 will 

allow stronger correlations between the chemical information – related pixel by pixel to the spatial 

information by applying brushing procedure – and morphological information. In consequence, 

deeper interpretation of the outcomes should be achieved. 
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