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Abstract  

 

Knowledge of the lipids present in individual preimplantation embryos is of interest in fundamental 

studies of embryology, in attempts to understand cellular pluripotency and in optimization of in vitro 

culture conditions necessary for the application and development of biotechnologies such as in 

vitro fertilization and transgenesis. In this work, the profiles of fatty acids and phospholipids (PL) in 

individual mouse preimplantation embryos and oocytes were acquired using an analytical strategy 

based on desorption electrospray ionization mass spectrometry (DESI-MS). The methodology 

avoids sample preparation and provides information on the lipids present in these microscopic 

structures. Differences in the lipid profiles observed for unfertilized oocytes, two- and four-cell 

embryos, and blastocysts were characterized. For a representative set of embryos (N= 114) using 

multivariate analysis (specifically principal component analysis) unfertilized oocytes showed a 

narrower range of PL species than did blastocysts. Two- and four-cell embryos showed a wide 

range of PLs compared with unfertilized oocytes and high abundances of fatty acids, indicating 

pronounced synthetic activity. The data suggest that the lipid changes observed in mouse 

preimplantation development reflect acquisition of a degree of cellular membrane functional and 

structural specialization by the blastocyst stage. It is also noteworthy that embryos cultured in vitro 

from the two-cell through the blastocyst stage have a more homogeneous lipid profile as compared 

with their in vivo-derived counterparts, which is ascribed to the restricted diversity of nutrients 

present in synthetic culture media. The DESI-MS data are interpreted from lipid biochemistry and 

previous reports on gene expression of diverse lipids known to be vital to early embryonic 

development.  
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Introduction 

 

Oocyte fertilization in mammals occurs in the ampulla of the oviduct, close to the ovary. After this 

event, the embryo travels down the oviduct to the uterus taking 3 days in the case of the mouse. 

When the embryo reaches the uterus, usually at the blastocyst stage, the first events of cellular 

differentiation are observable. Preimplantation development, which can also occur in vitro, involves 

distinct metabolic phases, with radical changes in gene expression, protein synthesis, energy 

production, and metabolic requirements as the embryo develops from a fertilized zygote into a 

blastocyst [1]. 

Most research involving mammalian preimplantation embryo metabolism is based on studies of 

gene expression[2–5] and on the use of fluorescence microsco by using fluorescein isothiocyanate 

or similar fluorescent dyes to observe expressed proteins [6–8]. Lately, interest in addressing the 

chemical nature of lipids in these microscopic structures has increased, mainly based on results of 

lipid staining, gas chromatography (GC), and fatty acid (FA) supplementation during in vitro culture. 

These studies also showed that lipid metabolism is altered by in vitro culture conditions and that 

lipid cytoplasmic content seems to be crucial for oocyte and early embryo cryopreservation 

success [9–11]. FA metabolism occurs mostly in mitochondria, and it is poorly explored in early 

embryogenesis. The main FA breakdown pathway involves beta-oxidation in which FAs are 

degraded to acetyl-CoA fragments, which in their turn can be used as substrates for the 

mitochondrial Krebs cycle [12]. Inhibition of the beta-oxidation pathway by impairing the entry of 

activated FA into the mitochondria using the drug etomoxir (an inhibitor of carnitine palmitoyl 

tranferase I) decreases mouse oocyte maturation, zygote cleavage, and blastocyst development, 

suggesting that FAs are an important energy source in murine oocyte maturation and 

preimplantation development [13]. 

Phospholipids (PL), the major class of cellular lipids, constitute cell membranes and are involved in 

key cell signaling events [14, 15]. A 13-fold increase in phosphocholine (PCho) synthesis in mouse 

embryos from the two- to eight-cell stages has been previously reported by supplementing the 

culture medium with labeled choline (methyl-3H-choline) as a lipid precursor, suggesting not only 

membrane synthesis activity but also membrane remodeling during preimplantation development 

[16]. The enzyme cytidine 5′-triphosphate phosphocholine cytidylyltransferase, which participates 

in the biosynthesis of choline-containing PL, has been shown to be present in mouse oocyte and 

early embryo extracts using a specific enzymatic assay [17]. Also, a membrane choline transporter 

has been identified in the mouse embryo and it undergoes a 100-fold increase in concentration 

from the two-cell to the blastocyst stage [18]. FA and complex lipids have been detected in mouse, 

cattle, pig, sheep, and human embryo samples by colorimetric assays, thin-layer chromatography, 

or GC. These techniques rely on sample pooling (10–1,000 organisms) and lipid extraction and 

identification [11, 19–21]. Moreover, these methods give limited lipid structural information, typically 



only information on the general lipid class or on fatty acyl residues. Advances in instrumentation 

and ionization methodologies in mass spectrometry (MS) allow FAs and glycerophospholipids to 

be detected as intact ionized molecules. MS can therefore be used to study the lipid composition of 

a broad range of samples of complex composition containing limited amounts (a few picograms) of 

lipids [22, 23]. Matrix-assisted desorption/ionization (MALDI), time-of flight secondary ion mass 

spectrometry (SIMS), and desorption electrospray ionization (DESI) have already been introduced 

as MS-based approaches for individual mammalian oocyte and embryo lipid analysis [24–27]. 

DESI is one of the ambient ionization MS strategies which allows sensitive detection and 

identification of free FA and intact species of glycerophospholipids [28]. In ambient ionization MS, 

ions are formed outside the mass spectrometer without sample preparation or separation in 

unmodified samples [29]. Addressing the chemical composition of microscopic samples such as 

individual organisms or small cell populations is a bioanalytical challenge which is being overcome 

by diverse MS ionization strategies, such as nanoESI, MALDI, SIMS, laser ablation electrospray 

ionization, and DESI [24, 30, 31]. For example, MS analysis and identification of microorganisms, 

mostly performed by commercial platforms based on MALDI, is revolutionizing the field of 

microbiology [30]. Similarly, using DESI, direct analysis of microorganisms showed that 

characteristic constituents of bacteria can be detected; in particular, acylium ions of FA are 

observable directly, not as the usual methyl ester derivatives [32, 33]. DESI allows rapid in situ 

analysis of samples in their native state and has been used to study the chemical composition of 

animal tissues, plants, and documents in an untargeted fashion [34]. DESI-MS is here applied to 

study the lipid composition of preimplantation mammalian embryos, with the aim of better 

understanding embryonic metabolic needs. This knowledge can be applied in diverse areas 

including the practical one of development of culture media that better mimic in vivo conditions. 

This could result in more successful cryopreservation and fetal development potential after embryo 

transfer to the maternal environment in artificial insemination or in embryo transfer programs. Lipid 

changes detected by DESI-MS observed in preimplantation mouse embryos are correlated with 

embryo biosynthetic activity and membrane structural and functional specialization. The lipid profile 

is used to monitor metabolic status of embryo development as well as to follow the impact of in 

vitro culture conditions. The observed differences in lipid profiles are integrated with existing 

information on upstream lipid metabolism in order to better understand the findings. 

 

Materials and methods 

 

This study was carried out in strict accordance with the Purdue animal care and use committee 

approved protocol (No. 1111000314). When not otherwise stated, reagents were purchase from 

Sigma-Aldrich (St. Louis, MO). Experimental design, sample collection, and preparation The 

experimental design included the use of two laboratory mouse lineages (BCB and FVB) in order to 



evaluate if the lipid profiles were specific to a particular strain. Samples were obtained from BCB 

(C57BL/6×CBA) and FVB mouse strains breed at the Purdue University Center for Cancer 

Research’s Transgenic Mouse Core Facility. Animals were superovulated at day 1 with 0.1 mL (5 

IU) pregnant mare serumgonadotropin (i.p.) followed 46 h later by 0.1 mL (5 IU) human chorionic 

gonadotropin ( i.p.) and were kept unmated (for unfertilized oocyte retrieval; N031) or were mated 

to allow oocyte fertilization. Some of the mice were euthanized 2 days after mating for two- (N018) 

and four-cell (N015) embryos retrieval and at 4 days after mating for in vivo derived blastocyst 

(N039) collection. Some two-cell embryos were cultured in vitro in potassium simplex optimized 

medium drops containing 30 μL for 2 days (in vitro blastocyst group; N011) at 37 °C and 5%CO2 in 

air. Sample preparation followed a previous report [24] and consisted of brief wash steps 

performed under a LEICA stereomicroscope using a finely pulled glass pipette. The oocytes and 

embryos were washed three times in groups of five structures (oocytes or embryos) in 20 μL 

containing drops of phosphate-buffered saline (PBS; Gibco BRL, Gaithersburg, MD)+0.1 % 

polyvinyl alcohol (PVA) in order to remove lipids present in the extracellular environment (flushing 

or culture medium). Another three washes were performed in 10 μL containing drops of methanol 

(Mallinckrodt Baker Inc, Phillipsburg, NJ)/ultrapure water 1:1 (v/v) in order to eliminate salts 

present in the PBS, which can interfere in the mass spectrometric analysis. Oocytes or embryos 

where then individually placed onto the surface of a glass slide (Gold Seal, Portsmouth, NH), which 

contained small circles drawn in the back with a permanent marker, in order to facilitate the 

identification and labeling of the samples. Samples were analyzed fresh or the glass slides were 

stored at −80 °C until analysis, when they were thawed and allowed to dry at room temperature for 

15 min (Fig. 1a, b). Prior to DESI-MS analyses, the ink circles used to locate the embryos were 

blackened using a permanent marker in order to better visualize sample positions when directing 

the DESI spray (Fig. 1c). Mass spectrometric analysis by DESI A LTQ linear ion trap mass 

spectrometer (Thermo Fisher Scientific San Jose, CA) controlled by XCalibur 2.0 software and 

operated in the negative ion mode was used for the experiments. The instrument parameters were 

as follow: injection time, 500 ms; two micro scans; m/z range, 400–1,000; −50 V capillary voltage; 

and −25 V tube lens voltage. The DESI-MS analysis involves impacting the sample with charged 

droplets of a solvent. A thin layer of solvent is formed on the sample surface into which analytes 

dissolve. As other primary droplets arrive at the sample surface, they splash secondary micro 

droplets containing the dissolved analytes from the solvent film. This mechanism, droplet pickup” 

[35], causes analyte-containing droplets to be generated in the open air and then delivered to the 

mass spectrometer through a heated extended capillary. The DESI solvent combination used for 

the experiments was acetonitrile (ACN)+dimethylformamide (DMF) 1:1 (v/v) [36]. A spray voltage 

of 5 kV was applied to the stainless steel needle of a 250-μL glass syringe delivering solvent at a 

flow rate of 1.0 μL/min. The DESI spray nitrogen pressure was set at 180 psi, and the spray tip was 

positioned ∼2 mm from the sample placed in a glass slide at an incident angle of 50°. DESI-MS 



data were usually collected for 2–3 min/sample. Before analyzing the samples, mouse brain tissue 

and test samples were used for spray optimization (spray angle and distance to the metal capillary 

and sample surface) in order to obtain high quality mass spectra. 

 

Lipid characterization 

Lipid attribution of most abundant ions observed in the samples has been confirmed by high-

resolution mass measurements acquired using an Orbitrap mass spectrometer (Exactive, Thermo 

Fisher Scientific, San Jose, CA). The instrument was operated in the negative ion mode with the 

same DESI spray and solvent settings used for the data collection with the LTQ mass 

spectrometer. The Orbitrap instrumental conditions were: maximum injection time, 1,000 ms; one 

micro scan; m/z range, 150–1,000; −60 V capillary voltage; and −145 V tube lens voltage. 

Molecular formula matching and error calculations were performed using the instrument software 

(Xcalibur v.1.0.1.03, Thermo Fisher Scientific San Jose, CA) and online search of lipids containing 

the calculated molecular formulae was carried out in the LIPID MAPS database [37]. Lipid 

attributions based on high-resolution mass measurements data are listed in Table 1 and examples 

of mass spectra obtained are shown in Fig. S1 in the Electronic supplementary material (ESM). 

 

Principal component analysis 

For each embryo, a list of m/z values and ion abundances from averaged mass spectra was 

imported into Matlab software 7.0 version (The MathWorks, Inc., Natick, MA) and multivariate data 

processing was performed using in-house routines. Before performing principal component 

analysis (PCA), the number of spectral variables was reduced (1:4) by a consecutive-window 

averaging algorithm. Then, normalization with respect to the total ion chronogram was performed 

in order to correct for instrumental variability. Neither background correction nor smoothing filters 

was applied. PCA was performed on category column-centered data, in order to investigate 

separately strain and the developmental stage effects. 

 

Results 

 

Representative mass spectra and most abundant lipid ions As previously observed for lipid 

analysis in individual mouse oocytes and preimplantation embryos [24], FA dimer signals 

predominate in the region of m/z 400–650 and glycerophospholipids in the m/z 700–1,000 range. 

Prominent FA dimers were mostly composed of palmitic, linoleic, arachidonic, and 

docosahexanoenic acids. Complex lipids were represented by phosphatidylcholines (such as the 

chlorinated adducts of PCho (34:1), m/z 794.3; PCho (36:2), m/z 820.5; and PCho (38:4), m/z 

844.5), phosphatidylinositols (such as deprotonated PI (38:4) of m/z 885.5), 

phosphatidylethanolamines (such as deprotonated PE (38:3) of m/z 768.3), and 



phosphatidylserines (such as deprotonated PS (38:4) of m/z 810.7). DESI-MS analysis was 

performed on unfertilized oocytes (N031), two- (N018) and four-cell embryos (N015), and 

blastocysts (N039). Representative mass spectra of each of the four developmental stages are 

depicted in Fig. 2, and lipid attributions of the most abundant lipid ions are shown in Table 1.As 

attributed by high mass resolution in this work and by MS/MS analysis in our previous report [24], 

PCho (34:1) is the most abundant lipid present in unfertilized mouse oocytes while blastocysts 

present a more complex PL content, with predominant PCho (34:1), PCho (36:2), and PCho (38:4) 

species. Two- and four-cell embryos show abundant FA dimers while PCho (34:1) is the 

predominant PL ion. DESI-MS of four other samples for each developmental stage are shown in 

Figs. S2, S3, S4, and S5 in the ESM. Note that despite the biological variability that is expected to 

occur in samples obtained from two different mouse strains and many individuals, similar trends in 

lipid profiles described for each developmental stage are observed. 

 

DESI-MS extraction process 

Time dependence of the DESI-MS was observed for most of these microscopic samples. For most 

of the samples analyzed, FA dimers were more abundantly detected in the first minute of the 2- to 

3-min analysis period while the ion signal for PL predominated later (Fig. 3). 

 

Effect of the mouse strain  

PCA is commonly used for exploratory investigations of the complex information contained in a full 

mass spectral dataset, to allow consideration of all the spectral variables and their intercorrelations 

simultaneously [38]. As described elsewhere [39], the principal components (PCs) can be 

considered as orthogonal (i.e., uncorrelated) directions in the multidimensional data space that 

efficiently describe large fractions of the information. The projections of the data objects onto the 

PCs are called scores while the importance of each original variable in defining a certain PC is 

given by the loading coefficient. In the score plot, it is possible to visualize groupings that indicate 

similarities among objects on the basis of the information derived from the mass spectra, and these 

can be associated with particular characteristics of the samples analyzed. Subsequently, an 

examination of both the loading plot and the score plot allows chemical characterization of the 

studied samples to be achieved, revealing which m/z peaks are the most important in defining the 

sub-sets of samples under consideration. For statistical analysis of the effects of mouse strain, 

mass spectral data of all samples from both strains (FVB—N051 and BCB—N063) used were 

processed in order to eliminate any effect due to developmental stage. For the statistical data 

analysis, we have considered combinations of the three first three PCs (PC1, PC2, and PC3) in 

two-dimensional graphs to better visualize trends in experimental groupings. PCs are ranked in 

terms of the variance they explain and the first three PCs represent most of the information that 

was in the original datasets. For example, PC1+PC2+PC3 represented 



74.3 % of the strain analysis dataset variance (Fig. 4a, b), but no evident clusters involving red 

(BCB) or dark blue (FVB) objects were observed. This indicates that there is no detectable effect of 

mouse strain on the lipid profiles in this test. Just a small trend of separation was observed in PC3, 

associated with the ion m/z 612.5 according to the loading plot (not shown). The other PC values 

(PC4 and PC5) also did not show clustering due to strain differences (data not shown). Based on 

these results, we disregarded embryo origin in performing developmental stage comparisons and 

consequently are able to draw conclusions that can be applied to mouse preimplantation 

development in general terms.  

 

Differences in lipid signatures 

With no clear effect of the mouse strain observed, category column centering was applied to the 

DESI-MS to follow the effects of the development stage by PCA. Differences in the lipid profiles 

that can be ascribed to the developmental stage were evident in the PC1 vs. PC3 (total of 52.1 % 

of the data variability) score plot (Fig. 5a). Two clusters are evidently represented by unfertilized 

oocytes and blastocysts, which are the most biologically distant phases of preimplantation 

development studied. Two- and four-cell embryos showed higher individual variability and the 

related objects in the score plot are more widely dispersed. (These data are consistent with visual 

inspection of the mass spectra shown in Fig. 2.). A trend towards separation among the samples is 

more evident in Fig. 5b where the centroid value for each category is depicted. The centroid value 

of unfertilized samples is situated closer to those of two- and four-cell embryos while the centroid 

value of the blastocyst is more distant. The ion m/z values which are relevant for samples’ 

positioning in the PCA score plot can be observed in the loading plot (Fig. 5c). To interpret these 

data, Fig. 5a, c should be visualized together. The values of m/z showed in Fig. 5c, which are 

situated close to where the samples are located in Fig. 5a, are significant for the samples location 

in the PCA plot. Consistent with what has been observed in the representative mass spectra (Fig. 

2), the most relevant ion for unfertilized oocyte clustering is the m/z 794 (PCho (34:1)+Cl)− (which 

contributes most to PC3 definition). Two- and four-cell embryos were both characterized by a set of 

ions of lower m/z value corresponding to the FA dimers (which contribute the most to PC1 

definition), while blastocysts had a greater contribution of heavier ions (mainly m/z 820 and 844), 

which correspond to PCho species (PCho (36:2)+Cl)− and (PCho (38:4)+Cl)− with fatty acyl 

residues containing larger carbon chains and higher levels of unsaturation. 

 

Impact of in vitro culture on the lipid signatures of blastocysts 

The impact of in vitro culture was more specifically evaluated by comparing 19 blastocysts which 

were developed in vivo with 11 blastocysts of the FVB strain, cultured in vitro for 2 days (from the 

two-cell to the blastocyst stage). PCA was performed on these selected samples in order to 

evaluate differences in their spectral variability. Considering the first two lower-order PCs (PC1 and 



PC2), it is evident from the score plot that blastocysts produced in vitro present a relatively 

homogeneous profile while there was a higher individual variability in blastocysts produced in vivo. 

The dispersion along PC2 is mainly due to the oleic acid dimer (m/z 563) while PCho species 

(PCho (36:2)+Cl)− and (PCho (38:4)+Cl)− (the most abundant ions in the mass spectra) are most 

heavily involved in defining PC1 (Fig. 6).  

 

Discussion 

 

As established for brain, kidney, bladder, liver, and germ cell, DESI-MS lipid profiles in tissue can 

be correlated with pathophysiological state [40]. In this work, based on the DESI-MS approach 

previously reported [24], we show that lipid profiles from individual mouse preimplantation embryos 

display marked changes during early development. Unfertilized oocytes, two- and four-cell 

embryos, and blastocysts were analyzed by DESI-MS in an unmodified condition (samples were 

simply washed). Two mouse strains were used and also the impact of in vitro culture was 

addressed by profiling blastocysts that have been maintained in vitro culture from the two-cell 

stage (2 days of culture). The data provided underscore several reasons why DESIMS is very 

useful in lipid research. Minimum or no sample handling is needed: samples are generally 

analyzed in their unmodified state [40]. Second, FAs and PL are readily ionized under ambient 

conditions by DESI-MS in the negative ion mode to give deprotonated molecules or chlorine 

adducts [24] and these small molecules (usually under 1,200 Da) fall in the optimal range for 

efficient ionization and extraction by DESI spray solvents [29]. Specifically for analysis of lipids in 

microscopic samples, the choice of appropriate DESI solvents yields adequate ion signals due to 

efficient lipid extraction [36]. The limitations of DESIMS for lipid analysis are related to the 

measurement of the relative amounts of small molecules, since the analysis is performed in a 

complex mixture, the possibility of bias in the measurement of relative amounts of lipids cannot be 

ignored. Nonetheless, relative signals in DESI show good agreement with LC-MS/MS data [41]. 

Biological applications of DESI-MS are rapidly growing, especially for cancer research [39, 42, 43], 

evaluation of lipid accumulation pathologies [44], the study of inflammatory responses [45], and 

botanical and microorganism analysis [46, 47]. In parallel, multivariate analyses (such as PCA) 

plus customized software is being developed for the exploration and automated modeling of lipid 

data to aid in biological interpretation of DESI-MS data [39, 48]. The DESI spray solvent extracts 

lipids from the samples in such a way that in most of the samples FA dimers are concentrated in 

the first minute of analysis while the signal for PL takes longer to appear and remains stable for 

longer. Strong temporal effects like this have not been observed in DESI-MS studies on tissue 

sections and may be related to peculiarities of embryos, perhaps as a result of the three 

dimensional shape of the samples or the presence of the zona pellucida, which may interfere with 



the transport of lipids extracted from the sample. FA dimers occur frequently in DESI-MS analysis 

of biological samples and usually reflect the content of free FA in the samples [49]. 

Among chemometric techniques, either unsupervised or supervised analyses can be performed. 

The former, typified by PCA, mainly explore data variability and are used for visualizing and 

understanding the information encompassed in the experimental data [38, 39]. Application of this 

method to the present data revealed no evident effect of mouse strain (BCB vs. FVB) on the lipid 

profiles. This result was expected since mammalian preimplantation embryo development is a 

complex and highly conserved process, in which a number of correspondent genes have been 

observed in cross-species comparison of gene expression [50, 51]. Therefore, we believe that the 

lipid dynamics described herein will be valid for all mouse species and probably in general for 

mammalian preimplantation development. PCho can be detected either in the positive ion mode as 

sodiated and potassiated adduct ions in the negative ion mode as chlorine adducts [24, 52]. We 

have chosen the negative ion mode for the experiments since it was more sensitive under our 

conditions of analysis. The most abundant PCho species in unfertilized oocytes, two- and four-cell 

embryos, was the PCho (34:1). In blastocysts, PCho species containing higher numbers of 

carbons in the fatty acyl residues and higher degrees of unsaturation, such as PCho (36:2), PCho 

(38:4), and PCho (38:5), yielded the most abundant ions and were relevant for PCA clustering. 

Higher abundance PCho species containing 38 carbons with four or more units of unsaturation in 

the lipid profiles of blastocysts are indicative of the presence of arachidonic acid, which is needed 

for increased signaling activity in later preimplantation stages. Arachidonic acid is released from PL 

molecules by the enzyme phospholipase A2 and converted to eicosanoids, which have a number 

of cellular signaling functions [53]. Also, fatty acyl residues with higher unsaturation levels confer 

membrane fluidity, which indicates intense membrane signaling activity [54]. The PCho structures 

detected in the four developmental stages contain combinations of palmitic, stearic, oleic, linoleic 

and arachidonic as fatty acyl residues, which have been reported as the main fatty acyl residues 

detected by GC in domestic species (swine, sheep, bovine, and human) [19, 20, 55]. The high 

abundance of PCho adducts can be correlated with the fact that they represent more than 40 % of 

total cellular lipids and the major bilayer membrane structural lipid [53]. 

Limited information about lipid metabolism in preimplantation embryos is available: nevertheless, 

our data are consistent with research indicating that FA metabolism is highly active in mouse early 

development [10, 13, 21]. FA dimers were most abundant in two- and four-cell embryos, when 

maternal–zygotic transition has already occurred in the mouse species and the embryo genome is 

actively translated. This event in the mouse is reflected in numerous gene expression pathways 

related to the metabolic rate increase for synthetic activity needed for the cellular divisions [56]. 

The DESI-MS results can be also correlated upstream with reports on the gene expression of 

carnitine palmitoyl transferase I (CPT1B), an enzyme responsible for the internalization of FA in 

mitochondria, which was increased in mouse-unfertilized oocytes after ovulation and in blastocysts 



and its inhibition and upregulation have had an impact in embryo development [13]. This enzyme 

has been studied in bovine preimplantation development using methyl palmoxirate to block the 

oxidation of FA. Similar results have been observed for the mouse species [57], so that the 

DESIMS findings on the changes in FA abundances could be related upstream in the embryo 

metabolism to the CPT1B enzymatic activity. 

Phosphatidylethanolamine constitutes 20–30 % of the total cell PL. These lipid species are able to 

bind to proteins by hydrogen bounding through the primary amine in the polar headgroup, so that 

membrane stabilization is promoted [58]. PE species are readily detected by DESI in the negative 

ion mode as deprotonated species. The main PE species detected in the samples (PE (38:4) and 

PE (38:3)) have arachidic and arachidonic acid units in their structures. PE species have been 

reported as important lipids during early mouse pregnancy and have been colocalized with 

cyclooxygenase-2, which uses PL as substrates for cellular signaling process [59]. Nonetheless, 

we have not observed ion abundance changes in PE species during mouse preimplantation 

development, probably because implantation processes are still not significantly activated. 

Phosphatidylinositols represent 10–15 % of the total cellular lipids and PI-derived compounds 

participate in diverse cellular pathways such as intracellular calcium signaling, gene transcription, 

RNA editing, nuclear export, and protein phosphorylation [60]. Usually, PI species are observed in 

small abundances in MS imaging of tissues [40, 61] and we have also observed small abundances 

of PI species throughout mouse preimplantation development. Changes in this lipid class have 

been observed latter in mouse embryo development (uterine implantation) and were related to the 

presence of angiogenic regions [59]. The impact of in vitro culture conditions (source of protein 

supplementation in the culture medium and oxygen concentration in the incubator) is well 

recognized and a focus of active research in embryology [62]. Changes in the lipid profile recorded 

by MALDI-MS have been reported for bovine preimplantation embryos produced in vitro but not 

compared to in vivo counterparts [25]. In the present work, fertilization and first cleavage in vivo 

and in vitro culture was performed over a period of 2 days, from the two-cell until the blastocyst 

stage. A more reproducible lipid profile was observed for the in vitro-cultured samples, probably 

due to nutrient restriction in the defined culture medium. We speculate that differences will be more 

evident comparing blastocysts which have been fertilized in vitro with in vivo-collected counterparts 

using DESI-MS. Also, with the use of higher spatial resolution DESI-MS imaging settings, which 

have recently allowed ∼35μm feature definition in tissue samples [63], chemical screening of early 

embryos, especially of large domestic animals, may provide further information on lipid 

distributions in single embryos. In our study, the use of multivariate analyses was essential in order 

to support data interpretation of the large amount of information contained in the DESI-MS lipid 

profiles, so that informative changes on FA and glycerophospholipids during mouse 

preimplantation development could be evidenced. Lipid changes detected by DESI-MS indicate a 

pronounced FA metabolism in mouse two- and four-cell embryos and a functional and signaling 



specialization of the cellular membranes in blastocysts. These findings have been supported by 

previous literature reports on lipid gene and protein expression in preimplantation embryos. 
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Fig. 1 Overview of sample handling for DESI-MS analysis of individual oocytes/preimplantation 

mouse embryos. a Samples washed under a stereomicroscope in PBS+0.1 % PVA and in 

methanol/water 1:1 (v/v) and b individually placed on glass slides. Arrow shows one embryo (∼100 

μm diameter) inside a red ink circle drawn in the back of the slide. c Lipid profiles recorded by 

DESI-MS  by placing oocytes and embryos under the DESI spray spot. Optical imaging during the 

experiment shows the DESI spray tip directed towards the glass surface as well as the metal 

capillary used to conduct the ions to the mass spectrometer. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 2 Representative DESI-MS negative ion mode mass spectra (accumulated over 2–3 min of 

analysis for each sample) of individual oocytes and embryos from each of four mouse 

preimplantation developmental stages a unfertilized oocyte, b two-cell embryo, c four-cell embryo, 

and d blastocyst 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 3 Relative ion abundance vs. analysis time for two FA dimers (m/ z 536.9 and 563.9) and two 

PL species (m/z 794.2 and 820.2) present in a single unfertilized mouse oocyte. In the first minute 

of analysis, FA dimers are rapidly extracted from the sample by the ACN/DMF spray. Later, ion 

signals for PL species predominate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 4 PCA score plots generated to evaluate mouse strain effects (BCB and FVB strain tagged in 

red circles and blue diamonds, respectively). Graphs depicting a PC1 (39.7 % of data variability) 

vs. PC2 (23.9 % of data variability) and b PC2 vs. PC3 (11.0 % of data variability) show no evident 

effect of mouse strain on the lipid profiles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 5 a PCA score plot showing the distribution of unfertilized oocytes (blue squares), two- (green 

circles) and four-cell embryos (red diamonds), and blastocyst individuals (purple crosses). b PCA 

score plot showing the centroid value for each category of developmental stage depicted with the 

same color code; c PCA loading plot with the m/z values that contribute most to the distinctive 

positions of samples in the score plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 6 PCA score (a) and corresponding loading (b) plot comparing DESI-MS lipid profiles of FVB 

blastocysts that have developed in vivo (red diamonds) with counterparts that have been 

maintained for 2 days in in vitro culture (blue squares). The tighter clustering of the in vitro samples 

corresponds to a more homogeneous lipid profile for the individual samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 


