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Abstract 

We present a phenomenological model and Finite Element simulations to describe the 

depth variation of mass density and strain of ion-implanted single-crystal diamond. 

Several experiments are employed to validate the approach: firstly, samples implanted 

with 180 keV B ions at relatively low fluences are characterized using high-resolution X-

ray diffraction (HR-XRD); secondly, the mass density variation of a sample implanted 

with 500 keV He ions well above its amorphization threshold is characterized with 

Electron Energy Loss Spectroscopy (EELS). At high damage densities, the experimental 

depth profiles of strain and density display a saturation effect with increasing damage and 
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a shift of the damage density peak towards greater depth values with respect to those 

predicted by TRIM simulations, which are well accounted for in the model presented 

here. The model is then further validated by comparing TEM-measured and simulated 

thickness values of a buried amorphous carbon layer formed at different depths by 

implantation of 500 keV He ions through a variable-thickness mask to simulate the 

simultaneous implantation of ions at different energies.  

 

Keywords 

Ion implantation; Diamond; Ion induced damage; Electron Energy Loss Spectroscopy; X-

Ray Diffraction; Mechanical deformation   
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1. Introduction 

Ion implantation has been widely applied to the fabrication and functionalization of 

single crystal diamond, with application in diverse fields such as optics and photonics1-8, 

bio-sensors9, particle detectors10, 11 and micro-electromechanical systems (MEMS) 12-14. 

Several fabrication schemes can be implemented by exploiting light MeV ions, whose 

strongly non-uniform damage depth profile allows the creation of heavily damaged 

buried layers which graphitize after thermal annealing, whilst the structure of the 

surrounding material is largely restored15-17. Thus, spatially well-defined structures can be 

created by selectively etching the graphitized regions18 or graphitic conductive paths can 

be fabricated for specific applications19, 20. 

To reliably design and fabricate structures with MeV ion beam lithography, 

accurate control of the spatial extension of the graphitized layer is necessary.  However, 

the mechanisms by which the diamond lattice structure is modified by ion-beam 

processes are still not fully understood.  This is due to the complex interplay of the 

various parameters involved, including implanted ion species and energy, implantation 

fluence and temperature, post-implantation annealing temperature, local stress, and even 

fundamental material properties of diamond such as tensile strength are still poorly 

understood21. It has been shown22 that primary defects, formed in the collision cascades 

during ion implantation, consist primarily of vacancy and interstitial atoms. At room 

temperature, vacancies are immobile, but interstitials can diffuse substantially, either 

recombining with vacancies or moving out of the implanted region22.  

One concept of particular importance to ion-beam modification of diamond is that 

of the critical density for amorphisation, DC. This parameter is typically referred to as the 
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damage level (quantified as a vacancy concentration via TRIM modelling23) beyond 

which the diamond lattice is permanently amorphised, and subsequently graphitizes upon 

thermal annealing24. Despite the central role that DC plays in the ion-beam modification 

of diamond, considerable uncertainty remains on the value of DC and its dependence on 

implantation parameters (e.g. depth and/or local strain, self-annealing, etc)15, 16, 25-33. 

Recently it was shown that DC appears to be set by local density and tensile strain, rather 

than simply by vacancy concentration, and a threshold density for amorphisation of 

approximately 2.95 g/cm3, corresponding to a strain value of approximately 16% was 

found34.  

Another extremely important issue when designing implantation strategies is that 

of damage accumulation, and in particular vacancy saturation35. As ions are implanted 

into the sample, they cause damage, and hence the properties of the sample vary as a 

function of the accumulated dose. The result is that the damage per implanted ion reduces 

as a function of the local damage, leading to a marked departure of the inferred vacancy 

concentration from the predictions of standard Monte-Carlo simulation packages such as 

TRIM23, which typically models ion-implantation into virgin material. Interestingly, 

saturation behaviour is also observed in both the sp2 fraction and density with increasing 

damage, although the point of saturation is beyond the amorphisation threshold, 

indicating continued modification of the sample with increasing damage even after 

amorphisation has been achieved. 34  

Another interesting feature of amorphous carbons that is related to vacancy 

saturation is that high fluence ion-implantation tends to create amorphous carbon with a 

density around 2.2 g/cm3.  In particular, it is observed that high-density carbons 
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(diamond34, ρd = 3.52 g/cm3 and tetrahedral amorphous carbon36, ρtaC  = 3.3 g/cm3) 

expand with increasing fluence, whereas low density glassy carbon37, ρgC = 1.55 g/cm3 

compactifies.  This limit for ion-beam damaged carbon materials will be used in our 

modelling below. 

The highly non-trivial nature of the ion-induced damage of diamond means that to 

accurately predict (or equivalently design) an implantation strategy, sophisticated 

modelling is required.  Such modelling must include geometrical parameters, to correctly 

include the mechanical constraining effects of the surrounding undamaged diamond 

material and variation in elastic constants of the implanted substrate. Our work discusses 

the generation of such models. 

Here we present a numerical procedure, based on a phenomenological model for 

damage accumulation and saturation and subsequent use of Finite Element (FEM) 

simulations, which allows the reliable determination of strains in an ion-implanted 

diamond substrate. This model is based on previous studies by some of the authors38, 39 

and represents their completion. We validate the FEM modelling approach in the case of 

samples implanted at low fluences, where damage saturation effects are negligible, by 

comparing numerical results with experimental High-Resolution X-Ray Diffraction (HR-

XRD) measurements. Subsequently, we check the predictions of the whole numerical 

procedure, including saturation effects, using Electronic Energy Loss Spectroscopy 

(EELS) and Transmission Electron Microscopy (TEM) experimental data from samples 

implanted at high damage densities. 
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The paper is organized as follows: in Section 2 the model is outlined; in Sections 

3 and 4 the model predictions are compared to experimental results in samples implanted 

respectively in low and high damage regimes. 

 

2. The Model 

In the present study, we adopt and extend the model presented in 38, which accounts for 

saturation in the creation of vacancies in the damaged diamond crystal lattice at 

increasing implantation fluences. The model is inspired by the work reported in 35 and 

takes into account the concentration of ion-induced vacancies with a simple linear 

approximation for the probability for a newly created vacancy to recombine with a self-

interstitial:  

 

 ( )
α

z)(F,ρ=zF,P V
rec ,    (1) 

 

where Prec is the recombination probability at a given depth z and implantation fluence F, 

ρV is the vacancy density in the material at depth z and α is an empirical parameter 

depending on the implantation conditions that accounts for the defect recombination 

probability. In particular, α represents the saturation vacancy density where the 

probability of recombination is 1 and therefore no further vacancies are introduced into 

the structure by additional implanted ions.  In other words when ρV=α, the energy 

deposited by each additional ion at that depth simply moves atoms, without creating 

additional vacancies. By solving the associated differential equation 
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where λ(z) is the linear vacancy depth profile calculated using the TRIM 2008.04 code23, 

we obtain the actual vacancy density of the damaged diamond as a function of substrate 

depth and implantation fluence: 
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By assuming that the mass density ρ of the damaged diamond is linearly proportional to 

the vacancy density and considering the known boundary values of ρ at zero and infinite 

fluences, we obtain the following expression: 
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where ρd =3.52 g cm-3 is the diamond density and ρaC =2.06 g cm-3 is the limiting density 

of the ion-damaged material, as determined in 34.  

 In addition to vacancy saturation, the reduction in density of the material leads 

perforce to swelling.  As the diamond below the implantation is undamaged, this swelling 

must manifest on the front surface (implantation side) of the diamond.  We observe this 

swelling as a shift of the damage peak towards greater depth values, measured with 

respect to the implanted surface, than those predicted by the TRIM code, as the latter 
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calculates ion trajectories into a pristine substrate. Furthermore, the ions experience a 

reduced material density with increasing accumulated damage, so that the mean 

implantation depth increases as the material progressively swells. This can be accounted 

for by introducing a rescaling of the depth coordinate z due to the reduced stopping 

power of the substrate, which is proportional to the mass density decrease in the damaged 

layer. To numerically account for this effect, we thus divide the depth coordinate in a 

large number (N) of intervals of width Δz, and rescale the i-th depth as:  

 

( ) z
z

zzz
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d
iii Δ+=→ − ρ
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where i=1...N is the interval label, z is the original coordinate, z’ is the rescaled 

coordinate, and ρ(zi) the implanted diamond density at depth zi. Thus, the piecewise-

defined rescaled mass density distribution ρ(z') can be determined. As reported in 17, 

following a “rule of mixture” approach, we assume for simplicity that the mechanical 

parameters of the damaged material (such as the Young’s modulus E and the Poisson’s 

ratio ν) have the same functional variation as that of mass density: 
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with Εd =1220 GPa, ΕaC =10 GPa, νd =0.2 and νaC =0.1840. 

 Once the ion species and energy as well as the implantation fluence and geometry 

are known, one can perform a standard TRIM simulation to obtain the vacancy density 

profile. All TRIM simulations were performed in “Detailed calculation with full damage 

cascade” mode, by imposing a displacement energy for carbon atoms in diamond of 50 

eV41. The TRIM output is used in Eqs. 4 - 6 to calculate the spatial variation of both 

structural and mechanical parameters of the irradiated sample. These data are then fed 

into a 2-D or 3-D FEM model to simulate strains, stresses and surface deformations 

occurring in the diamond substrate as a result of ion implantation. In our work, 

simulations are carried out using the “Structural mechanics” module of COMSOL 

Multiphysics®42. As explained in38, the simulations are performed by imposing a 

constrained isotropic volume expansion in the damaged regions that is proportional to the 

local density variation and affected by the local variation of the mechanical properties. 

 

3. Low damage density regime 

To first evaluate the predictive abilities of FEM modelling only, we considered samples 

implanted at relatively low fluences, to exclude the damage saturation effects described 

above. 

 3.1  Samples and ion implantation 

Ion implantation was performed on optical-grade CVD single-crystal samples produced 

by Element Six. The samples are classified as type IIa (single substitutional nitrogen 

concentration below 1 ppm, single substitutional boron concentration below 50 ppb), 

have 100 crystal orientation and are 3×3×0.5 mm3 in size, with two optically polished 
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opposite large faces. To be suitably analyzed with the HD-XRD technique, diamond 

samples with relatively shallow ion implantations are required, thus allowing the 

observation of sufficiently resolved thickness fringes and the reconstruction of the 

damage profile from simulations. We implanted the samples at room temperature with 

180 keV B ions at the Olivetti I-Jet facilities (Arnad, Italy). The projected range for this 

implantation is 268 nm with longitudinal straggle 45 nm. Three samples were prepared 

with uniform irradiation of the whole upper surface at fluences of 5× 1013 cm-2, 1× 1014 

cm-2 and 5× 1014 cm-2.  

 3.2 Experimental measurements 

The B-implanted samples were investigated with HR-XRD (details of the experimental 

technique and data analysis can be found in43) at the department of Physics and 

Astronomy of the University of Padova by means of a Philips MRD diffractometer. The 

source was an X-ray tube with copper anode, equipped with a parabolic mirror and a Ge 

(2 2 0) four-bounce Bartels monochromator. The resulting primary beam had a 

divergence angle of 0.0039° in the equatorial plane and a spectral purity of  Δλ / λ = 10-5 

at a wavelength λ = 1.54056 Å. The beam impinges on the sample at an angle ω, 

measured by a high precision goniometer, on which the specimen is mounted. The 

scattered radiation from the sample was measured as a function of the incidence angle ω 

and the scattering angle 2θ by a Xe proportional detector mounted on a second 

independent goniometer, coaxial to the first. To improve the angular resolution of the 

measurement, the detector was equipped with a three-bounce Ge (2 2 0) analyzer that 

guarantees an acceptance angle of 0.0039°. The system was maintained in a measuring 

chamber at a constant temperature of (25.0 ± 0.1) °C. 
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Both unimplanted and implanted samples were measured under the same 

conditions near the (0 0 4) reflection using a combination of radial ω-2θ scans and 

reciprocal space maps. Moreover, the presence of interface relaxation was checked by 

acquiring asymmetric reciprocal space maps around the (3 1 1) reflection. The 

unimplanted sample revealed a strong Bragg peak corresponding to the (0 0 4) lattice 

planes at the Bragg angle θB = (59.746 ± 0.001)° from which a lattice parameter a = 

3.567 Å can be determined, in good agreement with the literature44. However, the 

measured width of the Bragg peak was (6.43 ± 0.004)° ⋅10-3 which is significantly larger 

than the theoretical width 2.68°⋅10-3 calculated using dynamical diffraction theory and 

corrected for experimental broadening43. This observation indicates that some kind of 

distortion is natively present in the substrate. By reducing the beam footprint to few tens 

of μm with the aid of some collimation slits and performing a series of ω – scans in 

different positions of the sample, we observed a slowly-varying bending of the substrate, 

with a minimal curvature radius of 32 m, probably due to residual stresses from the 

growth process. As this variation occurs over distances much larger than the coherence 

length of the X-ray wavefield (i.e. hundreds of nanometers) this effect can simply be 

modelled considering the measured signal as the superposition of many diffraction 

spectra coming from slightly tilted samples.  

 The analysis of the asymmetrical maps (not shown here) did not reveal the 

presence of interface relaxation in any of the implanted samples. In the following, it will 

therefore be assumed that the deformed layers are fully pseudomorphic with the 

substrate, so that all near-surface deformations occur along the vertical direction. An 

example of one of the reciprocal space maps obtained from the sample implanted at 
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fluence 5× 1014 cm-2 around the symmetric (0 0 4) reflection is shown in Fig. 1. The maps 

were projected along the Qz direction to obtain the usual ω-2θ scan, but with a higher 

accuracy with respect to simple line-scan measurements (Fig. 2).  

The curves were analysed using an in-house developed program that simulates 

diffraction curves produced by a deformed sample using the Takagi - Taupin dynamical 

diffraction theory43. The deformation profile Δd/d(z) (i.e. the relative change in the 

vertical crystal lattice parameter, due to the local defect concentration, as a function of 

depth) was parametrized using a 10th order spline 45, so that each profile was described by 

10 parameters, as well as a further one to define the depth of the profile by rescaling 

abscissae of the spline curve. This profile was then discretized by a numerical routine 

into a series of N layers, each characterized by a local Δdi/d (i = 1…N), to allow the 

calculation of the diffraction spectrum in the framework of the Takagi – Taupin 

approach43.  To account for the gradual disruption of crystalline order introduced in the 

crystal structure by ion implantation, a “disorder profile” was also included in the model 

43. Structural disorder was modelled as a random displacement of the atoms around their 

average lattice position. For the sake of simplicity, the displacements were assumed to be 

isotropically distributed according to a zero-mean Gaussian distribution, producing an 

effect similar to that of thermal agitation on the diffracted field. The parameter used to 

characterize this effect was the local root mean square of displacements from equilibrium 

positions. To reduce the number of fitting parameters, the disorder profile was assumed 

to be proportional to the deformation profile, thus obtaining a reasonable compromise 

between accuracy of the fit and number of fitting parameters. An additional parameter 

relating the disorder profile to the deformation one is therefore included in the fitting 
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procedure. The effect of the above-mentioned macroscopic substrate distortion due to 

residual growth stresses was described by convolving the simulated profile with a 

broadening Gaussian function, whose width is chosen so that the width of the simulated 

substrate peak width coincides with the experimental one. The parameters defining the 

deformation profile are finally obtained by minimizing the function ∑ log
log , where θi is the scattering angle, f(θi) is the diffraction curve intensity in θi 

calculated using the simulation code and Ii is the intensity measured in θi. The use of the 

logarithmic function allows balanced weighing of points on the curve with marked 

differences in intensity. An example of experimental and simulated rocking curves for the 

sample implanted at fluence 5× 1014 cm-2 is shown in Fig. 2 with good agreement 

between experimental and simulated data. 

 The resulting deformation profile Δd/d(z) for the three samples is shown in Fig. 

3a. The profiles are normalized with respect to an arbitrary factor proportional to their 

implantation fluence for comparison purposes in Fig. 3b (specifically, the profiles relative 

to fluences of 5⋅1013 cm-2, 1014 and 5⋅1014 cm-2 are divided by the factors 0.0025, 0.005 

and 0.025, respectively). The three curves are in good agreement, show decreasing 

Δd/d(z) with increasing fluence indicating the onset of saturation effects. Similar curves 

to those in Fig. 3a are obtained for the calculated disorder (not shown here). 

 According to the reciprocal space mapping analysis performed near the (3 1 1) 

asymmetric reflection, there is no lateral relaxation of the implanted layer, so the 

deformation profile measured by HR-XRD derives from two effects: the ion-induced 

change in the crystal density and the vertical strain caused by the Poisson effect. The εz 
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principal strain component can therefore be extracted from the measured data through the 

following relation: 
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The data calculated with this relation can therefore be compared to simulated strain 

values, as discussed in the following section. 

 

 3.3  Data analysis and strain modelling 

 Due to the low value of irradiation fluence, the effects of damage saturation and swelling 

are minimal for the samples considered in this Section. Simulations to determine vacancy 

densities were carried out using the Crystal-TRIM (C-TRIM) code46, which accounts for 

local electronic energy loss using a semi-empirical formula based on a modified Oen-

Robinson model46, and has particularly well documented simulation parameters for B 

implantations. The C-TRIM-derived linear vacancy depth profile λ(z) is shown in Fig. 3b 

together with the experimental HR-XRD data. This curve is in good agreement with the 

experimental ones, confirming that the deformation occurring in the samples is indeed 

predominantly vacancy related, and that corrections for damage saturation and swelling 

are relevant only for higher damage density regimes. 

 As mentioned in the previous Section, FEM simulations were performed to 

determine the strain profile in the implanted samples, and were carried out using as input 

the vacancy density profile resulting from C-TRIM. The resulting tensile strain profile for 
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the sample implanted at a fluence of 5×1014cm-2 is shown in Fig. 4, together with the 

experimental values determined from the HR-XRD data shown in Fig. 3 using Eq. 6. An 

excellent agreement between the HR-XRD data and the numerical results is observed in 

Fig. 4 and also for the other two samples (not shown here), both in amplitude and depth 

distribution, proving the validity of the adopted procedure. As expected, in this case the 

strain levels are quite low (at most 1.5%), due to the uniform irradiation of the whole of 

the specimen surface at relatively low fluences, and well below the 16% value indicated 

in 34 as the threshold for amorphization. 

 

4 High damage density regime 

Higher damage densities were investigated, corresponding to higher strain levels, to 

validate the damage-saturation analytical model presented in Section 2. 

4.1  Samples and ion implantation 

For the higher density experiments, we used a single-crystal HPHT diamond produced by 

Sumitomo Electrics. The sample is classified as type Ib (single substitutional nitrogen 

concentration 10-100 ppm), has 100 crystal orientation and is 3×3×1.5mm3 in size, with 

two optically polished opposite large faces. The sample was implanted at room 

temperature with 500 keV He ions with a raster-scanning ion microbeam of the 5U NEC 

Pelletron accelerator of the University of Melbourne. The implantation fluence was 

5×1016 cm-2, the sample was tilted by 3° to reduce channelling effects. A dual beam 

focused ion beam (FIB) system was used to prepare thin cross-sections in the [011] 

orientation for TEM and EELS measurements, using a standard FIB liftout process47. 
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4.2  EELS measurements 

The TEM bright field imaging was performed using a Tecnai TF20 electron microscope 

operating at 200 kV terminal voltage. EELS analysis was performed on a JEOL 2100F 

TEM equipped with a Gatan Tridium spectrometer.  The low loss spectrum was collected 

in scanning TEM (STEM) mode with a convergence semi-angle of 9.5 mrad and a 

collection angle of 3.5 mrad. A series of line scans with a probe size of 0.2 nm was 

rastered across the sample in 0.2-1 nm steps, with a collection time of 1 s per spectrum.  

 Density was determined using a method based on the plasmon energy in the low-

loss region of the EELS spectrum48, assuming 4 valence electrons and an effective mass 

of the electron me,eff = 0.84×me. The π* contribution was calculated by integrating the 

intensity under the feature at ~284.5 eV while the σ* contribution was calculated by 

integrating the intensity 30 eV from the edge onset. 

 Low-loss EELS spectra were collected across several line scans with increasing 

depth of the sample. The EELS data were processed to fit diamond, amorphous carbon, 

π* and σ* peaks, to determine the density and ratio of π* to σ* within the sample. 

Results are discussed in the next Section, together with numerical data. 

 

4.3  EELS data analysis and strain modelling 

TRIM simulations for 500 keV He ions in diamond were performed since no reliable 

parameters are available in the literature for the implementation of C-TRIM simulations 

with the above-mentioned ion species. Subsequently, the analytic procedure described in 

Section 2 was applied to the data to account for damage saturation and swelling effects. 

Figure 5a illustrates how the TRIM vacancy density profile (continuous line) is modified 
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in amplitude (dashed line) and in depth (dotted line) when damage saturation and 

swelling processes are taken into account by our model. A value of α = 7×1022 cm-3 was 

used, as determined from previous studies on similar implantations39. The resulting mass 

density values are shown in Fig. 5b, together with experimental EELS data (continuous 

line). The mass density profile is non-uniform and falls gradually on the leading edge of 

the amorphous carbon (a-C) region, to a minimum value of 2.06 g cm-3 36,37 before rising 

sharply at the trailing edge of the a-C zone. As discussed in 34, below a density of 

approximately 2.95 g cm-3, diamond collapses into amorphous carbon because the strain 

is so great it is released by a structural transformation to a lower energy state. Using the 

given parameters, the agreement between experimental and numerical values is very 

satisfactory as regards to the peak amplitude and depth. Experimental data however 

display a more abrupt variation, compared to calculated values, from pristine diamond 

density (3.52 g cm-3) to an heavily distorted diamond region at about z = 0.9 μm and back 

to diamond at about z = 1.2 μm (with an intermediate a-C region between z = 0.93 and z 

= 1.12 μm). We attribute this discrepancy to in situ defect self-annealing mechanisms, 

since implantations were carried out at room temperature and the current density used in 

the microbeam was about an order of magnitude greater than that used in implantations in 

Section 3. Thus, during the 500 keV He implantation in lightly damaged regions close to 

the surface, the self-annealing effect enhances defect recombination and induces the 

crystal to further revert to its pristine state, with negligible mass density variation. This is 

no longer true for vacancy density values above a threshold density ρth, estimated here as 

4×1022 cm-3 (i.e. smaller than DC), which occurs at zth1 = 0.9 μm and zth2 = 1.2 μm. As 

seen elsewhere49, both the highly distorted diamond and the a-C that are present in this 
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region convert to graphite upon high-temperature annealing. To account for this, an 

additional "graphitization threshold" was introduced in Eq. (4) and the theoretical mass 

density profile modified accordingly, as follows: 
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where β is a fitting constant that depends on the annealing temperature and determines 

the “steepness” of the threshold transition (a step-like transition is obtained at an 

annealing temperature of approximately 1400 deg. C). For room temperature 

implantations, β = 10−8 m.  The corresponding (long-dash) curve is shown in Fig. 5b, now 

providing an excellent agreement with experimental data. This mass density variation 

was used in FEM simulations to determine strains and surface swelling in the considered 

specimen.  

In 34, a strain value of 16% is reported as the amorphization threshold of diamond, 

as derived from the relative density variation. A more precise estimation of this value and 

of the corresponding stresses can be sought through FEM simulations. The strains were 

calculated at the centre of the implanted area (x = y = 0 μm) and the following 

components are obtained at the amorphization threshold Dc, occurring at a depth of z = 

0.93 μm34: εx = εy = 0.05%, εz = 18%. Under the assumptions of Eq. (6), we can determine 

the corresponding stress state as σx = σy = -40.5 GPa, σz = 42.7 GPa, which are much 

lower values than the upper bounds reported in 34. The spatial variation of the calculated 
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principal (i.e. along the z axis) component of the strain field in the depth direction, εz(x, 

z), is shown in Fig. 6a. It is apparent that the strain profile closely follows that of the 

vacancy / mass density variation, with additional strain concentrations at the edges of the 

implanted area. The internal strains are responsible for the swelling effect at the surface, 

also shown in the figure (vertical displacements are magnified by a factor 50, to highlight 

the swelling effect). 

 We performed profilometry on the implanted sample to determine the swelling 

due to the implantation, and compared it with numerically predicted values. Profiles were 

obtained using an Ambios XP stylus profiler operating at a speed of 0.01 mm s-1 and 

force = 0.05 mg. For each run the system was calibrated using a 186.2 nm vertical 

standard. A typical surface roughness of the sample before implantation was ∼5 nm. A 

typical profilometric result is shown in Fig. 6b, together with the corresponding 

numerical profile derived from our model. The experimentally measured surface 

morphology displays some irregularities and noise of the order of ∼5-10 nm, and the 

numerically-calculated swelling decreases more sharply at the borders of the implanted 

area. This smoother roll off of the experimental results is due to the ion straggling effects 

and the Gaussian shape of the ion microbeam, which are not accounted for in the FEM 

simulations. Apart from these edge effects, the experimental and numerical datasets are in 

good agreement. 

 

4.4  TEM measurements on a sample with an emerging damaged layer 

As further confirmation of the predictive capabilities of the adopted model, a further 

irradiation configuration was analysed. The sample under analysis was a type Ib HPHT 
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single-crystal diamond (Sumitomo Electrics). As for the previous case, the sample is 100 

oriented and 3×3×1.5 mm3 in size. The sample was implanted with 500 keV He ions at a 

fluence of 1×1017 cm-2 with a scanning ion microbeam of the 5U NEC Pelletron 

Accelerator of the University of Melbourne. 

 A variable thickness mask was deposited on the sample surface to control the ion 

penetration depth. The mask was obtained by means of Ag thermal deposition on the 

diamond surface through a hole. As shown in Fig. 7, the sample surface was tilted (>45°) 

with respect to the metal source so that the deposited mask was at least 2 µm thick in 

correspondence with its thickest part, while gradually decreasing in thickness down to a 

few nanometers. As reported in 19, implanting the specimen by scanning the ion beam 

across the mask allows the creation of an induced damaged region that emerges from the 

bulk (at a depth of about 0.4 µm) to the surface. 

 Transmission Electron Microscopy (TEM) cross-sections of the sample were 

realized to measure the thickness and depth of the amorphous carbon. The same above-

mentioned FIB milling and lift-out procedure was used to prepare the sample lamellae. 

This process involved the deposition of a few micrometers of platinum in the area that 

was to be milled with the purpose of protecting the diamond top surface from unwanted 

FIB damage. Bright field TEM images were taken with the sample [110] zone axis 

parallel to the electron beam. The amorphous carbon layer has much lighter contrast in 

Fig. 8 due to its lower density and the elimination of diffracted beams from the crystalline 

diamond in the image formation by the objective aperture. Also, this layer appears 

uniform in intensity due to the absence of any diffraction contrast (thickness or bent 

contours) in amorphous materials. The significantly different intensity between 



F. Bosia et al., “Modelling internal strains in ion-implanted diamond” p. 21 

amorphized regions and pristine diamond allows the detection of the rising amorphous 

carbon layer, as seen in Fig . 8. 

 The TEM image was processed and analyzed using Matlab to identify the 

positions of the edges of the a-C channel, as well as the interfaces between silver mask 

and diamond layer extending between the sample surface and the buried amorphous layer 

(“cap layer”). The image analysis allows the precise determination of the thickness and 

depth of the buried channel as a function of the horizontal spatial coordinate, as well as 

the corresponding thickness of the Ag mask, which varies from 0.52 µm to 0.90 µm. 

These thickness and depth values can be compared to the numerical values obtained by 

applying the model outlined in Section 2 to the output of TRIM simulations. The 

procedure was to first perform the TRIM simulation for 500 keV He ions implanted in 

the Ag mask (for the given thickness) and diamond substrate, then to apply model 

corrections to account for saturation and swelling, using the parameter values given 

above (α = 7×1022 cm-3 and ρaC = 2.14 g cm-3), and finally to estimate the channel 

thickness by determining above-ρth  values in the resulting curve (ρth  = 4×1022 cm-3). 

 The experimental TEM values are compared to simulated values in Fig. 9, giving 

a very good agreement. Both datasets show a decrease in channel thickness for an 

increasing depth, with a 13% discrepancy between the slopes of the two linear fits on the 

data (not shown). This small discrepancy between experimental and simulated values can 

possibly be attributed to a small variation of ρth  , as in the case of DC, with depth (at least 

when it is evaluated as a vacancy density as herein, and not as a mass density or strain), 

highlighted in previous experimental observations15, 16, 25-33. In particular, since in our 

model we are assuming a constant ρth  value as a function of depth, a possible systematic 
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over-estimation of the layer thickness at greater depths (i.e. > 250 nm) would indeed 

imply that there is a slight increase of ρth  as a function of depth. In Fig. 9 there is no fully 

unequivocal evidence of such a trend in the mismatch between numerical and 

experimental data, therefore in the present work we can only formulate this observation 

as a hypothesis, which will need to be tested more strictly with data extending over 

broader depth ranges. Nonetheless, it should be stressed that the above procedure with a 

variable thickness mask is equivalent to verifying the predictive capabilities of the 

proposed model for implantation energies varying between 0 and 500 keV, thus 

confirming the robustness of the method.  

 

Conclusions 

We have introduced a modified and improved phenomenological model to account for 

damage accumulation and saturation in ion-implanted diamond, and combined it with 

FEM simulations to determine mechanical strains and surface deformations occurring in 

irradiated diamond for different ions and ion energies, both below and above its 

amorphization threshold. We have used various experimental techniques (HR-XRD, 

EELS, surface profilometry and TEM) to test the consistency of predicted numerical 

values. The agreement is found to be very good in most cases, and the presented 

analytical/numerical procedure proves to be a valuable predictive tool to determine 

internal strains and stresses in ion-implanted diamond. Since diamond amorphization has 

been found to be essentially strain-driven, this tool becomes essential when designing and 

performing high-accuracy microfabrication processes in this material with ion beam 

lithographic techniques.  
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List of Figure captions 

 

Fig. 1: Reciprocal space map measured with HR-XRD on the (0 0 4) reciprocal lattice 

point for the sample implanted with 180 keV B ions at a fluence of 5× 1014 cm-2. The 

colour scale indicates the diffracted intensity. The fringes along the Qz axis are an 

indication of the deformation gradient in the sample. 

 

Fig. 2: Experimentally measured and simulated rocking curves from the sample 

implanted with 180 keV B ions at a fluence of 5× 1014 cm-2. The fringes appearing on the 

left side of the diffraction peak are fitted with a 10th order spline, allowing the 

determination of the depth-dependent deformation profile that generates them. 

 

Fig. 3: a) Experimentally derived relative lattice mismatch Δd/d curves for the three 

samples implanted with 180 keV B ions (fluence values in the legend); b) Δd/d curves, 

normalized with respect to an arbitrary factor proportional to their implantation fluence, 

for comparison purposes. The curves are superimposed on the linear vacancy depth 

profile λ(z) calculated using the C-TRIM code, to highlight the correlation between 

deformation and vacancy density. 

 

Fig. 4: Experimental (HR-XRD) and numerical (FEM) tensile strains as a function of 

depth for the sample implanted with 180 keV B at a fluence of 5×1014cm-2. The two 

datasets are in good agreement both in amplitude and depth distribution. 
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Fig. 5: a) Predicted vacancy density vs. depth profiles for 500 keV He implantations: 

TRIM simulation (red continuous line) and model predictions with only damage 

saturation (dashed green line) or both saturation and swelling (dotted blue line). b) 

Experimental and numerically predicted mass density vs. depth profiles for the same 

implantation. Additionally, a numerical curve (dashed orange line) accounting for 

"threshold" effects due to self-annealing is also reported. The figure graphically depicts 

how the model allows to determine an effective mass density variation in the material 

from the TRIM output. 

 

Fig. 6: a) FEM - simulated εz(x,z) strain field in the area implanted with 500 keV He at a 

fluence of 5×1016 cm-2, superimposed on the deformed profile (note: the vertical axis is 

magnified by a factor 50 with respect to the horizontal axis, to highlight the swelling 

effect); b) corresponding experimental and numerical surface swelling profiles. 

 

Fig. 7: 3-D and 2-D views of the setup for the deposition of a variable-thickness mask 

through metal evaporation on a tilted (>45 deg.) diamond sample. The variable-thickness 

zone is highlighted. The mask is used for the creation of an emerging damage-layer after 

ion implantation. 

 

Fig. 8: Bright field TEM image of an amorphous carbon layer rising to the surface in a 

diamond sample implanted with 500 keV He beam at fluence 1×1017 cm-2 through a 
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variable-thickness Ag mask, which varies from 0.52 µm to 0.90 µm. The edges of the a-C 

region run parallel to the top surface of the mask, with only a slight thickness variation. 

The region analyzed in Fig. 9 ("processed region" is shown in the box. 

 

Fig. 9: Experimental (continuous red line) and numerical (dashed blue line) thickness of 

the emerging a-C layer formed in diamond by 500 keV He ion implantation through a 

variable-thickness mask. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 

 

 

 


