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Ecological Sampling of Gaze Shifts

Giuseppe Boccignone and Mario Ferraro

Abstract

Visual attention guides our gaze to relevant parts of thevetikescene, yet the moment-to-moment relocation of gaze ean b
different among observers even though the same locati@ntaken into account. Surprisingly, the variability of eyewements
has been so far overlooked by the great majority of compmrtatimodels of visual attention.

In this paper we present the Ecological Sampling model, ehsigtic model of eye guidance explaining such variabilitye
gaze shift mechanism is conceived as an active random sayniplat the "foraging eye” carries out upon the visual laagss
under the constraints set by the observable features angldbel complexity of the landscape. By drawing on resulfsoreed
in the foraging literature, the actual gaze relocation isnéwally driven by a stochastic differential equation who®ise source
is sampled from a mixture af-stable distributions.

This way, the sampling strategy proposed here allows to manfundamental property of the eye guidance mechanism:ewvher
we choose to look next at any given moment in time is not cotafyledeterministic, but neither is it completely random

To show that the model yields gaze shift motor behaviors ékhibit statistics similar to those exhibited by human obsses,
we compare simulation outputs with those obtained fromtegeked subjects while viewing complex dynamic scenes.
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Ecological Sampling of Gaze Shifts

. INTRODUCTION an argmax operation (e.g., [11]-[15]), or variants such as
the robust mean (arithmetic mean with maximum value) over
N this paper we shall consider the problem of the variabilityandidate positions [16].
of visual scanpaths (the sequence of gaze shifts) producedhus, as a matter of fact, the majority of models that have
by human observers. When looking at natural movies undgsen proposed so far (with few notable exceptions discussed
a free-viewing or a general-purpose task, the relocation gfterward), hardly take into account one fundamental featu
gaze can be different among observers even though the saRgracterizing human oculomotor behavior: where we choose
locations are taken into account. In practice, there is dlsmg ook next at any given moment in time is not completely
probability that two observers will fixate exactly the sam@eterministic, but neither is it completely random [17déed,
location at exactly the same time. Such variations in il  eyen though the partial mappingewed scene — salience
scanpaths (as regards chosen fixations, spatial scanrdeg ofis taken for granted (which could be questioned under some
and fixation dUration) still hold when the scene ContairﬁrcumstanCGS, [2]), current accounts of the subsequept st
Semantica”y rich "ObjeCtS". Varlablllty is even eXhlm@y the i.e. salience — gaze sequence, are still some way from
same subject along different trials on equal stimuli. Fertthe  explaining the complexities of eye guidance behavior. i th
consistency in fixation locations between observers deeseawork presented here we attempt at filling this gap.
with prolonged ViEWing [1] This effect is remarkable when Our approach: We assume that the gaze sequence is gen-
free-viewing static images: consistency in fixation looa erated by an underlying stochastic process, accounting for
selected by observers decreases over the course of th@\ﬁﬂ‘stéevera| factors involved in the guidance of eye-movements
fixations after stimulus onset [2] and can become idiosytiwcra (e.g., stochastic variability in neuromotor force pulsés][
Challenges: Although the ability to predict where a humanrsystematic tendencies in oculomotor behavior [19], seéi@ec
might fixate elements of a viewed scene has long been |pf
interest in the computational vision community [3], [4]leth  The ultimate aim of the present study is to develop a model
problem in question has hitherto been overlooked. Indeatat describes statistical properties of gaze shifts aseblcas
a computational model of visual attention and eye guidangessible. Experimental findings have shown that human gaze
should predict where will the eyes select the target of thaift amplitude distributions are positively skewed andde
next fixation by providing: i) a mappingewed scene — gaze tailed (e.g., [19]). Drawing on results reported in the fping
sequence; ii) a procedure that implements such mapping. Ongerature, where similar distributions characterizei@ment-
paradigmatic example is the most prominent model in the-moment relocation of many animal species between and
literature proposed by Ittet al [S]. In this model, attention within food patches [20], [21], we introduce a composite
deployment is explained in terms of visual salience as tihgndom walk model for the "foraging eye”, which we name
output of a competitive process between a set of basic &intrBcological Sampling (ES).
features. Eye guidance is conceived as a Winner-Take-AllThe ES scheme, discussed in Section Ill, models the eco-
(WTA) selection of most salient locations. logical exploration undertaken by the “foraging eye” while
Nevertheless, most approaches focus on computing a mafwchastically sampling a complex time-varying visualdian
ping from an image, or, less frequently, from an image seeape (here an image sequence) represented in terms of
guence to a representation suitable to ground the eye greédaimformation patches. In the ES model the eye guidance strat-
process (e.g., see the recent review by Borji and Itti [4Jicl8 egy amounts to choose where to look next by sampling
representation is typically shaped in the form of a saliendle appropriate motor behavior (i.e., the action to be taken
map, which is derived either bottom-up, as in [5], or topfixating, pursuing or saccading), conditioned on the peszki
down modulated by cognitive and contextual factors (e.gvorld and on previous action. More precisely, the apprderia
[6], [7]). The saliency map is then evaluated in terms afculomotor behavior is sampled from a mixture @fstable
its capacity for predicting the image regions that will belistributions. The choice and the execution of the oculamot
explored by covert and overt attentional shifts according behavior depends upon both the local information propedfe
some evaluation measure [4]. The problem of eye guidancep@tches and their global configuration within the time-uagy
somehow neglected or, if needed for practical purposes [8ndscape (complexity).
it is solved by adopting some deterministic choice procedur To show that the model yields gaze shift motor behaviors
The latter is usually based on theg max operation [9]. The that exhibit statistics similar to those exhibited by human
aforementioned WTA scheme [5], [9], or the selection of thebservers, in Section IV we compare ES outputs with those
proto-object with the highest attentional weight [10] anet obtained from eye-tracked subjects viewing complex videos
examples. Even when probabilistic frameworks are used dad collected in a publicly available dataset.
infer where to look next, the final decision is often taken via Contributions: The main contributions of this paper lie in
the maximum a posteriori (MAP) criterion, which again ighe following.1) A novel and general probabilistic framewo
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for eye guidance on complex time-varying scenes is providedculomotor biases can also be considered as mechanisms tied
which revises an early conjecture presented in [22] and strategies that are optimal to minimize search time and
grounds its assumptions on empirical analysis of eye-t@ckmaximize accuracy [31].

data. 2) The ES guidance mechanism can mimic variability Tatler and Vincent in their elegant study [19] were the
in scanpaths close to that exhibited by human subjects. f#$t to show that exploiting these oculomotor biases, the
The composition of random walks whose stochastic part gerformance of a salience model can be improved 6%
driven by differenta-stable components. This allows to treato 80% by including the probability of saccade directions
different types of eye movements within the same framewor&nd amplitudes. Strikingly, they found evidence that a rhode
thus making a step towards the unified modeling of differebased on oculomotor biases alone performs better than the
kinds of gaze shifts, which is a recent trend in eye movemegtindard salience model. However, they did not providdaeit
research [23], [24]. 4) The gaze is deployed at patchesformal characterization of the distributions at hand, aor
i.e. proto-objects rather than points (differently fron2]2 computational procedure to generate gaze shifts, singe the
Thus, the eye guidance mechanism could be straightforwardirectly exploited histograms of saccade directions angdlam
integrated with a probabilistic object or context-basesbiai tudes gathered from the participants to the experiment.

attention scheme [6], [7]. Such tendencies can be detected in saccade amplitudes,
which show a positively skewed, long-tailed distributian i
Il. BACKGROUND most experimental settings in which complex scenes are

viewed [19]. Similarly, long-tailed distributions have dye
Eye movements such as saccades and smooth pursgiéently reported on natural movies [1].

followed by fixations, play an important role in human vision yore generally, the idea of inferring, through sampling,

They allow high-spatial-frequensampling of the visual envi- ne properties of a surrounding, uncertain world (either a
ronment by controlling the direction of the foveal projects p51ra) |andscape or a fictitious one such as a probability
(the center of best vision) of the two eyes [23]. Frequegisyribution) can be related to the notion of random walk

saccades avoid building detailed models of the whole scegggeq by an external force field. In continuous timel-a

[2] and are a characteristic mode of exploratory movemenjinensional random motion of a point, with stochastic posit

across a wide range of species and types of visual systemgy nder the influence of a force field can be described by
The pursuit system uses information about the speed gk Langevin stochastic equation [32]

a moving object to produce eye movements of comparable
speed, thereby keeping the image of the object on or near the dr(t) = g(r,t)dt + D(r,t)Edt. (1)
fovea.
Fixations themselves are not simply the maintenance of thbe trajectory of the variable is determined by a determin-
visual gaze on a single location but rather a slow oscillatidstic partg, the drift, and a stochastic pan(r,t)¢dt, where
of the eye [23]. They are never perfectly steady and differefi is a random vector aniD is a weighting factor. Note that
mechanisms can be at their origin, e.g., microsaccades [2B]many applications [33§(r, ) is modeled as a force field
Thus eye fixations are better defined as the amount of contilue to a potential/(r, t), that isg(r,t) = —VV (r,t).
uous time spent looking within a circumscribed region (e.g. The stochastic part of the motion is determined by the
minimum 50 milliseconds within a spatially limited regionprobability density functionf from which ¢ is sampled, and
typically 0.5 — 2.0° degrees of visual angle [26]). different types of motion can be generated by resorting ¢o th
The variability characterizingow we move the eyes occursclass of the so called-stable distributions [34]. These form a
ubiquitously, and it may mediate a variety of motor antbur-parameter family of continuous probability denstisay
perceptual phenomena [3], [19]. At a low-level, varialilit f(¢; «, 8,7,d). The parameters are the skewn@sémeasure
in motor responses originates from endogenous stochasti@symmetry), the scate (width of the distribution) and the
variations that affect each stage between a sensory evdnt mcation § and, most important, the characteristic exponent
the motor response [18]. At this level the issue of stochigti «, or index of the distribution that specifies the asymptotic
in scanpaths, debated in early studies [27], [28], may beemdrehavior of the distribution. The relevance @fderives from
generally understood on the basis that randomness assumtgafact that the probability density function (pdf) of jump
fundamental role in adaptive optimal control of gaze shifis lengths scales, asymptotically, &s'~¢. Thus, relatively long
this perspective, variability is an intrinsic part of thetiopal jumps are more likely whem is small. By samplings ~
control problem, rather than being simply "noise” [29]. f(&a,B,7,9), for « > 2 the usual random walk (Brownian
At a higher level it might reflect the individual’s learntmotion) occurs; ifv < 2, the distribution of lengths is “broad”
knowledge of the structure of the world, the distribution ofnd the so called Levy flights take place.
objects of interest, and task parameters. The latter factn In a seminal paper [35], Brockmann and Geisel argued
be summarized in terms of oculomotor tendencies or biagbst a visual system producing Lévy flights implements a
[19]. Systematic tendencies in oculomotor behavior can lbeore efficient strategy of shifting gaze in a random visual
thought of as regularities that are common across all iesf®n environment than any strategy employing a typical scale in
of and manipulations to the behavior. Under certain coodéi gaze shift magnitudes. Further evidence of Lévy diffusive
these provide a signature of the oculomotor behavior paculbehavior of scanpaths has been presented in [36]. Potential
to an individual (the idiosyncrasy of scanpaths [2], [30]¥unctions in a Langevin equation have been first used in [33],
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to address scanpath generation in the frameworkfofaging Nip
metaphor.

Indeed, the heavy-tailed distributions of gaze shift ampli r;,
tudes are close to those characterizing the foraging behavi

of many animal species. Lévy flights have been used to modek:(1 : )

searches of foraging animals, namely their moment-to-nmme
relocations/flights used to sample the perceived habi@t [2 K
The rationale is that they are suitable for optimal seaghin %
in terms of the ratio between the number of sites visited to z(t)
the total distance traversed by a forager [20]. 7 (t)
However, the general applicability of Lévy flightsinecgjo  (¢)
and biological sciences is still open to debate. In complexvy(t)
environments, optimal searches are likely to result from
a mixed/composite strategy, in which Brownian and LeVy v(t)
motions can be adopted depending on the structure of theu(r.)
landscape in which the organism moves [21]. Lévy flights are
best suited for the location of randomly, sparsely distedu
patches and Brownian motion gives the best results for then,,
location of densely but random distributed within-patch re
sources [37]. H(t)
A preliminary attempt towards a composite sampling strat-
egy for modelling gaze shift mechanisms has been presenteg(t)
in [22]. However, that approach only conjectured a simple A(t)
binary switch between a Gaussian and a Cauchy-like walk.C(t)
While providing some promising results, the approach ldcke g,
of a general framework and did not ground its assumptions on
empirical analysis of eye-tracked data. In the work presgnt ¢,
here, experimental data analysis has been exploited to sub-
stantially revise [22] and to formulate the general ES model

detailed in the following Section. Ny the number of gaze attractors.
Notations: The notations used in Section Il are listed in the
following: _ _ I1l. THE ECOLOGICAL SAMPLING MODEL
1(t) ﬁsbnfrisrlos of th_e raw ';lme-var%/![rt:g r_latu;al Let us assume that, at time the gaze position is set at
viiljeloal'a Imet, 1.e., a frame of the inpu rr(t) (the center of the focus of attention, FOA). The ES
' .. strategy is part of the action/perception cycle undertaigen
F(t) tEe obser]:/abledfeatures g{ the;sb't?]t’ the observer and amounts to choose where to look next, i.e.
W(t) t € _set c;] random v:n_a es ( . ) C aracIE‘F(t + 1), by sampling the appropriate motor behavior, or
Ler:;![n% the perceived time-varying natura ction.A(t), conditioned on the perceived world(¢) and on
abrat, . previous actionA(t — 1). At the most general level it can be
A(t) the set of RVs characterizing an oculomoz, .. 1~ie4 in the following steps:
tor behavior, briefly, the action within the 1) S ling th | habi "
habitat: ) Sampling the natural habitat:
S(t) the set of RVs characterizing the salience WH(t) ~ PONV()[rp(t), F(t),I(t)); (2)
landscape of the habitat; ) ) )
O(t) the set of RVs characterizing the patches of 2) Sampling the appropriate motor behavior:
the habitat, A(t)* ~ P(A®)IA( — 1), W*(t); 3
M(t) the patch map | (t) (A)IAE = 1), W(1)); ®)
L the spatial support of the video frarii¢); 3) Sampling where to look next:
r(t) a point of coordinate$z, y) € L; N * AP
rr(t) the gaze fixation position at time i.e. the rr(t 1) ~ Plee(t+ DA W (), e (t)- (4)

Focus of Attention (FOA) center;

total number of interest points generated
from patchp;

thei-th interest point generated from patch
p;

shorthand notation for the temporal se-
quencex(1l),z(2), - ,z(t);

the number of possible actions;

action index, in the rang, - - - , KJ;
categorical RV taking values if, - - - , K;
probability of choosing actior at timet;
the set of probabilitieg (t)} X ;
hyper-parameter of the Dirichlet distribu-
tion overmy(¢);

the set of hyperparamete{s; (t)}2_;

a cell or window, centered at,, i.e., the
elementary unit to partition the suppaktt

in the configuration space;

the number of cells in the configuration
space;

the Boltzmann-Gibbs-Shannon entropy of
the configuration space;

the order parameter;

the disorder parameter;

the complexity index;

the set of parameters, 8, v«, 0x Shaping
the a-stable distribution tied to actioh;
random vector of componengs ; sampled
from the o-stable distribution tied to action
k;

Here,POW(t)|rr(t), F(t),1(t)) represents the world likeli-

s(r,t) a binary r. v. labelling locatiom € L as hood as gauged through featud®g) derived from the phys-

salient or non salient;
Np total number of patches;

ical stimulusI(t), which in turn is foveated at locatiarne-(t);
P(A(#)|W(t),rr(t)) is the probability of undertaking action

Op shape parameters of patghi.e., location A(t) given the current state of affairgV(¢), and previous

ip and covarianceés,, ;

behavior A(t — 1). Finally, P(rr(t + 1)|A(t), W(t),rp(t))

myp(r,t) a binary RV labelling locatiomr € L as accounts for the gaze shift dynamics, that is the probgmtufit

belonging or not to patch;

the transitionrp(t) — rp(t + 1).
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A. Sampling the natural habitat pling step (2) boils down to the following sub-steps:
The "foraging” eye, by gazing atz(t), allows the observer S*(t) ~ P(S(t)|F(I/(t\))); (5)
to gauge, at time, the physical world through featurdt). ME(t) ~ PM(1)[S*(1)): (6)

Differently from [22], the visible features serve the puspaf
structuring the habitatV(¢) in terms of alandscape S(¢) and forp=1,--- N,
a set of landscappatches O(t), i.e. W(t) = {S(t),O(t)}. (8 Xy 1 o
The landscape is defined as a map of spatially interest- %(1) ~ PO(OIMy(1) = 1,5°(1)), (7)
ing/uninteresting locationsS(t) = {s(r,t)}rer. Following O, (1) ~ P(Op(1)[6;(t), M (t) = 1,57(1)). (8)
[38], we uses(r, t) as a binary random variable (RV) to labelrhe first sub-step samples the foveated salience map. The
pointr as salient or non salient. second samples the patch map from the landscape. The third
Under this assumption, the posteriogerives patch parametefét), = (11, (1), 2, (1))).
PW(@)|rp(t), F(t),1(t)) in  (2) can be fac- Eventually, sub-step (8) generates clusters of interest
torized as  P(O(t),S(t)[rp(t),F(t),1(1)) = points on the landscape, one cluster for each patch. By
PO®)ISH)P(SH)rr(t),F(t),1(1)). assuming a Gaussian distribution centered on patche.
The probability P(S(t)|F(t),I(t),rr(t)) represents the P(r,|0,(t), M,(t),S(t)) = N(rp; up(t), Xp(t)), Eg. (8) can
saliency map of such landscape, evaluated under the featvgefurther specified as:
matrix F(t), which is in turn obtained fromi(¢) gazed at .
rr(t) an((j )thus foveated at that position. The( f)oveated frame Tip ~ N(rp; pp(1), Zp (1)) 0 =1, Nip. ©)
I is calculated by blurring the current frame using a Gaussidihus, the set of all interest points characterizing the taabi
function centered atr(t). Eventually, the feature matrix is can be obtained a9(t) = U;V:pl{ri,p(t)}fv;f. Note thatO(t)
obtainedF = F(I). provides a sparse representation of the original salieray, m
Such definition of saliency as a posterior probability ofince sincgO(t)| = Ny = N;;, x N, < |L].
locations is common to many methods in the literature (e.qg.,
see [38] for bottom-up saliency computation or [6], for #@. Sampling the appropriate motor behavior

general top-down, object based method). It is worth noting e represent the process of selecting the most appropriate
that the model presented here needs not to rely on any spegifistor behavior, which we briefly call aaction, as a two-
method for computing saliency. component process unfolding in time: the actual selectiah a
Patches may be conceived in terms of foraging sites aroun@ evolution of parameters governing such selection. More
which food items (or moving preys) can be situated [39]. Iformally, an action is the paii(t) = (z(t),n;), wherez(t)
the visual attention field, patches can stand for gen@ito- is a categorical RV withK statesz(¢) = {z(t) = k}X_,, each
objects [9], [10], [38], [40], [41]. state being one possible action. The probabilities of cimgos
Thus, at any given time, the observer perceives a €8ft) one of K behaviorsr(t) = {m(t)}5_, are the parameters
of a number patches in terms of prey clusters, each pambverning the multinomial choice aof(t).
being characterized by different shape and location. MoreBy letting the action choiceA(t) depend only on the
formally, O(t) = (O(¢), ©(t)), whereO(t) = {Op(t)};vj1 is sampled interest points, then, we can factoded(¢)|.A(t —
the ensemble of patches a@cﬂt) their parametric description. 1), 0(¢)) = P(z(t),w(t)|z(t — 1),7(t — 1),0(t)) =
In particular,0,(t) = {r;,}."'7 is a sparse representation”(z(t)|7(t)) P(m(t)|r(t —1),0(t)).
of patchp as the "cluster of interest points (preys, food items) Since in our case, differently from [22], the motor behavior
that can be sampled from it. Patch sampling is driven H§ chosen among possible k'”dSP( ) is the Multinomial
the locations and the shapes of the habitat patches descri@istribution Mult(z(t)|7(t)) = Hk 1 [mw(t )@ with 7, =
through the set of paramete@t) = {©,(t)} 7. P(z = k). _
More precisely, each patch is parametrized @g(t) = The conjugate prior of the Iatter is the Dirichlet distriiou,
(M, (1), 0,). The SetM,(t) = {my(r,t)}rer, stands for a P(r(t)) = Dir(n(t);v(t) = 2 [T, me() O,
p\t);Up P P rel IL.Twe(@®) L1k
map of binary RVs indicating at timethe presence or absencevherel'(-) is the Gamma function.,
of patchp. The overall map of patches within the habitat at Note that the transitiotA(t — 1) — A(t), is governed by
time ¢ is given by M(t) = UNP M,(t). This map may the posterior transition densit) (x(t)|x(t — 1), O(t)). Since
be derived either by simple segmentation techniques of there we are dealing with a kind of (discrete time) dynamical

saliency map [38], [9], [41], or by exploiting higher levalgs System, this represents the transition over a time slice, an
[6]. instance of the process that actually has been running up to

The patch map provides the necessary spatial support foirge ¢.
2D ellipse approximation of each patch, whose location angUnder first-order Markov assumption [42], it can be fully
shape are parametrized &s= (,,%,) [10]. wntten asP(m(t)|m(t—1),0(1 : 1)) o< P(O(t)[m(t))P(m(t —

. - O(1 : t —1)). Such recursive updating can be analytically
This way, the termP(O(t)|S(t)) can be factorized as 1)l U S A
P(O(t),6(), M(1)[S(t)) —  POM)O(t), M(t),5(1)) specified, in the case of the Dirichlet distribution, by tlypér-

P(O(1)|M(1), S(1) P(M(1)[S(1). parameter update
Eventually, by assuming independent patches, the first sam- vi(t) = v (0) + Ni(2), (10)
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H ’ H . Gi I h distribution: # CCDF fi h d
where, in Iverson’s notationN.(t) = N(t)[E =k is R I o AT

a count on events depending on the sparse represer

tion O(t). To make this statement explicit, we will write & x 107" g

P(r(t)|v(t),0(t)) = P(n(t)|v(O(t))) to remark the depen- ! : 72}133%':2; :

dance of the hyperparameters Oxit). % o .engﬁ? x(p.xe?..?) e T
Instead of using the configuration 6f(t) as the explanatory S ength disrbton:comp. £2 S;Z;F'T;‘r’;"h:;‘::j:’ta

variable influencing the motor behavior choice, we will use i o015 10°

dependent variable, a global parameter,G@y(t)), providing _ oo AT % 3

at a glance the "gist” of the spatio-temporal configuratior= ’ ;‘0"3 _

of the landscape. One such outcome variable is the spati ‘ [T .l o s

temporal heterogeneity of the landscape. g o iso 20 g - 10°
For instance, in ecological modelling [43] a widely adoptec T —— CCDF from human data

measure to gauge the heterogeneity is the landscape entr¢ o0 10°¢

determined by dispersion/concentration of food items eygr
Here, generalizing this approach, we us@(t)) (or more
simply C(t)) to capture the time-varying configurational com-

®
& 0.005

o empirical

_,|| —estimated |
H H H i 0 00 3 y 10 23 24 25 )
plexity of_ mtere_st points within the Iandscape.. _ LT ... 0 o o
Following Shiner et al. [44], C(t) can be defined in terms
of order/disorder of the system: Fig. 1. Results of then-stable fit of the smooth pursuit and saccadic
components for thentvclip04. The left column figures show the empirical
C(t) _ A(t) . Q(t) (11) distribution with superimposed the fitted-stable distributions; the right
- )

column figures show the double log-plot of the correspon@@DF. The top
. . row represents the fitting results for the smooth pursuit mament & = 2,
where A = H/Hg,, is the disorder paramete} = 1 — A 3 — 1,y = 6.20, § = 12.88; K-S statistics0.1200, p = 0.4431). The

is the order parameter, arfd the Boltzmann-Gibbs-Shannonmiddle row presents the results obtained fordhstable fit of the first saccadic

- . componentd = 2, 8 =1, v = 26.10, 6 = 101.13; K-S statistics0.1398,
(BGS) entropy of the system WItHS“P Its supremum. p = 0.301). The bottom row presents the results obtained for the skecon

Eq. (11) embodies the general principle underlying adhccadic component(= 1.72, 8 = 1, v = 41.25, § = 251.25; K-S
approaches undertaken to define the complexity of a dynarfiistics0.1786, p = 0.7198s).
system, namely that complex systems are neither completely
random neither perfectly ordered and that complexity sthoul ) ) )
reach its maximum at a level of of randomness away froRf0€SS wheré () = const, since with reflecting boundary
these extremes. In the case of a time-varying visual laqascaConditions the asymptotic distribution is uniform.
a crowded scene with many people moving represents &2ven C(t), we partition the complexity range in order to
disordered system (high entropy, low order) as opposed 48fine K possible complexity event§Ee;) = k}le_. This
a static scene where no events take place (low entropy, hi§fy the hyper-parameter update (10) can be rewritten as the
order). The highest complexity is reached when specific tsveFFCUrSION
occur: two persons mgeting at a c.ross-road While a cy<_:|ist is ve(t) = vt — 1) + [EC(t) _ k} k=1, K. (12)
passing by, etc. What is observed in eye-tracking expeitsnen
on videos [1] is that low complexity scenarios usually lead As previously discussed, three possible events will be -even
to longer flights (saccadic behavior) so as to gather mangally identified (see Section IV) to provide the gist of the
information, whilst at the edge of order/disorder more ctemp spatio-temporal habitat: "ordered dynamics”, "edge dyitain
and mixed behaviors take place (e.g., intertwining fixatjonand "disordered dynamics”, each biasing the process toward
smooth-pursuit, and saccades). To formalize the reldtipnsa specific gaze shift behavior as observed in eye-tracked dat
between the complexity of the habitat and the choice §f]
behavior we proceed as follows. Summing up, the action sampling step (3) amounts to:
We compute the BGS entropy/ as a function of the i) computing the complexity of the landscape as a function
spatial configuration of the sampled interest points. Thef sampled interest point®(t); ii) updating accordingly the
spatial domainL is partitioned into a configuration spacehyperparametens,(O(t)) (12); iii) sampling the actiomd*(¢)
of cells (rectangular windows), i.e{w(r.)}, each cell as:

c=1"
being centered at.. By assigning each interest point to the 7*(t) ~ Dir(r|v(0(t))); (13)
corresponding window, the probability for pointto be within
cell c at time can be estimated aB(c, ) ~ & 32 .., 2" (t) ~ Mult(z(t)|7"(t)). (14)

wherex;,. =1 if rs € w(r.) and0 otherwise (see, Section
IV, for further details).

Thus, H(t) = —kp Ziv;“lP(c, t)log P(c,t), and (11) can C. Sampling where to look next
be easily computed. Since we are dealing with a fictitious gen action A* ()
thermodynamical system, we set Boltzmann’s constant= (4) as:

1. The supremum of (¢) is obviouslyHy,,, = In N,, and it
is associated to a completely unconstrained process,st@at i rp(t+ 1) ~ P(rp(t + 1)[2"(t) = k,0°(t),n,rr(t)). (15)

, We can rewrite the last sampling step
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Heren play the role of the actual "motor” parameters govern- V. SIMULATION

ing the shift of gaze. _ _ Simulations have been carried out to generate statistics of

Clearly, the choice among the different oculomotor flighf,, e shift behavior of the model that have been compared with
behaviors follows a Multinomial distribution,P(rr (¢ (;’; those exhibited by human observers (subsection IV-E).
DIz(t),0(t),n.vr(t) = Il [Prrt+1)re),n)’ The rationale is that if observed gaze shifts are generated
where P(rp(t + 1).|Z(t) = k,07(t),n,rp(t) = P_(.rF(t * by an underlying stochastic process the distribution fionst
1)|07(t),mw,vr(¢)) is the oculomotor state transition probazng the temporal dynamics of eye movements should be
bility of the shift rr(t) — rr(t + 1), which is generated completely specified by the stochastic process [47]. At the
according to motor behaviar*(¢) = k and thus regulated by game time, different stochastic processes often yielgmifft
parametersy. _ . _ marginal distribution functions in the outcome variabliémjs,

We samplery(¢ + 1) by making explicit the stochastic ynqying the precise distribution functions of a RV shouldsu

dynamics behind the process [45]. To this end, Eq. (1) (st plausible generative mechanisms and rule out imptebab
reformulated as a two-dimensional dynamical system in whig,aq-

the drift term depends on a potentidland the stochastic part Following previous work in the literature [35], the ex-

is driven by one-ofK’ possible types of-stable motion periments were specifically designed to confront gaze shift
drp(t) = —=VV (rp, t)dt + D(rp, )& (t)dt. (16) magnitudg distripution of subjects scanning videos .(cuﬂd
in a publicly available dataset, subsection 1V-A), with $ko
The drift term, the first term on the r.h.s. of (16), is modeded obtained by running an implementation of the ES model
follows. In a foraging framework, animals are expected to hgetailed in subsection IV-C). Indeed, the study of shift-am
attracted or repelled from certain sites; therefoif@ . t) can plitude distribution, and in particular of the correspargli
be assumed to depend on the distance between the posi§gmplementary cumulative distribution function (CCDF3, i
rp of the animal and the position* of the nearest of such the standard convention in the literature of different feld
sites. For simplicity, we defin& (rr,t) = [r*(t) —rr()[*).  dealing with anomalous random walks such as foraging [21],
Then, we selectVy sites (according to some rule, e.g, th&yuman mobility [48], statistical physics [49]. In this resp,
top-Ny most attractive). By assuming that suatiractorsact g preliminary, non trivial problem to solve is to derive from
as independent sources, the gradient of the potential canrbgorded eye-tracked data the numiérf motor behaviors
eventually obtained from the linear combination/8f local and to infer the related-stable distribution parameters:to such
potentials, end a fitting procedure has been devised, which is presented
in subsection IV-B.

Ny
—VV(rp,t) = -2 (rp —1y(t)). (17)
p=1 A. Dataset

The selection of attractors, (t) clearly depends on the \ye ysed the CRCNS eye-1 dataset created by University of
action statet. If a fixation /pursuit behavior has been sampledyoth California. The dataset is freely available and aissi
these will be chosen as thé, most valuable pomts_sampledof a body of 520 human eye-tracking data traces recorded
from the current patch, that iy < N;,. Otherwise, the (549 Hz sampling rate) while normal, young adult human
attractors can be straightforwardly identified with patehters 5 nteers watched complex video stimuli (TV programs,
fip(t), i.€., Ny = Np. The latter are to be considered theytqoors videos, video games), under the generic task 6f "fo
possible targets for medium or large shifts of gaze (sa®)adgoying main actors and actions”. It comprises eye movement

Following [32], the components, ;, j = 1,2 are sampled recordings from eight distinct subjects watchib@ different
from an a-stable distributionf(¢;7x) and they are assumedyigeo clips (MPEG-1640 x 480 pixels, 30 fps, approximately
to be statistically independent, so tHa{rr, ¢) is a diagonal 95 minytes of total playtime; the Original dataset), and from
matrix. The elements oD(rr,?) can be determined on the,nother eight subjects watching the same set of video clips
basis of theoretical consideration or by the experimena# d yter scrambling them into randomly re-ordered sets of3s
[32]. Here, for simplicity, we have chosen to set the elemer’g”ppets (the MTV-style dataset). See [50] for a descriptio

of D.e.qual to the widthy;, of th? a-stable distribution char- 5nq https://crens.org/files/data/eye- 1/crens-eyelrsam pdf
acterizing the random walk at timg namelyD(rr, %) = %I tor more details.

with T the 2 x 2 identity matrix.
By using these assumptions and by resorting to the Euler-

Maruyama discretization [46], for a small time step= B. Gaze shifts statistics
tn+1 — tn, the SDE (16) is integrated as: We studied the distributions of gaze magnitudes by ana-
Ny lyzing eye-tracking results collected in the CRCNS databas
rp(tns1) A Tp(ty) — 2 Z(rF —r,)T To this end gaze-shift samples from all the traces of the same
1 video, regardless of the observers, are aggregated togettie

FpIrt/ong, (18) used in the same distri_bution. The assumptior_l i_s that every
observer on the same video has the same statistical "mpobilit

This step provides the explicit procedure for sampling thiendency” in terms of gaze shifts; then this aggregation is
next gaze shift. reasonable because every trace obtained from the sameisideo
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pursuit and saccade gaze shifts in terms of both the gaze
shift magnitude distribution and its corresponding upaelr t
behavior.

We experimentally found that any attempt to fit a unigue
stable function to the empirical distribution of saccadelsfto
pass the K-S test. This could be expected by visual inspectio
of the saccade amplitude histogram, which suggest a mixture
of two saccadic behaviors. In order to separate the two
processes so to use them in the gaze shift generative process
(18), one could resort to an-stable mixture fitting method.
Unfortunately, most of thex-stable mixture treatments that
have been developed are either tailored for specific cases
(e.g., symmetric distributions, Normal-Cauchy distribas,
etc) and often rely on heavy Monte Carlo simulations [51].
Thus, we opted for an indirect but effective technique.

First, we hard-clustered the gaze shift samples into an
optimal number ofa-stable mixture components via a Varia-
tional Bayes StudentMixture Model (VBSTMM, see [52] for
detailed presentation). The reason for using uéstribution
for identifying components stems from the fact that this
distribution might be regarded as the strongest competitor
to the a-stable distribution. While thew-stable distribution
Fig. 2. The Ecological Sampling implementation at a glarfe®m top to  implies extremely slowly decreasing tails, thedistribution
botto_m, left to right: thg original frame; the fqvee?ted frainthe raw saliency exhibits power tails but has the advantage of existing mdsaen
map; detected patches; sampled interest points; the sarfé .

In a second step, each mixture component was separately

used fora-stable parameter estimation. The estimation of the

. o , ) . . «a-stable distribution is complicated by the aforementioned
subject to the same or similar saliency constraints (i.suali nonexistence of a closed form pdf. Here we have used the

landscape). The same techniqu_e is used in other St_UdieSaBE)roximated parameter estimator proposed in [53].
Levy walks (e.g., [48]) but also in eye-tracking experiment As a result, what can be observed is that the component

[2]. In the CRCNS qlatabase, eye-trackersample_s are i,nﬂiVi%ccounting for smooth pursuit and fixations (comp) #s
ally labelled as fixation, saccade or smooth pursuit, frorcivh readily separated from those explaining saccades; in $a,

it is possible to coI_Iect empirical gaze magnitude Q|stmmms cade distribution optimally splits in twa-stable components,
of eye-tracked subjects. Saccade lengths are straiglafdrio first one, in most cases Gaussian-like~ 2 (comp. )
&

fhted to saccades of medium length, and a second one (comp.

coordinates. For what concerns smooth pursuit, which i@de%) related to saccades of higher magnitude. An example
represents a kind of Continuous Time Random Walk, sing®” < ich pattern is shown in Fig. 1. Interestingly enough,

movies were displayed in the original experiment at a rate gf, ., yyiti-component statistics for saccades provideshera
33.185 ms/frame, to be consistent, we subsampledBach jiarent result from those usually reported in the literat

smqoth pursuit _sub-tracl_<s in order to wor_k at a ffame'r_ en considering static images [35], [33] or conjectured fo
basis, thus making feasible to compare with the S|mulat|o\%Ieo analysis [22]

The same was done for fixational movements, which have been
aggregated with pursuit samples.

Given the empirical distributions of smooth pursuit an&- |mplementation details
saccades, it is possible to individually fit such distribng In order to implement the first sampling step the saliency
in order to derive the parameters of the underlying alpherap P(S(t)|F(t),1(t),rr(t)) is derived as follows. Given a
stable distribution. The quality of the fit is assessed via tlixation pointrx(t) at time t (the frame center is chosen
two-sample Kolmogorov-Smirnov (K-S) test, which is verfor ¢ = 1), we simulate the foveation process by blurring
sensitive in detecting even a minuscule difference betwegre current RGB framd(t) of the input sequence through
two populations of data. For a more precise description afGaussian function centereduai(t). The foveated frame is
the tail behavior, i.e. the laws governing the probabilify cobtained ad(r,t) = I(r,t) exp{—(r(t) —rr(t)) X pe 4 (x(t) —
large shifts, the upper tail of the distribution of the gabéts rx(¢))T}, where Xroa = 021, 0 = |[FOA|. Here |FOA|
magnitudeX has also been considered. This can be definggiicates approximately the radius of a FOA, whefe A| ~
asF(r) = P(X > z) = 1—F(z), whereF is the cumulative 1/8 min[width, height] of the frame spatial suppoft.

distribution function (CDF). Consideration of the uppet, tar The foveated framé\(.7t)' is used to compute feature
complementary CDF (CCDF) of jump lengths is the standarfiatrix F(t) and saliencyP(S(t)|F(I(t))) through the Self-
convention in the literature. resemblance method described in [38]. We initially experi-

Fig. 1 shows one example of the typical behavior ahented with the Itti and Koch, the Bayesian Surprise [54] and
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proposed in [41] and [38], which is determined as three times
the mean saliency [S(t)] of the frame [41]. The technigque of
settingZs SO as to achiev@5% significance level in deciding
whether the given saliency values are in the extreme tails
of the PDF provides comparable results [38]. Indeed, both
procedures are based on the assumption that a salient proto-
object is a relatively rare region and thus results in values
which are in the tails ofP(S(¢)|F(I1(t))).

Following [9], M(t) = {M,(t)},*, is obtained as
Myp(t) = {myp(r,)|¢(B,r,t) = p}rer, Where the functiort
labels M (t) aroundr using the classical Rosenfeld and Pfaltz
algorithm (implemented in the Matlatwlabel function). We
setV,, = 8 to retain the most important patches.

The sampling of patch parametefis(t) is approximated
as follows. By assuming a uniform prioP(6,(t)), then
P(0,(1) M, (£), S(1)) o P(My(1), S(1)|6,(1)), s0 thatd ()
reduce to parameters (rather than RVs) that can be estimated
via any maximume-likelihood technique. In the simulatioisth
was obtained by adopting the technique by Halir and Flusser
[56], because of its numerical stability and computational
efficiency (due to non-iterativity). Once parametésé&) have
been computed, each patch is used to generate interess point
in a number proportional to the area of the ellipse desagibin
the patch. We selv;, = 50 the maximum number of interest
points and for each patch and we sample{riﬂp}ﬁv:if from
a Gaussian centered on the patch as in (9). The number of
interest points per patch is estimatedMs, = [N, x ﬁ],

A, = mo, 0y, being the area of patch !

At this point we compute the order/disorder parameters. We
use N,, = 16 rectangular windows (approximately covering
half of the area covered by a FOA), their size depending on
the frame sizeL|. This choice also provides the best trade-off
between coarse to fine properties of the configuration space
and the numberV, of sampled interest points. The spatial
histogram of interest points is used to estimate empisichi
cell probability; the latter is then used to calculate theBG

Fig. 3. An example of typical results obtained along the &atien. In the
center of the figure the plot shows the evolution of order i{ddsline) and
disorder parameter® and A as a function of frame number. From top to
bottom, the first dashed box represent a time window whkre- Q and
an excerpt of the resulting saccadic exploratory behawsoshown in the
FOA sequence sampling the basket ball actions (top rigmédraequence);
the second time window reports a switch to a smooth-purggiinte due to
Q > A with corresponding foveations on the most important objecthe
scene (player close-up) shown in the left frame sequence slibcessive time
window witnesses a new behavioral switch ¢~ ) to a prevalent saccadic
explorations of the sport game dynamics (bottom right secge

the Graph-Based Visual Saliency [55] methods. Howevef; Sel
resemblance provides comparable performance and meanwhil
it can handle both static and space-time saliency detedtipn
avoiding explicit motion estimation and meanwhile bein¢gab
to handle camera motion.

Next we approximate the sampling steps (6) and (7) to
obtain M (t) andé,(t) as follows.

The proto-object mapM(t) is simply obtained from
P(S(t)|F(I(t))) by deriving a preliminary binary map
M(t) = _m(r,t)}rer, such that m(r,t) = 1 if
P(s(r,t)|F(X(t))) > Ta, andm(r,t) = 0 otherwise. The
thresholdT’,; is an adaptive threshold similar to the methods

TABLE |

TVSPORTSO03 CLIP

GAZE COMPONENT@-STABLE FITTING:RESULTS OBTAINED ON THE

Subject Comp. i ; B Vi 0;

Ccz i=1 2 1 4.06 7.15
i=2 2 1 22.44 | 60.82
i=3 1.9854 1 63.99 | 230.31

JA i=1 2 1 4.50 9.11
i=2 1 1 23.37 | 63.89
i=3 1.57 1 30.90 | 220.07

JZ i=1 1.99 0.0 4.34 9.70
i=2 2 -1 2297 | 68.28
i=3 1.98 1 40.07 | 187.77

RC i=1 2 1 4.91 8.9

i=2 2 1 24.88 | 62.69
i=3 1.59 1 53.80 | 249.78

VN i=1 1.91 1 3.35 6.58
i=2 2 1 22.25| 62.43
i=3 1.52 1 38.85 | 214.20

All i=1 2 1 4.42 8.11
subjects i=2 2 1 23.42 | 63.84
i=3 1.6 1 45.61 | 230.41

Ecological i=1 2 1 3.78 9.78
Sampling i=2 2 1 21.70 | 62.74
i=3 1.76 1 59.79 | 245.20
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Fig. 4. Analysis of gaze shift dynamics from tihesports03 video. From
left to right, the first column shows the double log plot of tBEDF derived
from the smooth-pursuit component; the center and rightiroal the plots
related to the two saccadic components. From top to bottbm fitst five
rows show the CCDFs related to subjects CZ , JA, JZ, RC, VN;sikth
row presents the CCDFs obtained from the gaze magnitudébdison of all
subjects. The bottom row presents the CCDF obtained fromroneof the
proposed algorithm.

(saccadic regime); at the edge between these regimes, where
complexity is high since order is dynamically ccompetinghwi
disorder,Q)(¢) ~ A(¢), intermediate length shifts and mixed
behaviors will take place (see again Figure 3.

Having detected the spatio-temporal "gist” of the habita,
hyperparameters of the Dirichlet distribution can be uedat
via (10). This is sufficient to set the bias of the "behavioral
choice” (13) and the choice = k is made (14).

The actual values of the motor parametens =
{a, Br, vk, 0k} corresponding to thé( behaviors have been
derived from the clips of the MTV-style dataset; the ratiena
behind this choice stems from the fact that since the later a
assembled by mixing different clips of the 'Original’ dagfs
parameters inferred on such clips are suitable to provide a
sort of average motor behavior suitable for different typés
videos.

For the examples shown henge = {a; = 2,61 =1,y =
6.20,51 = O}, N2 = {042 = 2,ﬁ2 = 1,’}/2 = 26.10,52 =
O}, N3 = {Oég = 172,[’33 = 1,’}/3 = 4125,53 = O}, where
we have set, = 0, since in the sampling phase the drift is
accounted for by the deterministic component of Eq. (18).

Eventually, the new FOAr;,, is straightforwardly deter-
mined via (18). First, the drift components[0,.V, 8yV]T are
computed via (17); then, given the parametegs the shift
lenght components are samplégd; ~ f(&k.:;n%). The a-
stable random vectaof, was sampled using the well known
Chambers, Mallows, and Stuck procedure [57].

For what concerns the time sampling parameter ¢,, 1 —
tn,n=0,---, N, in order to work at the frame rate 86 fps,
by assuming the time intervdl = 1 sec andV = 30, the time
discretization parameter is set as= T//N = 0.03. [46]. An
illustrative example, which is representative of resuttsieved
on such data-set, is provided in Fig. 3, where the change of
motor behavior regime is readily apparent as a function ef th
complexity of scene dynamics.

TABLE Il
GAZE COMPONENTQ-STABLE FITTING:RESULTS OBTAINED ON THE
MONICAO3 CLIP

entropy H(t) of the interest point configuration space, and

eventually the disorder and order parametéxs;) and Q(t) Subject Comp. 7| ai | Bi i 5
to be used in Eq. ( 11) [44]. Note thataxC(t) is achieved cz :f% g i 242-214 67(55822
for A(t) = Q(¢) = 0.5, thusmaxC(t) = 0.25 i=3 1908 | 1 | 6399 | 230.31
By taking into account the results obtained from eye- Jz !=% 1299 11 ;defs 613121'38
. . . 1= . . .
trackmg_ data analy5|s, three.complexny evgﬁ‘gse {1, 2_, 3} i—3 1751 1 | 3083 19720
are devised, which characterize corresponding motor befsav NM =1 2 11 476 | 7.81
ke {1,2,3}: Ec =1if Q(t) > A(t) andC < maxC —e indi- i=2 198 1 | 21.32| 488
cating an "ordered dynamics” of the spatio-temporal hapita RC :;i igg i 3226?34 2229'28
Ec =3 if Q(t) < A(t) andC < maxC — ¢ for "disordered i=2 2 | 1| 2247 6257
dynamics”; eventE; = 2 occurs within higher range of i=3 143 | 1 | 3350 214.15
complexity,|C — max C| < e where "edge dynamics” will take VN :Z% g i 2444185 579-585
place. In the simulation the range valae- 0.01 has been ex- i=3 | 1.78| 1 | 29.90| 197.71
perimentally determined. The empirical consequence ofi suc Al =1 2 1 | 447 | 754
event detection procedure is that an ordered dynamics of the subjects :Zg 1251 i gg-gg 22??)6
habita’F will most Ii_kely bias the shift d)_/namics 'Fowgrd q'uas Ecological = > T T 380 1057
Brownian shifts (fixation / pursuit regime), whilst in highl Sampling i=2 2 1 | 22.14 | 58.061
disordered environment, longer shifts are more likely tousc =3 [163] 1 | 6418 273.86
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computation (which may vary according to the technique
adopted and related software and hardware optimizations),
amounts t00.130 spf. Clearly, the speed-up in this phase is
due to the fact that once the set of salient interest poings ha
been sampled, then subsequent computations only deal with
N, points in the worst case, a rather sparse representation
of the original frame. For comparison purposes, the baselin
algorithm [5], which is representative of the class of metho
using theargmax operation [9] for determining the gaze
shift, takes an average elapsed time 10858 spf for the
WTA computation, and.001 spf for the subsequent inhibition

of return on the attended location. Elapsed times have been
obtained using the latest version of the saliency tool baxgus
the default parameters [9].

More generally, decision rules that boil down to thg max
operation have) (N) complexity, whereN is the size of the
input. The original WTA procedure itself © (N?), but with
specific optimization it can be reduced @(N) complexity.

In ES the decision where to look next can be evaluated to
O (Ns), yet N, < |L|. Eventually, to compare with proto-
object based methods that rely on the selection of the proto-
object with the highest attentional weigltd (IV), with N the
number of proto-objects, e.g., [10]), the step specifiedHay t
shift equation (18) should be considered, whichOgNy ),
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E. Validation

In order to verify whether the proposed model can generate
statistics compared to those observed in eye-tracked @sbje
we run the procedure as described above on different videos
of the CRCNS 'Original’ datasét

The recorded FOA coordinates have been used to compute
the gaze magnitude distributions. Differently from thegrar
eter estimation stage, here we assume unlabelled distnitsut
both for the ones obtained from ecological sampling andethos
composing the data-set.

Then, for each video we cluster (label) each distribution
in three gaze components (smooth-pursuit and fixation + 2
saccade components) by means of VBMTS. Eventually the
two samples Kolmogorov-Smirnov test is computed between

The system is currently implemented in plain MATLABeach corresponding component obtained from algorithm gen-
code, with no specific optimizations and running on a 2&rated and eye-tracked scanpaths considering both indilvid
GHz Intel Core 2 Duo processor, 4 GB RAM, under Mac OS8bservers and the ensemble of all observers. An example of
X 10.5.8. As regards actual performance under such settingsults obtained on thetvsports03” clip, which are repre-
the average average elapsed time for the whole processiegtative of the overall results obtained on the CNRS datase
amounts t®.175 spf (seconds per frame, frame st x480 is shown in Fig. 4. It can be seen that algorithm generated
pixels). More precisely, once computed the foveated framsganpaths show strikingly similar gaze magnitude stesisti
which takes an average elapsed timé& o4 spf, most of the described in terms of the complementary CDFs plotted on
execution time is spent to compute featured,55 spf, and double log-scale. Table | shows the fitteestable component
saliency,0.846 spf. The average elapsed time for obtainingarameters for each subject participating to the expetimen
patches i9.106 spf, 0.021 spf is spent for sampling interestthe ensemble of subjects, and a scanpath generated by the ES
points, 0.001 spf is used to evaluate the complexity, angrrocedure. On this clip the KS test confronting the alganith
eventually0.002 spf is used for sampling the new point ofgenerated and eye-tracked scanpaths fails for compdneht
gaze. Summing up, the actual average time concerning the

; ; 2This paper has supplementary downloadable material lailat http://
method proposed here, mdependently of feature and Sglleri]eCeexplore.ieee.org, provided by the authors. This ireduglo videos showing
the foveation sequences obtained on the daiiiemica03 andtvsports03 from
of the CRCNS 'Original’ dataset angadme file. This material is2.24 MB
in size.
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Fig. 5. Analysis of gaze shift dynamics from tieonicaO3 video. From
left to right, the first column shows the double log plot of tBEDF derived
from the smooth-pursuit component; the center and rightiroal the plots
related to the two saccadic components. From top to bottbm fitst five
rows show the CCDFs related to subjects CZ ,JZ, NM, RC, VN; dix¢h
row presents the CCDFs obtained from the gaze magnitudebdison of all
subjects. The bottom row presents the CCDF obtained fromroneof the
proposed algorithm.

D. Computational cost

1in the spirit of reproducible research, the MATLAB implentation code
of the ES model will be made available at http://xxx.xxx.xxx
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subject RC (KS Statistics8.25836; pValue=7.4646 x 10~3) M
and componenB of subject VN (KS Statistics=0.25032; o2
pValue=t.8712 x 10~2). Actually, such results are recovered °¢ -
when gaze shift samples from all the scanpaths, regardfess
the observers, are aggregated together and used in the sai_°"°
distribution (row 6). =09

A second example is provided in Fig. 5 showing results
obtained on the complemonica03 video. Table Il reports
the fitted o-stable parameters. In this second example the
Kolmogorov-Smirnov test is not satisfied in some individual SN
cases when the gaze component CDFs of the simulated sca © 5 10 15 200 260 300 30 400 450 500
path is compared to componehbf subjects NM (KS Statis-
tics= 0.55742; pValue=3.3615 x 10~'%), RC (KS Statistics= ' - C 7 [tmen
0.49375; pValue=.8111 x 10~'4) and component 2 of subject | - . ArgMax simulated |
VN (KS Statistics=0.36991; pValue=1.2179x 10~%). However
this is more likely to happen due to the sparsity of samples
in such cases. Again, results are recovered by considdrang t S0s
gaze shift distribution of the observer ensemble.

It is worth noting the general trend of a nearly Gaussian
behavior & ~ 2) of smooth pursuit / fixation(with a clear
exception of subject VN) and of the first saccadic components .|
whilst the third component reveals a superdiffusive bebravi 5 000 ‘ Ppy, S
(@ < 2). In the latter case the CCDF deviation between ° % 1% 190 200 288 %0 %0 40 450 50
the empirical data and the estimated distribution that oan b
observed in the tail of the plot can be associated to the f{g%a
that empirical data are actually truncated (with resped¢hio
image/field of view).

Eventually, we confront the overall distributions of 9aZ] between human data and the WTA simulated data. How-
shift amplitude_s from hl_Jmans, the ES model and th_e baselié\ger, we must keep in mind that in [2] only static images and
arg max operation [9] (Fig. 6). We have extended to videos thempiitude distributions of saccades were considered.elde
procedure proposed by Tatleral. [2]. In [2] human saccadic pictyres, as opposed to natural videos, lack spatio-teatpor
behavior on static images was compared against the baseﬁﬁ@rmation and thus fall short of ecological plausibilftg].
WTA method. Human amplitude distributions are derived frofBynamic information mitigates the limitations of using low
eye-tracking data of all subjects viewing each video. S#par |eve| saliency as the input representation since, so faallo
simulations are run for the corresponding number of virtughotion features and objects/actions are often correlagd [
observers viewing the same videos. The empirical proligbilirpig consequence is captured in Fig. 6 for small amplitude

densities P(I) shown in Fig. 6 have been calculated fronypifts, where thewrg max model exhibits a trend that is near
the normalized histograms of actual and simulated data.idtthat of humans and ES.

can be seen that ES generated distributions are close to the
ones exhibited by humans, whilst the distributions from the
arg max Simulations fail to capture the overall heavy-tailed
shapes of actual data. For thesports03 video (top plots) the  In this work we have modeled a gaze shift model that
mean, median and mode values for human and simulated daltaws to mimic the variability of scanpaths exhibited by

==sHuman
= ES simulated
11 ArgMax simulated

0.7 =

0.4

........
L
.
----
..........

08 -
07

0.6

0.4
0.3

0.21

6. Overall distributions of gaze shift amplitudefom humans, the ES
el, and thesrg max method. Toptvsports03. Bottommonica03 .

V. DISCUSSION AND CONCLUSION

are: meangym = 79.73,medgym = 53.15,moder..,, = human observers. The simulated behaviors are charaderize
2.23, meangs = 65.01,medrs = 47.79,modeps = 2.1, Dby statistical properties that are close to those of subjeye-
meanyrax = 92.36,medyrax = 13.89,modeyax = tracked while watching complex videos. To the best of our

2. For the monica0O3 video (bottom plots) we obtained:knowledge, the ES model is novel in addressing the intrinsic
meangum = 97.28 medgym = 66.94, moder,.m, = 1.41; stochasticity of gaze shifts and meanwhile it generalizes p
meangs = 107.14,medgs = 87.36,moderps = 1.06; Vious approaches proposed in the literature, [22], [335],[3
meanyax = 36.4, medyax = 19.02, modey ax = 15. [58]-[60].

In particular, it can be noticed in both examples that, The core of such strategy relies upon using a mixture-of
apart from the shorter tails, major deviationsadf max with  stable motions modulated by the complexity of the scene. The
respect to humans occur within the mid-range of amplitudestrategy exploits long-tailed distributions of gaze shéfigths
which is related to complex behavior. Clearly, the slightif  for the analysis of dynamic scenes, which have been usually
ferent trends between all distributions observet/sports03 considered limiting to static images.
and those derived fronmonica03 are due to the different The composition of random walks in terms of a mixture
video content. of a-stable components allows to treat different types of eyes

Actually, an even more striking difference was reported imovement (smooth pursuit, saccades, fixational movements)
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within the same framework and makes a step towards theneral top-down, object-based attention system by autppti
unified modelling of different kinds of gaze shifts. The éaitt a computation of saliency shaped in the vein of [6]. Indeed,
is a research trend that is recently gaining currency in thiee integration of eye guidance by interlocking ES and a
eye movement realm [23], [24]. For instance, when Eq. (18)Il Bayesian representation of objects [6] and context [7]
is exploited for within-patch exploration, it generatesratfi is the matter of ongoing research. It may be also worth
order Markov process, which is compatible with most recenbting that here eye guidance interacts with patches rather
findings [25]. than the whole saliency map (differently from [22]). Thus,
Further, this approach may be developed for a principléde ES model is to be naturally exploited for object-based
modeling of individual differences and departure from optattention schemes, relying on the notion that proto-object
mality [13] since providing cues for defining the informalrive the initial sampling of the visual scene [10], [40]. In
notion of scanpath idiosyncrasy in terms of individual gazeur model, at any timeg, the dynamic proto-object map is
shift distribution parameters. The latter represents aiatu formed by the foraging eye, by considering both local and
issue both for theory [3], [19], [23] and applications [30]global information within the frame of the current oculomiot
Meanwhile, it stresses the importance of the role of the motaction. This is a possible way to account for the very notion
component, which is often neglected in the literature [BR][ of proto-objects as that of a "constantly regenerating flux”
One issue is how the approach presented here relatesadvocated by Rensink [40], which makes proto-objects the
other works in the literature. As pointed out from the bebulk of interaction between perceptual and motor proceisses
ginning, scanpath variability has been abundantly ovéedo computational models of visual attention [10].
in the current literature (cfr., [4]). But there are few rta Finally, beside theoretical relevance for modelling human
exceptions. In [61] simple eye-movements patterns, in tlhehavior, the randomness of the process can be an advantage i
vein of [19], are straightforwardly incorporated as a priocomputer vision and learning tasks. For instance, in [5Bhi&
of a dynamic Bayesian network to guide the sequence loéen reported that a stochastic attention selection meshan
eye focusing positions on videos. The model presented (& refinement of the algorithm proposed in [33]) enables the
[62] embeds at least one parameter suitable to be tunedi-tub robot to explore its environment up to three times
obtain different saccade length distributions on statiages, faster compared to the standard WTA mechanism [5]. Indeed,
although statistics obtained by varying such parametestilte stochasticity makes the robot sensitive to new signals and
far from those of human data. Closer to our study is the modtdxibly change its attention, which in turn enables effitien
by Keech and Resca [63] that mimics phenomenologically tlegploration of the environment as a basis for action legrnin
observed eye movement trajectories and where randomneds%4, [60].
captured through a Monte Carlo selection of a particular eye
movement based on its probability; probabilistic modelaig
eye movement data has been also discussed in [64]. However,
both models address the specific task of conjunctive visual
search and are limited to static scenes. Other exceptians ar
given, but in the very peculiar field of eye-movements in
reading [47].
As a matter of fact, the majority of models in computational
vision basically resort to deterministic mechanisms tdizea
gaze shifts, and curiously enough this has been the maie rout
for modelling the most random kind of gaze shifts, namely
saccades [2]. Hence, if the same saliency map is provided
as input, they will basically generate the same scanpath.
But further, disregarding motor strategies and tenderitias
characterize gaze shift programming results in distrdngiof
gaze shift amplitudes different from those that can be édriv
from eye-tracking experiments. We have presented in Sectio
IV, Fig. 6 examples showing that the overall distributiorfs o
human and ES generated shifts on the same video are close
in their statistics. When aarg max operation (e.g., the WTA
scheme or the MAP decision rule in a probabilistic setting),
the statistics of model generated scanpaths do not matsk tho
of the eye-tracked subjects and the characteristic heslgdt
distribution of amplitudes are not recovered. This resalini
agreement and extends that reported in [2].
On the other hand, models proposed in the literature that
mainly focus on representational issues can be complemen-
tary to the approach proposed here. Nothing prevents from
using the ES gaze shift mechanism in the framework of a
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