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 13	  

Summary Text for the Table of Contents. 14	  

The ecophysiological behaviour of grapevine cultivars in response to drought is 15	  

influenced by the soil conditions and by the plant genotype. These two components 16	  

interact through a complex of hydraulic and hormonal signal exchanges occurring 17	  

between roots and leaves. Our work highlighs the differences in these signals observed 18	  

in a near-isohydric and a near-anisohydric grapevine cultivars on two soil substrates 19	  

with different textures, causing different dynamics of water deprivation during an 20	  

imposed increasing water stress. 21	  

Abstract 22	  

Grapevine (Vitis vinifera L.) expresses different responses to water stress, not only 23	  

depending from genotype, but also from the influence of vineyard growing conditions 24	  

or seasonality. We aimed to analyze the effects on drought response of two grapevine 25	  

cultivars growing on two soils, one water draining (WD) containing sand 80% vol. and 26	  

the other water retaining (WR), with no sand. Under these two different water-holding 27	  

capacities Syrah, displaying a near-anisohydric response to water stress, and Cabernet 28	  

claudiolovisolo
Font monospazio

claudiolovisolo
Font monospazio

claudiolovisolo
Font monospazio

claudiolovisolo
Font monospazio
This is an author version of the contribution published on Functional Plant Biology 2014, 41: 1119–1128.doi: 10.1071/FP13263.The definitive version is available at http://www.publish.csiro.au/?paper=FP13263



2 

	  

Sauvignon (on the contrary, near-isohydric) were submitted to water stress in a pot trial. 29	  

Xylem embolism contributed to plant adaptation to soil water deprivation: in both 30	  

cultivars during late phases of water stress, however, in Syrah, already at moderate early 31	  

stress levels. By contrast, Syrah showed a less effective stomatal control of drought than 32	  

Cabernet Sauvignon. The abscisic acid (ABA) influenced tightly the stomatal 33	  

conductance of Cabernet Sauvignon on both pot soils. In the near-anisohydric variety 34	  

Syrah an ABA-related stomatal closure was induced in WR soil to maintain high levels 35	  

of water potential, showing that a soil-related hormonal root-to-shoot signal causing 36	  

stomatal closure superimposes on the putatively variety-induced anisohydric response to 37	  

water stress.  38	  

Key words: abscisic acid (ABA), cavitation, embolism, hydraulic conductance, water 39	  

potential. 40	  

Introduction 41	  

Grapevine (Vitis vinifera L.) is a species expressing both isohydric and anisohydric 42	  

behaviours, not only depending from genotype (Schultz 2003), but also from the 43	  

influence of growing conditions or seasonality (Chaves et al. 2010, de Souza et al. 44	  

2003) or from the environmental conditions to which the plant was exposed (Collins et 45	  

al. 2010; Lovisolo et al. 2010; Pou et al. 2012; Tramontini et al. 2013a).  46	  

Although the genotype itself is not sufficient to preview the physiological behaviour of 47	  

grapevine plants, some cultivars have been more frequently observed expressing 48	  

consistent results than others. One of these is Syrah. This cultivar, of mesic origin, has 49	  

been mainly categorized as anisohydric, either from observations of plants under field 50	  

conditions (Schultz 2003; Rogiers et al. 2009; Soar et al. 2009) or in pots (Soar et al. 51	  

2006). Cabernet Sauvignon, on the other hand, has been more frequently observed to 52	  

display a response to water deprivation nearer to isohydric type (Hochberg et al. 2013). 53	  

Owing to the differential response observed on these two cultivars under the same water 54	  

conditions, Cabernet Sauvignon and Syrah have already been coupled in comparative 55	  

experiments (Chalmers 2007; Petrie and Sadras 2008; Rogiers et al. 2009; Hochberg et 56	  

al. 2013) and can therefore be selected as efficient models for representing iso- and 57	  

anisohydric behaviours.  58	  
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The stomatal control, which is an endogenous, but highly variable character, was 59	  

considered in combination with the soil effect. Soil is in fact another crucial component 60	  

in grape and wine production, not only because it determines the water and nutrients 61	  

availability for the plant and therefore its productive performances, but also for its 62	  

specific implication in the “terroir effect” in viticulture (Bodin and Morlat 2006; van 63	  

Leeuwen et al. 2009). In spite of the acknowledged importance on grape and wine 64	  

production, not many studies attempted to quantify its effects with comparative trials. 65	  

For this reason, in the presented work, we decided to focus the attention only on the 66	  

differences produced by two soils in terms of soil texture and related water availability 67	  

provided to the plant: one single aspect which is, however, strongly influenced by 68	  

physical, chemical, and biological properties of the substrate. When a soil dries, in fact, 69	  

the increasing drought affects the plant in multiple and complex ways (Whitmore and 70	  

Whalley 2009).  71	  

Cavitation of the xylem vessels is a very relevant consequence of the limited soil 72	  

moisture, as it can produce dramatic consequences by reducing the hydraulic 73	  

conductivity of the vascular tissues and impairing the possibility for the plant to replace 74	  

transpired water (Brodersen et al. 2013). It is also one of the most studied effects of 75	  

drought in grapevine, in combination with loss in hydraulic conductance (Lovisolo and 76	  

Tramontini 2010). In leaves, cavitation and consequent embolism formation affect 77	  

mainly the leaf midrib (Blackman et al. 2010), with a conductivity loss in grapevine 78	  

petioles of 50% at Ψstem of -0.95 MPa and of more than 90% at -1.5MPa (Zufferey et al. 79	  

2011). On the other hand, the entity of damage produced by cavitation and the break 80	  

against its propagation are modulated by the speed and intensity of stomata reaction and 81	  

by its effect on transpiration (Domec and Johnson 2012) approximating leaves to 82	  

hydraulic fuses of the plant (Zufferey et al. 2011).  83	  

Embolism formation and repair is controlled by a likely hydraulic mediation at the leaf 84	  

level (Pantin et al. 2013) and via chemical signals (Salleo et al. 1996; Lovisolo and 85	  

Schubert 2006) among which abscisic acid (ABA) has a crucial role. ABA is in fact the 86	  

hormone devoted to drive the stomatal response to drought: when the soil water 87	  

potential declines, ABA acts as a messenger indicating water stress from the roots, via 88	  

the xylem sap, to the guard cells in the leaves and inducing the stomata closure 89	  

(Hartung et al. 2002), limiting in such a way the potential consequences of embolism 90	  
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formation (Chitarra et al. 2014). When the water availability is recovered to an adequate 91	  

level, the roots stop releasing the hormone and the stomata re-open. The delayed 92	  

interruption of the signal, much more gradual than the initial release, suggests a further 93	  

action of the hormone on the embolisms repair (Lovisolo et al. 2008; Perrone et al. 94	  

2012).  95	  

Furthermore, in grapevine metabolic and hydraulic behaviour have shown to be related, 96	  

according to the observations recently published by Hochberg et al. (2013) from a study 97	  

conducted on Cabernet Sauvignon and Syrah plants too. In this work the more 98	  

anisohydric grapevine cultivar showed higher water uptake and higher gs than the near-99	  

isohydric cultivar. 100	  

The aim of the present work is to analyze the effect of two types of drying soil, differing 101	  

in water retaining properties, on two grapevines genotypes, characterized by different 102	  

ecophysiological behaviour, from the point of view of the hydraulic balance of the plant 103	  

(i.e. water potential, stomatal control, embolism formation), and its hormonal(ABA) 104	  

control of water losses. 105	  

Materials and Methods 106	  

Plant material and growing conditions 107	  

The trial was conducted in August 2012 at Hochschule Geisenheim University 108	  

(Geisenheim, Germany) on 16 three-year-old plants of Vitis vinifera L. of two 109	  

genotypes: 8 plants of ‘Cabernet Sauvignon’ and 8 of ‘Syrah’. Both were grafted on 110	  

hybrids of Vitis berlandieri × Vitis riparia (‘161-49 Couderc’for ‘Cabernet Sauvignon’ 111	  

and ‘420A Millardet Et De Grasset’ for ‘Syrah’) of comparable characteristics (Whiting 112	  

2004), especially in controlling the interrelationship between leaf or stem water 113	  

potential and stomatal conductance (Tramontini et al. 2013b). The plants were 114	  

maintained under glasshouse conditions with no supplementary light or heating in 9 L 115	  

(24 cm average diameter) plastic pots filled (20 cm depth) with two different substrates, 116	  

one water draining (WD soil) and the other water retaining (WR soil). The WD 117	  

substrate was composed of 80 % vol. of sand and 20 % vol. of ED 73 (Einheitserde 118	  

Classic, Einheitserde-Einheitserde- und Humuswerke Gebr. Patzer GmbH & Co.KG, 119	  

Sinntal, Germany; consisting of 55% white peat, 30% clay, 15% sod peat; chemical 120	  
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properties pH (CaCl2) 5.8, salt content 2.5 g L-1) including nutrient salt (14+16+18, 1 kg 121	  

m-3) and a slow-release fertilizer (Gepac LZD 20+10+15, 2 kg m-³), the WR substrate 122	  

consisted entirely of ED 73.  123	  

Plants were watered to container capacity at the beginning of the experiment 124	  

(Tramontini et al. 2013b) and fertilized in order to bring them to the same level of 125	  

nitrogen availability. Soil nitrogen content after the fertilization was estimated 126	  

according to Robinson recommendations (1988), confirming that at the beginning of the 127	  

experiment the two different substrates had approximately the same amount of available 128	  

nitrogen. Data collection started when the plants had reached a mild water stress (Ψstem 129	  

≤ -0.5 MPa), such as four days after interruption of irrigation. In that moment plants had 130	  

14.4 ± 2.8 leaves with no significant differences between cultivars or soils. Each plant 131	  

was excluded from the trial when wilting was observed. 132	  

Soil water content (θ, %), soil water potential (Ψsoil, MPa), stem water potential (Ψstem, 133	  

MPa), xylem embolism extent and stomatal conductance (gs, mmol m-2 s-1) were 134	  

assessed during the whole duration of the experiment. All measurements were taken 135	  

daily between 9:30-12:00 and 14:00-17:00 in order to standardize putative control of 136	  

circadian expression in cell water channels (Uehlein and Kaldenhoff 2006). 137	  

Water relations 138	  

Soil water content (θ) was gravimetrically determined by collecting daily approximately 139	  

10 ml of soil from three different points and depths in each pot (5, 10, 15 cm depth at 140	  

the half of rays 120° distant one from the other). The soil was weighed, oven-dried at 141	  

100 °C for 24 h and then re-weighed to assess water content. At the same time,  the 142	  

water retention curves for the two soils were assessed with pressure plate measurements 143	  

of the potting substrate (Richards 1965), obtaining two equations: 144	  

WR soil  -Ψsoil = 53.791*e-0.127* θ 145	  

WD soil  -Ψsoil = 1.3423*e-0.264* θ 146	  

The obtained relationships allowed for the calculation of Ψsoil based on θ.  147	  
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Ψstem was measured on mature, undamaged and non-senescent leaves using a pressure 148	  

chamber (Soilmoisture Corp., Santa Barbara, CA, USA) (Scholander et al. 1965) at 149	  

midday according to Turner (1988). Prior to the measurements leaves were bagged with 150	  

a plastic sheet and covered with aluminium foil to stop transpiration at least 1 h before 151	  

measurements were taken.  152	  

Xylem embolism 153	  

Daily determination of xylem embolisms in leaf petioles, induced by the presence of air 154	  

bubbles in xylem vessels, was carried out around midday using a high-pressure 155	  

flowmeter (HPFM, Dynamax Inc., Houston, TX, USA) (Tyree et al. 1995). As the 156	  

assessment of embolism extent is a destructive analysis, leaf petioles were used as a 157	  

proxy of the plant behaviour (Lovisolo et al. 2008; Perrone et al. 2012). During the 158	  

whole duration of the experiment macro- and microbubbles were regularly flushed out 159	  

of the system according to the manufacturer`s instruction manual and the mismatch 160	  

between the two pressure transducers was controlled daily by running the ‘Set Zero’ 161	  

routine before measuring.  162	  

For each determination of percent loss of conductivity (PLC), the petioles and leaves 163	  

were cut under water from the shoots and immediately attached to the HPFM tubing 164	  

under water preventing air bubbles to enter the system. The leaves were cut ~1 cm 165	  

above the petiole insertion a few seconds after starting the measurement. The initial 166	  

hydraulic conductance Khi was determined applying an initial pressure of ~20 kPa for 3 167	  

min. Distilled and degassed water with an addition of 10 mmol L-1 KCl was used as 168	  

perfusion liquid. Petioles were then flushed for 3 min applying a transient increase of 169	  

pressure until a pressure of ~550 kPa was reached. This pressure was kept constant for 3 170	  

min. To determine the final hydraulic conductance Khf the pressure was downregulated 171	  

to ~20 kPa and held constant for 3 min. To calculate Khi and Khf average values of the 172	  

hydraulic conductance of the respective timespans were used.  173	  

Data were displayed and stored using the software HPFM95-XP Version 1.12 174	  

(Dynamax Inc.) and exported and processed using Microsoft Excel.  175	  
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The percent loss of conductivity (PLC) was determined as follows: 176	  

 177	  

After the embolism determination the length and the maximum and minimum diameter 178	  

of the petioles was assessed.  179	  

Stomatal conductance 180	  

Measurements of gs were carried out on adult, non-senescent leaves that were well-181	  

exposed to direct sunlight. Gs was measured using a porometer (AP4, Delta-T Devices 182	  

Ltd, Cambridge, UK). Measurements on three leaves per plant were taken for every 183	  

measuring cycle and the gs values of the three leaves were averaged.  184	  

Analysis of abscisic acid (ABA) in leaves 185	  

ABA was extracted from leaves where stomatal conductance was assessed applying the 186	  

method described by Materán et al. (2009) with some adaptations: 2 g of frozen tissue 187	  

were grounded to powder under liquid nitrogen, 5 ml of 80 % Methanol were added and 188	  

the samples were extracted at 4 °C overnight. Samples were centrifuged at 4000 rpm for 189	  

5 min, the supernatant was transferred to a flask and methanol was evaporated. The pH 190	  

was adjusted to values between 8-9 with a phosphate buffer; 1 ml of ethyl acetate was 191	  

added and samples were centrifuged at 4000 rpm for 5 min; after discarding the 192	  

supernatant, the pH was adjusted to 2-3 (with 1N HCl), 2 ml of ethyl acetate were added 193	  

and the samples were centrifuged at 4000 rpm for 5 min. The supernatant was removed 194	  

and the ethyl acetate fraction was evaporated. The dry residue was re-suspended in 195	  

methanol, filtered in brown vials and injected into a 1260 Infinity HPLC-DAD System 196	  

(Agilent Technologies, Cernusco sul Naviglio, Milano, Italy). ABA was separated on a 197	  

Purosphere® STAR RP-18, 5 µm, LiChroCART (250-4) (Merck, Darmstadt, Germany) 198	  

column thermostated at 35 °C. The solvent gradient used was 100 % A (94.9 % H2O: 5 199	  

% CH3CN: 0.1 % HCOOH) to 100 % B (5 % H2O: 94.9 % CH3CN: 0.1 % HCOOH) 200	  

over 20 min. Solvent B was held at 100 % for 10 min then the solvent returned to 100 % 201	  

A (Forcat et al. 2008). The flow rate into the column was set at 0.5 ml/min. DAD 202	  

detection was performed at 262 nm, acquiring spectra in the range 190/700 nm.  203	  
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To quantify ABA concentration in leaf samples the external standard method was used 204	  

by building a calibration curve with (±)- Abscisic acid, ≥ 98.5 % (Sigma Aldrich SRL, 205	  

Milan, Italy) concentration ranging from 13.5 to 54.0 mg L-1; ABA identification was 206	  

performed on the basis of retention times and of DAD spectrum comparison respect to 207	  

the standard solution. 208	  

Statistical analysis 209	  

Regression coefficients were obtained using Excel (Microsoft, Redmond, WA, USA), 210	  

and statistical analysis was performed with univariate analysis of variance (ANOVA) 211	  

and multivariate analysis of variance (MANOVA) to reveal differences among cultivars 212	  

and soils, by using IBM SPSS statistics 20.0 software package (SPSS, Chicago, IL). 213	  

Differences between means were revealed by Tukey test (p < 0.05). 214	  

 215	  

Results  216	  

Interrelationships between stomatal conductance and soil and stem water potential in 217	  

different soils and cultivars  218	  

Our observations excluded the initial phase of optimal water availability and focused on 219	  

the dynamics of water relations evolving from mild (day 1 of measurements) to extreme 220	  

drought, as shown in Fig. 1. The soil water content between WR and WD soils was very 221	  

different from the beginning, however, the dynamics of the daily averages of Ψstem and 222	  

gs did not express constant differences between soils and cultivars along the period of 223	  

the trial. The proportion of embolized vessels at petiole level (PLC) was higher on WD 224	  

soil than on WR for most of the trial, but not constantly along the trial.  225	  

In spite of that, the relationship between Ψstem and θ highlights how the two substrates 226	  

are distinct for their effect on plant water status (Fig. 2). These differences are already 227	  

evident at mild water stress conditions (Ψstem around -0.5 MPa) and while on WR soil 228	  

the two cultivars show a linear relationship with Ψstem decreasing with decreasing θ 229	  

(expressed as small, negative slope of regression lines), on WD the θ is so reduced that 230	  
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Ψstem changes substantially for any small variation of θ (expressed as higher, negative 231	  

slope of regression lines).  232	  

The measured Ψstem was then combined with the calculated soil water potential (Ψsoil) 233	  

(Fig. 3). The obtained curves show that during water stress Ψstem declined following a 234	  

decrease in Ψsoil. In Cabernet Sauvignon this plant adaptation was evident at mild stress 235	  

conditions, and apparently delayed (and/or less effective) in Syrah.  236	  

The response of gs to Ψstem was maximum at the beginning of the trial with an overlap 237	  

of the two curves representing the two cultivars at around -1.4 MPa (Fig. 4a). In 238	  

comparison to Syrah Cabernet Sauvignon showed lower gs under mild water stress 239	  

conditions without strong changes under severe water stress conditions characterising 240	  

its isohydric behaviour. Our experiment focuses on results obtained under stress, but 241	  

hypothetical relationships preceding limiting conditions can be drafted: in these 242	  

conditions Cabernet Sauvignon would probably have shown a steep adaptation to water 243	  

stress, while Syrah progressively coupled stomatal function with decreasing plant water 244	  

status (Fig. 4a). When splitting the two curves for the soil plots, further observations can 245	  

be collected (Fig. 4b). The two cultivars on WD soil maximize their differences, 246	  

whereas on WR soil they become minimized. Syrah maintains generally higher gs 247	  

values than Cabernet Sauvignon, but, while, at a given Ψstem, in Syrah gs is higher on 248	  

WD than on WR soil, the opposite happens in Cabernet Sauvignon.  249	  

When these results are presented in form of average values, as illustrated in Fig. 5, all 250	  

these differences in gs of the two cultivars appear significantly valid at Ψstem not lower 251	  

than -1 MPa,	  whereas no significant differences between gs of the different cultivars 252	  

occur at Ψstem lower than -1 MPa.  253	  

By sorting all measurements of stomatal conductance and stem water potential in three 254	  

homogenous groups according to decreasing levels of soil water potential, it is possible 255	  

to run a statistical analysis of results collected at comparable level of soil water 256	  

availability (Table 1). At highest levels of soil water potential (mild water stress) the 257	  

cultivar and not the soil significantly drives stomatal conductance, buffering stem water 258	  

potential adjustments. When water availability in soil further decreases (intermediate 259	  

water stress) soil properties significantly influence stomatal response. In such 260	  
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conditions, in WR soils a stomatal closure is induced to maintain high levels of stem 261	  

water potential. In Cabernet Sauvignon the putative isohydric control on water potential 262	  

is not so effective, as in parallel to a not significant stomatal closure, plants respond to 263	  

water deprivation with a decrease in water potential. Under severe water stress , 264	  

however, stomatal control does not avoid decrease on water potential. At these severe 265	  

levels of water deprivation, soil properties do not influence gs/Ψstem response. 266	  

Embolism-related and hormone-driven plant adaptations to water stress 267	  

While observations concerning gs are relevant for level of stress not higher than -1MPa, 268	  

the level of embolism quantified as percent loss of hydraulic conductivity (PLC) 269	  

provides relevant results also at more extreme conditions (Fig. 6). The differences 270	  

observed between the two soils are statistically significant (P < 0.05) with the vines on 271	  

WD substrates showing a significantly higher PLC compared to WR substrates at Ψstem 272	  

< -1 MPa.  273	  

The analysis of the ABA content in leaves showed that the relationship between ABA 274	  

concentration and gs was consistently dependent on soil type for Syrah but not for 275	  

Cabernet Sauvignon (Fig. 7a), variety where stomatal control was tighter (Fig. 7b). In 276	  

both varieties, significantly in Syrah, the WR soil induces an increase of ABA content 277	  

in leaf (Fig. 7b). 278	  

Discussion 279	  

The aim of this study was to investigate how soil water-holding capacity could 280	  

influence hydraulic and hormone-driven reactions of two cultivars putatively recognised 281	  

as different in their stomatal response to water stress: Cabernet Sauvignon and Syrah. 282	  

Hydraulic control of water stress 283	  

Water stress effects were already apparent at mild water stress conditions (Ψstem around 284	  

-0.5 MPa), when plants started to experience different shrinking capacities of the two 285	  

substrates. According to Whitmore and Whalley (2009), in fact, when a shrinking soil 286	  

dries, as WR substrate of our pots, its degree of saturation is kept small in comparison 287	  

with a drying rigid soil, such as the WD soil of this experiment (Fig. 1). In WD soils, 288	  
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the matric potential becomes negative much faster, lowering the level of saturation after 289	  

a much smaller amount of water is removed by roots 290	  

In addition to the soil effect, with ΔΨ between soil and stem higher for Cabernet 291	  

Sauvignon than for Syrah, the two cultivars expressed a different capacity of water 292	  

extraction from the substrate (Fig. 3), requiring to the former a higher energy in order to 293	  

keep the water flow under increasing stress conditions. Furthermore, and probably 294	  

related to the above-mentioned reason, Syrah displays higher gs values than Cabernet 295	  

Sauvignon, especially during early phases of water stress (mild water stress) (Fig. 4). 296	  

On the other hand, Cabernet Sauvignon would preserve soil moisture more efficiently 297	  

than Syrah, imposing at the same time a sensitive control to Ψstem while Ψsoil decreases 298	  

(Fig. 3). This result is consistent with putative near-anisohydric behaviour for Syrah and 299	  

near-isohydric behaviour for Cabernet Sauvignon and with results recently obtained in 300	  

an experiment by Hochberg et al. (2013). Also a lower leaf area of the canopy could 301	  

preserve soil moisture, but our pot plants have been uniformed to have not different leaf 302	  

area. The curves obtained from the four combinations soil/cultivar (Fig. 4b) could be 303	  

thus explained by the fact that in water-stress conditions near-anisohydric varieties do 304	  

not promptly regulate their stomatal conductance and therefore their transpiration rate 305	  

(which was the case of WD substrate, Fig. 2). On the contrary, near-isohydric varieties, 306	  

by tightly regulating the stomatal aperture, limit more the waste of water resources. 307	  

Furthermore, it can be observed how the two curves on WR substrate are closer between 308	  

each other than to the respective cultivar-correspondent on WD. As already observed 309	  

under field conditions (Tramontini et al. 2013a), the expression of plant reactions to 310	  

water stress seems to be buffered on clay soils. This could be due to the higher capacity 311	  

of this kind of soils to hold water and release it gradually to the plant. It could be 312	  

hypothesized that WR substrate produces an effect similar to that of clay soil, 313	  

submitting the potted roots to transient drought conditions (produced by the daily 314	  

fluctuations of dehydration during the day and rehydration during the night) able to 315	  

interfere with the physical and hormonal signalling between roots and stem. However, 316	  

as illustrated in Fig. 5, all these differences in gs are significantly valid at Ψstem not 317	  

lower than -1 MPa. When water stress becomes more severe, stomatal regulation is 318	  

hydraulically controlled and a feedback on stomatal function derives from the metabolic 319	  

plant control. Under increasing water stress, the limitations to photosynthesis pass 320	  
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gradually from a stomatal control to a metabolic control (Flexas et al. 2004 and 2006). 321	  

Due to this, the differences between iso- and anisohydric behaviours are evident 322	  

between mild and moderate water stress, where the expression of the limitations 323	  

imposed at stomatal level are maximised. In our results, at these conditions, the average 324	  

gs is significantly different between varieties but not between substrates (under each 325	  

variety), although on WD the differences remain evident. Concerning the consequent 326	  

risk of cavitation, Syrah on both soils and Cabernet Sauvignon on WD have an increase 327	  

in embolism formation, expressed in terms of xylem conductivity losses, of 32–36%, 328	  

moving from Ψstem > -1 MPa to Ψstem < -1 MPa. Only Cabernet Sauvignon on WR soil 329	  

shows higher embolism formation at Ψstem > -1 MPa than at Ψstem < -1 MPa. An 330	  

explanation of this phenomenon would require the support of further data concerning, 331	  

for example, the implication of the chemical signalling (in particular ABA) in the 332	  

transpiration control. Soar et al. (2006) have in fact demonstrated the contribution of 333	  

ABA to the differential response of gs in iso- and anisohydric cultivars.  334	  

Abscisic-acid control on stomatal conductance  335	  

On the near-isohydric cultivar, Cabernet Sauvignon, expressing very similar level of 336	  

cavitation on the two soils at Ψstem > -1 MPa, we could observe a more stable ABA 337	  

signal, independently from the soil (Fig. 7), similarly to observations by Puértolas et al. 338	  

(2013) using Phaseolus vulgaris L. In contrast, in Syrah, showing two levels of 339	  

cavitation on the two soils both at moderate and at higher stress level, also the curves of 340	  

ABA concentration in leaves were clearly distinguished, between the leaves of plants on 341	  

WR soil richer on the hormone than those on WD soil, showing a substrate-dependant 342	  

ABA concentration, as observed by Dodd et al. (2010) on Helianthus annuus L. In 343	  

order to analyze better this result we suggest comparing it with that on Fig. 4b: contrary 344	  

to initial expectations, Syrah has generally higher gs on WD than on WR soil, and this 345	  

may be due to the specific circumstances produced by the WR soil, as above-mentioned, 346	  

favouring the release of the hormone (ABA) in the leaf. As recently observed by 347	  

Brodribb and McAdam (2013) on two conifer species, the isohydric stomatal regulation 348	  

can be identified as an ABA-driven stomatal closure, while the anisohydric is at least 349	  

initially water potential-driven. The same appears to be true on our two grapevine 350	  

cultivars: ABA control on gs is tight in Cabernet Sauvignon and it is independent to soil 351	  

properties. In Syrah plants potted on WD soil a similar ABA control on stomatal 352	  



13 

	  

conductance subsists. However, when the anisohydric Syrah grows onto the WR soil, an 353	  

additional ABA leaf biosynthesis or accumulation is recordable. The WR-induced raise 354	  

in ABA allows stomatal control limiting the anisohydric response, as it happens when 355	  

anisohydric grapevines are deficit-irrigated upon partial root zone drying (Stoll et al. 356	  

2000; Romero et al. 2012).   357	  

Hints for future research and speculations 358	  

Our results are in line with those recently presented by Hochberg et al. (2013) on a 359	  

similar work done on the same two varieties and with the general consideration on the 360	  

differential photoprotective response to stress in iso- and anisohydric cultivars (Pou et 361	  

al. 2012). We would expect that plant productivity of Cabernet Sauvignon, due to the 362	  

ABA-driven stomatal closure and its putatively stronger downregulation of 363	  

photosynthesis, is less influenced by the soil characteristics than Syrah. 364	  

The results of our current study combined with the ecological and oenological 365	  

characteristics of the two genotypes, seem to find coherence: Cabernet Sauvignon, the 366	  

more isohydric variety, thanks to a tight stomatal control, conserves varietal 367	  

characteristics on the grape independently from the growing conditions. From a 368	  

viticultural point of view, the avoidance of extreme conditions (and of the consequent 369	  

recovery phases) to which Syrah is more prone, allows this variety to buffer vintage 370	  

differences . Hence, the more anisohydric variety, seems to base its stomatal control 371	  

more on hydraulic signals. This could be hypothesized as the effect of a higher 372	  

involvement of long term adaptation mechanisms, such as anatomic modifications, and 373	  

the development of a product which strongly varies according to the characteristics of 374	  

the substrate. Both are expressions of the terroir concept favouring different 375	  

components and mechanisms to adapt. 376	  

Although our results have been obtained on potted plants, where the nature of the 377	  

substrate and the available volume for root development are a limiting projection of the 378	  

edaphic condition of a vineyard, nevertheless they could be of support in the 379	  

interpretation of terroir expression previously introduced by the same authors 380	  

(Tramontini et al. 2013a). The isohydric Cabernet Sauvignon can adapt to a variety of 381	  

climates and soils and, in spite of that, maintain certain organoleptic traits in the final 382	  
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product. It is considered extremely capable to express the characteristics of a given 383	  

terroir and, due to that, has been for a long time the world’s most widely planted 384	  

premium red wine grape (Robinson 2006). The anisohydric Syrah, on the other hand, is 385	  

a very common commercial variety (the world’s 7th most grown grape in 2004, still 386	  

according to Robinson 2006) particularly distributed in warmer regions, from which 387	  

very diverse wines can be produced.  388	  

Furthermore, ABA plays a key role by stimulating the activation of the anthocyanin and 389	  

flavonoids biosynthesis pathway (Davies and Böttcher 2009; Ferrandino and Lovisolo 390	  

2014). Both, its impact on water relations and on berry metabolism may contribute to a 391	  

differential berry quality.This hypothesis could represent a relevant topic for further 392	  

studies in field conditions, where also long terms mechanisms of adaptation and more 393	  

complex dynamics of hormonal signalling (Dodd 2013) can be observed, and extended 394	  

to other varieties, considering the main mechanisms involved in the terroir expression. 395	  

Conclusions 396	  

In conclusion, we reported a hydraulic control of stomatal responses at the base of the 397	  

near-anisohydric Syrah adaptations to water stress, in contrast to an ABA-induced 398	  

stomatal control in the near-isohydric Cabernet Sauvignon. Also is Syrah, however, the 399	  

hormone-related response could be effective when soil properties allowed for higher 400	  

water storage buffering hydraulic adaptations.  401	  
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Figure legends 554	  

Figure 1. (a) Dynamics of soil moisture (θ, %), (b) stem water potential (Ψstem, MPa), 555	  

(c) stomatal conductance (gs, mmol m-2 s-1), and percent loss of (d) conductivity due to 556	  

embolisms (PLC, %), during the days of the trial. Measurements were conducted on 557	  

plants of Cabernet Sauvignon (circles) and Syrah (triangles) on water draining (WD, 558	  

white) and water retaining (WR, black) soils. Means ± std err. Diamonds in frame (d) 559	  

represent the mean value of the day for both cultivars grouped. 560	  

Figure 2. Relationship between stem water potential (Ψstem, MPa) and soil moisture (θ, 561	  

%) measured on plants of Cabernet Sauvignon (circles) and Syrah (triangles) on water 562	  

draining (WD, white) and water retaining (WR, black) soils. Arrows on the x axis point 563	  

to maximum water-holding capacity of the two soils (% water  at -0.01 MPa). 564	  

Figure 3. Relationship between stem water potential (Ψstem, MPa) and soil water 565	  

potential (Ψsoil, MPa) measured on plants of Cabernet Sauvignon (circles) and Syrah 566	  

(triangles) on water draining (WD, white) and water retaining (WR, black) soils. Ψstem 567	  

was obtained from direct measures while Ψsoil from the derived equations of Ψsoil and θ. 568	  

Figure 4. Interrelationship between stomatal conductance (gs, mmol m-2 s-1) and stem 569	  

water potential (Ψstem, MPa) measured on plants of Cabernet Sauvignon (circles) and 570	  

Syrah (triangles) on water draining (WD, white) and water retaining (WR, black) soils. 571	  

The two figures present the same data clustered only for varieties (a) and for the 572	  

varieties on each soil (b). In addition, in Fig. 4a, an arbitrary hypothetical curve 573	  

preceding water stress has been identified with a dashed line. 574	  

Figure 5. Average values of leaf stomatal conductance (gs, mmol m-2 s-1) measured on 575	  

plants of Cabernet Sauvignon on water retaining soil (WR, black) and on water draining 576	  

soil (WD, light grey) and on Syrah plants on WR (dark grey) and on WD (white). Data 577	  

have been clustered for those collected between mild and moderate water stress (Ψstem > 578	  

-1 MPa) and high water stress (Ψstem < -1 MPa). Values of bars topped by common 579	  

letters are not significantly different, while different letters identify significantly 580	  

different groups (P<0.05 (*), P<0.01 (**); Tukey Test). 581	  
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Figure 6. Average values of percent loss of conductivity (PLC, %) due to embolism 582	  

formation, measured on leaf petioles of Cabernet Sauvignon on water retaining soil 583	  

(WR, black) and on water draining soil (WD, light grey) and on Syrah plants on WR 584	  

(dark grey) and on WD (white). Data have been clustered for those collected between 585	  

mild and moderate water stress (Ψstem > -1 MPa) and high water stress (Ψstem < -1 MPa). 586	  

Values of bars topped by common letters are not significantly different, while different 587	  

letters identify significantly different groups (P<0.05 (*), P<0.01 (**); Tukey Test).  588	  

Figure 7 a and b. Relationship between stomatal conductance (gs, mmol m-2 s-1) and 589	  

abscisic acid (ABA) concentration (ng g-1 fw) in leaf samples on plants of Cabernet 590	  

Sauvignon (circles) and Syrah (triangles) on water draining (WD, white) and water 591	  

retaining (WR, black) soils. In frame (a), continuous lines represent the two curves 592	  

obtained for Cabernet Sauvignon and dashed lines for Syrah. In frame (b), means ± std 593	  

errors are displayed. 594	  

 595	  

Water stress  Ψstem gs 

Mild  
(Ψsoil >-0.083) 

Cabernet Sauvignon -0.972 n.s. 36.1 b 

Syrah -0.764 n.s. 75.2 a 

Intermediate 
(-0.083 > Ψsoil > -
0.212) 

Cabernet Sauvignon -1.189 b 33.4 n.s. 

Syrah -0.875 a 55.3 n.s. 

Severe 
(Ψsoil <-0.212) 

Cabernet Sauvignon -1.780 b 14.7 b 

Syrah -1.087 a 35.2 a 
 

Mild  
(Ψsoil >-0.083) 

water retaining soil (WR) -0.964 n.s. 41.9 n.s. 

water draining soil (WD) -0.745 n.s. 60.9 n.s. 

Intermediate 
(-0.083 > Ψsoil > -
0.212) 

water retaining soil (WR) -1.196 n.s 27.9 b 

water draining soil (WD) -0.867 n.s 60.8 a 

Severe water retaining soil (WR) -0.994 n.s. 19.5 n.s. 
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(Ψsoil <-0.212) water draining soil (WD) -1.498 n.s. 22.3 n.s. 

	  596	  

Table 1: influence of cultivar and soil water-holding capacity on stem water potential 597	  

(Ψstem) and stomatal conductance (gs). Data were divided in three classes of soil water 598	  

potential (Ψsoil) values: mild (Ψsoil >-0.083), intermediate (-0.083 > Ψsoil > -0.212) and 599	  

severe water stress (Ψsoil <-0.212), and processed separately for the two effects of 600	  

cultivar and soil. Different letters indicate significant differences among means, F-test, 601	  

P<0.05, post hoc Tukey's test. 602	  
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