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A meshless interpolation algorithm using a cell-based searching procedure

Roberto Cavoretto∗, Alessandra De Rossi

Department of Mathematics “G. Peano”, University of Torino, via Carlo Alberto 10, I–10123 Torino, Italy

Abstract

In this paper we propose a fast algorithm for bivariate interpolation of large scattered data sets. It is based on the parti-

tion of unity method for constructing a global interpolant by blending radial basis functions as local approximants and

using locally supported weight functions. The partition of unity algorithm is efficiently implemented and optimized

by connecting the method itself with an effective cell-based searching procedure. More precisely, we construct a cell

structure, which partitions the domain and strictly depends on the dimension of the subdomains, thus providing a

meaningful improvement in the searching process compared to the nearest neighbour searching techniques presented

in [2, 7, 9]. In fact, this efficient algorithm and, in particular, the new searching procedure enable us a fast computation

also in several applications, where the amount of data to be interpolated is often very large, up to many thousands or

even millions of points. Analysis of computational complexity shows the high efficiency of the proposed interpolation

algorithm. This is also supported by numerical experiments.

Key words: meshless approximation, fast algorithms, partition of unity methods, radial basis functions, scattered

data.

2010 MSC: 65D05, 65D15, 65D17.

1. Introduction

In the last decades, efficient methods and algorithms using radial basis functions (RBFs) have gained popularity in

various areas of scientific computing such as multivariate interpolation, approximation theory, meshfree (or meshless)

methods, neural networks, computer graphics, computer aided geometric design (CAGD) and machine learning. In

particular, the need of having fast algorithms and powerful and flexible software is of great interest mainly in applica-

tions, where the amount of data to be interpolated is often very large, say many thousands or even millions of points

(see, e.g., [6, 14, 21, 22, 34] for an overview).

In the literature, several techniques and alternative approaches have been proposed to have stable and accurate

numerical algorithms (see, e.g., [4, 16, 17, 18, 30] and references therein), but, except for [5], none of them allows us

to deal with a truly great number of data in a relatively small quantity of time.

In this paper we focus on the problem of constructing a new fast algorithm for bivariate interpolation of large

sets of scattered data. It is based on the partition of unity method for constructing a global interpolant by blending

radial basis functions as local approximants and using locally supported weight functions. Note that the partition of

unity method was firstly suggested in [3, 24] in the mid 1990s in the context of meshfree Galerkin methods for the

solution of partial differential equations (PDEs), but now it is also an effective method for fast computation in the field

of approximation theory (see, for example, [14, 33, 34]). Moreover, similar local approaches involving the modified

Shepard’s method have already been studied in previous works (see, e.g., [2, 23, 25, 26, 31, 13]).

Thus, starting from the results of our preceding researches (see [2, 7, 8, 9, 11, 12]) where efficient searching

procedures based either on the partition of a plane domain in strips or on the partition of a sphere in spherical zones

are considered, we extend the previous ideas replacing the strip-based partition structure with a cell-based one. The
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latter leads to the creation of a cell-based searching procedure, whose origin comes from the repeated use of a quicksort

sorting routine with respect to different directions, enabling us to pass from not ordered to ordered data structures.

In particular, this process turns out to be strictly related to the construction of a partition of the domain Ω in square

cells, which consists in generating two orthogonal families of parallel strips, namely a crossed-strip structure, where

the original data set is suitably split up in ordered and well-organized data subsets.

Now, exploiting the ordered data structure and the domain partition, the crossed-strip algorithm is efficiently

implemented and optimized by connecting the interpolation method itself with the effective cell-based searching

procedure. More precisely, the considered technique is characterized by the construction of a double structure of

crossed strips, called cell structure, which partitions the domainΩ in square cells and strictly depends on the dimension

of its subdomains, providing a meaningful improvement in the searching procedures of the nearest neighbour points

compared to the searching techniques presented in [2, 7, 9]. The final result is an efficient algorithm for bivariate

interpolation of generally scattered data points, whose construction process can briefly be summarized in three stages:

(i) partition the domain Ω into a suitable number of cells; (ii) consider an optimized cell-based searching procedure

establishing the minimal number of cells to be examined, in order to localize the subset of nodes belonging to each

subdomain; (iii) apply the partition of unity method combined with local radial basis functions.

Finally, an analysis of computational complexity shows the high efficiency of this interpolation algorithm, enabling

us a fast computation of a very large amount of data as it is confirmed by several numerical experiments.

The paper is organized as follows. In Section 2 we recall some theoretical foundations: at first, we discuss of the

solvability of the interpolation problem, referring to existence and uniqueness of radial basis function interpolants,

then we give a general description of the partition of unity method, which uses radial basis functions as local approx-

imants. In Section 3, we present in detail the cell-based partition algorithm for bivariate interpolation of generally

scattered data points, which is efficiently implemented and optimized by using a nearest neighbour searching pro-

cedure. Computational complexity and storage requirements of the interpolation algorithm are analyzed as well. In

Section 4, we show numerical results concerning efficiency and accuracy of the partition of unity algorithm, while

Section 5 contains an application to real data. Finally, Section 6 deals with conclusions and future work.

2. Preliminaries

2.1. Radial basis function interpolation

Let Xn = {xi, i = 1, 2, . . . , n} be a set of distinct data points or nodes, arbitrarily distributed in a domain Ω ⊆ R
N ,

N ≥ 1, with an associated set Fn = { fi, i = 1, 2, . . . , n} of data values or function values, which are obtained by

sampling some (unknown) function f : Ω → R at the nodes, i.e., fi = f (xi), i = 1, 2, . . . , n. Thus, we can now give a

precise formulation of the scattered data interpolation problem.

Problem 2.1. Given the point sets Xn and Fn, find a (continuous) function R : Ω→ R such that

R(xi) = fi, i = 1, 2, . . . , n. (1)

Now, using a RBF expansion to solve the scattered data interpolation problem in Ω, the above-mentioned problem

can be written as follows.

Definition 2.1. Given the point sets Xn and Fn, a radial basis function interpolant R : Ω→ R assumes the form

R(x) =

n
∑

j=1

c jφ(d(x, x j)), x ∈ Ω, (2)

where d(x, x j) = ||x − x j||2 is the Euclidean distance, φ : [0,∞)→ R is called radial basis function, and R satisfies the

interpolation conditions (1).

Solving the interpolation problem under this assumption leads to a system of linear equation of the form

Ac = f,
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where the entries of the interpolation matrix A ∈ Rn×n are given by

Ai, j = φ(d(xi, x j)), i, j = 1, 2, . . . , n, (3)

c = [c1, c2, . . . , cn]T , and f = [ f1, f2, . . . , fn]T . Then, the interpolation problem is well-posed, i.e., a solution to the

problem exists and is unique in the interpolation space

Tφ = span{φ(d(·, x1)), . . . , φ(d(·, xn))}

if and only if the matrix A is nonsingular. In fact, it is known that a sufficient condition to have nonsingularity is

that the corresponding matrix is positive definite. Thus, if A is a positive definite matrix, then all its eigenvalues are

positive and therefore A is nonsingular (see, e.g., [14]).

Definition 2.2. Let Xn = {xi, i = 1, 2, . . . , n} be a set of n distinct data points on Ω ⊆ R
N . A continuous function

φ : [0,∞)→ R is called positive definite of order n on Ω, if

n
∑

i=1

n
∑

j=1

cic jφ(d(xi, x j)) ≥ 0, (4)

for any c = [c1, c2, . . . , cn]T ∈ Rn. The function φ is called strictly positive definite of order n if the quadratic form (4)

is zero only for c ≡ 0. If φ is strictly positive definite for any n, then it is called strictly positive definite.

Therefore, if φ is strictly positive definite, the interpolant (2) is unique, since the corresponding interpolation

matrix (3) is positive definite and hence nonsingular.

There are many examples of strictly positive definite RBFs (both globally and compactly supported), which can

be used to solve the scattered data interpolation problem. The most popular choices for globally supported RBFs are

φ1(r) = e−α
2r2

, (Gaussian)

φ2(r) = (1 + γ2r2)m/2, (generalized multiquadric)

where α, γ ∈ R
+, m ∈ Z, and r = ||x − xi||2. The Gaussian and the Inverse MultiQuadric (IMQ), which occurs

for m < 0 in the generalized multiquadric function, are strictly positive definite functions, and this guarantees the

existence of a unique solution of the related system of equations. Otherwise, the multiquadric (MQ), i.e. for m > 0 in

the generalized multiquadric function, is strictly conditionally positive definite functions of order m and requires the

addition of a polynomial term of order m−1 together with side conditions in order to obtain an invertible interpolation

matrix (see, e.g., [34]).

It can be highly advantageous to work with locally supported functions since they might lead to sparse linear

systems. Wendland [32] found a class of radial basis functions which are smooth, compactly supported, and strictly

positive definite on R
N for any N. They consist of a product of a truncated power function and a low degree polyno-

mial. For example, one can take

φ3(r) = (1 − cr)4
+ (4cr + 1), (Wendland’s C2 function)

φ4(r) = (1 − cr)6
+

(

35c2r2 + 18cr + 3
)

, (Wendland’s C4 function)

where c ∈ R
+. These functions are nonnegative for r ∈ [0, 1/c], are zero for r > 1/c, and belong to C2 and C4,

respectively; moreover, they are strictly positive definite in R
3, even though one can also construct strictly positive

definite functions (with higher-order smoothness) on R
N , N > 3.

2.2. Partition of unity method

The basic idea of the partition of unity method is to start with a partition of the open and bounded domain Ω ⊆ R
N

into d subdomains Ω j such that Ω ⊆
⋃d

j=1Ω j with some mild overlap among the subdomains. At first, we choose a

partition of unity, i.e. a family of compactly supported, non-negative, continuous functions W j with supp(W j) ⊆ Ω j
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such that
∑d

j=1 W j(x) = 1, for all x ∈ Ω. Then, for each subdomain Ω j we consider a radial basis function R j as local

approximant and form the global approximant given by

I(x) =

d
∑

j=1

R j(x)W j(x), x ∈ Ω. (5)

Note that if the local approximants satisfy the interpolation conditions at data point xi, i.e. R j(xi) = f (xi), then the

global approximant also interpolates at this node, i.e. I(xi) = f (xi), for i = 1, 2, . . . , n.

More precisely, we give the following definition (see [33]).

Definition 2.3. Let Ω ⊆ R
N be a bounded set. Let {Ω}d

j=1
be an open and bounded covering of Ω. This means that

all Ω j are open and bounded and that Ω is contained in their union. Set δ j = diam(Ω j) = supx,y∈Ω j
||x − y||2. We call

a family of nonnegative functions {W j}
d
j=1

with W j ∈ Ck(RN) a k-stable partition of unity with respect to the covering

{Ω j}
d
j=1

if

1) supp(W j) ⊆ Ω j;

2)
∑d

j=1 W j(x) ≡ 1 on Ω;

3) for every β ∈ NN
0

with |β| ≤ k there exists a constant Cβ > 0 such that

||DβW j||L∞(Ω j) ≤ Cβ/δ
|β|

j
,

for all 1 ≤ j ≤ d.

Now, in order to have an idea of the node distribution and to understand how uniform are the data sets, we define

two common indicators of data regularity: the separation distance and the fill distance. The former is given by

qXn
=

1

2
min
i, j

d(xi, x j), (6)

while the latter, which is a measure of the data distribution, is usually defined as

hXn,Ω = sup
x∈Ω

min
x j∈Xn

d(x, x j). (7)

In accordance with the statements in [33] we require some additional regularity assumptions on the covering

{Ω j}
d
j=1

.

Definition 2.4. Suppose that Ω ⊆ R
N is bounded and Xn = {xi, i = 1, 2, . . . , n} ⊆ Ω are given. An open and bounded

covering {Ω j}
d
j=1

is called regular for (Ω,Xn) if the following properties are satisfied:

(a) for each x ∈ Ω, the number of subdomains Ω j with x ∈ Ω j is bounded by a global constant K;

(b) each subdomain Ω j satisfies an interior cone condition;

(c) the local fill distances hX j,Ω j
are uniformly bounded by the global fill distance hXn,Ω, where X j = Xn ∩Ω j.

Remark 2.1. The first property (a) is required to ensure that the sum in (5) is actually a sum over at most K summands.

Since K is independent of n, unlike d, which should be proportional to n, this is essential to avoid losing convergence

orders. Moreover, it is crucial for an efficient evaluation of the global interpolant that only a constant number of local

approximants has to be evaluated. Then, it should be possible to locate those K indices in constant time. The second

and third properties (b) and (c) are important for employing the estimates on radial basis function interpolants (see

[34]).

Moreover, we are able to formulate the following theorem, which yields the polynomial precision and controls the

growth of error estimates (see, e.g., [34]). Here, we denote by πN
s := πs(R

N) the set of polynomials of degree s.
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Theorem 2.1. Suppose that Ω ⊆ R
N is compact and satisfies an interior cone condition with angle θ ∈ (0, π/2) and

radius r > 0. Let s ∈ N be fixed and there exist constants h0,C1,C2 > 0 depending only on N, θ, r such that hXn,Ω ≤ h0.

Then, for all Xn = {xi, i = 1, 2, . . . , n} ⊆ Ω and all x ∈ Ω, there exist functions uk : Ω→ R, k = 1, 2, . . . , n, such that

(1)
∑n

k=1 uk(x)p(xk) = p(x), for all p ∈ πs(R
N);

(2)
∑n

k=1 |uk(x)| ≤ C1;

(3) u j(x) = 0 provided that ||x − x j||2 > C2hXn,Ω.

Therefore, after defining the space Ck
ν(R

N) of all functions f ∈ Ck whose derivatives of order |β| = k satisfy

Dβ f (x) = O(||x||ν
2
) for ||x||2 → 0, we consider the following convergence result, which is here presented for strictly

positive definite functions even if it holds more in general for strictly conditionally positive definite functions (see,

e.g., [14, 34] and references therein).

Theorem 2.2. Let Ω ⊆ R
N be open and bounded and suppose that Xn = {xi, i = 1, 2, . . . , n} ⊆ Ω. Let φ ∈ Ck

ν(R
N)

be a strictly positive definite function. Let {Ω j}
d
j=1

be a regular covering for (Ω,Xn) and let {W j}
d
j=1

be k-stable for

{Ω j}
d
j=1

. Then the error beetween f ∈ Nφ(Ω), where Nφ is the native space of φ, and its partition of unity interpolant

(5) can be bounded by

|Dβ f (x) − DβI(x)| ≤ Ch
(k+ν)/2−|β|

Xn,Ω
| f |Nφ(Ω),

for all x ∈ Ω and all |β| ≤ k/2.

Note that the partition of unity preserves the local approximation order for the global fit. Hence, we can efficiently

compute large RBF interpolants by solving small RBF interpolation problems (in parallel as well) and then combine

them together with the global partition of unity {W j}
d
j=1

. This approach enables us to decompose a large problem into

many small problems, and at the same time ensures that the accuracy obtained for the local fits is carried over to the

global one. In particular, the partition of unity method can be thought as a Shepard’s method with higher-order data,

since local approximations R j instead of data values f j are used.

Remark 2.2. Apart from possible problems of storage and computer running time, when a large number of interpo-

lation nodes is used, RBF systems may suffer from ill-conditioning. In general, the condition number is directly linked

to the order of the basis functions and density of the interpolation nodes. Indeed, the ill-conditioning grows primarily

due to the decrease in the separation distance qXn
, and not only necessarily to the increase in the number n of data

points. Moreover, since the local separation distance qX j
is of the same size (or smallness) as the global separation

distance qXn
, the partition of unity method seems to be stable as the global one.

On the other hand, if one keeps the number of nodes (or at least the separation distance) fixed and instead

considers flatter basis functions due to a suitable choice of the shape parameter, then the condition number of the

interpolation matrix A suffers in almost the same manner. Of course, a more peaked basis function can be used to

improve the condition number of A, but the accuracy of the fit gets worse.

Anyway, in accordance with the trade-off (or uncertainty) principle [29] we remark that the order of the basis

functions should be chosen with great care, because using standard bases one cannot have high accuracy and stability

at the same time [15]. This order should be enough low when the data density is quite high, because any excessive

order has negative effects on stability. Furthermore, for low density interpolation data points, one can use high-order

basis functions such as Gaussians and generalized inverse multiquadrics (that are infinitely smooth), and for high

density interpolation data points, one can use low-order basis functions such as compactly supported Wendland’s

functions (that have limited or arbitrarily low smoothness) to avoid numerical problems (see [14]). More recently,

however, a number of approximation techniques has been proposed to have a stable computation with flat and infinitely

smooth radial basis functions (see, e.g., [16, 18] and references therein).

3. Cell-based partition algorithm

In this section we propose a new fast algorithm for bivariate interpolation of large scattered data sets lying on the

domain Ω = [0, 1] × [0, 1] ⊂ R
2. This algorithm, which is based on the partition of unity method for constructing a

global interpolant by blending radial basis functions as local approximants and using locally supported weight func-

tions, is efficiently implemented and optimized by connecting the method itself with an effective cell-based searching
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procedure. More precisely, the considered approach is characterized by the construction of a double structure of

crossed strips, called cell structure, which partitions the domain Ω in square cells and strictly depends on the dimen-

sion of its subdomains, providing a meaningful improvement in the searching procedures of the nearest neighbour

points compared to the searching techniques presented in [2, 7, 9].

This process we are considering can briefly be described as follows:

(i) partition the domain Ω into a suitable number of cells;

(ii) consider an optimized cell-based searching procedure establishing the minimal number of cells to be examined,

in order to localize the set of nodes for each subdomain;

(iii) apply the partition of unity method which uses radial basis functions as nodal functions.

These three stages correspond to data partition, localization and evaluation phases, respectively. We remark that

only one double structure of crossed strips (cell structure) is used for each of the three phases.

3.1. Cell-based searching procedure

The basic idea in the construction of this searching procedure comes from the repeated use of a quicksort sorting

routine with respect to different directions (essentially, along the y-axis and the x-axis), enabling us to pass from not

ordered to ordered data structures. This process is strictly related to the construction of a partition of the domain Ω

(i.e., unit square) in square cells, which consists in generating two orthogonal families of parallel strips, namely a

crossed strip structure (see Figure 1), where the original data set is suitably split up in ordered and well-organized data

subsets. More precisely, in order to obtain the cell-based partition structure and then the resulting searching procedure,

we may act as follows: at first, we organize all the data by means of a quicksorty procedure applied along the y-axis

(the subscript denotes the sorting direction), then we consider a first family of q strips, parallel to the x-axis and order

the points of each strip by using a quicksortx procedure, finally we create a second family of q strips, parallel to the

y-axis, which orthogonally intersect the first strip family, thus producing a partition of Ω in square cells (see Figure

2). Note that from now on, to define a specific cell k, we consider a double index notation using square brackets, i.e.

k = [v,w].

Now, the aim is to construct an efficient searching procedure to be used in the localization of points, exploiting

the data structure and the domain partition we have just considered above. An effective way to obtain an efficient

searching technique is to connect the interpolation or approximation method itself (in this case, the partition of unity

method even if such choice is not restrictive) with the cell-based partition structure. This result is got assuming

that the cell width/side δcell is equal to the subdomain radius δsubdom, i.e. δcell ≡ δsubdom. Though this choice might

seem to be trivial, in practice such an imposition means that the search of the nearby points, which in general is an

essential aspect of local methods as the partition of unity method, is limited at most to nine cells: the cell on which

the considered point lies, and the eight neighbouring cells (see Figures 1–2). In fact, the combination between cell

and subdomain sizes provides an optimal choice, since it allows us to search the closest points only considering a

very small number of them (that is only those points belonging to one of the nine cells) and a priori ignoring all the

other points of Ω. Obviously, then, for all those points belonging to the first and last cells, i.e. the ones close to the

boundary of Ω, a reduction of the total number of cells to be examined will be required, but this does not produce

any problem on effectiveness of the cell-based searching procedure. Further details on this searching procedure are

contained in Subsection 3.2, where we give a detailed description of the proposed algorithm.

3.2. Crossed-strip algorithm

Let us now consider in detail the partition of unity algorithm for bivariate interpolation of generally scattered data

points.

INPUT: n, number of data; Xn = {(xi, yi), i = 1, 2, . . . , n}, set of data points; Fn = { fi, i = 1, 2, . . . , n}, set of data

values; d, number of subdomains; Cd = {(x̄i, ȳi), i = 1, 2, . . . , d}, set of subdomain points (centres); s, number of

evaluation points; Es = {(x̃i, ỹi), i = 1, 2, . . . , s}, set of evaluation points.

OUTPUT:As = {I(x̃i, ỹi), i = 1, 2, . . . , s}, set of approximated values.

Stage 1. The set Xn of nodes and the set Es of evaluation points are ordered with respect to a common direction

(e.g. the y-axis), by applying a quicksorty procedure.
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Figure 1: Example of crossed-strip partition.
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Figure 2: Example of cell-based structure with a set of scattered data points.

Stage 2. For each subdomain point (x̄i, ȳi), i = 1, 2, . . . , d, a local circular subdomain is constructed, whose half-size

(the radius) depends on the subdomain number d, that is

δsubdom =

√

2

d
. (8)

This value is suitably chosen, supposing to have a nearly uniform node distribution and assuming that the ratio n/d ≈ 4.

Stage 3. A double structure of crossed strips is constructed as follows:
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i) a first family of q strips, parallel to the x-axis, is considered taking

q =

⌈

1

δsubdom

⌉

, (9)

and a quicksortx procedure is applied to order the nodes belonging to each strip;

ii) a second family of q strips, parallel to the y-axis, is considered.

Note that each of the two strip structures are ordered and numbered from 1 to q; moreover, the choice in (9) follows

directly from the side length of the domain Ω (unit square), that here is 1, and the subdomain radius δsubdom.

Stage 4. The domain (unit square) is partitioned by a cell-based structure consisted of q2 square cells, whose length

of the sides is given by δcell ≡ δsubdom. Then, the following structure is considered:

• the sets Xn, Cd and Es are partitioned by the cell structure into q2 subsets Xnk
, Cdk

and Esk
, k = 1, 2, . . . , q2,

where nk, dk and sk are the number of points in the k-th cell.

This stage can be summarized in Algorithm 1 as follows.

Algorithm 1 Cell-based partition structure

1: for each cell k = [v,w], v,w = 1, 2, . . . , q do

2: partition and count the number of points

3: nk = nv,w (nodes)

4: dk = dv,w (subdomain points)

5: sk = sv,w (evaluation points);

6: return (nk;Xnk
) ∧ (dk;Cdk

) ∧ (sk;Esk
)

7: end for

Stage 5. In order to identify the cells to be examined in the searching procedure, we adopt the following rule which

is composed of three steps:

(1) the width δcell of cells is chosen equal to the subdomain radius δsubdom, i.e. δcell ≡ δsubdom, and the ratio between

these quantities is denoted by i∗ = δsubdom/δcell;

(2) the value i∗ provides the number j∗ of cells to be examined for each point by the rule j∗ = (2i∗ + 1)2, which

obviously here gives j∗ = 9. In practice, this means that the search of the nearby points is limited at most to

nine cells: the cell on which the considered point lies, and the eight neighbouring cells;

(3) for each cell k = [v,w], v,w = 1, 2, . . . , q, a cell-based searching procedure is considered, examining the points

from the cell [v − i∗,w − i∗] to the cell [v + i∗,w + i∗]. For the points of the first and last cells (those close to the

boundary of the unit square Ω), we reduce the total number of cells to be examined, setting v − i∗ = 1 and/or

w− i∗ = 1 (when v− i∗ < 1 and/or w− i∗ < 1) and v+ i∗ = q and/or w+ i∗ = q (when v+ i∗ > q and/or w+ i∗ > q).

Then, after defining which and how many cells are to be examined, the cell-based searching procedure (see

Algorithm 2) is applied:

• for each subdomain point of Cdk
, k = 1, 2, . . . , q2, to determine all nodes belonging to a subdomain. The number

of nodes of the subdomain centred at (x̄i, ȳi) is counted and stored in mi, i = 1, 2, . . . , d;

• for each evaluation point of Esk
, k = 1, 2, . . . , q2, in order to find all those belonging to a subdomain of centre

(x̄i, ȳi) and radius δsubdom. The number of subdomains containing the i-th evaluation point is counted and stored

in ri, i = 1, 2, . . . , s.

Stage 7. A local approximant R j(x, y) and a weight function W j(x, y), j = 1, 2, . . . , d, is found for each evaluation

point.

Stage 8. Applying the global fit (5), the surface can be approximated at any evaluation point (x̃, ỹ) ∈ Es.
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Algorithm 2 Cell-based searching procedure

1: for w = 1, 2, . . . , q do

2: for v = 1, 2, . . . , q do

3: set [ f irstx, f irsty] = [v − i∗,w − i∗]

4: [lastx, lasty] = [v + i∗,w + i∗]

5: if f irstx < 1 and/or f irsty < 1 then

6: set f irstx = 1 and/or f irsty = 1

7: end if

8: if lastx > q and/or lasty > q then

9: set lastx = q and/or lasty = q

10: end if

11: for h = subdom bpv,w, . . . , subdom epv,w do

12: set mh = 0

13: for j = f irsty, . . . , lasty do

14: for i = f irstx, . . . , lastx do

15: for k = bpi, j, . . . , epi, j do

16: if (xk, yk) ∈ Ih((x̄, ȳ); δsubdom) then

17: set mh = mh + 1

18: S TOREh,mh
(xk, yk, fk)

19: end if

20: end for

21: end for

22: end for

23: return (x, y) ∈ Ih((x̄, ȳ); δsubdom)

24: end for

25: for h = eval bpv,w, . . . , eval epv,w do

26: set rh = 0

27: for j = f irsty, . . . , lasty do

28: for i = f irstx, . . . , lastx do

29: for k = subdom bpi, j . . . , subdom epi, j do

30: if (x̃k, ỹk) ∈ Ih((x̄, ȳ); δsubdom) then

31: set rh = rh + 1

32: S TOREh,rh
(x̃k, ỹk)

33: end if

34: end for

35: end for

36: end for

37: return (x̃, ỹ) ∈ Ih((x̄, ȳ); δsubdom)

38: end for

39: end for

40: end for

Remark 3.1. In the algorithm the local approximants are computed by using either globally supported RBFs such

as Gaussians and IMQs (that are compactly supported on the local subdomains), or compactly supported RBFs such

as Wendland’s functions. Moreover, the d local subdomains are given by circles centred at equally spaced points in

the unit square. Finally, we point out as this approach turns out to be very flexible, since different choices of local

approximants (both globally and locally supported) are allowable.

Remark 3.2. The partition of unity algorithm is easily parallelizable, since the special structure in cells, in which the

domainΩ is partitioned and the points are organized (see Stage 4), and the favourable choice of taking δcell ≡ δsubdom

(see Stage 4 and Stage 5) make this algorithm particularly suitable for parallel computation.
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3.3. Complexity analysis

Since the partition of unity algorithm is characterized by the construction of local RBF interpolants, we consider

the local data sets X j = Xn ∩ Ω j, j = 1, 2, . . . , d, instead of the global data set Xn. Thus, the complexity of this

algorithm is influenced by the following assumptions:

(i) a data structure is considered for each set of points (i.e., nodes, subdomain and evaluation points) such that they

can be efficiently identified in each subdomain Ω j;

(ii) a local approach has to be such that each subdomain contains only a relatively small number of nodes, that is

each node has to be contained only in some subdomains and efficiently found.

We remark that these conditions lead to the requirement that the number d of subdomains is proportional to the number

n of nodes, say n/d ≈ 4 (see Stage 2). Thus, assuming to have a quasi-uniform node set Xn and since the covering

{Ω j}
d
j=1

is local and regular, the size of each subdomain is proportional to hXn,Ω.

The partition of unity algorithm involves the use of the standard sorting routine quicksort, which requires on aver-

age a time complexity O(M log M), where M is the number of nodes to be sorted. Specifically, we have a distribution

phase consisting of building the data structure, in which the computational cost has order: O(n log n) for the sorting

of all n nodes and O(s log s) for the sorting of all s evaluation points in Stage 1. Moreover, in order to compute

the local RBF interpolants, we have to solve d linear systems of small dimensions, thus requiring a computational

cost of order O(m3
i
), i = 1, 2, . . . , d, for each subdomain, where mi is the number of nodes in the i-th subdomain (see

Stage 6). Moreover, in Stage 5, 7 and 8 we also need a cost of rk · O(mi), i = 1, 2, . . . , d, k = 1, 2, . . . , s, for the

k-th evaluation point of Es. Finally, the algorithm requires 3n, 3d and 3s storage requirements for the data, and mi,

i = 1, 2, . . . , d, locations for the coefficients of each local RBF interpolant.

4. Numerical experiments

In this section we present some tests to primarily verify performance and effectiveness of the cell-based partition

algorithm on scattered data sets, but also providing numerical results on accuracy of the interpolation method. The

code is implemented in C/C++ language, while numerical results are carried out on a Intel Core 2 Duo Computer (2.1

GHz). In the experiments we consider a node distribution containing n = (2k+1)2, k = 6, 7, 8, 9, 10, uniformly random

Halton nodes generated by using the program given in [35]. The partition of unity algorithm is run considering d = 4k,

k = 5, 6, 7, 8, 9, subdomain points and s = 33 × 33 evaluation (or grid) points, which are contained in the unit square

Ω = [0, 1] × [0, 1]. Here, for the global interpolant (5) we use Shepard’s weight.

Now, referring to the separation distance qXn
in (6) and the fill distance hXn,Ω in (7), in Table 1 we report the value

of qXn
and hXn,Ω for Halton node sets used in the numerical experiments.

n 4225 16641 66049 263169

qXn
2.1993E − 3 5.4709E − 4 2.1435E − 4 1.1281E − 4

hXn,Ω 2.1946E − 2 1.0342E − 2 4.4937E − 3 2.6249E − 3

Table 1: Separation distance qXn and fill distance hXn ,Ω for Halton data points by varying n.

The performance of the interpolation algorithm is verified taking the data values by three test functions, namely

Franke’s function f1, Nielson’s function f2 and test function f3 (see, e.g., [20, 27])

f1(x, y) =
3

4
exp

[

−
(9x − 2)2 + (9y − 2)2

4

]

+
3

4
exp

[

−
(9x + 1)2

49
−

9y + 1

10

]

+
1

2
exp

[

−
(9x − 7)2 + (9y − 3)2

4

]

−
1

5
exp
[

−(9x − 4)2 − (9y − 7)2
]

,

f2(x, y) =
1

2
y cos4

[

4
(

x2 + y − 1
)]

,
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f3(x, y) = 2 cos(10x) sin(10y) + sin(10xy).

Some information about the execution of the interpolation algorithm described in Section 3 are reported in Table

2, where the length of subdomain radius δsubdom and the cell number q2 are given.

n 4225 16641 66049 263169 1050625

δsubdom 4.4194E − 2 2.2097E − 2 1.1049E − 2 5.5243E − 3 2.7621E − 3

q2 232 462 912 1822 3632

Table 2: Information on the cell-based partition algorithm.

Moreover, since we are concerned to point out the effectiveness of the proposed algorithm, in Table 3 we compare

CPU times (in seconds) obtained by running the cell-based partition algorithm as described in Section 3, and the

strip-based partition algorithm proposed in [11]. This comparison emphasizes the high efficiency of the algorithm: in

fact, the use of a cell-based structure to partition the domain Ω gives a considerable saving of time above all when the

number of interpolated nodes becomes larger and larger, as it is also confirmed by execution time radios between the

two considered algorithms in Figure 3. Furthermore, we remark that the strip algorithm in [2] has also been compared

with Renka’s standard procedure in [25, 26], turning out more efficient than Renka’s algorithm.

n d tcell tstrip

4225 1024 0.3 0.4

16641 4096 0.8 1.3

66049 16384 2.6 6.5

263169 65536 10.2 41.2

1050625 262144 41.3 289.5

Table 3: CPU times (in seconds) obtained by running the cell-based partition algorithm (tcell) and the strip-based partition algorithm (tstrip).

Then, in order to test accuracy of the local algorithm, in Tables 4, 5 and 6 we report the Root Mean Square Errors

(RMSEs), i.e.

RMS E =

√

√

1

s

s
∑

i=1

| f (xi) − I(xi)|2,

which are computed on each of the considered test functions. The computation of errors is achieved by considering

both globally and locally supported RBFs for suitable values of the shape parameters, i.e., α = γ = 7 for φ1 and φ2

(with m = −1), and c = 1 for φ3 and φ4. We note that the local scheme is accurate, especially when the amount of data

points grows, even if we do not consider the optimal values for the parameters, namely those values for which we get

the best possible results. However, these choices give a good compromise among accuracy, efficiency and stability.

Moreover, since the aim of experiments is also to examine how errors change as the interpolation nodes grow, we

experimentally estimate convergence orders. In fact, in Table 6 we also show the convergence order of the observed

RMSEs, which is found by using the formula

pk =
ln (ek−1/ek)

ln (hk−1/hk)
, k = 2, 3, . . . ,

where ek is the k-th RMSE, whereas hk denotes the related fill distance. Specifically, we point out the good accuracy

of the method due primarily to the use of the radial basis functions and then the high order of convergence. In general,
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Figure 3: CPU time ratios tcell/tstrip by varying n.

n 4225 16641 66049

φ1 2.9431E − 4 2.7299E − 5 1.4879E − 6

φ2 1.6165E − 4 2.2059E − 5 6.3355E − 7

φ3 2.2145E − 4 5.3127E − 5 9.3027E − 6

φ4 8.3641E − 5 1.5106E − 5 5.2541E − 7

Table 4: RMSEs obtained by RBFs with α = 7, γ = 7 and c = 1 for f1.

n 4225 16641 66049

φ1 1.0113E − 4 6.2180E − 5 1.0435E − 5

φ2 9.2513E − 5 5.5783E − 5 9.6403E − 6

φ3 3.1579E − 4 1.2211E − 4 3.0063E − 5

φ4 2.2972E − 4 7.6501E − 5 1.2072E − 5

Table 5: RMSEs obtained by RBFs with α = 7, γ = 7 and c = 1 for f2.

the latter has not usually a uniform behaviour, but the explanation of this phenomenon can be found in the really

scattered nature of the data sets considered in numerical tests.

Then, we analyze the behaviour of the RMSEs by varying the shape parameter for each of the considered RBFs.

As an example, in Figure 4 we plot the behaviour of the RMSEs for f1. These graphs (and other ones that we omit

for brevity) point out that, if an optimal search of the shape parameters was performed, in some cases the results of

accuracy reported in this section could be improved of one or even two orders of magnitude. Note that each evaluation

is carried out by choosing equispaced values of the shape parameter in the intervals [1, 10] for α and γ, and [0.1, 1.9]

for c.
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φ1 φ2 φ3 φ4

n RMSE p RMSE p RMSE p RMSE p

4225 1.8821E − 4 − 5.5864E − 4 − 1.9615E − 3 − 3.5543E − 4 −

16641 3.0276E − 5 2.4286 6.1985E − 5 2.9222 4.8960E − 4 1.8447 8.7426E − 5 1.8642

66049 2.6106E − 6 2.9402 7.8239E − 6 2.4830 1.1496E − 4 1.7384 1.4162E − 5 2.1837

263169 2.5747E − 7 4.3086 2.6320E − 7 6.3092 2.6171E − 5 2.7527 7.2686E − 7 5.5234

Table 6: RMSEs and convergence orders obtained by RBFs with α = 7, γ = 7 and c = 1 for f3.

By analyzing numerical tests and the related pictures, we observe that Wendland’s functions φ3 and φ4, which have

compact support, reveal a greater stability than classical radial basis functions φ1 and φ2 (not compactly supported),

as well as a good accuracy. However, these graphs give an idea on the stability and enable us to choose “sure” values

for the shape parameters. These observations reflect the expected results, as reported in Remark 2.2, and suggest to

use basis functions with a moderate order of smoothness, thus avoiding the ill-conditioning problems that occur when

the amount of data increases or better the separation distance decreases assuming values roughly smaller than 10−3.

5. Application to Gattinara data

In this section we consider an application to Earth’s topography, which consists of interpolating with the cell-based

partition algorithm a set of real scattered data, called Gattinara data, belonging to the homonymous geographic area

of Gattinara. In fact, Gattinara is a municipality in the Province of Vercelli in the Italian region Piedmont, located

about 80 kilometres North-East of Turin and about 35 kilometres North of Vercelli.

Now, in this specific case we have 10671 Gattinara data, whose 3D representation is shown in Figure 5, and

among them we randomly select n = 10600 nodes for the interpolation process, only reserving the remaining s = 71

(evaluation) points for the cross-validation (see Figure 6). The latter technique is commonly used in applications to

assess goodness of approximation results and, accordingly, performance of the partition of unity algorithm, comparing

the predicted values with the original ones. In order to obtain reliable and numerically significant results on the error,

it is more appropriate to use relative (or normalized) errors, such as the Relative Root Mean Square Errors (RRMSEs),

whose formula is given by

RRMS E =

√

√

1

s

s
∑

i=1

| f (xi) − I(xi)|2

| f (xi)|2
.

Then, since in Section 4 numerical results on test functions have shown that compactly supported functions turn

out to be more stable than globally supported RBFs, preserving, at the same time, a good level of accuracy, in the

following we focus only on Wendland’s functions φ3 and φ4. In fact, in Table 7 we report the RRMSEs obtained by

varying the shape parameter c. These results point out that the considered approach and the related cell-based partition

algorithm, which interpolates this data set in about 0.5 seconds, turns to be effective also when one has to deal with

real problems.

c 0.5 1.0 1.5

φ3 6.0607E − 3 4.9270E − 3 4.9556E − 3

φ4 8.4848E − 3 1.4159E − 2 1.4060E − 2

Table 7: RRMSEs obtained by using the cell-based partition algorithm on Gattinara data.
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Figure 4: RMSEs obtained by varying the shape parameters for f1.

6. Conclusions and future work

In this paper we present a new local algorithm for scattered data interpolation in a bidimensional domain. This

algorithm is based on a partition of unity and it may efficiently be used for the solution of large-scale interpolation.

Indeed, it works well and quickly also when the amount of data to be interpolated is very large, namely there are many

thousands or even millions of data. In particular, this optimized implementation of the partition of unity method is

obtained by applying an efficient nearest neighbour searching procedure. Moreover, the proposed algorithm is flexible

since different choices of local approximants are allowable, is easily parallelizable, and completely automatic. An

application to Earth’s topography shows as our approach can also be employed with real data.

However, as research and future work we expect to refine the partition of unity algorithm based on the related par-

tition of unity method adopting suitable data structures like kd-trees and range trees, combining if possible these data

structures with the special partition of the domain in cells. Moreover, we are going to extend the proposed algorithm in

a straightforward way in three or more dimensions and for more general domains. Then, parallel computation as well

as extention to problem involving discontinuous surfaces (see, e.g., [1]) are topics which deserve to be investigated

in a more in-depth way, mainly for the wide-range of applications. On the other hand, in numerical experiments we

have noted a small loss of accuracy close to the boundary of the domain since the number of nodes of a subdomain

lying on or close to the boundary of the domain is considerably reduced; this limitation is essentially due to the fact
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Figure 6: A 2D view of a Gattinara data set with n = 10600 (dot, in blue) and s = 71 (cross, in red).

that only a little part of the subdomain intersects the domain Ω. Then, the possibility of using an adaptive approach

which allows us to suitably increase the dimension of the subdomains only near to the critical region or, as suggested

in [28], the use of exponential weights should successfully overcome these problems. Finally, although the choice of

low-order basis functions such as compactly supported Wendland’s functions gives a good trade-off between stability

and accuracy, in general we believe that the employment of preconditioning techniques could be of great utility. Many

efforts and studies in such direction have already been carried out for radial basis function collocation matrices (see

[10]) and now further extents are under consideration for radial basis function interpolation, but this topic comes out

of the purposes of this article and will be treated in future works.
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