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Summary: We developed a new calculation strategy for determining the vibrational contribution of 

each layer or atom forming a slab, where the latter is a two-dimensional periodic structure of given 

thickness, generated by separating the bulk structure along the hkl plane of interest and used to 

simulate the crystal surfaces.  By means of this new calculation methodology, it is now possible to 

estimate how the surface free energy of a crystal face changes with temperature by only taking into 

account the entropic contribution due to the vibrational motion of atoms in the slab. Furthermore, 

the model is extended to the calculation of the vibrational contribution to the free energy of the 

interface between (ii) two identical crystals in twinning relationship and (ii) two different crystals in 

epitaxial relationship. 

Our model uses the frequencies of the vibrational modes of a slab and it is based on the 

construction of a weight function taking into account how the vibrational amplitude of the atoms 

involved in the vibrational mode is modified by the presence of the surface. 

We applied the model to the following systems: (i) 28-layer (100) slab of LiF and (ii) 10-

layer (10.4) slab of calcite (CaCO3). In both cases, the vibrational energy, vibrational entropy and 

vibrational free energy of the optimized slab, and the contribution to these quantities of each atom 

and layer forming the slab were calculated. 

 
 
Keywords: Surface free energy, vibrational entropy, vibrational frequency, slab model, crystal 
surface 
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1. Introduction 

The surface free energy [ T
hkl)(γ (J/m2)] of a (hkl) crystal face is the specific Helmholtz free energy 

needed for the creation of a crystal surface at the temperature T of interest. Such thermodynamic 

quantity is fundamental for the determination of: 

(i) the most stable surface, that is the surface with the lowest surface free energy; 

(ii) the equilibrium morphology of a crystal, by applying the Gibbs–Wulff’s theorem;1 

(iii) the probability of occurrence of classical nucleation with respect to the non-classical one, 

where an amorphous precursor phase is expected to form.2-5 Indeed, by inserting the T
hkl)(γ

values into the equations of the classical nucleation theory, the thermodynamic barrier to be 

overcome for stabilizing the critical nuclei can be calculated. If this classical barrier results to 

be extremely high, a non-classical nucleation could be hypothesized, which should require a 

fairly lower, or even null, activation energy for the formation of an amorphous phase with 

respect to a crystalline one. 

Usually, T
hkl)(γ  is calculated by comparing the free energy of the bulk crystal (Fbulk) with that of a 

two-dimensional periodic structure (slab model) of given thickness (Fslab), cut parallel to the hkl 

crystal plane of interest (i.e., Rubbo et al.6): ( ) AFAFF bulkslab
T
hkl //)( Δ=−=γ , where A is the area of 

the surface. This kind of model can provide a faithful description of the ideal surface, provided that 

the convergence of geometry, energy, and electronic properties, with the increasing number of 

atomic layers forming the slab, is checked (in the following, this point will be referred to as the 

criterion of convergence). In order to perform such a calculation, two different schemes can be 

envisaged to deal with a slab model (i.e., Dovesi et al.7): 

(i) by imposing 2D periodic boundary conditions. The slab model is really two-dimensional, with 

a 2D unit cell. 

(ii) By forcing a 3D periodicity (3D slab model). The three-dimensional system consists of an 

array of slabs of given thickness along one direction, separated by vacuum zones. The vacuum 

zones must be thick enough in order to reduce to zero the fictitious interactions between 

contiguous slabs. 

However, the application of the 2D or 3D slab model should give the same result. 

 Unfortunately, by using this calculation strategy, the excess thermodynamic quantities like 

ΔF = Fslab – Fbulk and ΔS = Sslab – Sbulk (excess entropy) are exclusively assigned to the crystal 

surface, as it is not possible to establish the contribution of the different layers forming the slab to 
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these excess quantities, which are nothing else that the integrated values of unknown density 

functions (i.e., free-energy density) over the thickness of the slab. 

 The excess thermodynamic quantities ΔF = Fslab – Fbulk  obviously arises as the consequence 

of the deviation of the free energy of the slab with respect to the corresponding bulk quantity; as 

such deviation is likely to be produced in the layers which are closer to the free surface, with 

respect to those more deeply buried in the slab, it may be interesting to analyze the contribution of 

the various layer to the excess quantity, as a function of the distance of each of them from the 

surface. To this end, in this work we propose a new calculation strategy to estimate the vibrational 

contribution of each layer or atom forming the slab to vib
bulk

vib
slab

vib FFF −=Δ (i.e., the excess 

vibrational free energy of a slab due to the existence of the surface) and, as a consequence, to 

determine how the vibrational free energy density varies within the slab. Furthermore, as will be 

discussed below, by means of this new calculation methodology it is possible to estimate the 

vibrational contribution to T
hkl)(γ without calculating the vibrational contribution of the bulk, vib

bulkF . In 

other words, we can estimate how the surface energy changes with temperature by taking into 

account the slab entropic contribution only, which is due to the vibrational motion of the atoms in 

the slab (vibrational entropy).  

Finally, we extend the model to the calculation of the vibrational contribution to the free energy of 

the interface between (i) two identical crystals in twinning relationship, and (ii) two different 

crystals in epitaxial relationship. 

Our model presupposes the ability to calculate the frequencies of the vibrational modes of a 

slab, whose values enter into the thermodynamic equations to compute the vibrational energy, 

entropy and free energy. Nowadays, this can be done by using several codes developed for 

performing empirical (i.e., GULP,8 TINKER9), semi-empirical (i.e., MOPAC10) and ab initio 

quantum-mechanical (i.e., ABINIT,11,12 CASTEP,13 CRYSTAL,14 Quantum ESPRESSO,15 

VASP16) calculations on crystalline materials. Our model can be implemented in all of these codes, 

but at the time being it was implemented in a homemade program (SLAB), which is designed to 

read the output files of the CRYSTAL14 and GULP8 simulation codes and it is freely available to 

the web page http://mabruno.weebly.com/download. 

The paper is structured as follow: (i) a short review of the calculation methodology and 

equations used to determine the vibrational free energy of a crystal face; (ii) description of our new 

model to analyze the vibrational free energy of a slab and calculate the vibrational contribution to 

the surface free energy; (iii) application of our model to the (100) slab of LiF and (10.4) slab of 

calcite (CaCO3), and discussion of the results; (iv) main conclusions and perspectives. 
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2. The surface free energy of a crystal face 

The free energy of a crystal face, T
hkl)(γ , at the temperature T is composed by the following terms:17 

 
configT

hkl
vibT

hkl
K

hkl
T
hkl

,
)(

,
)(

0
)()( γγγγ ++=    (1) 

 

where: (i) K
hkl

0
)(γ is the surface energy at T = 0K (the specific work needed for creating and relaxing a 

crystal face at 0K and without considering vibrational zero point effects); (ii) vibT
hkl
,

)(γ is the vibrational 

(thermal) contribution (the specific internal vibrational energy and vibrational entropy at the 

temperature T, including the zero point energy contribution); (iii) configT
hkl
,

)(γ  is the specific surface 

configurational entropy, which is related to the number of possible configurations of the surface, 

and it is given by the Boltzmann entropy formula, ( ) AWTkB
configT

hkl ln,
)( −=γ , being W the number of 

the surface configurations and kB is the Boltzmann constant. 

According to the CRYSTAL strategy,14 K
hkl

0
)(γ  is calculated by means of the following 

relation:7 

 

A
nEnEnE bulkslab

nsn

K
hkl 2

)(lim)(lim0
)(

−
==

∞→∞→
γ   (2) 

 

where A is the area of the primitive unit cell of the surface, n is the number of layers in the slab, 

E(n)slab is the energy of a n-layer slab and Ebulk is the energy of a formula unit in a bulky crystal; the 

factor 2 in the denominator accounts for the upper and lower surfaces of the slab. Es(n) is thus the 

energy per unit area required to form the surface from the bulk. As more layers are added in the 

calculation (n → ∞), Es(n) will converge to the surface energy per unit area ( K
hkl

0
)(γ ). 

Instead, according to the standard two-region strategy employed by GULP,8 K
hkl

0
)(γ  is evaluated from 

the energy of the surface block of the crystal (region 1, Us) and the energy of a portion of bulk 

crystal (Ub) containing the same number of atoms as the surface block:18 

 

A
UU bsK

hkl
−

=0
)(γ  (3) 

 

where A is the surface area.  
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 The thermal contribution vibT
hkl
,

)(γ can be evaluated by calculating, both at ab initio and 

empirical level, the frequencies of the vibrational modes for the bulk crystal and the slab limited by 

the faces of interest.6 This allows to calculate the vibrational partition function for the slab and the 

bulk crystal, ∏∏ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−−

i k

Tk
h

Tk
h

vib
bulkslab

B

ik

B

ik

eeZ
νν

12
/  and, as a consequence, the vibrational energy (

vib
bulkslabE / ) and entropy ( vib

bulkslabS / ) of the slab and bulk crystal: 
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where h is the Planck constant, νik is the frequency of the ith vibrational mode at the kth point in the 

Brillouin zone, in the slab or bulk crystal and kξ  represents the weight of that particular k point, 

such that the sum of all weights is equal to one (as an example, if the number of k points is 10, then 

kξ  is equal to 1/10). Then, the vibrational contribution to the surface free energy is obtained 

through the relation: 

 

A
FF

A
SST

A
EE vib

bulk
vib

slab
vib
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vib
slab

vib
bulk

vib
slabvibT
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−

=
−

−
−
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where vib
bulkslab

vib
bulkslab

vib
bulkslab TSEF /// −=  is the vibrational free energy of the slab and bulk crystal. It is 

to be noted that by using such a strategy it is not possible to establish the contribution to vibT
hkl
,

)(γ  of 

each layer forming the slab or, in other words, it is not possible to determine how the vibrational 

free energy density varies within the slab. For obtaining this information it is necessary to face the 

problem from another point of view, as explained in the following section. 
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3. A new strategy to analyze the thermodynamic properties of a slab 

 

For a slab composed by j = 1, …, n atoms there are 3n-3 vibrational modes with frequency νik (i = 1, 

…, 3n-3 and k = 1, …, m, being m the number of k points in the Brillouin zone; this number is 

obviously virtually infinite; however, by using the supercell strategy as it is implemented in 

CRYSTAL,14 the Brillouin zone is sampled at a finite number of k points). The vibrational modes 

are described by eigenvectors of the mass weighted Hessian matrix (normal modes). Then, the 

contribution of each atom forming the slab to the ith vibrational mode can be evaluated by designing 

a weight function taking into account the vibrational amplitudes of the atoms involved in the 

vibrational mode (these are related to the components of the eigenvector representing the normal 

mode, referring to the displacements of any given atom along the three orthogonal directions of the 

reference frame). It is licit to build such a weight function, as the vibrational amplitudes of the 

atoms are expected to be modified by the presence of the surface. Otherwise stated, when a surface 

is present, there could be vibrational modes mainly involving atoms close to the surface, being 

small or negligible the contribution from farther atoms. Therefore, by identifying with 
ikjkνa  the 

eigenvector associated to the jth atom and th
ikν  frequency at the kth point in the Brillouin zone, we are 

able to define the weight function: 
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for which holds the relation 1=∑
j

jk ik
p ν . Then, by multiplying eqs 4 and 5 with eq 7, we can 

calculate the contribution of the jth atom ( vib
jE , vib

jS and vib
jF ) to vib

slabE , vib
slabS  and vib

slabF : 
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j
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j

vib
j TSEF −=    (10) 

 

Finally, as a consequence of the definition of the weight function: 

(i) ∑=
j

vib
j

vib
slab EE , ∑=

j

vib
j

vib
slab SS  and ∑=

j

vib
j

vib
slab FF ; 

(ii) if the vib
slabE  (J/mol), vib

slabS  (J/mol/K) and vib
slabF  (J/mol) values are normalized to a mole of the 

number of formula units forming the slab, then also the vib
jE , vib

jS  and vib
jF  values are normalized to 

the same amount of matter. 

 It is now possible to calculate the contribution given by a selected group of atoms to vib
slabE  

and vib
slabS  by consistently adding the different terms of vib

jE  and vib
jS . As an example, since we are 

interested to analyze the thermodynamic properties of a slab, we can evaluate the contribution of 

each layer of the slab by grouping together the atoms belonging to the same dhkl layer (interplanar 

distance: the distance between adjacent hkl planes) and adding their vib
jE  and vib

jS  values. In the 

following we reported the results of this analysis performed on the (i) 28-layer (100) slab of LiF and 

(ii)10-layer (10.4) slab of calcite (CaCO3) by using the program SLAB. 

 

 

3.1. Calculation of the vibrational contribution to the surface free energy ( vibT
hkl
,

)(γ ) 

 

In this section we report the relations to be used for the calculation of the vibrational contribution to 

the surface free energy ( vibT
hkl
,

)(γ ; J/m2) for (i) center-symmetric slabs in which all the atoms and the 

two surfaces delimiting them are allowed to relax (i.e., CRYSTAL strategy) and (ii) not center-

symmetric slabs where the atoms of the region 1 only are allowed to move, and only one surface 

relaxes (i.e., GULP strategy). 

Concerning a center-symmetric slab formed by l =1, … , p, p+1, …, 2p layers (Fig. 1a), 
vibT

hkl
,

)(γ  is calculated by using the following equation: 
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where vib
lf  is the density of the vibrational free energy (J/m3) of the lth layer and vib

pf  is the density 

of the vibrational free energy of the layer p at the center of the slab; in this relation, as well as in the 

following ones, we must consider a vibrational free energy density, which is multiplied by a length 

(the thickness of half slab, hklpd ) for obtaining the surface energy expressed in J/m2. When the slab 

is thick enough to satisfy the criterion of convergence, that is when the bulk-like properties are 

reproduced at the center of the slab, the quantity vib
ppf2 converges to the term vib

bulkF  of the eq 6 and 

the resulting vibT
hkl
,

)(γ  value is a correct estimate of the surface vibrational contribution. 

 As concerns a non center-symmetric slab (Fig. 1b), the surface vibrational contribution is 

evaluated with the equation: 

 

hkl
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where vib
pf  is the vibrational free energy density of the layer p, the layer at the center of the region 

1. Even in this case, when the thicknesses of the regions 1 and 2 satisfy the criterion of 

convergence, vib
ppf2  converges to the term vib

bulkF  of the eq 6 and a realistic estimate of vibT
hkl
,

)(γ  is 

obtained. 

 
 

FIGURE 1 
 
 
3.2. Calculation of the vibrational contribution to the interface free energy 
 
Our model can be also employed to analyze how the thermodynamic functions vary within (i) a 

twinned slab or (ii) a slab composed by two different phases (multi-phase slab) in epitaxial 

relationship. The calculation strategy is always the same: the vib
jE , vib

jS  and vib
jF terms are 

calculated by inserting into the eqs 8-10 the vibrational frequencies of an optimized twinned/multi-

phase slab. 
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A twinned slab, made by slabs 1 and 2 (Fig. 2a), can be generated in the following way: 

(i) slab 1 of a given thickness is made by cutting the bulk structure parallel to the hk.l twin plane 

(the original composition plane, OCP) of interest;  

(ii) slab 2 is made by applying the appropriate twin law to the atomic coordinates of slab 1. 

A fundamental thermodynamic quantity related to a twinned slab is the twinning free energy ( T
TEγ ; 

J/m2), which is excess free energy required to form a unit area of the twin boundary interface at the 

temperature T of interest. By analogy with the surface free energy, T
TEγ can be written as the sum of 

three terms: 

 
configT

TE
vibT

TE
K

TE
T
TE

,,0 γγγγ ++=    (13) 
 

K
TE
0γ is the excess potential energy at 0K required to form a unit area of the twin boundary interface 

and reads: 

 

A
EE NTTK

TE
−

=0γ   (14) 

 

where ET and ENT are the potential energies of the optimized twinned and not-twinned slabs, 

respectively; further details on the calculation of this quantity are reported in the paper by Bruno et 

al. (2010). configT
TE

,γ is the specific configurational entropy of the interface. 
vibT

TE
,γ  is the vibrational contribution of the twin boundary interface and, for a twinned slab 

composed by l =1, …, 2p layers (Fig. 2a), it is determined with the relation: 
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l
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,γ   (15) 

 

where vib
p

vib
p ff 2/32/ ≡  is the vibrational free energy density of the layer p/2≡3p/2. As in the previous 

cases, when the thicknesses of the slabs 1 and 2 satisfy the criterion of convergence, vib
p

vib
p pfpf 2/32/ ≡

converges to vib
bulkF . 

 As concerns a slab composed by two phases in epitaxial relationship (A and B, Fig. 2b), a 

fundamental thermodynamic quantity to evaluate is the interface free energy, T
intγ  (J/m2), the excess 

free energy required to form a unit area of the interface between the phases A and B. Similarly to 
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T
TEγ , T

intγ is the sum of the potential ( K0
intγ ), configurational ( configT ,

intγ ) and vibrational contributions(

vibT ,
intγ ). K0

intγ is calculated by using the relation: 

 

A
EEE BAABK −−

=0
intγ   (16) 

 

where EAB, EA and EB are the potential energies of the optimized multi-phase slab, slab of the only 

phase A and slab of the only phase B, respectively. Instead, by considering a multi-phase slab 

composed by l = 1, …, 2p layers of the phase A and s =1, …, 2t layers of the phase B, vibT ,
intγ  is 

calculated by means of the following equation: 
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where vib
pf  and vib

tf  are the vibrational free energy densities of the layers p and t, placed at the 

center of the phases A and B, respectively. If the thicknesses of the phases A and B satisfy the 

criterion of convergence, then vib
ppf  and vib

ttf  converge to vib
bulkF  of the phases A and B, respectively. 

 
 

FIGURE 2 
 
 
4. Application of the model to the (100) slab of LiF 

 

The (100) slab of LiF was recently studied by our research group.6 We performed quantum-

mechanical ab initio calculations on 4- 8- 12- 16- 20- and 28-layer slabs, in order to determine the 

surface structure and the surface free energy of the (100) face. The slab geometry optimization and 

the calculation of the vibrational frequencies were performed using the CRYSTAL06 software for 

quantum-mechanical ab initio calculations,14 which implements the Hartree-Fock and Kohn-Sham 

self consistent field (SCF) method for the study of periodic systems.19 For a detailed analysis of the 

(100) surface structure and slab vibrational modes see the paper by Rubbo et al.,6 whereas the 

computational details concerning the slab geometry optimization and the calculation of the slab 

frequencies, are reported in the Electronic Supplementary Information ( ESI). 
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 In this work the vibrational energy, entropy and free energy of the optimized 28-layer (100) 

slab, and the contributions of each atom (Li or F) and layer forming the slab were calculated at the 

temperature T = 298.15 K. The slab is composed by 28 layers and 56 atoms (a LiF unit per layer) 

related by an inversion center. Then, the thermodynamic analysis will take into account only the 

symmetrically independent layers (l =1, …, 14, where l = 1 is the surface layer) and atoms (j = 1, 

…, 28; where the atoms 1 and 2 are in the layer l =1). 

In Fig. 3 the vibrational contribution of the layers ( vib
lE , vib

lS  and vib
lF ) is plotted; the 

numerical values are listed in Table S1 and S2 (ESI). By analyzing Fig. 3, one observes an abrupt 

increase of vib
lE  moving from the surface toward the center of the slab. In order to give an idea, vibE1

= 17107.9 and vibE14 = 17672.9 J/mol. Instead, vib
lS  shows an opposite behavior, it decreases from the 

surface ( vibS1 =55,0 J/mol K) to the center of the slab ( vibS14 =43.3J/mol K). As a consequence, vib
lF  

shows an analogous behavior to vib
lE : vibF1 = 696.3 and vibF14 = 4769.1 J/mol. 

In order to understand the contribution of the atomic species to the free energy of each layer 

forming the slab, in Fig. 4 we have reported the values of the free energy of the layers ( vib
lF ) along 

with those of the Li and F atoms (see Table S1, ESI). It is interesting to observe that: 

(i) the highest contribution to the slab free energy is given by the Li atoms. Indeed, at the 

center of the slab the free energy of Li and F is 4615.3 and 153.8 J/mol, respectively. 

This means that the ~97% of the slab free energy at the center of the slab is due to Li. 

(ii) The free energy of F is negative in the layers 1-4, whereas that of Li is always positive. 

Finally, by applying eq 11, we also calculated the vibrational contribution to the surface free 

energy: vibK ,298
)100(γ = -0.01 J/m2. Then, by adding this value to the surface energy at 0K ( K0

)100(γ = 0.338 

J/m2) calculated by Rubbo et al.6 for the 28-layer slab, we obtained the surface free energy of the 

(100) face at 298.15K, K298
)100(γ = 0.328 J/m2. Here, it is important to stress that this values was 

obtained considering a 28-layer slab, the value of K298
)100(γ  we estimated does not satisfy the criterion 

of convergence on the thickness of the slab. In order to have a more reliable estimate of K298
)100(γ , a  

calculations on a thicker (100) slab should be performed. 

 
 

FIGURES 3 and 4 
 
 
5. Application of the model to the (10.4) slab of calcite 
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The vibrational frequencies of an optimized (10.4) slab of calcite were calculated at empirical level 

by using the calcite force field developed by Rohl et al.20 and the version 4.0 of the General Utility 

Lattice Program (GULP) simulation code8 which, being based on force field methods, allows the 

calculation of structures and properties of minerals from a given set of empirical potentials. The 

parameters of the Rohl potential were obtained by fitting structural data for both calcite and 

aragonite, as well as physical properties (elastic and dielectric constants) and phonon frequencies. 

This force field very successfully reproduced the equilibrium geometries and the surface energy 

values at T = 0Kof the {10 14} and {01 12} faces obtained from ab initio calculations at DFT 

(Density Functional Theory; B3LYP21 and PBE22 Hamiltonians) level,23-25 as well as the 

experimental observations of the surface relaxation of the {10 14} form.20 Furthermore, a fairly 

good agreement exists between the twinning energies of the four twin laws of calcite calculated 

with the Rohl potential26 and those determined at DFT level.27 

We performed the calculations at T = 300K by considering a (10.4) slab formed by l = 1, …, 

10 layers and j = 1, …, 300 atoms (with six CaCO3 units per layer) in both region 1 and 2. The 

frequencies of the vibrational modes of the region 1 of the (10.4) slab were calculated by 

considering 30 k points. Therefore, the vibrational energy, entropy and free energy that we 

computed concerns exclusively the region 1 of the (10.4) slab. We are acknowledge that this is not a 

sufficient number of k points for reaching convergence on the thermodynamical properties of the 

slab, but our purpose in this case is just to show the ability of the model to discriminate between the 

different contributions of the layers to the thermodynamic properties of the slab; in order to obtain 

more reliable estimates of the thermodynamic properties, a greater number of k points should be 

used. 

As in the case of LiF, in Fig. 5 we reported the vibrational contribution of the layers ( vib
lE , 

vib
lS  and vib

lF ) ; the numerical values are listed in Table S3 and S4 (ESI). We observe an analogous 

behavior to LiF concerning vib
lS , whereas vib

lF  and vib
lE  show a very different trend. Indeed, a 

damped oscillation of the vib
lF  and 

vib
lE  values is observed, with the highest amplitude of the 

oscillation at the slab surface. 

Another evident feature of the curves reported in Fig. 5 is the strong variation of the vib
lE , vib

lS  and 

vib
lF  values associated to the layer 10 with respect to the ones relative to the previous layers. This is 

due to the calculus methodology implemented in the GULP program, where the vibrational 

frequencies of the atoms placed to the bottom of the region 1 are strongly affected by the rigid 

behavior of the region 2. That is, the environment surrounding the atoms at the bottom of the region 
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1 is different with respect to that of the atoms located far away the interface between region 1 and 

region 2 of the slab. For this reason the frequencies of the atoms located at the bottom of the region 

1 are affected by errors and, as a consequence, the vibrational thermodynamic properties of the 

layer 10 deviate from the correct trend. 

Also for calcite, in order to understand the contribution of the atomic species to the free 

energy of each layer forming the (10.4) slab, in Fig. 6 we have reported the values of the free 

energy of the layers ( vib
lF ) along with those of the Ca, C and O atoms (see Table S3, ESI). We 

observe that: 

(i) the highest contribution to the slab free energy is given by the C and O atoms. At the 

center of the slab (layer 6) the free energy of Ca, C and O is 1316.8, 102571.1 and 

108761.4 J/mol, respectively. This means that the ~99% of the free energy at the center 

of the slab is due to the CO3 groups. 

(ii) The free energy of Ca is negative only in the layers 1. 

By applying eq 12, we calculated the vibrational contribution to the surface free energy: 
vibK ,300

)4.10(γ = -0.250 J/m2. Then, by adding this value to the surface energy at 0K ( K0
)100(γ = 0.534 J/m2) 

calculated by using eq 3, we obtained the surface free energy of the (10.4) face at 300K, K300
)4.10(γ = 

0.284 J/m2. As for the LiF case, it is important to stress that this values was obtained considering a 

10-layer slab. Then, the value of K300
)4.10(γ  we estimated does not satisfy the criterion of convergence 

on the thickness of the slab and number of k points. Indeed, a more reliable estimates of K300
)4.10(γ  was 

very recently obtained by Bruno et al.,17 which gave 0.464±0.018 J/m2.  

 
 

FIGURES 5 and 6 
 
 
6. Conclusions 
 
In this paper we describe a new calculation methodology for determining the vibrational 

contribution of each layer or atom forming the slab (i.e., how the vibrational free energy density 

varies within the slab). Now, by means of this new calculation methodology, it becomes possible to 

estimate the vibrational contribution to the surface free energy of a crystal face ( T
hkl)(γ ) without 

calculating the vibrational contribution of the bulk: we estimate how the surface energy changes 

with temperature by only taking into account the entropic contribution due to the vibrational motion 

of atoms in the slab. Finally, our model is extended to the calculation of the vibrational contribution 
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to the free energy of the interface between (ii) two identical crystals in twinning relationship and (ii) 

two different crystals in epitaxial relationship. 

Our model uses the frequencies of the vibrational modes of a slab, which can be determined 

by means of several free or commercial codes developed for performing calculations on crystalline 

materials, and it is based on the construction of a weight function taking into account how the 

vibrational amplitude of the atoms involved in the vibrational mode is modified by the presence of 

the surface. Indeed, when a surface is present, there are vibrational modes in which atoms near the 

surface take part to a higher degree than atoms far away from the surface. Our calculation strategy 

was implemented in a homemade program (SLAB), which is designed to read the output files of the 

CRYSTAL14 and GULP8 simulation codes. However, in principle our model can be implemented in 

all of the codes developed for performing semi-empirical, empirical and ab initio quantum-

mechanical calculations on crystalline materials. 

In order to test our model, we applied it to the following systems: (i) 28-layer (100) slab of 

LiF and (ii) 10-layer (10.4) slab of calcite (CaCO3). In both cases, the vibrational energy, 

vibrational entropy and vibrational free energy of the optimized slab, and the contribution to these 

quantities of each atom and layer forming the slab were calculated. Since we are only interested to 

show how our model works, in this paper we have only reported the calculations at room 

temperature (T = 298.15 K and T = 300 K, for LiF and CaCO3, respectively), we did not analyze 

how the temperature affects the thermodynamic properties of the slab; this analysis will be object of 

study in a future work. 

 Our model could be also employed to analyze how the vibrational free energy density is 

modified when a point defect (i.e., a Schottky or Frenkel defects) is introduced into the bulk 

structure of a crystal. Indeed, it is sufficient to calculate the vibrational frequencies of the 

“defective” crystal and apply our model for obtaining the vibrational free energy of each atom: the 

vibrational free energy of the atoms close to the point defect should be somewhat different with 

respect to that of the atoms far away from the point defect. Finally, our model could be used to 

study a defective surface (i.e., a stepped slab), by determining how the vibrational free energy 

density varies from the stepped surface to the bulk. 
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Electronic Supplementary Information (ESI) Available.  CRYSTAL computational details 
concerning the slab geometry optimization and the calculation of the slab frequencies of LiF; Table 
S1: vibrational energy, entropy and free energy at T = 298.15 K of Li and F atoms forming the 
(100) slab of LiF; Table S2: vibrational energy, entropy and free energy at T = 298.15 K of the 
layers forming the (100) slab of LiF; Table S3: vibrational energy, entropy and free energy at T = 
300 K of Ca, C and O atoms forming the (10.4) slab of calcite; Table S4: vibrational energy, 
entropy and free energy at T = 300 K of the layers forming the (10.4) slab of calcite.  
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Figure captions 
 
Figure 1. Schematic representation of a center-symmetric (a) and not center-symmetric slab (b); 
diagrams showing a qualitative trend of the vibrational free energy of the layer l =1, …, 2p for the 
two cases, are also reported. Symmetrically equivalent layers are represented by equal colors. In (a), 
where the slab preserves the inversion center, the layers 1, 2, …, p are equivalent to the layers 2p, 
2p-1, …, p+1, respectively. In (b), where the inversion center is not preserved, no equivalent layers 
exist in region 1.  
 
Figure 2. Schematic representation of a twinned (a) and multi-phase slab in epitaxial relationship 
(b); diagrams showing a qualitative trend of the vibrational free energy of the layers for the two 
cases, are also reported. Symmetrically equivalent layers are represented by equal colors. 
 
Figure 3. Vibrational energy ( vib

lE ), entropy ( vib
lS ) and free energy ( vib

lF ) of the layers l =1, ..., 14 
of the (100) slab of LiF at T = 298.15 K. Each layer is formed by a LiF unit. 

 
Figure 4. Vibrational free energy of the layers l =1, ..., 14 of the (100) slab of LiF at T = 298.15 K. 
The vibrational free energy of the atoms (Li and F) forming the slab is also reported. 
 
Figure 5. Vibrational energy ( vib

lE ), entropy ( vib
lS ) and free energy ( vib

lF ) of the layers l =1, ..., 10 
of the (10.4) slab of calcite at T = 300 K. Each layer is formed by six CaCO3 units. 
 
Figure 6. Vibrational free energy of the layers l =1, ..., 10 of the (10.4) slab of calcite at T = 300 K. 
The vibrational free energy of the atoms (Ca, C and O) forming the slab is also reported.  
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Graphical abstract 
 
 
 

 
 

We developed a new calculation strategy for determining the vibrational contribution of each layer 

or atom forming a slab. By means of this new calculation methodology, it is now possible to 

estimate how the surface free energy of a crystal face changes with temperature by only taking into 

account the entropic contribution due to the vibrational motion of atoms in the slab.  

 


