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Abstract 

 

The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield 3BPΦ  = (3.1±0.3)⋅10
−5

 and 

the following second-order reaction rate constants: with 
•
OH, 

OHBP
k •

,3
 = (2.0±0.4)⋅10

10
 M

−1
 s

−1
; 

with the triplet states of chromophoric dissolved organic matter (
3
CDOM*), 

*,3
3
CDOMBP

k  = 

(1.1±0.1)⋅10
9
 M

−1
 s

−1
; with 

1
O2, 

2
1,3 OBP

k  = (2.0±0.1)⋅10
5
 M

−1
 s

−1
, and with CO3

−•
, •−

3,3 COBP
k  < 5⋅10

7
 

M
−1

 s
−1

. These data allow the modelling of BP3 photochemical transformation, which helps filling 

the knowledge gap about the environmental persistence of this compound. Under typical surface-

water conditions, direct photolysis and reactions with 
•
OH and 

3
CDOM* would be the main 

processes of BP3 phototransformation. Reaction with 
•
OH would prevail at low DOC, direct 

photolysis at intermediate DOC (around 5 mg C L
−1

), and reaction with 
3
CDOM* at high DOC. If 

the reaction rate constant with CO3
−•

 is near the upper limit of experimental measures (5⋅10
7
 M

−1
 

s
−1

), the CO3
−•

 degradation process could be somewhat important for DOC < 1 mg C L
−1

. The 

predicted half-life time of BP3 in surface waters under summertime conditions would be of some 

weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates 

were detected upon reaction with 
•
OH. Two methylated derivatives were tentatively identified, and 

they were probably produced by reaction between BP3 and fragments arising from 

photodegradation. The other intermediates were benzoic acid (maximum concentration ∼10% of 

initial BP3) and benzaldehyde (1%). 

 

 

Keywords: Environmental modelling; Surface-water photochemistry; Indirect photolysis; 

Photosensitisers; Pharmaceuticals and personal care products. 
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1. Introduction 

 

Benzophenone-3 (2-hydroxy-4-methoxybenzophenone, hereafter BP3) can absorb sunlight in the 

UVA and UVB regions, with limited phototransformation. This property accounts for its use as 

sunlight filter in sunbathing lotions and in other cosmetic formulations, to protect either the skin or 

other formulation components from the effects of sunlight exposure (Rieger, 1997). BP3 is also 

employed as photostabiliser in packaging materials, to prevent polymer photochemical degradation 

and in the treatment of photodermatitis. An important consequence of the widespread use of BP3 is 

its frequent detection in human urine samples (up to 97% samples in the US; Calafat et al., 2008; 

Krause et al., 2012). BP3 may enter the body principally upon dermal exposure, while the oral 

intake is much less likely despite the rapid absorption by the gastrointestinal tract. Both phase I and 

phase II metabolism is observed, which is mostly carried out by liver and kidneys to produce 

compounds such as 2,4-dihydroxybenzophenone, 2,2’-dihydroxy-4-methoxybenzophenone and 

2,3,4-trihydroxybenzophenone. Both the primary compound and its metabolites are excreted in 

urine in the form of glucuronated derivatives (Okereke et al., 1993; Kadry et al., 1995; Calafat et 

al., 2008). BP3 has low acute toxicity (Okereke et al., 1995), but it shows estrogenic activity in 

several fish species, where it acts as vitellogenin inducer (Schlumpf et al., 2001; Schlenk et al., 

2005; Kunz et al., 2006; Coronado et al., 2008). Therefore, BP3 has potential to cause feminisation 

of male fish. 

BP3 can reach aquatic systems directly, due to its use as a sunscreen in recreational activities, or 

through wastewater because of its incomplete elimination in wastewater treatment plants (WWTPs; 

Balmer et al., 2005; Li et al., 2007). BP3 has been detected at levels of up to some µg L
−1

 in raw 

wastewater, at tens to several hundreds ng L
−1

 in treated wastewater, and up to a hundred ng L
−1

 in 

lake water (Poiger et al., 2004; Balmer et al., 2005; Rodil et al., 2008). Moreover, it has been 

detected at ng g
−1

 levels in solid matrices and in biota (Meinerling and Daniels, 2006; Nieto et al., 

2009). For these reasons, BP3 is considered as a personal care product of emerging environmental 

concern (Daughton and Ternes, 1999). 

To date, very little is known about the environmental persistence of BP3. Its partial elimination 

in WWTPs (in the 68-96% range; Balmer et al., 2005; Li et al., 2007) suggests that biodegradation 

would be possible. Direct phototransformation is sufficiently slow to prevent the exploitation of 

photolysis as a removal technique of BP3 from aqueous solutions (Rodil et al., 2009). However, 

very little information is available on the photochemical behaviour of BP3 under conditions that are 

significant for surface waters. In addition to direct photolysis where transformation is induced by 

sunlight absorption, indirect photochemical pathways are also operational in sunlit water bodies. 

The latter processes involve reaction between the substrate and reactive transients, most notably 
•
OH, CO3

−•
, 

1
O2 and the excited triplet states of chromophoric dissolved organic matter, 

3
CDOM*. 

These species are generated by sunlight irradiation of photosensitisers such as nitrate, nitrite and 

CDOM (Boreen et al., 2003; Al Housari et al., 2010). In the case of CO3
−•

, the formation pathways 
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include oxidation of bicarbonate and carbonate by 
•
OH and of carbonate by 

3
CDOM* (Canonica et 

al., 2005). 

This paper has the goal of assessing the photochemical transformation kinetics of BP3 via the 

main photochemical processes that are usually operational in surface waters, namely direct 

photolysis and reaction with 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*. This objective is pursued by 

combination of laboratory experiments (to determine photolysis quantum yields and second-order 

reaction rate constants) and of a modelling approach that makes use of kinetic parameters to assess 

phototransformation rates as a function of water chemical composition and depth. By adopting this 

methodology (Vione et al., 2010a; Maddigapu et al., 2011; Vione et al., 2011), it is possible to 

predict the photochemical behaviour of a compound in the environment under conditions that it 

would be difficult or even impossible to reproduce in the laboratory. 

 

 

2. Experimental section 

 

2.1. Reagents and materials 

Benzaldehyde (purity grade 99%), anthraquinone-2-sulphonic acid, sodium salt (AQ2S, 97%), 1-

nitronaphthalene (1NN, 99%), furfuryl alcohol (98%), NaNO3 (>99%), NaHCO3 (98%), anhydrous 

Na2SO4 (99%), NaCl (99.5%), Na2HPO4 ⋅ 2 H2O (98%), NaH2PO4 ⋅ H2O (98%), HClO4 (70%) and 

H3PO4 (85%) were purchased from Aldrich, NaOH (99%), 2-propanol (LiChrosolv gradient grade) 

and dichloromethane (GC Suprasolv) from VWR Int., benzoic acid (97%) and methanol (gradient 

grade) from Carlo Erba, Rose Bengal (RB) and 2-hydroxy-4-ethoxybenzophenone (BP3, 98%) 

from Alfa Aesar.  

 

2.2. Irradiation experiments 

The kinetic parameters relevant to the main photochemical processes that would involve BP3 in 

surface waters (direct photolysis and reaction with 
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*) were determined 

by laboratory measurements. These results allow the modelling of BP3 lifetime as a function of 

environmental variables (Vione et al., 2011; De Laurentiis et al., 2012b). AQ2S was used as CDOM 

proxy, to assess reactivity between BP3 and 
3
CDOM*. Reasons for this choice are the widespread 

occurrence of quinones in CDOM and the fact that irradiation of AQ2S, unlike other triplet 

sensitisers, does not yield interfering transients such as 
•
OH and 

1
O2 (Cory and McKnight, 2005; 

Maddigapu et al., 2010). AQ2S initial concentration was 0.1 mM, to limit the additional 

complication represented by reaction between 
3
AQ2S* and ground-state AQ2S (Bedini et al., 

2012a). 

Solutions to be irradiated (5 mL) were placed inside Pyrex glass cells (4.0 cm diameter, 2.3 cm 

height, 295 nm cut-off wavelength) and magnetically stirred during irradiation. Irradiation of BP3 + 

nitrate and of BP3 + nitrate + bicarbonate to study reactions with 
•
OH and CO3

−•
 was carried out 

under a Philips TL 01 UVB lamp, with emission maximum at 313 nm. The lamp had 3.0±0.2 W 
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m
−2

 UV irradiance in the 300-400 nm range, measured with a power meter by CO.FO.ME.GRA. 

(Milan, Italy) equipped with a UV-sensitive probe. The incident photon flux in solution was 

actinometrically determined using the ferrioxalate method (Kuhn et al., 2004). By knowing, as a 

function of wavelength, the fraction of radiation absorbed by Fe(C2O4)3
3−

, the quantum yield of 

Fe
2+

 photoproduction and the shape of the lamp spectrum (measured with an Ocean Optics USB 

2000 CCD spectrophotometer), it is possible to use the measured formation rate of Fe
2+

 to fix the 

value of the incident spectral photon flux density p°(λ). The photon flux of the TL 01 lamp between 

300 and 500 nm was λλ
λ

dpPo ∫ °= )(  = (2.0±0.1)⋅10
−5

 Einstein L
−1

 s
−1

. BP3 direct photolysis and its 

transformation photosensitised by AQ2S were studied under a Philips TLK 05 UVA lamp, with 

emission maximum at 365 nm, 28±2 W m
−2

 UV irradiance (300-400 nm), and (2.1±0.2)⋅10
−5

 

Einstein L
−1

 s
−1

 incident photon flux in solution. The photodegradation of BP3 sensitised by Rose 

Bengal (RB) via 
1
O2 was studied under a Philips TL D 18W/16 yellow lamp, with emission 

maximum at 545 nm and 11±1 W m
−2

 irradiance in the visible, measured with the 

CO.FO.ME.GRA. power meter equipped with a probe sensitive to visible radiation. 

The choice of the lamps had the purpose of exciting each photosensitiser as selectively as 

possible. The direct photolysis of BP3 was studied under UVA upon consideration of its absorption 

spectrum, measured with a Varian Cary 100 Scan UV-Vis spectrophotometer. The same instrument 

was used to measure the absorption spectra of nitrate, AQ2S and RB. The various emission and 

absorption spectra are reported in Figure 1. Unless otherwise reported, the initial concentration of 

BP-3 in the irradiation experiments was 20 µM and the solution pH was around 6.5. 

 

2.3. Monitoring of BP3 transformation 

After the scheduled irradiation time, cells were withdrawn from the lamp and the irradiated 

solutions were analysed by high-performance liquid chromatography (HPLC-UV). The Merck-

Hitachi instrument was equipped with autosampler AS2000A (100 µL sample volume), pumps L-

6200 and L-6000 for high-pressure gradients, a reverse-phase column Merck LiChrocart RP-C18 

packed with LiChrospher 100 RP-18 (125 mm × 4.6 mm × 5 µm), UV-Vis detector L-4200, and 

control software D-7000 Multi HSM-Manager. Elution used the following grandient (A: CH3OH, 

B: aqueous H3PO4 at pH 2.8, total flow rate 1.0 mL min
−1

): 40% A for 9 min, then to 80% A in 1 

min and kept for 6 min, down to 40% A in 1 min and kept for 4 min. The retention time of BP3 was 

13.9 min, column dead time 0.9 min. Under these conditions, two transformation intermediates of 

BP3 (benzoic acid and benzaldehyde) coeluted at 6.9 min. Their quantification was achieved by use 

of authentic standards and by detecting absorbance at 220 nm (benzoic acid absorption maximum) 

and at 250 nm (benzaldehyde absorption maximum). Concentrations were determined by 

considering the contribution of each compound to the chromatographic peaks at both wavelengths, 

according to the Beer-Lambert law. BP3 was quantified at 220 nm due to higher sensitivity.  

The time evolution of furfuryl alcohol to quantify the formation rate of 
1
O2 under the yellow 

lamp was also monitored by HPLC-UV, as reported in Minella et al. (2011). 
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2.4. Identification of BP3 transformation intermediates 

Intermediate identification was carried out with gas chromatography coupled with mass 

spectrometry. To this purpose, aqueous solutions after irradiation were extracted with 3 mL 

dichloromethane, dehumidified with anhydrous Na2SO4 and evaporated to dryness. Each sample 

was reconstructed with 100 µL dichloromethane. The solution was transferred into a vial and 

injected into a capillary gas chromatograph (Agilent 6890) coupled with a mass spectrometer 

(Agilent 5973 inert). The injection system used was a Gerstel CIS4 PTV. Initial injection 

temperature was 40 °C, programmed at 5 °C/s; final temperature was 320 °C, held for 9 min. The 

injection volume was 2 µL in the splitless mode. The capillary column used was a HP-5MS, 30 m × 

0.25 mm × 0.25 µm film thickness. Initial column temperature was 40 °C and it was increased by 

15 °C/min to 300 °C. The carrier gas was ultrapure He (1.0 mL/min; SIAD, Bergamo, Italy). The 

ionisation source worked in the electronic impact (EI) mode and the mass spectrometer worked in 

the Scan mode from 44 to 450 Th. Identification of spectra was performed by using the Wiley 7n 

library (Agilent Part No. G1035B). 

 

2.5. Laser flash photolysis measures 

Carbonate radical was produced via an electron transfer reaction from CO3
2−

 to the excited state of 

1-nitronaphthalene (
3
1NN), which was generated by laser flash excitation (Brigante et al., 2010). 

The experiments were carried out using the third harmonic (λexc = 355 nm) of a Quanta Ray GCR 

130-01 Nd:YAG laser system instrument, placed in a right-angle geometry with respect to the 

monitoring light beam. The single pulses were ca. 9 ns in duration, with an energy of ～90 

mJ/pulse. To avoid photodegradation of the solution due to multiple laser shots, a flow cell was 

used that was connected to a peristaltic pump, allowing fresh solution to continuously purge the 

laser-exposed volume.  

Transient species produced by the pulsed laser beam were monitored by means of time-resolved 

absorption spectroscopy, using a detection system consisting of a pulsed xenon lamp (150 W), 

monochromator and a photomultiplier (1P28). A spectrometer control unit was used for 

synchronising the pulsed light source and programmable shutters with the laser output. The signal 

from the photomultiplier was digitised by a programmable digital oscilloscope (HP54522A). A 32 

bits RISC processor kinetic spectrometer workstation was used to analyse the digitised signal. 

Experiments were performed at room temperature (~ 293 K). 

In the presence of 0.1 M carbonate, the pseudo-first order decay constant of 
3
1NN monitored at 

620 nm increased from ~ 6.3⋅10
5
 s

−1
 to 2.3⋅10

6
 s

−1
, and a long-lived transient appeared with a 

maximum absorption around 600 nm. Such species was identified as the carbonate radical (CO3
−•

) 

(Weeks and Rabani, 1966), the decay of which was monitored at 600 nm. 
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2.6. Kinetic data treatment 

The time trend of BP3 under irradiation followed pseudo-first order kinetics. Reaction rates were 

determined by fitting time evolution data with equations of the form Ct Co
−1

 = exp(−k t), where Ct is 

the concentration of BP3 at the irradiation time t, Co its initial concentration, and k the pseudo-first 

order degradation rate constant. The initial degradation rate is RBP3 = k Co. The reported errors on 

the rates (±σ) were derived by curve fitting and depended on the scattering of experimental data 

around the fit curve. The reproducibility of repeated runs was about 15-20%. 

 

2.7. Photochemical modelling 

The photochemical model used in this work predicts phototransformation rate constants and half-

life times of dissolved compounds as a function of water chemical composition and depth, based on 

photochemical kinetics parameters such as photolysis quantum yields and reaction rate constants 

with photogenerated transients (
•
OH, CO3

−•
, 

1
O2 and 

3
CDOM*). The model takes into account 

sunlight absorption by water (mostly accounted for by CDOM) and the wavelength-dependent 

differences of light penetration into the water column. Competition for sunlight irradiance between 

the main photosensitisers (nitrate, nitrite and CDOM) is also taken into account by the model 

(Vione et al., 2010b; De Laurentiis et al., 2012a). An important issue is that steady irradiation is 

usual in laboratory experiments, but one should take into account the variable outdoor irradiance 

and the day-night cycle. For this reason, the model output uses a standardised time unit (summer 

sunny day, SSD), equivalent to fair-weather 15 July at 45°N latitude (Sur et al., 2012). The SSD is 

referred to cloudless sky, thus meteorology issues are not taken into account. Details of model 

equations are reported as Supplementary Material (hereafter SM). An additional issue is that 

sunlight is not vertically incident over the water surface. The solar zenith angle should be 

considered, although refraction deviates the light path in water toward the vertical. Because of this 

phenomenon, the path length l of light in water is longer than the water depth d: on 15 July at 45°N 

it is l = 1.05 d at noon, and l = 1.17 d at ±3 h from noon that is a reasonable daily average.  

The model has been validated for several pollutants, under a variety of environmental 

conditions for which field data of photochemical persistence were available (Vione et al., 2010b; 

Maddigapu et al., 2011; Vione et al., 2011; Sur et al., 2012; De Laurentiis et al., 2012b). This 

accounts for the use of the model in the present context, to assess the otherwise unknown 

photochemical persistence of BP3 in sunlit water bodies.  

A further issue to be mentioned is that we derived a software application from the model 

(APEX: Aqueous Photochemistry of Environmentally-occurring Xenobiotics), which is available 

for free download at http://chimica.campusnet.unito.it/do/didattica.pl/Quest?corso=7a3d. APEX 

was used in this work to plot the graphs of BP3 half-life time vs. water parameters, and to get 

insight into model errors and the seasonal trends of photochemical reactions. 
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3. Results and Discussion 

 

3.1. Direct photolysis 

 

BP3 (initial concentration 20 µM) was irradiated under the UVA lamp (emission maximum at 365 

nm, see Figure 1a) at pH 6.5, for up to 7 days. The substrate followed a pseudo-first order 

transformation kinetics with RBP3 = (2.69±0.26)⋅10
−11

 M s
−1

. By comparison, BP3 evolution in the 

dark was negligible. The photon flux absorbed by BP3 was λλ λε

λ

dpP
BPbBP

a
BP ]101[)(

]3[)(3 3−−°= ∫  = 

(8.8±0.4)⋅10
−7

 Einstein L
−1

 s
−1

, where p°(λ) is the incident spectral photon flux density of the lamp, 

εBP3(λ) the molar absorption coefficient of BP3 (see Figure 1a), b = 0.4 cm the optical path length 

in solution, and [BP3] = 20 µM. From these data it is possible to obtain the polychromatic 

photolysis quantum yield of BP3 between 300 and 400 nm, where the spectra of the lamp and BP3 

overlap, as ΦBP3 = RateBP3 (Pa
BP3

)
−1

 = (3.07±0.45)⋅10
−5

. 

 

3.2. Reaction with 
•
OH 

 

The reaction rate constant between BP3 and 
•
OH was determined upon competition kinetics with 2-

propanol, using nitrate UVB photolysis as 
•
OH source. Figure 2 reports the initial transformation 

rate of BP3 (20 µM initial concentration) as a function of the concentration of 2-propanol, upon 

irradiation of 10 mM nitrate. The alcohol concentration did not exceed the mM range, to avoid 

interference with the primary steps of nitrate photolysis (Nissenson et al., 2010). The trend of RBP3 

vs. [2–Propanol] reaches a plateau at high concentration of the alcohol. Based on this behaviour and 

on previous results obtained with other compounds (Sur et al., 2012), we hypothesise an active 

contribution to BP3 degradation of radical species (R
•
) that are formed by reaction between 2-

propanol and 
•
OH. The species R

•
 are expected to react with BP3 (reaction 4) as well as with other 

components of the system (reaction 5). The transformation of BP3 upon nitrate photolysis would 

thus proceed as follows (Buxton et al., 1988; Mack and Bolton, 1999): 

 

NO3
−
 + hν + H

+
 → 

•
OH + 

•
NO2  [Φ1 = 0.01]    (1) 

2-Propanol + 
•
OH → R

•
    [k2 = 1.9⋅10

9
 M

−1
 s

−1
]   (2) 

BP3 + 
•
OH → Intermediates’  [k3]     (3) 

R
•
 + BP3 → Intermediates’’  [k4]     (4) 

R
•
 + Si → Intermediates’’’  [ksi]     (5) 

 

Upon application of the steady-state approximation to 
•
OH and R

•
, one gets the expression (6) for 

the initial transformation rate of BP3 in the presence of 2-propanol, where R•OH is the formation 

rate of 
•
OH in reaction (1) (see SM for the derivation of this equation): 
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[ ] ]Propanol2[]3[]3[

]Propanol2[
]3[

]Propanol2[]3[

]3[

234

2
4

23

3

3

−⋅+⋅
⋅

+⋅

−⋅
⋅⋅

+
−⋅+⋅

⋅⋅
=

•

•

∑ kBPk

R

SkBPk

k
BPk

kBPk

BPkR
R

OH

isi

OH
BP

   (6) 

 

At very high [2-propanol], reaction (4) prevails over (3) and RBP3 becomes: 

 

{ }
[ ]∑+⋅

⋅
= •

−
isi

OHBP
High SkBPk

BPk
RR

]3[

]3[
lim

4

4
3

]Propanol2[
     (7) 

 

In contrast, in the absence of 2-propanol one has RBP3 = R•OH. The fit of experimental rate data with 

equation (6) (see Figure 2; equation (6) includes (7) in the second term of the sum) yielded 

{ }3
]Propanol2[

lim BP
High

R
−

 = (3.18±0.33)⋅10
–10

 M s
–1

, R•OH = (5.52±0.16)⋅10
–9

 M s
–1

, and k3 = (2.0±0.4)⋅10
10

 

M
–1

 s
–1

. The latter is the reaction rate constant between BP3 and 
•
OH.  

It should be noted that two additional contributions to the plateau of RBP3 vs. [2-Propanol] are 

represented by direct photolysis and reaction with 
•
NO2. However, as reported in paragraph 3.1, the 

direct photolysis rate of BP3 under the TL01 lamp is around 200 times lower than the degradation 

rate in the presence of 10 mM nitrate. Therefore, BP3 direct photolysis can be safely neglected 

under conditions of nitrate irradiation. As far as 
•
NO2 is concerned, phenolic compounds such as 

BP3 produce nitrophenols upon reaction with nitrogen dioxide. The upper theoretical limit of 

nitrophenol yield with respect to reacted nitrogen dioxide is 50%, because the nitration process 

involves two 
•
NO2 (Bedini et al., 2012b). Moreover, there is evidence that the actual yield is not far 

from the upper limit (Vione et al., 2001). However, the formation of nitrophenols from phenol upon 

nitrate photolysis accounts for only a few percent of the transformation of the initial substrate, the 

remainder being accounted for by 
•
OH (Vione et al., 2002). This suggests that the reactivity 

between 
•
NO2 and phenols is almost negligible compared to the hydroxyl radical. Furthermore, 

while practically all photogenerated 
•
OH is scavenged by the substrate, a considerable fraction of 

•
NO2 undergoes hydrolysis to nitrate and nitrite (Mack et al., 1996). The fraction of hydrolysed 

•
NO2 is higher at relatively low substrate concentration (Chiron et al., 2007), such as in the present 

case (20 µM initial BP3), which prevents accumulation of 
•
NO2 in the system and limits the 

importance of the reactions it takes part into. 

 

3.3. Reaction with CO3
−•

 

 

The assessment of the reactivity between organic compounds and CO3
−•

 can be carried out with a 

semi-quantitative screening method, which makes use of nitrate and bicarbonate under UVB 

irradiation (Vione et al., 2009). The application of this method (see SM) suggested that the reaction 

between BP-3 and CO3
−•

 might possibly be important, which prompted us to use the laser flash 

photolysis technique to get insight into reaction kinetics. In analogy with the procedure used to 
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produce other radical species (Sur et al., 2011), CO3
−•

 was generated by laser excitation of 1NN 

(reaction 8), leading to the formation of 
3
1NN followed by electron transfer from carbonate ions to 

3
1NN (reaction 9): 

 

1NN + hν → 1NN* (ISC)→ 
3
1NN      (8) 

3
1NN + CO3

2−
 → 1NN

−•
 + CO3

−•
       (9) 

 

where ISC = inter-system crossing.  

In the absence of BP3 the first-order decay constant of CO3
−•

 was (9.7±0.2)⋅10
4
 s

−1
, which was 

not significantly modified in the presence of 50 µM BP3 (higher concentration values could not be 

tested because of solubility issues). Based on experimental uncertainty, an upper limit of 5⋅10
7
 M

−1
 

s
−1

 can be derived for the reaction rate constant between BP3 and CO3
−•

, which is the highest value 

causing a variation of the CO3
−•

 decay constant that is still included within experimental errors.  

 

3.4. Reaction with 
1
O2 

 

Singlet oxygen was generated upon irradiation of Rose Bengal (RB) under a yellow lamp (emission 

maximum at 545 nm, Figure 1c), with the purpose of achieving selective RB excitation. A linear 

trend was obtained for the initial BP3 transformation rate, RBP3, upon irradiation of 10 µM RB, as a 

function of BP3 initial concentration: RBP3 = (1.91±0.08)⋅10
−6

 [BP3] (see Figure 3). 

Reactions (10-12) would be operational in the irradiated system. In particular, reaction (11) 

between BP3 and 
1
O2 would be in competition with the thermal deactivation of singlet oxygen 

(reaction 12; Rodgers and Snowden, 1982): 

 

RB + hν + O2 → RB + 
1
O2       (10) 

BP3 + 
1
O2 → Intermediates [k11]      (11) 

1
O2 → O2     [k12 = 2.5⋅10

5
 s

−1
]    (12) 

 

Upon application of the steady-state approximation to 
1
O2 one gets the following expression for the 

initial transformation rate of BP3 (RBP3) (see SM for the derivation of this equation): 

 

]3[

]3[

1112

11

3
2

1

BPkk

BPkR
R

O

BP
⋅+

⋅⋅
=         (13) 

 

where 
2

1
O

R  is the formation rate of 
1
O2 by 10 µM RB under the adopted irradiation device. For very 

low [BP3] one gets (k11 [BP3] « k12): 

 

{ } ]3[lim 1

12113
0]3[ 2

1 BPkkRR
OBP

BP
⋅⋅⋅= −

→
      (14) 
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Equation (14) is consistent with the linear trend of RBP3 vs. [BP3]. The measurement of 
2

1
O

R  was 

carried out upon irradiation of 10 µM RB + 0.1 mM furfuryl alcohol (FFA), which reacts with 
1
O2 

with rate constant kFFA = 1.2⋅10
8
 M

−1
 s

−1
 (Wilkinson and Brummer, 1981). Under the adopted 

experimental conditions, the initial transformation rate of FFA was RFFA = (1.10±0.08)⋅10
−7

 M s
−1

. 

Photogenerated 
1
O2 could undergo deactivation or reaction with FFA, and upon application of the 

steady-state approximation to [
1
O2] one obtains: 

 

][

][12

2
1

FFAk

FFAkk
RR

FFA

FFA
FFAO ⋅

⋅+
⋅=        (15) 

 

From equation (15) one gets 
2

1
O

R  = (2.40±0.17)⋅10
−6

 M s
−1

. From equation (14) and RBP3 = 

(1.91±0.08)⋅10
−6

 [BP3] one derives ==
−− 1

1211

1

3
2

1]3[ kkRBPR
OBP  (1.91±0.08)⋅10

−6
. From the 

known values of 
2

1
O

R  and k12 one finally obtains k11 = (1.99±0.08)⋅10
5
 M

−1
 s

−1
 as the reaction rate 

constant between BP3 and 
1
O2. 

 

3.5. Reaction with irradiated AQ2S 

 

Anthraquinone-2-sulphonate (AQ2S) was here used as a proxy of chromophoric dissolved organic 

matter (CDOM), and irradiation was carried out under UVA (see Figure 1a). A linear trend was 

obtained for the initial transformation rate RBP3, as a function of BP3 initial concentration (the latter 

was kept below 20 µM), upon UVA irradiation of 0.1 mM AQ2S at pH 6.5: RBP3 = (3.48±0.10)⋅10
−5

 

[BP3]. The direct photolysis of BP3 (irradiation without AQ2S) was negligible at the adopted 

irradiation time scale (up to 8 h).  

The triplet state 
3
AQ2S*, which is the main reactive species of AQ2S under irradiation, has 

formation quantum yield 
*23

SAQ
Φ  = 0.18 and deactivation rate constant 

*23
SAQ

k  = 1.1⋅10
7
 s

−1
 (Loeff 

et al., 1983; Alegría et al., 1999). The formation rate of 
3
AQ2S* would thus be 

*23
SAQ

R  = 
*23

SAQ
Φ  

Pa
AQ2S

, where Pa
AQ2S

 is the photon flux absorbed by AQ2S (units of Einstein L
−1

 s
−1

). There would 

be competition between 
3
AQ2S* transformation or deactivation and reaction with BP3, which has 

second-order reaction rate constant 
3*,23

BPSAQ
k . The main processes involved in the irradiation of 

BP3 + AQ2S are reported in the scheme below, where ISC = inter-system crossing (Bedini et al., 

2012a): 
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    (16) 

 

Upon application of the steady-state approximation to 
3
AQ2S*, the transformation rate of BP3 by 

irradiated AQ2S can be expressed as follows (see SM for the derivation of this equation): 

 

]3[

]3[

3*,2*2

3*,22

*23
33

3

3

BPkk

BPk
PR

BPSAQSAQ

BPSAQSAQ

aSAQBP
⋅+

⋅
⋅⋅Φ=     (17) 

 

Under the hypothesis that 
3*,23

BPSAQ
k  [BP3] « 

*23
SAQ

k , one gets RBP3 = 
*23

SAQ
Φ  Pa

AQ2S
 

3*,23
BPSAQ

k  

(
*23

SAQ
k )

−1
 [BP3], which is compatible with the linear trend that was experimentally determined. 

The quantum yield of BP3 transformation by irradiated AQ2S would be: 

 

]3[
*3

*3

*3

2

3,2

22

3
2,3 BP

k

k

P

R

SAQ

BPSAQ

SAQSAQ

a

BP
SAQBP ⋅⋅Φ==Φ     (18) 

 

To determine the rate constant 
3*,23

BPSAQ
k , based on equation (18) and the experimental data, one 

needs to calculate Pa
AQ2S

. The absorption of radiation by BP3 is not completely negligible 

compared to 0.1 mM AQ2S. Therefore, to calculate the photon flux absorbed by AQ2S, one should 

take into account the competition with BP3 for radiation absorption. At any given wavelength λ, the 

ratio of the spectral photon flux densities absorbed by AQ2S and BP3 (pa
AQ2S

(λ) and pa
BP3

(λ), 

respectively) equals the ratio of the respective absorbances (AAQ2S(λ) and ABP3(λ)) (Braslavsky, 

2007). On this basis one can derive the photon flux absorbed by AQ2S, λλ
λ

dpP
SAQ

a

SAQ

a ∫= )(22 , as 

follows: 

 

λλ
λλ

λ

λ

λλ
dp

AA

A
P BPSAQ AAo

BPSAQ

SAQSAQ

a ∫











−⋅⋅

+
=

+−
)101()(

)()(

)( ))()((

32

22 32   (19) 

 

where )101()(
))()(( 32 λλ

λ BPSAQ AAop
+−

−⋅  is the spectral photon flux density absorbed by the solution. At 

the low concentration values of BP3 used in this work, the trend of calculated Pa
AQ2S

 vs. [BP3] was 

approximately linear: Pa
AQ2S

 = {(2.0±0.1)⋅10
−6

 − (5.4±0.4)⋅10
−3

 [BP3]} Einstein L
−1

 s
−1

. The 

experimental data of RBP3 vs. [BP3] can be transformed into quantum yields as SAQBP 2,3Φ  = RBP3 
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(Pa
AQ2S

)
−1

, and the values of SAQBP 2,3Φ  vs. [BP3] thus obtained are reported in Figure 4. These data 

can be directly compared with equation (18). 

The fit of Figure 4 data with a linear equation yielded SAQBP 2,3Φ  = (18.15±0.55) [BP3]. Upon 

comparison of this result with equation (18) one obtains 
*23

SAQ
Φ  

3*,23
BPSAQ

k  (
*23

SAQ
k )

−1
 = 

18.15±0.55. From the known values 
*23

SAQ
Φ  = 0.18 and 

*23
SAQ

k = 1.1⋅10
7
 s

−1
 (Loeff et al., 1983; 

Alegría et al., 1999), one derives 
3*,23

BPSAQ
k  = (18.15±0.55) 

*23
SAQ

k  (
*23

SAQ
Φ )

−1
 = (1.11±0.03)⋅10

9
 

M
−1

 s
−1

 as the reaction rate constant between 
3
AQ2S* and BP3. This finding confirms that the 

hypothesis 
3*,23

BPSAQ
k  [BP3] « 

*23
SAQ

k  was reasonable. Hereafter, it will be hypothesised that the 

value of 
3*,23

BPSAQ
k  is representative of the reaction rate constant(s) between BP3 and the excited 

triplet states of CDOM (
3
CDOM*). 

 

3.6. Transformation intermediates 

 

Benzoic acid and benzaldehyde were quantified by liquid chromatography. They were formed as 

intermediates upon nitrate photolysis (
•
OH as reactive species) and with nitrate + bicarbonate 

(involving 
•
OH and/or CO3

−•
). With nitrate, benzoic acid reached a maximum concentration value 

of ∼1 µM (∼5% of the initial 20 µM BP3) and benzaldehyde of ∼0.2 µM (∼1% of initial BP3). With 

nitrate + bicarbonate the maximum concentration values were ∼2 and ∼0.1 µM, respectively (see 

Figure 5). The two intermediates are likely to derive from bond cleavage between the BP3 carbonyl 

group and the aromatic ring carrying the hydroxyl and methoxy functions. This process has been 

reported to play an important role in the phototransformation of BP3 (Liu et al., 2011). Benzoic 

acid and benzaldehyde were not detected upon BP3 direct photolysis or reaction with 
1
O2. In the 

case of 
3
AQ2S*, chromatographic interferences by AQ2S transformation intermediates prevented 

the detection of the (however limited, if any) formation of the two compounds. 

Further transformation intermediates were determined by GC-MS on the solutions obtained by 

irradiation of BP3 + nitrate. These compounds were tentatively identified as methylated derivatives 

of BP3 (see SM). The GC-MS runs gave no results concerning the intermediates from other 

processes (direct photolysis and reaction with CO3
−•

, 
1
O2 and 

3
AQ2S*). 

 

3.7. Modelling of BP3 phototransformation in surface waters 

 

By using the photochemical kinetics parameters reported in Table 1 for BP3, it is possible to carry 

out a model assessment of the half-life time of this compound in surface waters, at mid-latitude and 

in fair-weather summertime. The phototransformation of BP3 under surface-water conditions is 

mostly accounted for by direct photolysis and reaction with 
•
OH and 

3
CDOM*. The 

•
OH reaction 

would account for 25-50% of BP3 transformation. Higher 
•
OH contribution is predicted at low 

DOC, because dissolved organic matter is an effective 
•
OH scavenger (Brezonik and Fulkerson-

Brekken, 1998). Reaction with 
3
CDOM* would be favoured at high DOC, which implies high 
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CDOM as well (Oliveira et al., 2006). The relative importance of 
3
CDOM* would be higher at high 

depth, because CDOM is a more effective radiation absorber in the bottom layers of a water body 

compared to e.g. nitrate or nitrite (Loiselle et al., 2009). Direct photolysis would always play an 

important role, but its contribution to BP3 phototransormation would be highest (in the range of 30-

50% depending on water depth) at intermediate DOC values (∼5 mg C L
−1

). If one assumes the 

upper limit of 5⋅10
7
 M

−1
 s

−1
 for the reaction rate constant between BP3 and CO3

−•
, the process 

would be secondary but significant at low DOC (< 1 mg C L
−1

). For higher DOC values, little to 

negligible BP3 would undergo degradation by reaction with CO3
−•

. 

Figure 6a shows the plot (generated by the Plotgraph function of APEX) of the half-life time of 

BP3 ( 3

2/1

BP
t ) as a function of dissolved organic carbon (DOC) and of the path length l of sunlight in 

water (l = 1.17 d, where d is the water depth). It is shown that 3

2/1

BP
t  is of the order of some weeks. 

Obviously, the lower is 3

2/1

BP
t , the faster is the rate of photochemical degradation. The 3

2/1

BP
t  values 

increase with increasing l (and d as a consequence), because the bottom layers of a deep water body 

are poorly illuminated by sunlight. The increase of 3

2/1

BP
t  with increasing DOC is accounted for by: 

(i) 
•
OH scavenging by DOM, and (ii) competition for sunlight irradiance between BP3 and CDOM, 

which inhibits direct photolysis. The two phenomena would not be fully compensated for by 

enhancement of 
3
CDOM* reactions at high DOC. 

Figure 6b shows 3

2/1

BP
t  as a function of nitrate and carbonate. Carbonate yields CO3

−•
 when it is 

oxidised by 
•
OH or 

3
CDOM* (Canonica et al., 2005), but it has low to negligible effect on 3

2/1

BP
t . 

This is consistent with the limited role of CO3
−•

 in BP3 degradation, even if the upper limit of 

•−
3,3 COBP

k  = 5⋅10
7
 M

−1
 s

−1
 is taken into account. A similar behaviour is observed when plotting 3

2/1

BP
t  

vs. bicarbonate (data not shown). In contrast, the significant decrease of 3

2/1

BP
t  with increasing nitrate 

is accounted for by the enhancement of 
•
OH generation under such conditions. Similar results as for 

nitrate would be observed with nitrite (data not shown). 

The uncertainty associated to 3

2/1

BP
t  depends both on errors in the measured kinetic parameters 

and on uncertainty in the model equations. For instance, the half-life time of BP3 with l = 5 m, 

DOC = 3 mg C L
−1

, [NO3
−
] = 0.1 mM, [NO2

−
] = 1 µM, [HCO3

−
] = 1 mM and [CO3

2−
] = 10 µM is 

3

2/1

BP
t  = 13.3±3.6 SSD (µ±σ). The calculation was carried out with the APEX_Errors application of 

the APEX software. 

The results reported so far give insight into BP3 phototransformation under mid-latitude 

summertime conditions, and the degradation kinetics would obviously be slower in different 

seasons of the year. Figure 7 reports an approximate assessment of the seasonal trend of 3

2/1

BP
t  at 

mid-latitude, made with the APEX_season application. It can be seen that 3

2/1

BP
t  in winter can be 7-9 

times higher than in summer (over three months against a couple of weeks, under the same 

conditions of water chemistry and depth). 

An interesting issue is that the second-order reaction rate constants of BP3 with 
•
OH, 

1
O2 and 

3
CDOM* are quite similar to those of carbamazepine (CBZ, De Laurentiis et al., 2012; see Table 

1). The photolysis quantum yield of BP3 is lower compared to CBZ, but it is compensated for by 
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higher absorption of sunlight (CBZ absorption is concentrated in the UVB region; De Laurentiis et 

al., 2012). Because CBZ is a rather refractory pollutant in surface waters (Tixier et al., 2003), it is 

interesting to compare its photodegradation kinetics with that of BP3. Application of the 

photochemical model to both compounds suggests that 3

2/1

BP
t  ∼ 0.5 CBZ

t 2/1 , thus meaning that BP3 

photodegradation is about twice as fast as that of CBZ. The difference is mostly accounted for by 

faster direct photolysis of BP3, because of higher sunlight absorption and despite the lower 

photolysis quantum yield. 

The use of BP3 as sunscreen during recreational activities (sunbathing) suggests that an 

important fraction of this compound would reach seawater, where BP3 has actually been detected 

(Magi et al., 2012). Two important features of saltwater are much higher ionic strength compared to 

freshwater (the effect of which cannot be accounted for in the model) and much higher bromide 

concentration (up to around 1 mM; Jiang et al., 2009). Bromide is the main hydroxyl scavenger in 

seawater (Buxton et al., 1988; Nakatani et al., 2007). The photochemical model has been validated 

for brackish water (estuarine areas: Maddigapu et al., 2011; Sur et al., 2012) but not for seawater, 

thus model results in the latter case should be taken with great caution. Anyway, under the 

hypothesis that 
•
OH scavenging by bromide is the only important seawater effect, the value of 3

2/1

BP
t  

could be increased by 1.5-2 times compared to freshwater conditions, where 
•
OH scavenging by 

bromide is negligible compared to scavenging by DOM. 

 

 

4. Conclusions 

 

The photochemical reactivity data obtained in this work suggest that BP3 in surface waters would 

mainly be degraded by direct photolysis and reaction with 
•
OH and 

3
CDOM*. The radical CO3

−•
 

would play at most a secondary role, and reaction with 
1
O2 would be negligible. Direct photolysis 

would be the main BP3 photodegradation process for intermediate DOC values (around 5 mg C 

L
−1

). Indeed, photolysis would always play a significant role, but 
•
OH reaction would be more 

important at low DOC and 
3
CDOM* at high DOC. The half-life time of BP3 in surface waters 

would be of some weeks during summer (and 7-9 times higher during winter), and it would increase 

with increasing water depth and increasing DOC. The depth effect is observed because the deeper 

layers of a water body are poorly illuminated by sunlight, thereby slowing down all photochemical 

reactions. The DOC effect is accounted for by 
•
OH scavenging by DOM and by competition for 

sunlight irradiance between BP3 and CDOM, which inhibits direct photolysis.  

Some BP3 transformation intermediates were detected upon reaction with 
•
OH. Two methylated 

isomers were tentatively identified by GC-MS, and it was possible to quantify formation of benzoic 

acid (produced at a maximum concentration of ∼10% of initial BP3) and benzaldehyde (∼1% of 

initial BP3). 

It is interesting to compare the photochemical persistence of BP3 with that of the refractory 

anti-epileptic drug carbamazepine, because the two compounds have similar reaction rate constants 
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with 
•
OH, 

3
CDOM* and 

1
O2. Model results show that BP3 would be significantly less persistent 

than carbamazepine because of faster direct photolysis ( 3

2/1

BP
t  ∼ 0.5 CBZ

t 2/1 ). Indeed, although the 

photolysis quantum yield of BP3 is ∼20 times lower compared to carbamazepine, BP3 is able to 

absorb a significantly higher fraction of the sunlight spectrum.  

Finally, although model results for seawater are only indicative and they should be used with 

great caution (the model has been validated for brackish water but not yet for saltwater), 
•
OH 

scavenging by bromide in saltwater could increase the half-life time of BP3 by 1.5-2 times 

compared to the corresponding freshwater conditions. 
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Table 1. Direct photolysis quantum yield (under UVA) and reaction rate constants of BP3 with 
•
OH, CO3

−•
, 

1
O2 and 

3
AQ2S* (the latter used as a proxy of 

3
CDOM*). As a comparison, 

the same parameters are also reported for carbamazepine (De Laurentiis et al., 2012). 

 

 

Parameter value 

Photochemical 

parameter 

S = BP3 (this work) 

 
OOOO OOOOHHHH

OOOOCCCCHHHH3333 

S = Carbamazepine  

(De Laurentiis et al., 2012) 

NH2O

N

 

SΦ  (3.1±0.3)⋅10
−5

 mole Einstein
−1 

(7.8±1.8)⋅10
−4

 mole Einstein
−1 

OHS
k •

,
 (2.0±0.4)⋅10

10
 M

−1
 s

−1
  (1.8±0.2)⋅10

10
 M

−1
 s

−1
  

•−
3,COS

k  < 5⋅10
7
 M

−1
 s

−1
 Negligible 

2
1, OS

k  (2.0±0.1)⋅10
5
 M

−1
 s

−1
 (1.9±0.1)⋅10

5
 M

−1
 s

−1
 

*,
3
CDOMS

k  (1.1±0.1)⋅10
9
 M

−1
 s

−1
 (7.0±0.2)⋅10

8
 M

−1
 s

−1
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Figure 1. (a) Absorption spectra of BP3 and AQ2S (molar absorption coefficients, εBP3(λ) and 

εAQ2S(λ)). Spectral photon flux density (p°(λ)) of the TLK 05 UVA lamp on top of the 

solutions. 

(b) Absorption spectrum of nitrate (molar absorption coefficient εNO3−(λ)). Spectral 

photon flux density (p°(λ)) of the TL 01 UVB lamp on top of the solutions. 

(c) Absorption spectrum of Rose Bengal (molar absorption coefficient εRB(λ)). Spectral 

photon flux density (p°(λ)) of the yellow lamp on top of the solutions. 
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Figure 2. Initial transformation rate of BP3 (RBP3) as a function of the concentration of 2-propanol, 

upon UVB irradiation of 10 mM NaNO3 at pH 6.5. The dashed curve is the fit of the 

experimental data with equation (6), the dotted ones are the 95% confidence bands of 

the fit. 
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Figure 3. Trend of the initial transformation rate of BP3, RBP3, upon yellow-lamp irradiation of 10 

µM RB at pH 6.5, as a function of BP3 initial concentration. The fit line is dashed, the 

95% confidence bands are dotted. 
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Figure 4. Quantum yield of BP3 transformation upon UVA irradiation of 0.1 mM AQ2S at pH 6.5, 

as a function of the concentration of BP3. The fit line is dashed, the 95% confidence 

bands are dotted. 
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Figure 5. Maximum concentration values reached by benzoic acid and benzaldehyde upon 

irradiation of 20 µM BP3 alone (DP = direct photolysis) and of 20 µM BP3 in the 

presence of 10 mM nitrate (
•
OH), 10 mM nitrate + 10 mM bicarbonate (CO3

−•
), 10 µM 

RB (
1
O2) and 0.1 mM AQ2S (

3
AQ2S*). The percentages reported near the bars 

represent the fraction of initial BP3 that is accounted for by the maximum concentration 

of the detected intermediate. Error bounds represent µ±σ. 
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Figure 6. (a) BP3 half-life time as a function of sunlight optical path length in water (l) and of 

dissolved organic carbon (DOC). Other conditions: 0.1 mM nitrate, 1 µM nitrite, 1 mM 

bicarbonate, 10 µM carbonate. On 15 July at 45°N latitude (conditions relevant to a 

SSD) one has l = 1.17 d at ±3h from noon, which can be assumed as a reasonable daily 

average. Therefore, l = 14 m corresponds to d = 12 m. 

(b) BP3 half-life time as a function of nitrate and carbonate. Other conditions: 0.1 mM 

nitrate, 1 mM bicarbonate, 3 mg C L
−1

 DOC, and l = 5 m (corresponding to d = 4.3 m). 
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Figure 7. Seasonal trend of the half-life time of BP3 under mid-latitude conditions (45°N), 

calculated with the APEX_season application of the APEX software 

(http://chimica.campusnet.unito.it/do/didattica.pl/Quest?corso=7a3d).  

Water parameters: l = 5 m, DOC = 3 mg C L
−1

, [NO3
−
] = 0.1 mM, [NO2

−
] = 1 µM, 

[HCO3
−
] = 1 mM and [CO3

2−
] = 10 µM. 

 

 


