
26 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Numeric Kernel for Reasoning about Plans Involving Numeric Fluents

Publisher:

Published version:

DOI:10.1007/978-3-319-03524-6_23

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer International Publishing

This is the author's manuscript

This version is available http://hdl.handle.net/2318/142135 since

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-03524-
6_23

Numeric Kernel for Reasoning about Plans
Involving Numeric Fluents

Enrico Scala

Dipartimento di Informatica, Universita’ di Torino, Torino, Italy
scala@di.unito.it

Abstract. The paper proposes the notion of numeric kernel as a means
for reasoning about plans involving numeric state variables, i.e. numeric
fluents. A numeric kernel identifies the sufficient and necessary condi-
tions that allow to directly - without any search and any propagation
- assess whether a plan is valid in a specific world state. The notion
generalizes the propositional kernels defined for the STRIPS language,
to support domains involving numeric information as well. A regression
method to build such kernels is reported, and its correctness is theoreti-
cally proved. To evaluate the numeric kernels contribution, we report two
possible repair strategies that can be employed as a direct application of
the numeric kernel properties. Results show the promise of the approach
both from the computational point of view and in terms of plan quality.

1 Introduction

In the last decade of research in AI, an increasing amount of work has been de-
voted in extending the automated planning (and especially the classical paradigm)
for dealing with real world problems ([1], [2], [3]). One of the shortcomings of
the classical setting is the lack of the management of consumable and continuous
resources as well as of the capability of reasoning about quantitative characteris-
tics of the world. To this end, the numeric fluent notion and hence the numeric
planning formalism have been introduced ([4], [2]). As an innovation w.r.t. the
classical paradigm, in the numerical planning setting, plans must obey to par-
ticular resource profiles. This is achieved by allowing to express conditions and
operations over the set of numeric variables of interest.

However, while efforts have been devoted for the problem of off-line plan
generation ([1], [5], [2], [3]), few attention has been paid in studying (numeric)
plan of actions for the on-line phase, making exception for the works dealing
with the temporal dimension. In this context models as STP (Simple Temporal
Problem) and DTP (Disjunctive Temporal Problem) have been adopted and
some extensions have been proposed ([6] [7] [8] [9] [10]). However, also other
continuous resources (e.g. energy, money and so forth) should be managed.

The main contribution of this paper is the notion and the mechanism for
the construction of numeric kernels. A numerical kernel identifies the set of
sufficient and necessary conditions allowing, for a given goal G and a plan π, to
directly (without performing any search and any propagation) assess whether a

2

particular state of the system is consistent with G and π. The numeric kernel
generalizes the propositional definition ([11]) for the numeric setting. Therefore,
the extension allows the application of some properties studied in the classical
setting for the numeric case, too. Such properties have been exploited (in the
classical setting) in the plan execution context for improving the monitoring
([12]) and the repair ([13]).

As a complementary contribution, the paper presents a continual planning
agent ([14]) and two effective plan repair strategies for dealing with numeric
information. In particular, one of these two strategies shows that is possible
to combine numeric kernels with the heuristic mechanisms developed for the
numeric planning (e.g. [1],[2],[15]).

After a brief introduction on the formal framework of reference, the paper
formalizes the notion of numeric kernels (section 2.2) and presents how such
kernels can be constructed (section 3). Then, the work describes and (experi-
mentally) evaluates the two repair strategies above (section 4 and 5).

2 Formal Framework

This section reports the reference planning formalism and then it formalizes
the numeric kernels notion. We assume the reader is familiar to the PDDL-like
language; for a thorough discussion see [4].

2.1 Basic Definitions

Definition 1 (World State). A world state is built upon a set F of propositions
and a set X of numeric variables. Thus a state s is a pair < F (s), X(s) >, where
F(s) is the set of atoms that are true in s (Closed World Assumption) and X(s)
is an assignment in Q for each numeric variable in X.

Definition 2 (Numeric Action1). Given F and X as defined above, a numeric
action ”a” is a pair < pre, eff > where:

– ”pre” is the applicability condition for ”a”; it consists of:
• a numeric part (prenum), i.e. a set of comparisons of the form {exp
{<,≤,=,≥,>} exp’}.

• a propositional part (preprop), i.e. a set of propositions defined over F .
– ”eff” is the effects set of a; it consists of:
• a set of numeric operations (effnum) of the form {f ,op,exp}, where f
∈ X is the numeric fluent affected by the operation, and op is one of
{+ =,− =,=}.

• an ”add” and a ”delete” list (eff+ and eff−), which respectively for-
mulate the propositions produced and deleted after the action execution

Here, exp and exp’ are arithmetic expressions involving variables from X. An
expression is recursively defined in terms of (i) a constant in Q (ii) a numeric
fluent (iii) an arithmetical combination among {+,*,/,-} of expressions2.

1 For the sake of the explanation we refer to ground actions. However, in our imple-
mentation we support action schema as well.

2 For computational reasons, several numeric planners request such expressions to be
linear (e.g. [1],[3]). In our case, such a restriction is not necessary (see section 3).

3

An action a is said to be applicable in a state s iff its propositional and
numeric preconditions are satisfied in s. Meaning that (i) preprop(a) ⊆ F(s) and
(ii) prenum(a) must be satisfied (in the arithmetical sense) by X(s).

Given a state s and a numeric action a, the application of a in s, identified
by s[a], (deterministically) produces a new state s′ as follows. s′ is initialized
to be s; each atom present in eff+(a) is added to F (s′) (whether this is not
already present); each atom present in eff−(a) is removed from F (s′); each
numeric fluent f of the numeric operation {f ,op,exp} is modified according to
the exp and the op involved. The state resulting from a non applicable action is
undefined. An undefined world state does not satisfy any condition.

Definition 3 (Numeric plan). Let I and G be a world state and a goal con-
dition3, respectively, a numeric plan π = {a0, a1, .., an−1} is a total ordered set
of actions such that the execution of these actions (in the order defined by the
plan) transforms the state I into a state I’ where G is satisfied.

Given the formulation above, we allow the access to a segment of the plan by
subscripting the plan symbol. More precisely, πi→j with i < j identifies the sub-
plan starting from the i-th till the j-th action. Moreover when the right bound is
omitted the length of the plan is assumed, i.e. πi ≡ πi→|π|. Finally, we identify
by s[π] the state produced executing π starting from s.

2.2 Numeric Kernel

When the plan has to be handled online, the presence of deviations from the
nominal state (e.g., unexpected events, wrong assumptions made at planning
time or actions that achieve different effects) may prevent the feasibility of the
plan, and just checking the next action preconditions could not suffice to estab-
lish whether the plan still achieve the goals. Indeed, it is necessary to simulate
the whole plan execution to predict if the goal is reachable via such a plan. More
formally we can say that:

Definition 4 (Numeric i-th Plan Validity). Let s be a world state and G a
set of goal conditions, the sub-plan πi is said to be i-th valid w.r.t. s and G iff
s[πi] satisfies G.

Since the PLANEX system ([11]) and more recently in [12], it has been
noticed that the simulation step can be avoided by keeping trace of just a subset
of (propositional) conditions; such conditions are also referred as the weakest
preconditions of a plan.

However, the works in literature discussed so far just focused on the proposi-
tional fragment of the planning problem. Hence, to handle the numeric setting,
we need to specify conditions even on the numeric part of the problem. That is:

Definition 5 (Numeric Kernel). Let π be a numeric plan for achieving G,
and K a set of (propositional and numeric) conditions built over F and X, K is

3 A goal condition has the same form of the applicability condition of a numeric action.

4

said to be a numeric kernel of π iff it represents a set of sufficient and necessary
conditions for the achievement of the goal G starting from s via π. That is, given
a state s, s[π] satisfies G iff snum satisfies Knum and sprop satisfies Kprop.

A kernel is well defined when all the involved numeric comparisons are sat-
isfiable by at least an assignment of values (e.g., a comparison 4 < 3 is not
allowed). This means that there must exist a state s, satisfying such kernel, for
which X(s) gives a value for each numeric variable. An ill-defined kernel comes
from a plan π and a goal G in which π cannot be a solution of any planning
problem having G as goal.

By considering each suffix of the plan π, i.e. π0 = {a0, ..., an−1}, π1 =
{a1, ..., an−1}, π2 = {a2, ..., an−1},...,πn−1 = {an−1} till the empty plan πn =
{}, it is possible to individuate an ordered set of numeric kernels where the
i-th element of the set is the numeric kernel of πi. It is worth noting that, by
definition, the goal is a special kind of numeric kernel for the empty sub-plan.

Therefore, given a plan of size n we can say that:
- s0[π0] satisfies G iff s0 satisfies K0

- s1[π1] satisfies G iff s1 satisfies K1

- ...
- Kn = G corresponding to the kernel for the empty plan πn
where the superscript indicates the ”time” index of interest. The resulting set of
kernels will be denoted with K, i.e. K = {K0,...,Kn}.

Given K defined as above, and the plan validity notion reported in Definition
4, it is possible to deduce that:

Proposition 1. A plan π is valid at step i for a goal G iff si satisfies Ki, where

– si is the state observed before the execution of the subplan πi
– Ki is the i-th kernel associated with πi

By observing this relation it is also possible to see that:

Proposition 2. Let K = {K0,..,Kn} be the kernel set associated with the plan
π = {a0, ..., an−1}, and s a world state, if there is a plan π′ such that s[π′]
satisfies Ki (with 0 ≤ i ≤ n), then a plan from s to a state s′ satisfying Kj

(with i ≤ j ≤ n) exists, too.

Basically, the proposition above provides a sufficient condition for the reach-
ability of a kernel (included the goal) starting from a state satisfying such a
condition. For instance, if it is possible to reach at least one of the kernel K via
a given plan π′′, a planning task, having s as initial state and G as goal, admits
at least a solution, which is the one given by the concatenation of π′′ and the
suffix of the plan relative to K.

As we will see in section 3, the construction of the numeric kernels can be
done just once, in a pre-processing phase. Once obtained the kernels set, thanks
to Proposition 1, the validity checking process is very easy; it can be performed
by simply substituting the numeric values of the state in each comparison ap-
pearing in the kernel, as well as, for the propositional part, it suffices to check if

5

each proposition is included in the current world state. For this reason one can
infer whether the goal is still supported by the current state without analyzing
the plan. Of course, in case the plan undergoes some adjustments, the set of
kernels has to be recomputed. Moreover, thanks to Proposition 2, in case some
inconsistency is detected, it could be not necessary to replanning from scratch.
Indeed, it may suffice, firstly, achieving one of the kernel conditions, and then
applying the remaining subplan. Both propositions are exploited in the continual
planning agent of section 4.

3 Kernel Construction

Algorithm 1 reports the regression mechanism to build the kernel set.

Algorithm 1: Numeric Kernel Computation (NKC)

Input: π = {a0,..,an−1} - plan ; G - goal
Output: K: an ordered set of numeric Kernels

1 K |π| = G
2 for i=|π|-1 to 0 do
3 Ki

prop = {Ki+1
prop \ eff+(ai)} ∪ preprop(ai)

4 Ki
num = {Ki+1

num ⊕ effnum(ai)} ∪ prenum(ai)

In particular, the procedure starts from the last kernel corresponding to the
set of the goals (the propositions that must be achieved at the final state, given
the comparisons on the involved numeric fluents, line 1), and produces each i-th
kernel by performing two independent steps:
– (propositional fragment) - (i) removing the atoms provided by ai (i.e. the add-
list of the i-th action), (ii) adding the atoms required by ai (i.e. the propositional
preconditions of the i-th action), line 3.
– (numeric fragment) - combining the information involved in (i) the numeric
part of the action model and (ii) the next numeric kernel (previously computed),
keeping trace of the numeric action contribution.

The numeric part construction relies on the operator ⊕, which is a function
that maps a set of comparisons C and a set of numeric action effects eff to a
new set of comparisons C ′. The operator assures that the new comparisons set
will take in consideration the future effects of the action.

In particular, for each comparison in C the operator (see algorithm 2) per-
forms a substitution of the numeric fluents involved in cl and cr

4, according to
the effects reported in a. For instance, if the numeric effects set of a involves a
fluent x with (x+ = 5) and the comparison asserts that x < 4, then the outcome
C ′ will be x + 5 < 4, i.e. x < −1. Of course, the action can affect many fluents
involved in the previous comparison; therefore the substitution has to iterate
over all the fluents involved in C with the effects described in the action model.

4 cl identifies the left part of the comparison while cr the right one. Thus both cl and
cr are arithmetical expressions over X.

6

Algorithm 2: ⊕
Input: eff : numeric effects of a ; C: a set of comparisons
Output: C ′: a new set of comparisons

1 C ′ = {}
2 foreach c ∈ C do
3 c′l = cl.substitution(x0...xm−1,effx0

...effxm−1
)

4 c′r = cr.substitution(x0...xm−1,effx0
...effxm−1

)
5 C ′ = C ′ ∪ {c′}

In the algorithm, each effxi
is the numeric effect of an action, having xi as

affected numeric fluent.
As anticipated before, it is evident that the expression exp involved in a

numeric effect {f, op, exp} does not require to be linear; in fact, the mechanism
does not regress to a specific state, but to a set of new conditions that substitute
each fluent with the way such a fluent is altered.

For simplicity, let us introduce a small example, focusing on the numeric part
of the model. Let us consider a ”one action” plan π = {a0} and a goal G, where
a0 and G are numerically defined as follows:

pre(a0) =

{
f1 > 5

f2 < 4
eff(a0) =

{
f1 = f1 + 5

f2 = f2 + 8
G =

{
f1 > 10

f2 < 4

By following algorithm 1, we have K1 = G and (the numeric part of) K0

created by means of {K1
num ⊕ effnum(a0)} ∪ prenum(a0). So in the first step,

we have to keep trace of the action contribution, that is:

K1 ⊕ effnum(a0) =

{
f1 + 5 > 10

f2 + 8 < 4

Then, the numeric kernel is completed by joining the constraints defined by
⊕ with the constraints defined for pre(a), i.e.:

(K1 ⊕ effnum(a0)) ∪ prenum(a0) =

f1 + 5 > 10

f2 + 8 < 4

f1 > 5

f2 < 4

=

{
f1 > 5

f2 < −4

It is easy to see that if we take an arbitrary (initial) state with f1 and f2
satisfying the arising comparisons (e.g. f1 = 6 and f2 = -5), and, if we apply
to such a state the action a0, we are sure that (i) the action is applicable, since
6 > 5 and −5 < −4, and (ii) we will obtain a state s′ where both f1 > 10 and
f2 < 4 hold, namely goal conditions will be satisfied.

The example reported above describes a simple scenario where numeric flu-
ents do not depend on each other. But this is not always the case. Theoretically,

7

in fact, an effect for the action can express that f1 = f2. Also this kind of rep-
resentation is captured by the substitution performed by the algorithm 2. In
general the algorithm will substitute each variable of the comparison with the
way in which the variable is modified (line 3 and 4).

Let us conclude this section with the proof of the correctness of the algorithm
1. For the sake of explanation, the correctness proof focuses on the numeric
aspect of the problem, so G, s, K and the plan π are analyzed as far as it is
concerned by their numeric part.

Theorem 1. Correctness. Given a plan π and a goal G the algorithm 1 finds a
set of numeric kernels for π and G.

Proof. The proof proceeds by induction on the length of the plan. The base
case of our induction is when the plan is empty, i.e. |π| = 0; in such a case
the algorithm terminates after one iteration with the last and the only numeric
kernel of interest, i.e. Kn ≡ K0 since n = 0. This kernel contains the same
comparisons present in the goal; hence, given a state s, it follows that s[π]
satisfies G if and only if s satisfies K0. In particular s[π] corresponds to s and
the only way of reaching the goal is to be a state that already satisfies the goal.

Inductive step. For inductive assumption we know that the i-1 steps of the al-
gorithm NKC (the iteration) have computed a set of i numeric kernels for a plan
of length n; i.e. we have the set of kernels K = {Kn−(i−1),Kn−(i−2), ...,Kn−1,Kn

} which is in relation with each suffix of the plan, i.e. with
πn−(i−1),πn−(i−2),...,πn−1, πn. At the i-th step, Kn−i is computed by combining
the preconditions of the first action in πn−i, i.e. an−i and the comparisons ob-
tained in the previous step. For this reason, a state s satisfying Kn−i will be
such that (i) the action an−i is applicable and (ii) the state resulting from the
action application, i.e. s[{an−i}], turns out to satisfy the Kn−(i−1). This last
in fact follows directly from the definition of ⊕. Indeed the operation keeps the
conditions expressed in Kn−(i−1), while considering the effects of an−i by means
of the substitution mechanism. Having both (i) and (ii) we are sure that if s
satisfies Kn−i , then s[πn−i] will satisfy the goal.

For the necessary condition, that is if s[πn−i] satisfies G then s satisfies Kn−i,
we can proceed by absurd. Indeed, if s does not satisfy the conditions expressed
in Kn−i, it means that either the first action of πn−i (an−i) is not applicable
or the state resulting from the application of such an action does not satisfy
Kn−(i−1). The latter is not possible for inductive assumption as Kn−(i−1) is
assumed to be a kernel, while for the former it is obviously impossible since if
the action is not applicable then s[πn−i] will not satisfy the goal. This proves
the contradiction.

4 Continual planning via Numeric Kernels

To validate and evaluate the relevance of the numeric kernels formulation, we
implemented a continual planning agent able to handle domains with numeric
fluents. The continual planning paradigm [14] allows the agent to interleave the

8

execution and the planning all along the task to execute. The idea is that the
planning phase cannot be seen as a single one shot task. Instead, the agent should
monitor the plan execution and replan or repair the plan when necessary.

In particular, when the current plan becomes inconsistent, it is important
that the agent acts in a timely fashion to recover from the unexpected impasse.
To this end, in the following, we propose two plan repair strategies which directly
exploit the numeric kernel properties. For further details on how implementing
the overall continual planning loop see [16].

4.1 Greedy Repair

The first implemented repair strategy is a direct application of the Proposition 2.
Rather than abandoning the old plan for computing a solution completely from
scratch, the greedy repair tries to restore the kernel conditions by performing
a patch plan that connects the current state with a state that satisfies the ex-
pected kernel condition, at that step. Then the patch can be concatenated with
the previous plan, forming a new plan of actions leading the agent to the goal
conditions. We expect, in fact, that in some situation (i.e. where the deviation
from the nominal trajectory is not so prominent), despite contrasting complexity
results on this topic ([17]), it may be actually more convenient to adapt the old
solution rather than replanning completely from scratch. However, there may
be situations where the greedy nature of this strategy can be a waste of time,
and, instead, there may be kernels all along the plan, that are actually easier to
reach. To mitigate this behavior we present the kernel heuristic repair.

4.2 Kernel Heuristic Repair

As we have seen, each element of K identifies the conditions for a suffix of the
plan to be valid. This means that, if the agent would have the capability of
connecting the current state to one of such conditions, the relative suffix of the
plan will bring the agent to reach the final goal.

Therefore, the idea is to search for the kernel that is the one actually closer
(and hence hopefully simpler) to satisfy. However, the exact estimation of such
distance is prohibitive as it would correspond in solving several instances of new
planning tasks. For this reason, we combined the kernel set K with the numeric
planning graph heuristic, developed in the context of numeric planning (e.g.
in Metric-FF, [1], and Lpg-TD, [2]). In particular, the heuristic is the solution
length of a relaxed version of the planning problem; the relaxation consists of
considering the actions only in their positive effects5.

In our context, the heuristic provides us with an estimation of the distance
between the current state and the set of kernels K; the resulting strategy is
straightforward. Let s be the current world state at step i of the execution
violating the condition expressed in the i-th kernel, the kernel heuristic repair

5 The numeric planning graph heuristic extends the original definition for the classical
paradigm (where actions are considered without their delete effects) to the domains
involving numeric variables. For details see [1] and [2].

9

estimates the distance d(s,Kj) for each Kj ∈ K where j ≥ i. Then the strategy
picks the kernel which has the lower distance and will use this kernel as an
intermediate point towards which performs the patch-plan. Having computed
this new course of actions, as in the greedy repair, it suffices to concatenate the
patch plan with the relative plan-suffix to obtain a valid plan from s to the goal
G. The procedure is summarized by the algorithm 3.

Algorithm 3: Kernel Heuristic Repair

Input: π - numeric plan ; K - kernels set ; s - world state
Output: the numeric plan modified

1 K* = best kernel(s,K);
2 if d(s,K*) 6= ∞ then
3 π′ = solve(s,K*);
4 if π′ is not failure then
5 return π′ ∪ suffix of(K*)

6 return ∅

By comparing these two strategies we can see that, on the one hand, the
greedy repair immediately commits towards a specific kernel without spending
efforts to reason on the previous plan. On the other hand, the kernel heuristic
repair has to spend some extra time to estimate what is the ”best” kernel to
take into account (i.e. the heuristic computation). We expect that, in the long
run, the kernel heuristic repair could take advantage from this reasoning and
hence outperforming the greedy approach in those cases for which making (or
trying to make) a patch towards the current kernel is actually a useless time
consumption.

5 Experimental Results

To evaluate the repair mechanisms proposed in the previous section, we tested
the greedy repair and heuristic kernel repair on three domains from the third
International Planning Competition (IPC3)6. The first is the ZenoTravel (ZT),
the second is a harder version, where the refuel action is allowed only in presence
of the refuel station (Hard ZT), and the third is the Rover domain.

For each domain, we used 11 problems from the IPC suite (the harder ones),
and for each problem, we generated (off-line) a starting plan. To evaluate the
plan repair strategies, we simulated the plan execution by injecting discrepancies
on the way in which resources are consumed. For each case we injected 5 different
amounts of noise; hence each case for our evaluation is identified by the tuple
< domain, problem, plan, noise >. Totally we have 55 cases for each domain.

6 http://www.plg.inf.uc3m.es/ipc2011-deterministic.

10

The evaluation relies on the metric defined for the IPC2011 and has been
focused on the performance of repairing a plan7. In particular, we measured the
time and the quality score (i.e. the resulting plan length8), and the coverage of
the strategy (i.e. the percentage of solved problems). For comparison reasons,
test cases ran also with a replanning from scratch, and with LPG-ADAPT ([18]).

Each computation is allotted with a maximum of 100 secs of cpu-time. Tests
have been executed on Ubuntu 10.04 with an Intel Core Duo@2.53GHz cpu and 4
GB of Ram. The software has been implemented in Java 1.6 and the (re)planner
used for the resolution of the arising planning tasks has been Metric-FF ([1]).

Time Score Quality Score Coverage
GR HKR REP LPGA GR HKR REP LPGA GR HKR REP LPGA

ZT 55.0 27.0 25.9 5.6 53.4 53.4 54.2 26.2 100 100 100 70.9
HardZT 47.0 24.3 17.7 7.4 46.1 48.9 47.4 21.3 85.5 90.9 87.3 61.8
Rover 46.0 4.7 9.9 22.7 42.2 41.3 26.1 46.3 89.1 83.6 49.1 100
Total 148.0 56.0 53.6 35.7 141.7 143.6 127.7 93.8 91.5 91.5 78.8 77.6

Table 1. Time Score, Quality Score and Coverage, according to the IPC 2011 metrics,
for the three strategies over all the problems and domains.

Fig. 1. The y-axis shows the Cpu-Time (in msec) for all the problems (x-axis) in the
tested domains: ZenoTravel (left), Hard ZenoTravel (center), Rover (right)

Results are summarized by Table 1 and Figure 1; GR, HKR, REP and LPGA
stand for, respectively, the greedy repair, the heuristic kernel repair, the replan-
ning from scratch strategy and LPG-ADAPT. The table reports the scores ob-
tained, while Figure 1 analyzes the scalability of the three approaches w.r.t. the
increase of the difficulty of the problems9.

Concerning the time score, GR outperformed the other strategies in all the
tested domains (Table 1). The difference is large and it is also evident analyz-
ing the gain between the curves reported in Figure 1. As matter of facts, GR

7 It is worth noting that the kernel construction can be done in a preprocessing phase
so that it can be seen as a form of off-line reasoning which hence does not influence
the on-line performances.

8 For the repair such a length is given by the patch plan and the plan suffix to execute.
9 This scalability measures only those cases which have been successfully solved by all

the strategies tested.

11

remains stably under the 1.5 secs of computational time for all the tested cases.
Surprisingly, even for the quality score and the coverage, both the kernel based
mechanisms outperformed the other strategies. This has been due to the many
timeout situations encountered by running REP and LPGA. HKR is the one
with the highest quality score but it is no competitive with GR time score. From
our experiments we noticed that a large part of the HKR solving-time has been
spent to compute the heuristic function (50%, 44% and 71% respectively for the
ZenoTravel, Hard ZenoTravel and Rover). The bottleneck has been probably a
not well optimized Java code (differently from others well known C++ imple-
mentations of the numeric planning graph heuristic, see for instance [1]); hence,
we expect that the performance of HKR could be greatly increased.

6 Conclusions

The paper has proposed the notion of numeric kernel, which generalizes the
STRIPS kernel for dealing with actions involving changes for continuous vari-
ables, i.e. numeric fluents. Concretely a numeric kernel is the weakest set of
conditions that must be satisfied to make a plan of actions applicable. The pa-
per formally reported a concrete regression mechanism for the construction of
such a kernel, and interesting properties arising from its formulation.

Besides this theoretical contribution, the paper provided two effective strate-
gies, which directly apply the kernel facilities for a problem of repair in presence
of continuous and consumable resources. As a difference w.r.t. the most of the
works appeared in literature ([19], [20], [18], [13]) in the context of on-line plan-
ning, the repair mechanisms implemented in this paper can be applied not only
for the propositional setting, but also for the numeric one. Moreover, since these
strategies do not make any assumption on the planner/heuristic used, they could
be easily adapted with existing replanning/plan-adaption tools ([18]).

The performance of the repair strategies have been empirically evaluated on
three domains defined by the planning community. Results showed that, in facing
unexpected resources consumption, the proposed repair mechanisms are quite
efficient, and produce good quality solutions, outperforming in the most of the
cases both a replanning mechanism, and the LPG-ADAPT system ([18]). Such
results, of course, need further confirmations on a larger set of domains; therefore,
as an immediate future work, we are working on extending the experimental
phase to assess the generality of the proposed strategies, possibly in combination
with others plan-adaption tools.

From a methodological point of view, we are also studying how and when
the numeric kernel notion can be employed in the context of case based plan-
ning with numeric fluents ([21]). Intuitively, we believe in fact that the notion
may provide a quite good guidance in the selection/exploitation of past plans,
solutions of (hopefully) similar problems.

References

1. Hoffmann, J.: The metric-ff planning system: Translating ”ignoring delete lists”
to numeric state variables. Journal of Artificial Intelligence Research 20 (2003)

12

291–341
2. Gerevini, A., Saetti, I., Serina, A.: An approach to efficient planning with numerical

fluents and multi-criteria plan quality. Artificial Intelligence 172(8-9) (2008) 899–
944

3. Coles, A.J., Coles, A., Fox, M., Long, D.: Colin: Planning with continuous linear
numeric change. Journal of Artificial Intelligence Research 44 (2012) 1–96

4. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning
domains. Journal of Artificial Intelligence Research 20 (2003) 61–124

5. Coles, A.J., Coles, A.I., Fox, M., Long, D.: Forward-chaining partial-order plan-
ning. In: Proc. of International Conference on Automated Planning and Scheduling
(ICAPS-10). (2010)

6. Conrad, P.R., Williams, B.C.: Drake: An efficient executive for temporal plans
with choice. Journal of Artificial Intelligence Research 42 (2011) 607–659

7. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-
gence 49(1-3) (1991) 61–95

8. Kvarnström, J., Heintz, F., Doherty, P.: A temporal logic-based planning and
execution monitoring system. In: Proc. of International Conference on Automated
Planning and Scheduling (ICAPS-08). (2008) 198–205

9. Policella, N., Cesta, A., Oddi, A., Smith, S.: Solve-and-robustify. Journal of
Scheduling 12 (2009) 299–314

10. Stergiou, K., Koubarakis, M.: Backtracking algorithms for disjunctions of temporal
constraints. Artificial Intelligence 120(1) (2000) 81–117

11. Fikes, R., Hart, P.E., Nilsson, N.J.: Learning and executing generalized robot
plans. Artificial Intelligence 3(1-3) (1972) 251–288

12. Fritz, C., McIlraith, S.A.: Monitoring plan optimality during execution. In: Proc.
of International Conference on Automated Planning and Scheduling (ICAPS-07).
(2007) 144–151

13. Garrido, A., C., G., Onaindia, E.: Anytime plan-adaptation for continuous plan-
ning. In: Proc. of P&S Special Interest Group Workshop (PLANSIG-10). (2010)

14. Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent en-
vironments. Journal of Autonomous Agents and Multiagent Systems 19(3) (2009)
297–331

15. Chen, Y., Wah, B.W., wei Hsu, C.: Temporal planning using subgoal partitioning
and resolution in sgplan. Journal of Artificial Intelligence Research 26 (2006) 369

16. Scala, E.: Reconfiguration and Replanning for robust Execution of Plans Involving
Continous and Consumable Resources. Phd thesis in computer science, Depart-
ment of Computer Science - Universita’ di Torino (2013)

17. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and em-
pirical analysis. Artificial Intelligence 76(1-2) (1995) 427–454

18. Gerevini, A., Saetti, A., Serina, I.: Case-based planning for problems with real-
valued fluents: Kernel functions for effective plan retrieval. In: Proc. of European
Conference on AI (ECAI-12). (2012) 348–353

19. van der Krogt R., de Weerdt M.: Plan repair as an extension of planning. In: Proc.
of International Conference on Automated Planning and Scheduling (ICAPS-05).
(2005) 161–170

20. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus
plan repair. In: Proc. of International Conference on Automated Planning and
Scheduling (ICAPS-06). (2006) 212–221

21. Gerevini, A., Roub́ıcková, A., Saetti, A., Serina, I.: On the plan-library mainte-
nance problem in a case-based planner. In: International Conference on Case Based
Reasoning (ICCBR-13). (2013) 119–133

