
J
H
E
P
0
1
(
2
0
1
4
)
1
4
7

Published for SISSA by Springer

Received: December 4, 2013

Accepted: January 3, 2014

Published: January 27, 2014

Perturbative corrections to power suppressed effects

in semileptonic B decays

Andrea Alberti,a Paolo Gambinoa and Soumitra Nandib

aDipartimento di Fisica, Università di Torino, & INFN Torino,
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1 Introduction

The model-independent study of inclusive semileptonic B decays, initiated twenty years

ago [1–4], is based on an Operator Product Expansion (OPE) in conjunction with the

heavy quark expansion. At the B factories, it has allowed for very precise determinations

of the CKM matrix elements |Vcb| and |Vub|, mostly limited by theoretical uncertainties [5].

Further progress therefore requires theoretical improvements, as well as high statistics data

from Belle-II in the case of charmless decays. The calculation of higher order corrections

in the OPE, in particular, is of crucial importance.

The OPE expresses the widths and the first moments of the kinematic distributions of

B → Xu,c`ν as double expansions in αs and ΛQCD/mb. The leading terms in these double

expansions are given by the free b quark decays, while the O(αs, α
2
sβ0) perturbative correc-

tions [6–12] and the O(Λ2
QCD/m

2
b ,Λ

3
QCD/m

3
b) non-perturbative corrections [3, 4, 13] have

been known for a long time. More recently, the complete O(α2
s) calculation has been com-

pleted [14–18], and the O((ΛQCD/mQ)4,5) have been investigated [19]. The parameters of

the double expansions are the heavy quark masses mb and mc, the strong coupling αs, and

the B-meson matrix elements of local operators of growing dimension. The latter param-

eterize all the long-distance physics that is relevant for inclusive decays: at O(Λ2
QCD/m

2
b)

there are two parameters, µ2
π and µ2

G, at O(Λ3
QCD/m

3
b) two more appear, ρ3

D and ρ3
LS , and

so on. The non-perturbative parameters are constrained by the experimental data for the

moments of the lepton energy and hadron mass distributions of B → Xc`ν and can be em-

ployed to extract |Vcb| from the semileptonic width. Recent fits can be found in refs. [5, 20].

The coefficients of the non-perturbative corrections of O(ΛnQCD/m
n
b ) in the double

series are Wilson coefficients of power-suppressed local operators and can be computed

perturbatively. Only a subset of the O(αsΛ
2
QCD/m

2
b) corrections has been computed so

far: the O(αs) corrections to the coefficient of µ2
π [21, 22], which represents the B meson
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expectation value of the kinetic operator and is related to the average kinetic energy of

the b quark in the B meson. In this paper we present the calculation of the remaining

O(αsΛ
2
QCD/m

2
b) corrections, those proportional to µ2

G, the expectation value of the chro-

momagnetic operator. We compute the corrections to the triple differential semileptonic

B decay width and therefore to the most general moment, in such a way that they can be

readily employed to improve the precision of the fits to |Vcb|.
Our calculation follows the method outlined in ref. [23], where the same corrections

were computed in the simpler case of B → Xsγ, and in ref. [22]. Here we discuss the

matching procedure in greater detail and present analytic results for the O(αsµ
2
G/m

2
b)

corrections to the three relevant structure functions. In this way the corrections to the

triple differential width become available and the corrections to arbitrary moments can

be computed. We then present numerical results for the semileptonic width and for the

first leptonic moments. The paper is organized as follows: after setting the notation in

section 2, we discuss the matching in section 3; the following section presents and discusses

the numerical results. Section 5 summarizes our findings. The lengthy analytic results for

the structure functions are given in the appendix.

2 Notation

We consider the decay of a B meson of four-momentum pB = MBv into a lepton pair

with momentum q and a hadronic final state containing a charm quark with momentum

p′ = pB − q. The hadronic tensor Wµν which determines the hadronic contribution to the

differential width is given by the absorptive part of a current correlator in the appropriate

kinematic region,

Wµν(pB, q) = Im
2 i

πMB

∫
d4x e−iq·x〈B̄|TJµ†L (x)JνL(0)|B̄〉, (2.1)

where JµL = c̄γµPLb is the charged weak current. The correlator admits an OPE in terms

of local operators, which at the level of the differential rate takes the form of an expansion

in inverse powers of the energy release, whose leading term corresponds to the decay of a

free quark.

Our notation follows that of ref. [12, 22]. We express the b-quark decay kinematics in

terms of the dimensionless quantities

ρ =
m2
c

m2
b

, û =
(p− q)2 −m2

c

m2
b

, q̂2 =
q2

m2
b

, (2.2)

where p = mbv is the momentum of the b quark and

0 ≤ û ≤ û+ =
(

1−
√
q̂2
)2
− ρ and 0 ≤ q̂2 ≤ (1−√ρ)2 . (2.3)

The energy of the hadronic system, normalized to the b mass, is

E =
1

2
(1 + ρ+ û− q̂2). (2.4)

– 2 –
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Tree-level kinematics correspond to û = 0, in which case we indicate the energy of the

hadronic final state as E0. The normalized total leptonic energy is q̂0 = 1−E from which

follows û = 2 (1− E0 − q̂0). It is customary to decompose the hadronic tensor as follows

mbW
µν(pB, q) = −W1 g

µν +W2 v
µvν + iW3 ε

µνρσvρq̂σ +W4q̂
µq̂ν +W5 (vµq̂ν+vν q̂µ) , (2.5)

where the structure functions Wi are functions of q̂2, q̂0 or equivalently of q̂2, û, vµ is the

four-velocity of the B meson, and q̂µ = qµ/mb. As only W1,2,3 contribute to the decay rate

for massless leptons, we will concentrate on these three structure functions.

Due to the OPE, the structure functions can be expanded in series of αs and ΛQCD/mb.

There is no term linear in ΛQCD/mb and therefore

Wi = W
(0)
i +

µ2
π

2m2
b

W
(π,0)
i +

µ2
G

2m2
b

W
(G,0)
i +

αs
π

[
CFW

(1)
i + CF

µ2
π

2m2
b

W
(π,1)
i +

µ2
G

2m2
b

W
(G,1)
i

]
(2.6)

where we have neglected terms of higher order in the expansion parameters. µ2
π and µ2

G

are the B-meson matrix elements of the only gauge-invariant dimension 5 operators that

can be formed from the b quark and gluon fields:

µ2
π =

1

2MB
〈B̄|b̄v(i ~D)2bv|B̄〉 , µ2

G = − 1

2MB
〈B̄|b̄v

gs
2
Gµνσ

µνbv|B̄〉 , (2.7)

where bv is the static quark field, and Gµν = GaµνT
a is the gluon field tensor, which is

defined as gsG
a
µνT

a = −i[Dµ, Dν ] with the covariant derivative Dµ = ∂µ + igsG
a
µT

a.1 The

leading order coefficients are given by

W
(0)
i = w

(0)
i δ(û); w

(0)
1 = 2E0, w

(0)
2 = 4, w

(0)
3 = 2. (2.8)

The tree-level and one-loop coefficients of µ2
π can be found in [22]; the tree-level coefficients

of µ2
G [3, 4], using λ0 = 4(E2

0 − ρ), can be written as:

W
(G,0)
i = w

(G,0)
i δ(û) + w

(G,1)
i δ′(û); (2.9)

w
(G,0)
1 = −4

3
(2− 5E0), w

(G,1)
1 = −4

3

(
E0 + 3E2

0 +
1

2
λ0

)
;

w
(G,0)
2 = 0, w

(G,1)
2 =

8

3
(3− 5E0);

w
(G,0)
3 =

10

3
, w

(G,1)
3 = −4

3
(1 + 5E0).

3 The matching at O(αs)

Schematically, we can write the OPE in momentum space as

2i

π

∫
d4x e−iq·x T [J†µL (x)JνL(0)] =

∑
i

c
(i)µν
{α}(v, q)O

{α}
i (0), (3.1)

1Since we are only interested in Λ2
QCD/m

2
b corrections, µ2

π and µ2
G are here defined in the asymptotic

HQET regime, i.e. in the infinite mass limit.
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where O
{α}
i are local operators and {α} stands for possible additional Lorentz indices. The

number of local operators of dimension di ≤ 5 that contribute to the r.h.s. can be reduced,

and their renormalization simplified, by resorting to the Heavy Quark Effective Theory

(HQET) and using the relation between the HQET static quark bv and the QCD b field,

b(x) = e−imbv·x
(

1 +
i /D

2mb

)
bv(x) . (3.2)

Eventually, we will need the following set:

Oµb = b̄γµb, Os = b̄ b ,

Oµ1 = b̄viD
µbv, Oµν2 = b̄v

1

2
{iDµ, iDν}bv , Oµν3 = b̄v

gs
2
Gµασ

ανbv . (3.3)

Notice that Ob,s are written in terms of the QCD bottom quark field, while the other

operators are constructed in terms of bv. Up to terms of dimension six, the operator Os
can be expressed in terms of the others:

Os = vµO
µ
b +

Oα2α +Oα3α
2m2

b

+O

(
1

m3
b

)
(3.4)

but we keep it distinct for reasons that will become clear. We also find operators that

include a γ5, but they can be neglected in our discussion. Indeed, because of the parity

invariance of strong interactions, only the operators in (3.3) have non-vanishing matrix

elements in the B meson. As we perform an off-shell calculation, we have not used the

HQET equation of motion for the bv field, which would reduce the operator Oµ1 to a linear

combination of Oµν2,3. The equation of motion will be used only in the last step of the

calculation, when we evaluate the matrix elements of the operators in the B meson.

In order to determine the Wilson coefficients c
(i)µν
{α} we compute renormalized Green’s

functions of both sides of eq. (3.1) on heavy quark states close to the mass shell. The

external heavy quarks have residual momentum k and we Taylor expand the Green’s func-

tions for small k up to to second order. To extract c
(3)µν
αβ we also need to consider Green’s

functions with a soft external gluon. They are Taylor expanded in both k and the gluon

virtuality r.

It is convenient to decompose the tensors as in (2.5), writing the l.h.s. of eq. (3.1)as

Tµν =
1

mb

[
−gµνT (1) + vµvνT

(2) − iεµναβvαq̂βT (3) + q̂µq̂νT
(4) + (vµq̂ν + q̂µvν)T (5)

]
. (3.5)

For massless leptons, only the first three form-factors, T (1−3), contribute to physical quan-

tities. Eq. (3.1) becomes

T (i) = c(i,b)
α Oαb + c(i,s)Os + c(i,1)

α Oα1 + c
(i,2)
αβ O

αβ
2 + c

(i,3)
αβ O

αβ
3 + . . . , (3.6)

where the ellipses stand for contributions of operators of canonical dimension six or higher.

All the Wilson coefficients can be expanded in powers of αs,

c
(i,m)
{α} = c

(i,m,0)
{α} +

αs
4π

c
(i,m,1)
{α} +O(α2

s)
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and we are only interested in their imaginary part, cfr. (2.1). We consider the forward

matrix element of (3.6) between two b quarks, and between two quarks and a soft gluon:

〈Ti〉bb̄ = c(i,b)
α 〈Oαb 〉bb̄ + c(i,s)〈Os〉bb̄ + c(i,1)

α 〈Oα1 〉bb̄ + c
(i,2)
αβ 〈O

αβ
2 〉bb̄ + c

(i,3)
αβ 〈O

αβ
3 〉bb̄ + . . . , (3.7)

〈Ti〉bb̄g = c(i,b)
α 〈Oαb 〉bb̄g + c(i,s)〈Os〉bb̄g + c(i,1)

α 〈Oα1 〉bb̄g + c
(i,2)
αβ 〈O

αβ
2 〉bb̄g + c

(i,3)
αβ 〈O

αβ
3 〉bb̄g + . . . .

(3.8)

Here all the matrix elements should be interpreted as renormalized amputated Green’s

functions, either in full QCD (the l.h.s. and the matrix elements of Oµb and Os) or in

HQET; since the two theories have the same infrared behavior the cancellation of infrared

divergences is guaranteed. The matrix elements of a generic operator OX can be expanded

in powers of αs,

〈OX〉bb̄(g) = 〈OX〉(0)

bb̄(g)
+
αs
4π
〈OX〉(1)

bb̄(g)
+O(α2

s).

We observe that

〈Os〉(0)

bb̄
= 〈Oαβ3 〉

(0)

bb̄
= 0 , 〈Oαb 〉

(0)

bb̄g
= 〈Os〉(0)

bb̄g
= 0. (3.9)

Therefore, at the tree-level, the expansion in the residual momentum k of the l.h.s. of (3.7)

allows for the determination of c
(i,b,0)
µ at k = 0, of c

(i,1,0)
µ at O(k), of c

(i,2,0)
µν at O(k2). More

precisely, the O(k) term in the l.h.s. of (3.7) is related to the matrix elements of

b̄ γα(iDβ −mbv
β)b = vαOβ1 +

1

mb

(
Oαβ2 +Oαβ3

)
+O

( 1

m2
b

)
. (3.10)

The latter equality follows from the relation between b and bv fields, and therefore the O(k)

term in the l.h.s. of (3.7) contributes to the Wilson coefficients of O1,2,3.

For what concerns the Taylor expansion in k, r of the l.h.s. of (3.8), the term at k = r =

0 allows for the determination of c
(i,1,0)
µ , while the term linear in k and r determines c

(i,2,0)
µν

and c
(i,3,0)
µν . Gauge invariance guarantees that the same c

(i,1,0)
µ and c

(i,2,0)
µν are extracted

from the diagrams with and without external gluon. From (3.9) we also have c(i,s,0) = 0.

We write down explicitly the tree-level coefficients only in the case of W1, namely for

the first of the tensor structures in (3.5) — the other form factors have the same structure.

We work in d = 4− 2ε dimensions and retain O(ε) terms

Im c(1,b,0)
µ = (1− ε) (vµ − q̂µ) δ(û) (3.11)

Im c(1,1,0)
µ =

1

mb
(1− ε)

[
2 (1− q̂0) (vµ − q̂µ) δ′(û) + vµδ(û)

]
(3.12)

Im c(1,2,0)
µν =

2

m2
b

(1− ε) (1− q̂0) p̂′µ p̂
′
ν δ
′′(û)

+
2

m2
b

(1− ε)
[

1− q̂0

2
gµν + 2vµvν −

3

2
(q̂µvν + vµq̂ν) + q̂µq̂ν

]
δ′(û)

− 1

m2
b

[
εgµν −

q̂2vµvν − q̂0(q̂µvν + vµq̂ν) + q̂µq̂ν
q̂2 − q̂2

0

]
δ(û) (3.13)
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Im c(1,3,0)
µν = − 2

m2
b

[
1− q̂0

2
gµν(1 + ε) + ((1− ε)q̂µ − 2vµ)p̂′ν +

q̂ · p̂′ vµq̂ν − v · p̂′ q̂µq̂ν
q̂2 − q̂2

0

]
δ′(û)

− 1

m2
b

[
εgµν −

q̂2vµvν − q̂0(q̂µvν + vµq̂ν) + q̂µq̂ν
q̂2 − q̂2

0

]
δ(û) (3.14)

where p̂′ = v − q̂. The O(ε) terms depend on whether the tensor decomposition of Tµν is

performed in four (as in our case) or d dimensions.

Eventually, of course, we need to evaluate eq. (3.1) in the B meson: the corresponding

matrix elements of the operators (3.3) are given by

1

MB
〈B̄|Oµb |B̄〉 = 2 vµ,

1

MB
〈B̄|Os|B̄〉 = 2−

µ2
π − µ2

G

m2
b

,

1

MB
〈B̄|Oµ1 |B̄〉 =

µ2
π − η µ2

G(µ)

mb
vµ, (3.15)

1

MB
〈B̄|Oµν2 |B̄〉 = − 2µ2

π

d− 1
(gµν − vµvν) ,

1

MB
〈B̄|Oµν3 |B̄〉 =

2µ2
G

d− 1
(gµν − vµvν) ,

where we have neglected higher order power corrections and introduced the factor

η = 1 + 2

[
CF +

(
1 + ln

µ

mb

)
CA

]
αs
4π

(3.16)

in order to take into account the O(αs) corrections to the HQET equation of motion, in

the same manner as it has been done in [23]. In the standard tree-level calculation [3, 4],

one computes directly the coefficients of µ2
π and µ2

G. However, in order to perform the

renormalization properly it is essential to distinguish between the various operators whose

matrix elements contain µ2
G. The evaluation of eq. (3.1) in the B meson leads, through

eqs. (3.11)–(3.15), to the well-known O(Λ2
QCD/m

2
b) corrections [3, 4], see also eq. (2.9).

The one-loop calculation of the current correlator requires the imaginary part of the

diagrams shown in figure 1. We use dimensional regularization for both ultraviolet and

infrared divergences and proceed exactly as described in ref. [22]. The result of the Taylor

expansion in k and r is reduced to the master integrals listed in the of appendix of the same

paper. We perform the calculation in an arbitrary Rξ gauge and use the background field

gauge for the external gluon. The ultraviolet divergences of the diagrams in figure 1 are

removed by standard on-shell quark mass and wave function QCD renormalization, see [23].

Notice that the bb̄ one-loop amplitude at k = 0 contains terms that lead to c(i,s,1) 6= 0;

in other words, Os emerges naturally from the OPE before one uses the heavy quark

expansion, and its presence is essential to verify that c
(i,1,1)
µ and c

(i,2,1)
µν extracted from the

diagrams with and without external gluon are the same, as dictated by gauge invariance.

The r.h.s. of (3.6) receives O(αs) contributions from both one-loop matrix elements of

the effective operators and the one-loop Wilson coefficients. However, the unrenormalized

one-loop matrix elements of O1−3 vanish in dimensional regularization because they reduce

– 6 –
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Figure 1. One-loop diagrams contributing to the current correlator. The background gluon can

be attached wherever a cross is marked.

to massless one-loop tadpole diagrams . The case of Oµb is different and will be explained

in a moment. Besides the on-shell wave function renormalization of the b and bv fields,

we need the operator renormalization, which is performed in the MS scheme, see [23].

In particular[
cbµO

µ
b

]bare
= ZOS

b cbµO
µ
b , [c2µνO

µν
2 ]

bare
= ZOS

bv Z
MS,µναβ
kin c2µνO2αβ ,

[c1µO
µ
1 ]

bare
= ZOS

bv c1µO
µ
1 , [c3µνO

µν
3 ]

bare
= ZOS

bv Z
MS,µναβ
chromo c3µνO3αβ . (3.17)

where

ZMS,µναβ
kin = gαµgβν − CF

3− ξ
ε

(gµν − 2vµvν) vαvβ
αs
4π

+ . . .

ZMS,µναβ
chromo = gαµgβν +

CA
ε

(gµα − vµvα) gνβ
αs
4π

+ . . . . (3.18)

The Feynman gauge is obtained by setting ξ = 1. It is easy to see that the renormalization

of Oµν2 is irrelevant because the matrix element of Zµναβkin O2αβ vanishes at the order of the

calculation. On the other hand, the B matrix element of ZµναβchromoO3αβ is proportional to

that of Oµν3 , which simplifies the calculation. The operator Os does not need renormaliza-

tion because it enters at the loop level only. The one-loop matrix elements of Oµb do not

vanish: they have to be Taylor expanded in k and r and included in the calculation.

Putting together all pieces we have verified that all infrared and ultraviolet divergences

are canceled in the Wilson coefficients and that the latter are independent of the amplitude

from which they are extracted. We have also verified that the results, which we express in

terms of coefficients of αsµ
2
π,G in eq. (2.6), do not depend on the quantum gauge parameter

ξ. The coefficients of µ2
π, W

(π,1)
i , agree with ref. [22]. The complete analytic results for

W
(G,1)
i are given in the appendix.

– 7 –
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4 Numerical results

In this section we present a preliminary investigation of the numerical relevance of the

O(αsΛ
2
QCD/m

2
b) corrections, using for the heavy quark masses the reference values mb =

4.6 GeV and mc = 1.15 GeV. First, we consider on-shell quark masses; in this case the

phase space integration of the triple differential width (see e.g. eq. (2.10) of ref. [22]) leads

to the total semileptonic width

ΓB→Xc`ν = Γ0

[(
1− 1.78

αs
π

)(
1− µ2

π

2m2
b

)
−
(

1.94 + 2.42
αs
π

) µ2
G(mb)

m2
b

]
,

where Γ0 = G2
Fm

5
b(1− 8ρ+ 8ρ3− ρ4− 12ρ2 ln ρ)/192π3 is the tree level width, ρ = m2

c/m
2
b ,

and we have neglected higher order terms of O(α2
s) and O(1/m3

b). The parameter µ2
G is

renormalized at the scale µ = mb. It is advisable to evaluate the QCD coupling constant

at a scale lower than mb. Here and in the following we adopt αs = 0.25, which implies that

the O(αs) correction increases the µ2
G coefficient by about 10%. Neglecting again higher

order effects, the mean lepton energy is given by

〈E`〉 = 1.41GeV

[(
1− 0.02

αs
π

)(
1 +

µ2
π

2m2
b

)
−
(

1.19 + 4.20
αs
π

) µ2
G(mb)

m2
b

]
,

while the variance of the lepton energy distribution is `2 = 〈E2
` 〉 − 〈E`〉2,

`2 = 0.183 GeV2

[
1− 0.16

αs
π

+
(

4.98−0.37
αs
π

) µ2
π

m2
b

−
(

2.89 + 8.44
αs
π

) µ2
G(mb)

m2
b

]
.

In the two above leptonic moments the NLO corrections to the coefficients of µ2
G are larger

than in the total rate: they amount to +28% and +23%, respectively. They have therefore

the same sign and size of the corrections to the width and photon energy moments in

b→ sγ [23]. Of course, the coefficients of the O(αs) corrections depend on the perturbative

scheme and on the renormalization scale of µ2
G. In the kinetic scheme with cutoff µkin =

1GeV, which is often employed in semileptonic fits [5, 20], the width becomes

ΓB→Xc`ν = Γ0

[
1− 1.11

αs
π
−
(

1

2
− 0.99

αs
π

)
µ2
π

m2
b

−
(

1.94 + 3.46
αs
π

) µ2
G(mb)

m2
b

]
, (4.1)

where the NLO corrections to the coefficients of µ2
π, µ

2
G are both close to 15% but have dif-

ferent signs.2 Overall, the O(αsΛ
2
QCD/m

2
b) contributions decrease the total width by about

0.3%. However, NLO corrections also modify the coefficients of µ2
π, µ

2
G in the moments

which are fitted to extract the non-perturbative parameters, and will ultimately shift the

values of µ2
π, µ

2
G to be employed in (4.1). Therefore, in order to quantify the eventual nu-

merical impact of the new corrections on the semileptonic width and on |Vcb|, a new global

fit has to be performed.

2In the kinetic scheme the O(1/m3
b) corrections (here neglected) contribute to the determination of the

perturbative corrections and slightly modify the numerical values reported in eqs. (4.1)–(4.3).
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Figure 2. Relative NLO correction to the µ2
G coefficients in the width (blue), first (red) and second

central (yellow) leptonic moments as a function of the renormalization scale µ of µ2
G.

For what concerns the first leptonic moment in the kinetic scheme we find

〈E`〉 = 1.41GeV

[
1− 0.01

αs
π

+

(
1

2
− 0.44

αs
π

)
µ2
π

m2
b

−
(

1.19 + 3.21
αs
π

) µ2
G(mb)

m2
b

]
, (4.2)

where the new corrections lead to a ≈ 0.5% suppression. In practice, experiments measure

this observable applying a lower cut on the lepton energy and the typical experimental

error is lower than 0.5%. We postpone the consideration of cuts to a future publication.

In eq. (4.2) the O(αsΛ
2
QCD/m

2
b) correction is dominated by the term proportional to µ2

G,

corresponding to a 20% increase of the µ2
G coefficient. Finally, the second central moment

in the kinetic scheme is given by

`2 = 0.183 GeV2

[
1− 0.24

αs
π

+
(

4.98− 3.89
αs
π

) µ2
π

m2
b

−
(

2.89 + 7.01
αs
π

) µ2
G(mb)

m2
b

]
. (4.3)

Here the new corrections lead to a 1.5% suppression, again of the same order of the exper-

imental error. The NLO correction to the µ2
G coefficient is also about 20%.

The size of the O(αsµ
2
G/m

2
b) corrections depends on the renormalization scale µ of

the chromomagnetic operator. This is illustrated in figure 2, where the size of the NLO

correction relative to the tree level results is shown for the width and the first two leptonic

moments at different values of µ. The NLO corrections are quite small for µ ≈ 2GeV

and, as expected, increase with µ. For µ>∼mb the running of µ2
G appears to dominate

the NLO corrections.

5 Summary

We have calculated the O(αs) corrections to the Wilson coefficients of the chromomagnetic

operator in inclusive semileptonic B decays, employing the techniques developed in refs. [23]

and [22]. This calculation turned out to be significantly more demanding than that of [23],

motivating us to explain the matching procedure in greater detail. We have also studied

the numerical relevance of the new contributions in the absence of cuts: the perturbative

– 9 –
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O(αs) corrections increase the µ2
G coefficients in the total semileptonic rate and in the first

two leptonic moments by 15% to 20% if µ2
G is renormalized at µ = mb. For µ = 2GeV the

corrections are in the 5-10% range. The complete O(αsΛ
2
QCD/m

2
b) correction to the width

is a few per mill, but the corrections to the first two leptonic moments are of the same

order of the experimental errors. A complete estimate of the effect of these corrections on

the width and on |Vcb| therefore requires their inclusion in the global fit to the moments,

which will be the subject of a future publication.
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A Analytic results

We provide results for the contributions proportional to either CF or CA

W
(G,1)
i = W

(G,1)
i,u +

2

3
CFW

(G,1)
i,F +

2

3
CAW

(G,1)
i,A . (A.1)

The term W
(G,1)
i,u contains a few recurring structures

W
(G,1)
i,u =

[
2CF (1− E0I1,0)w

(G,1)
i +

CA
3
p

(G,1)
i ]

[
1

û2

]
+

+
1

2
CAW

(G,0)
i ln

µ

mb

+
2d

(G,1)
i

3ŷ2
(2CF − CA)(1− E0)

[
2(1− E0) I1,0 + ln ρ

]
δ(û) (A.2)

where we have set d
(G,1)
1 = 1− E0, d

(G,1)
2 = 0, d

(G,1)
3 = 1, p

(G,1)
1 = −λ0, p

(G,1)
2 = 8(1− E0)

and p
(G,1)
3 = −4E0. The µ dependence originates in the MS renormalization of µ2

G. The

remaining expressions are

W
(G,1)
1,F =

[(
8ρ

λ0
(1 + 2E0−3ρ) + 5λ0 + 2(1−2E0 + 5ρ)

)
I1,0

− 8

λ0
(2ρ+ E0(1−3ρ))− 2E0

ρ
(1 + 5ρ)

] [
1

û

]
+

+D
(G,1)
1,F δ(û)

−
[

2

ŷ

(
20E4

0 − ρ+ E0ρ(2 + ρ)−5E3
0(1 + 2ρ)− E2

0(2 + 5ρ)
)
I1,0 (A.3)

−(8ρ−5E0−23E2
0)+ 2S(5E2

0 + E0−2ρ)+
λ0

4ŷ
ln ρ

]
δ′(û) +R

(G,1)
1,F

W
(G,1)
1,A =

[
1

2
(1 + 8E0 − 3ρ)I1,0 − 1− E0

(
3

2ρ
− 5

2

)][
1

û

]
+

+D
(G,1)
1,A δ(û)

+

[
λ0

2
− 1

2

(
λ0

2
− E0

)
ln ρ− E0(E0 + 2E2

0 + ρ)I1,0

]
δ′(û) +R

(G,1)
1,A (A.4)
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W
(G,1)
2,F =

[
8

λ0

(
E0

ρ
+4−5E0

)
(1−2E0)+8

(
1− 1−13ρ+ 2E0(1 + 5ρ)

λ0

)
I1,0

] [
1

û

]
+

+
[
8E0(3− 5E0)I∆−2(5E2

0 − 2E0−3ρ)I1,0 + (17− 30E0) ln ρ+14−26E0

]
δ′(û)

+D
(G,1)
2,F δ(û)+R

(G,1)
2,F (A.5)

W
(G,1)
2,A =

[
4E0

λ0ρ
+

4

λ0
(3 + 7ρ− 11E0)− 3

ρ
(1−3ρ)−4

(
1−11ρ+ E0(3 + 7ρ)

λ0
−2

)
I1,0

][
1

û

]
+

+ [2(1−2E0)(1 + E0)I1,0−4(1−E0) + (1−2E0) ln ρ] δ′(û)+D
(G,1)
2,A δ(û)+R

(G,1)
2,A

(A.6)

W
(G,1)
3,F =

[
2

(
4

λ0
(E0(1− 5ρ) + 3ρ) + 5E0 + 2

)
I1,0 −

2

ρ
− 8

λ0
(1 + 3E0 − 5ρ)

] [
1

û

]
+

(A.7)

+
[
20E2

0I1,0 − 10E0S −
5

2
ln ρ− 4E0I∆ − 3− 25E0

]
δ′(û) +D

(G,1)
3,F δ(û) +R

(G,1)
3,F

W
(G,1)
3,A =

[
2

(
E0 + ρ(4− 3E0)

λ0
+ 2

)
I1,0−

2

λ0
(1 + 4E0−3ρ)− 3−7ρ

2ρ

] [
1

û

]
+

+R
(G,1)
3,A

+

[
E0 − (E0 + 2E2

0 + ρ) I1,0 −
(
E0 −

1

2

)
ln ρ

]
δ′(û) +D

(G,1)
3,A δ(û) (A.8)

We have called D
(G,1)
i,F/A the various coefficients of the δ(û) distribution

D
(G,1)
1,F =

[
1 + 4E0 + 5E2

0(1−4E0)−(9−8E0)ρ+
2

ŷ
(1−E0)(5E2

0−4E0−2)

+
12E2

0

λ0
(1−E0)(1 + 3E0)

]
I1,0 +

2

ŷ
(1−E0)−E0

2ρ
(1−20E0)− 1

2
(8−27E0−40E2

0)

+

[
2E0

ρ
− 1

2
(4−31E0)−(1−E0)

1 + 5E0

ŷ
+

4E0

λ0
(2−E0)(1 + 3E0)

]
ln ρ (A.9)

−8ρ+
4E0

λ0
(1−E0)(1 + 3E0)+

(
2−4E0+5λ0+

2ρ

λ0
(4+8E0+5λ0)−24

ρ2

λ0

)
I∆

D
(G,1)
1,A =

[
1−E0

ŷ
(4−5E0)− 1

2
(3−18E0+8E2

0−3ρ)− 2E2
0

λ0
(1−E0)(1 + 3E0)

]
I1,0

+

(
1

4
(4− 5E0) +

3E0

2ρ
+

3− 5E0

2ŷ

)
ln ρ+

1

2
(1 + 8E0 − 3ρ)I∆

+
E0

2
(5 + 4E0)− E0

2ρ
− 2ρ− 1− E0

ŷ
+

2E0

λ0
(1− E0)(1 + 3E0) (A.10)

D
(G,1)
2,F = 2

(
21E0 − 9− 20E2

0 −
12

λ0
(1− E0)(1− E0 − 3E2

0)

)
I1,0

+
8

E0λ0
(1−E0)(1−9E0 + 11E2

0)− 4(1−2E0)

λ0ρ
(9ρ+ E0(2−5ρ)) ln ρ

+
2−17E0 + 20E2

0

E0ρ
−5(3−8E0)− 8

λ0
(1−λ0−13ρ+ 2E0(1 + 5ρ))I∆ (A.11)
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D
(G,1)
2,A =

(
10E0 − 3− 4

λ0
(1− E0)(2 + 12E0 − 19E2

0)

)
I1,0 − 3 + 4E0

−1

ρ
−
(

1 +
1− 3E0

E0ρ
+

2

E0λ0
(2− E0)(1 + 4E0 − 7E2

0)

)
ln ρ

+
4

λ0
(1− E0)(4− 5E0)− 4

λ0
(1− 2λ0 − 11ρ+ E0(3 + 7ρ))I∆ (A.12)

D
(G,1)
3,F =

8

λ0
(1 + 4E0−4E2

0) +

(
35

4
+

2

ρ
− 6−9E0 + 5E2

0

2ŷ(1− E0)
+ 4(2−E0)

1 + 3E0−5E2
0

λ0(1− E0)

)
ln ρ

+
2

ŷ
+ 2− (1− 20E0)

(
1 +

1

2ρ

)
+

2

λ0
(E0(4 + 5λ0 − 20ρ) + 2(λ0 + 6ρ))I∆

+

(
2(1 + 4E0 − 10E2

0)− 1

ŷ
(8− 9E0 + 5E2

0) +
8E0

λ0
(1 + 2E0 − 6E2

0)

)
I1,0 (A.13)

D
(G,1)
3,A =

2

λ0
(E0(1 + 8E0)− ρ(4 + 3E0))I∆ + 2E0 −

1

2ρ
− 1

ŷ
− 4E2

0

λ0

−
(

1− 3

2ρ
+

2− 3E0

2ŷ(1− E0)
− (2− E0)

1 + 4E0 − 3E2
0

λ0(1− E0)

)
ln ρ

+

(
3

2
(3− E0)− 1− 3E0

ŷ
+

4E0

λ0
(1 + 4E0 − 2E2

0)

)
I1,0 (A.14)

The terms labelled as R
(G,1)
i,F/A stand for the regular contributions

R
(G,1)
1,F =

[
4

λ
(1−3E + ρ)− 2− 15E + 5û

2
− 24E0 − 15λ0 − 52ρ

2û
+
û

λ
(11− 13E) +

5û2

λ

]
I1

+
2E0

ûρ
(1 + 5E0−5ρ)− ρ

4z3
(5λ+ 7z) +

12− 11E − 13ρ+ 10ρE

λ
+

13

4

(
1 +

1

z

)
− 5

2ρz
(λ+ 2Eρ+ ρ2)−

[
1

û
(2(1−2E0) + 5(λ0 + 2ρ)) +

8ρ

λ0û
(1 + 2E0 − 3ρ)

]
I1,0

+
8E0

λ0û
(1 + 2E0 − 3ρ)− 5

2ρ
(z + 4(1− E)) +

5

8z2
(4E + λ− 4Eρ− 2ρ2)

− E
λz

(4−7ρ+ 5ρ2)− z
λ

(5E−13) +
λ0(1 + 5E0) + 4ρ(1 + 3E0)

û2
(I1 − I1,0) (A.15)

R
(G,1)
1,A =

E

2z2
− 3Eρ

λz
− 6z

λ
+

[
1 +

1− 2E

λ
(8E + 3ρ) +

3z

λ
(1 + 2E)

]
I1

−3− ρ
4ρ

+
3E − ρ

2ρz
− 8− 13E − 6ρ

λ
+

1 + 8E0 − 3ρ

2û
(I1 − I1,0) (A.16)

R
(G,1)
2,F =−

[
25 +

48

λ2
(1− 5E + 8ρ− 5Eρ+ ρ2) +

166− 152E + 74ρ

λ

+
8

λû
(1− 4E + 3ρ) +

4

û
(6− 5E) +

10û

λ
(19−5E + û) +

60û3

λ2

−12û

λ2
(−39 + 47E−41ρ+ 13Eρ) +

12û2

λ2
(42−23E + 5ρ)

]
I1

−45

2z
− 4

ρû
(3− 5E + 5ρ) +

ρ

z3
(8−10E−5ρ) +

2 + 10E − 15ρ

2z2

+
12

λ2
(E(39−ρ)−20(1 + ρ))− 8

λ0û
(2− 13E0 + 10ρ)
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−12û2

λ2
(23−5E) +

4

ρz
(4−5E)− 2E

λz
(4− 7ρ+ 5ρ2)

(
1

z
− 6

λ

)
+

106E−199 + 10ρ−73û

λ
− 8

λû
(4−3E)− 12û

λ2
(47−42E + 13ρ)

−4(5− 16E)− 3ρ(9− 10E) + 10ρ2

λz
− 8E0

λ0ρû
− 8E

λρ

(
1

z
− 1

û

)
(A.17)

+
8

λ0û
(1 + 2E0 − λ0 − 13ρ+ 10E0ρ)I1,0 −

8E0

û2
(3− 5E0)(I1−I1,0)

R
(G,1)
2,A =

[
2

λ
(61−52E + 25ρ+ 40û)− 24

λ2
(2E(2 + 7ρ)− ρ(13 + 5ρ)) +

12û2

λ2
(25−6E)

+
8

û
− 4

λû
(1 + 3E − 11ρ+ 7Eρ) +

12û

λ2
(29−40E + 35ρ−6Eρ)

]
I1

+
4

ûλ0
(1 + E0(3− 8E0)− ρ(3− 7E0)) I1,0 +

6û

λ

(
1 +

12û

λ

)
+

4

λz
(2−5E−3ρ) +

4

λû
(3−11E + 7ρ) +

12û

λ2
(40− 25E + 6ρ)

+
1

z2
− 4E

λρz
+

12

λ2
(8− 29E + 2ρ(14− 5E))− 4

ρû

(
E0

λ0
− E

λ

)
− 4

λ0û
(3 + 7ρ− 11E0) +

6

λ
(24− 5E)− 6Eρ

λz

(
1

z
− 6

λ

)
+

3

ρz
(A.18)

R
(G,1)
3,F =−

[
25

2
+

6

λ
(2− 4E + 3ρ) +

8ρ

λû
+

4

û
(1− 5E) +

2û

λ
(14−5E)− 4E0

û2
(1 + 5E0)

]
I1

−
[

4E0 + 5λ0 + 20ρ

û2
+

8

λ0û
(E0 + 3ρ− 5E0ρ) +

2

û
(2 + 5E0)

]
I1,0

+
8

λ0û
(1 + 3E0 − 5ρ)− 4

λ
(6− 7E) +

2

ρû
(5E − 5ρ+ 1)− 10û

λ

+
8E

λû
− 5Eρ

z3
+

5

2z2
(1 + E − ρ)− 5

z
+

2E

λz
(2− 5ρ)− 10E

ρz
(A.19)

R
(G,1)
3,A =

[
2

λ
(3z + 5(1− 2E)) +

2

λû
(E + 4ρ− 3Eρ) +

4

û

]
I1

+
2

λ0û
(1 + 4E0 − 3ρ)− 2

λ0û
(E0 + 2λ0 + 4ρ− 3E0ρ)I1,0

+
3

2ρz
− 2

λû
(1 + 4E − 3ρ) +

2

λ
(10− 3E) +

1

2z2
− 2E

λz
(A.20)

where we have introduced z = û + ρ and λ = 4(E2 − ρ − û). The integrals I1, I1,0, I2,0,

and I4,0 are given in the appendix of [22], and I∆ = I2,0 − I4,0. The plus distributions are

defined by their action on a test function f(û):

∫
dû

[
1

ûm

]
+

f(u) =

∫ 1

0
dû

1

um

f(u)−
m−1∑
p=0

up

p!
f (p)(0)

 (A.21)

with f (p)(u) = dpf(u)
dup .
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