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SUMMARY 10

Data on count processes arise in a variety of applications, including longitudinal, spatial and
imaging studies measuring count responses. The literature on statistical models for dependent
count data is dominated by models built from hierarchical Poisson components. The Poisson
assumption is not warranted in many applications, and hierarchical Poisson models make restric-
tive assumptions about over-dispersion in marginal distributions. This article proposes a class of 15

nonparametric Bayes count process models, which are constructed through rounding real-valued
underlying processes. The proposed class of models accommodates applications in which one
observes separate count-valued functional data for each subject under study. Theoretical results
on large support and posterior consistency are established, and computational algorithms are de-
veloped using Markov chain Monte Carlo. The methods are evaluated via simulation studies and 20

illustrated through application to longitudinal tumor counts and asthma inhaler usage.

Some key words: Count functional data; Generalized linear mixed model; Hierarchical model; Longitudinal data;
Poisson; Spline; Stochastic process.

1. INTRODUCTION

A stochastic process y = {y(s), s ∈ S} is a collection of random variables indexed by s ∈ S, 25

with the domain S commonly corresponding to a set of times or spatial locations and y(s) to a
random variable observed at a specific time or location s. There is a rich frequentist and Bayesian
literature on stochastic processes, with common choices including Gaussian processes and Lévy
processes, such as the Poisson, Wiener, beta or gamma process. Gaussian processes provide a
convenient and well studied choice when y : S → < is a continuous function. In the Bayesian 30

literature, there have been substantial computational and theoretical advances for Gaussian pro-
cess models in recent years. For example, Banerjee et al. (2008) and Murray & Adams (2010)
develop improved methods for posterior computation, while Ghosal & Roy (2006) and van der
Vaart & van Zanten (2009) study asymptotic properties including posterior consistency and rates
of convergence. The Gaussian process is appealing in providing a prior that can be specified to 35

generate functions that are within an arbitrarily small neighborhood of any continuous function
with positive probability (Ghosal & Roy, 2006), while also being computationally convenient.
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Our interest focuses on the case in which y : S → N = {0, . . . ,∞}, so that y is a count-
valued stochastic process over the domain S. There are many applications of such processes
including epidemiology studies monitoring a count biomarker or health response over time for40

patients and ecology studies recording the number of birds of a given species observed at dif-
ferent locations. Although there is a rich literature on count stochastic process models for lon-
gitudinal and spatial data, most models rely on Poisson hierarchical specifications. For example,
Frühwirth-Schnatter & Wagner (2006) consider y(s) ∼ Poisson{λ(s)} with the Poisson mean
λ(s) varying over time according to a latent process. Rue et al. (2009) recently developed an45

integrated nested Laplace approximation to the posterior for a broad class of latent Gaussian
structured additive regression models. The observed variables are assumed to belong to an expo-
nential family, with the means given an additive model having Gaussian and Gaussian process
priors on the unknown components.

Although such models have a flexible mean structure, the Poisson assumption is restrictive in50

limiting the variance to be equal to the mean, with over-dispersion introduced in marginalizing
out the latent processes. This leads to a confounding of the dependence structure with the de-
gree of overdispersion in the marginals, in that both are induced through the latent process. Such
modeling frameworks cannot accommodate correlated count data that are under-dispersed, and
substantial bias can result for non-Poisson over-dispersed data. Relying on a hierarchical Faddy55

model (Faddy, 1997), Grunwald et al. (2011) developed methods that generalize the Poisson dis-
tribution to accommodate under- and over-dispersed longitudinal counts. The Faddy distribution
allows the current rate of occurrence to depend on the number of events in a previous interval,
and when a dispersion parameter is less than zero the rate decreases with each new event, causing
under-dispersion. This is a restrictive type of negative feedback dependence and computation is60

challenging, taking several days to implement a single analysis.
In considering models that separate the marginal distribution from the dependence structure, it

is natural to focus on copulas. Nikoloulopoulos & Karlis (2010) proposed a copula model for bi-
variate counts that incorporates covariates into the marginal model. Erhard & Czado (2009) pro-
posed a copula model for high-dimensional counts, which can potentially allow under-dispersion65

in the marginals via a Faddy or Conway–Maxwell–Poisson (Shmueli et al., 2005) model. Genest
& Neslehova (2007) provide a review of copula models for counts. To our knowledge, copula
models have not yet been developed that are directly applicable to count stochastic processes.
Wilson & Ghahramani (2010) proposed a Gaussian copula process model to characterize depen-
dence between arbitrarily many random variables independently of their marginals. Rodrı́guez70

et al. (2010) proposed a latent stick-breaking process, which is a nonparametric Bayes approach
for a stochastic process with an unknown common marginal distribution modeled via a stick-
breaking prior. They considered a spatial count process application, with marginal modeled via a
mixture of Poisson distributions and the spatial dependence characterized through a latent Gaus-
sian process. This separates the marginal and dependence structures, but the marginal model is75

restrictive in being characterized as a mixture of Poisson distributions, computation is intensive,
and count functional data are not accommodated.

An alternative approach relies on rounding of a stochastic process. For classification it is com-
mon to threshold Gaussian process regression (Chu & Ghahramani, 2005; Ghosal & Roy, 2006).
Kachour & Yao (2009) rounded a real discrete autoregressive process to induce an integer-valued80

time series. Canale & Dunson (2011) used rounding of continuous kernel mixture models to
induce nonparametric models for count distributions. This article instead proposes a class of
stochastic processes that map a real-valued stochastic process y∗ : S → < to a count stochastic
process y : S → N .
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2. ROUNDED STOCHASTIC PROCESSES 85

2·1. Notation and model formulation
Let y ∈ C denote a count-valued stochastic process, with S ⊂ <p compact and C the set of all

S → N functions satisfying Assumption 1.

Assumption 1. The stochastic process y : S → N is piecewise constant such that S =⋃L
l=1 Sl(y), with y(s) constant within the interior of each set Sl(y) and with unit increments 90

at the boundaries B(y). The boundary points fall within the set having the higher value of y(s).

Assumption 1 ensures that for sufficiently small changes in the input the corresponding change
in the output is small. We are particularly motivated by applications in which counts do not
change erratically at nearby times but maintain some degree of similarity. However, Assump-
tion 1 does not rule out rapidly changing count processes, as one can have arbitrarily many jumps 95

in a tiny interval and still satisfy the assumption. In addition, Assumption 1 is easily relaxed.
We choose a prior y ∼ Π, where Π is a probability measure over (C,B), with B(C) the Borel

σ-algebra of subsets of C. The measure Π induces the marginal probability mass functions

pr{y(s) = j} = Π{y : y(s) = j} = πj(s), j ∈ N , s ∈ S, (1)

and the joint probability mass functions

pr{y(s1) = j1, ..., y(sk) = jk} = Π{y : y(s1) = j1, ..., y(sk) = jk} = πj1...jk(s1, ..., sk), (2)

for jh ∈ N and sh ∈ S, h = 1, . . . , k, and any k ≥ 1. 100

In introducing the Dirichlet process, Ferguson (1973) mentioned three appealing character-
istics for nonparametric Bayes priors including large support, interpretability and ease of com-
putation. Our goal is to specify a prior Π that gets as close to this ideal as possible. Starting
with large support, we would like to choose a Π that allocates positive probability to arbitrarily
small neighborhoods around any y0 ∈ C with respect to an appropriate distance metric, such as 105

L1. To our knowledge, there is no previously defined stochastic process that satisfies this large
support condition. In the absence of prior knowledge that allows one to assume y belongs to a
pre-specified subset of C with probability one, priors must satisfy the large support property to
be coherently Bayesian. Large support is also a necessary condition for the posterior for y to
concentrate in small neighborhoods of any true y0 ∈ C. 110

With this in mind, we propose to induce a prior y ∼ Π through

y = h(y∗), y∗ ∼ Π∗, (3)

where y∗ : S → < is a real-valued stochastic process, h is a thresholding operator from Y → C,
Y is the set of all S → < continuous functions, and Π∗ is a probability measure over (Y,B) with
B(Y) Borel sets. Unlike count-valued stochastic processes, there is a rich literature on real-valued
stochastic processes. For example, Π∗ could be chosen to correspond to a Gaussian process or 115

could be induced through various basis or kernel expansions of y∗.
There are various ways in which the thresholding operator h can be defined. For interpretabil-

ity and simplicity, it is appealing to maintain similarity between y∗ and y in applying h, while
restricting y ∈ C. Hence we focus on a rounding operator that let y(s) = 0 if y∗(s) < 0 and
y(s) = j if j − 1 ≤ y∗(s) < j for j = 1, . . . ,∞. Negative values will be mapped to zero, which 120

is the closest non-negative integer, while positive values will be rounded up to the nearest in-
teger. This type of restricted rounding ensures y(s) is a non-negative integer. Using a fixed
rounding function h in (3), we rely on flexibility of the prior y∗ ∼ Π∗ to induce a flexible prior
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Fig. 1. Thresholding operator h. Panel (a) represents sam-
ples from a Gaussian process with mean function µ(s) =
2 + sin(s) + s (bold line) and squared exponential covari-
ance function. Panel (b) shows how the mapping operator
(3) works. Dotted and dashed lines are the rounded version
of panel (a) realizations while the bold line is the induced

mean function.

y ∼ Π. For notational convenience and generality, we let y(s) = j if y∗(s) ∈ Aj = [aj , aj+1),
with a0 < · · · < a∞ and we focus on a0 = −∞, aj = j − 1, j = 1, . . . ,∞.125

This construction is particularly suitable for modeling dynamics of count processes close to
zero and in particular, zero-inflated processes with local dependence in the zeros. Applying the
mapping h to a latent y∗ that assumes negative values across certain sub-regions of S will lead to
blocks of zeros in the count process y. This incorporates dependence between zero occurrences
and the occurrence of small counts, which seems natural in most applications such as in the130

longitudinal tumor count study of §4·2.
Figure 1 illustrates the prior through showing realizations of the underlying stochastic process,

in Panel (a), and resulting count process after applying the rounding operator, in Panel (b). The
thick lines represents the mean functions of the real valued process and of the induced process.
The latter is135

E{y(s)} =

∞∑
j=0

j{Fs(aj+1)− Fs(aj)},

where Fs(x) =
∫ x
−∞ fs(y

∗)dy∗ and fs is the marginal distribution of y∗(s).
The covariance structure of the induced count process inherits much of the structure of the

underlying process, as is clear from

cov{y(s), y(s′)} =
∞∑
j=0

∞∑
k=0

j k pr[{y∗(s) ∈ Aj , y∗(s′) ∈ Ak}]− E{y(s)}E{y(s′)},

where {y∗(s), y∗(s)} has a bivariate distribution with covariance equal to cov{y∗(s), y∗(s)}.
We report some plots comparing the covariance of the original process with that of the induced140

process in the Supplementary Material.
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In certain applications, count data can be naturally viewed as arising through integer-valued
rounding of an underlying continuous process. For example, in the longitudinal tumor count
studies of §4·2, it tends to be difficult to distinguish individual tumors and it is natural to posit a
continuous time-varying tumor burden, with tumors fusing together and falling off over time. In 145

collecting the data, tumor biologists attempt to make an accurate count but measurement errors
are unavoidable. It is natural to accommodate this with a smoothly-varying continuous tumor
burden specific to each animal with measurement errors and rounding producing the observed
tumor counts. However, even when there is no clear applied context motivating the existence
of an underlying continuous process, the proposed formulation nonetheless leads to a highly 150

flexible and computationally convenient model.

2·2. Properties
The mapping function h(·) in (3) is many-to-one and the inverse mapping h−1(y) will cor-

respond to an uncountable set of infinitely many continuous stochastic processes y∗ such that
y = h(y∗). As an important step in characterizing the support of the induced prior y ∼ Π, 155

Lemma 1 ensures the existence of at least one continuous stochastic process for each count
process. All the proofs are reported in the Appendix.

LEMMA 1. For every count stochastic process y0 ∈ C satisfying Asssumption 1, there exists
at least one continuous y∗ : S → < such that y0 = h(y∗).

Defining an L1 neighborhood around y0 of size ε as 160

ηε(y0) =

{
y : d1(y0, y) =

∫
|y0(s)− y(s)|ds < ε

}
, (4)

we state the following Theorem on the prior support.

THEOREM 1. Assuming the prior Π∗ assigns positive probability to L1 neighborhoods of any
continuous function y∗0 : S → <, the prior Π induced through (3) assigns positive probability to
L1 neighborhoods of any y0 ∈ C satisfying Assumption 1.

In addition to showing large support of the prior, it is important to verify that the posterior dis- 165

tribution for y concentrates increasingly around the true process y0 as the sample size increases.
Theorem 2 provides sufficient conditions under which L1 posterior consistency is obtained. As-
sumption 2 provides a space-filling regularity condition on the design.

Assumption 2. Let S = [0, 1]p and assume the n values of si arise from an in-fill design
such that we can cover S with n L∞ balls centered around s1, . . . , sn of size δ with 2δ ∈ 170(
n−1/p, bn1/pc−1

)
.

THEOREM 2. Let y ∈ C be a count stochastic process with yi = y(si), for i = 1, . . . , n and
(s1, . . . , sn) following Assumption 2. Letting y0 ∈ C denote the true stochastic process and
y ∼ Π, then if Π{ηε(y0)} > 0 for any ε and there exist sets {Cn}∞n=1 with Cn ∈ C and CCn the
complement of Cn, where Π{CCn } < c1e

−c2n, and c1, c2 positive constants, then 175

Π
{
ηCε (y0) | y1, . . . , yn

}
→ 0. (5)

From Theorems 1 and 2, it follows that the prior proposed in equation (3) will lead to L1

posterior consistency under Assumptions 1–2 as long as Π∗ assigns positive probability to L1

neighborhoods of any continuous function and negligible probability to YCn = h−1(CCn ) as n
increases. Choi & Schervish (2007) showed that this condition holds, if YCn has a particular form,
for Π∗ corresponding to orthogonal basis expansions or Gaussian processes with continuously 180
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differentiable mean function and covariance having the form k(s, s
′
;β) = k0(β|s− s

′ |), where
s ∈ <, k0(s) is a positive multiple of a density function four times continuously differentiable
on < and suitable hyperprior is chosen for β.

2·3. Posterior computation
We estimate the count process y at locations s(N) including observed locations s(n) =185

(s1, . . . , sn)T and additional locations of interest sn+1, . . . , sN . Our rounded Gaussian process
lets y∗ ∼ GP(0, k), where k(s, s′) = cov{y∗(s), y∗(s′)} = τ1 exp(−τ2||s− s′||2) is the covari-
ance with τ−11 ∼ Ga(aτ1 , bτ1) a scale parameter, τp2 ∼ Ga(aτ2 , bτ2) and p the dimension of the
domain S. Here, τ−12 is a bandwidth parameter controlling smoothness, and this prior is moti-
vated by the optimality results of van der Vaart & van Zanten (2009), though their theory does not190

apply directly in our setting. The resulting joint distribution of y∗(n) = {y∗(s1), . . . , y∗(sn)}T is
Nn(0,Σn), with Σn = {σij} and σij = k(si, sj).

Posterior computation can proceed via a Markov chain Monte Carlo algorithm.

Step 1 Sample y∗(n) from Nn(0,Σn) truncated to fall in a hyper-rectangle having ayi ≤ y∗(si) <
ayi+1.195

Step 2 Sample τ−11 from conditional posterior distribution Ga(aτ1 + n/2, bτ1 + y∗Tτ1Σny
∗).

Step 3 Update τ2 using a Metropolis-Hastings step.
Step 4 After burn-in, sample y∗(sn+1), . . . , y

∗(sN ) from the multivariate Gaussian conditional dis-
tribution.

In Step 1, Gibbs sampling can be used to update each y∗(si) from its univariate truncated Gaus-200

sian conditional density, but this leads to slow mixing in our experience. Instead, we use the slice
sampler of Liechty (2010), which samples multivariate Gaussian random variables restricted to a
rectangular region. In step 3, the likelihood of y(n) marginalizing out y∗(n) cannot be calculated
analytically, so we rely on the multivariate normal likelihood of y∗(n) in calculating the accep-
tance probability. It is well known that updating τ2 conditionally on a latent Gaussian process can205

lead to stickiness, but due to the fact that our rounding approach minimizes differences between
the observed y and the latent y∗ we have not found this to be a major problem. Alternatively, one
can improve mixing using the slice sampling approach of Murray & Adams (2010) with some
additional complexity.

As for other Gaussian process models, we face a computational bottleneck and numerical in-210

stability as we evaluate y∗ at increasing numbers of locations. Particularly when the process is
observed at close locations and the covariance function favors smooth realizations, one obtains
an ill-conditioned matrix, which can lead to large computational errors which degrade perfor-
mance. There is a rich literature proposing solutions, with Banerjee et al. (2013) a recent ex-
ample. A widely-used approximation represents the function as a linear combination of finitely215

many basis functions, leading to reduced instability problems and potentially improving Markov
chain Monte Carlo mixing. Hence, along with the rounded Gaussian process, we implement an
alternative that approximates y∗ using penalized splines, with details on this approach provided
in the Supplementary Material.

3. SIMULATION STUDY220

A simulation study is conducted to assess the performance of the proposed approach, im-
plemented using rounded Gaussian processes or P-splines, relative to several competitors. The
first set of competitors initially treats the count measurements as continuous, assuming h to be
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the identity function. The estimated continuous trajectory is then rounded in a second stage to
produce an estimated count process. Such ad hoc two-stage approaches are simple to imple- 225

ment; we consider two-stage versions of rounded Gaussian processes and P-splines. A second
approach treats the count measurements as ordered categorical using the Gaussian process or-
dinal regression model of Chu & Ghahramani (2005). This method faces complications when
applied to counts and sparse ordered categorical data. In particular, letting y(si) ∈ {0, 1, . . . , d}
for i = 1, . . . , n and nj =

∑n
i=1 1{y(si)=j}, the total number of observations having value j, poor 230

performance was obtained when any nj was small, with lack of convergence when nj = 0 for
any j ∈ {0, 1, . . . , d}. A third approach corresponds to Poisson regression with mean parameter
λ(s) estimated with a spline smoother as done by default by gam function of R library MASS.
Lastly, we consider a simple interpolating step function defined as

f(s) = y11s<s2(s) +
n∑
j=2

yj1sj≤s<sj+1(s). (6)

For our method, we considered the posterior median of y(s). Simulations have been run under 235

a wide variety of settings, leading to qualitatively similar results. We report the results for four
scenarios. The first generates count stochastic processes from Poisson{λ(s)}, with λ(s) = 2 +
s/5 + sin(s). In the second, y is generated by rounding a realization of a Gaussian process plus
an error term,

y = h(y∗), y∗ ∼ GP(µ, k) + ε, (7)

with mean function µ(s) = 2 + exp(s/5), covariance function k(s, s
′
) squared exponential and 240

ε(s) independent draws from N(0, 2). These two cases do not satisfy Assumption 1, since in-
finitely many discontinuity points can occur. Under the third, we generate from a Poisson count
process with rate parameter 1/2 and in the fourth from (7) with ε = 0.

For each case, we generated data on a equispaced grid of 1, 000 points between 0 and 20.
Taking equispaced subsamples for different level of sparsity, namely of sizes n = 25, n = 50, 245

n = 100, and n = 500, we estimate the trajectory on a fine grid for 500 replicates for each
scenario and each method. Using Markov chain Monte Carlo simulation, we obtained draws from
the posterior predictive distribution and used the median as our estimate. Methods are compared
based on averaging the mean absolute deviation between the estimate and the true process across
the replicates and grid points. 250

From Table 1, it is apparent that the proposed rounding approaches have the best overall perfor-
mance. The Gaussian process ordinal regression model consistently has the worst performance.
As expected the Poisson model with nonparametric mean performs well in scenario 1 but poorly
in other cases, particularly when the sample size is not small. The interpolating step function has
consistently poor performance except in scenario 3. The two-stage methods perform similarly to 255

the proposed approaches in scenarios 1 and 2, but have substantially worse performance in sce-
narios 3 and 4. The two-stage methods have particularly poor performance when counts do not
take a wide range of values, have values near zero, or tend to have many occurrences of the same
value. In addition, the approach of rounding in a second stage can have unanticipated conse-
quences in terms of inference on functionals, which may be unreliable and biased. Interestingly, 260

the rounded P-splines approach has somewhat better performance than the rounded Gaussian
process. Since rounded P-splines are also faster to implement, taking from 15 seconds for sam-
ples of size n = 25 to 30 seconds for samples of size n = 500 for 10,000 MCMC iterations in
each of the simulated examples, we focus on this approach in the real data applications. We also
compared the methods in terms of predictive mean absolute deviation, width and coverage of 265
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Table 1. Mean absolute deviation (and standard deviation) in simulation study of Section 2·3

Scenario 1 Scenario 2
n = 25 n = 50 n = 100 n = 500 n = 25 n = 50 n = 100 n = 500

RGP 2·10 (0·17) 2·04 (0·11) 1·93 (0·09) 1·02 (0·05) 2·27 (0·03) 2·12 (0·02) 1·98 (0·01) 0·93 (0·01)
GP 2·12 (0·02) 2·07 (0·02) 1·98 (0·01) 1·05 (0·01) 2·27 (0·03) 2·13 (0·02) 1·99 (0·01) 0·95 (0·01)
RPS 1·70 (0·09) 1·62 (0·07) 1·5 (0·05) 0·79 (0·03) 1·78 (0·11) 1·65 (0·06) 1·51 (0·05) 0·81 (0·03)
PS 1·70 (0·08) 1·63 (0·07) 1·51 (0·05) 0·8 (0·03) 1·81 (0·13) 1·69 (0·07) 1·55 (0·06) 0·83 (0·03)
GPOR 2·26 (0·33) 2·22 (0·26) 2·14 (0·21) 2·18 (0·14) 2·47 (0·31) 2·46 (0·31) 2·42 (0·24) 2·73 (0·14)
NPP 1·74 (0·08) 1·69 (0·06) 1·66 (0·05) 1·64 (0·04) 1·78 (0·1) 1·71 (0·06) 1·69 (0·06) 1·66 (0·05)
E 2·2 (0·18) 2·19 (0·13) 2·2 (0·1) 2·2 (0·08) 2·58 (0·2) 2·31 (0·13) 2·25 (0·11) 2·21 (0·06)

Scenario 3 Scenario 4
n = 25 n = 50 n = 100 n = 500 n = 25 n = 50 n = 100 n = 500

RGP 0·12 (0·01) 0·07 (0·01) 0·05 (0·01) 0·01 (0·01) 0·34 (0·01) 0·25 (0·01) 0·17 (0·01) 0·05 (0·01)
GP 0·42 (0·01) 0·37( 0·01) 0·34 (0·01) 0·21 (0·01) 0·58 (0·06) 0·52 (0·04) 0·47 (0·02) 0·26 (0·01)
RPS 0·14 (0·06) 0·08 (0·04) 0·05 (0·03) 0·02 (0·01) 0·28 (0·07) 0·19 (0·05) 0·13 (0·03) 0·05 (0·01)
PS 0·41 (0·08) 0·39 (0·06) 0·37 (0·06) 0·21 (0·03) 0·53 (0·06) 0·49 (0·04) 0·46 (0·03) 0·26 (0·01)
GPOR 2·88 (0·8) 3·03 (1·04) 3·26 (1·4) 3·65 (1·51) 2·25 (2·04) 2·6 (3·97) 4·74 (8·52) 5·9 (10·09)
NPP 0·27 (0·09) 0·26 (0·09) 0·26 (0·09) 0·26 (0·09) 0·56 (0·12) 0·56 (0·12) 0·56 (0·12) 0·56 (0·12)
E 0·18 (0·07) 0·09 (0·04) 0·05 (0·02) 0·01 (0) 1·11 (0·06) 0·59 (0·05) 0·31 (0·03) 0·09 (0·01)

RGP, rounded Gaussian process; GP, Gaussian process; RPS, rounded P-splines; PS, P-spline; GPOR, Gaussian pro-
cess ordinal regression; NPP, nonparametric Poisson model; E, empirical interpolating step function.

predictive credible intervals and again observed better performance overall for the proposed ap-
proaches, with the competitors having high mean absolute deviation and poor coverage in at least
one of the cases. Additional tables summarizing the results for predictive errors and predictive
coverage are reported in the Supplementary Material.

4. REAL DATA APPLICATION270

4·1. Count functional data
We have focused on the case in which there is a single count process y observed at loca-

tions s = (s1, . . . , sn)T . In many applications, there are instead multiple related count processes
{yi : i = 1, . . . , n}, with the ith process observed at locations si = (si1, . . . , sini)

T . We refer
to such data as count functional data. As in other functional data settings, it is of interest to275

borrow information across the individual functions through use of a hierarchical model. This
can be accomplished within our rounded stochastic processes framework by first defining a
functional data model for a collection of underlying continuous functions {y∗i : i = 1, . . . , n},
and then letting yi = h(y∗i ), for i = 1, . . . , n. There is a rich literature on appropriate models
for {y∗i : i = 1, . . . , n} ranging from hierarchical Gaussian processes (Behseta et al., 2005) to280

wavelet-based functional mixed models (Morris & Carroll, 2006).
Let yi(s) denote the count for subject i at time s, yit = yi(sit), where sit is the tth observation

time for subject i, and xit = (xit1, . . . , xitp)
T predictors for subject i at the tth observation time.

As a simple model motivated by the longitudinal tumor count and asthma inhaler use applications
described below, we let285

yit = h(y∗it), y∗it = ξi + b(sit, xit)
T θ + εit, ξi ∼ Q, εit ∼ N(0, τ−1), (8)

where ξi is a subject-specific random effect, b(·) are basis functions that depend on time and
predictors, θ are unknown basis coefficients, and εit is a residual which allows the counts to
vary erratically from time to time about the smooth subject-specific mean curve. We use basis
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expansions motivated by the success of rounded P-splines in our simulation. To allow the random
effect distribution to be unknown, we choose a Dirichlet process prior (Ferguson, 1973), with 290

Q ∼ DP(αQ0), with α a precision parameter and the base measure Q0 chosen as N(0, ψ) with
ψ ∼ Ga(aψ, bψ). As commonly done we fix α = 1. We additionally choose a hyperprior for the
residual precision p(τ) ∝ τ−1 and for the basis coefficients p(θ), with the specific form of p(θ)
depending on the context.

4·2. Transgenic mouse bioassay application 295

We first analyze data from a Tg.AC mouse bioassay study of pentaerythritol triacrylate, a
chemical used in many industrial processes. Animals are randomized to a control or one of five
dose groups each of size 30. The five dose groups are 0·75, 1·5, 3, 6, or 12 mg/kg. The number
of skin papillomas on the back of each mouse is counted weekly for 26 weeks and it is of interest
to compare the groups to see if there is an increase in tumorigenicity relative to control, while 300

assessing dose response trend. Dunson & Herring (2005) analyzed these data through a Poisson-
gamma frailty model. As motivated in §1·2, Poisson hierarchical models are quite restrictive and
our focus here is on using the proposed model to improve robustness.

The only predictor for an animal is the dose group xi ∈ {1, . . . , G} and we let b(sit, xi)T θ =
b(sit)

T θxi in expression (8) to allow a separate trajectory in time for each dose group, 305

with b(s) B-spline basis functions, θg basis coefficients specific to group g, and p(θg |λ) ∝
exp(−λθTg Pθg/2) conditionally independent P-spline priors for each dose group. The prior is
designed to only borrow information across dose groups in estimating smoothness parameter λ to
avoid the possibility of having chemical effects in higher dose groups pull up the estimated tumor
response in lower dose groups. To induce a heavy-tailed prior having appealing computational 310

properties, we use a multilevel hierarchical prior for λ, with λ ∼ Ga(ν/2, δν/2), δ ∼ Ga(aδ, bδ)
and ψ ∼ Ga(aψ, bψ). We do not expect to have substantial learning from the data about δ or ψ.
Computational details are reported in the Supplementary Material.

As a global measure of toxicity, we use the average papilloma burden per group. The two lower
dose groups showed no significant difference from the control group with the posterior mean of 315

the average tumor burden <0·001 and the 95% credible intervals concentrated near zero. In the
higher groups the average tumor burden grows with the dose level. Mean tumor burden and 95%
credible intervals are 0·18 [0·06,0·39], 9·51 [9·21,9·80] and 12·33 [11·90,12·72] for the 3, 6 and
12 mg/kg dose group respectively. Cumulative tumor burdens along with the dose group-specific
empirical means for each week are reported in Figure 2. 320

As a measure of time varying increase in papilloma burden, we computed the mean burden per
dose group per week subtracting the average number for the control group. Posterior means and
95% credible bands are reported in Figure 3. The two lower dose groups are indistinguishable
from control, with panel (a) of Figure 3 being a straght line equal to zero, while the 3, 6 and 12
mg/kg dose groups exhibit clear increases relative to control starting from the 17th, 9th and 8th 325

week, respectively. Higher dosages lead to higher numbers of skin papillomas, and earlier onset
of the first tumor. Our modeling approach allows us to estimate the average time of onset of first
tumor, which occurs on the 27th, 14th and 11th week, for the three higher dose groups. In other
groups, the typical mouse did not develop tumors prior to the end of the study.

Our overall conclusions agree with Dunson & Herring (2005). The group comparison results 330

were also consistent with results from a frequentist generalized linear model analysis. We ad-
ditionally implemented standard frequentist nonparametric tests for comparing groups based on
summaries of the tumor trajectory data including time of first tumor and maximum tumor bur-
den per animal. A p-value less than 0·001 for the Kruskal–Wallis rank sum test suggested strong
evidence against equality among the dose groups in the maximum tumor burden per animal. 335
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Fig. 2. Estimated cumulative mean tumor burden (lines)
and weekly sample means (points) for the control group,
0·75 mg/kg and 1·5 mg/kg (solid line and circles), 3
mg/kg (dashed line and triangles), 6 mg/kg (dotted line and
crosses) and 12 mg/kg (dash-dotted line and squares) dose

groups.

Pairwise Wilcoxon tests were performed to test the equality of the maximum burden between
each treated group and control, with one-sided alternatives of higher maximum burdens in the
treated groups. P-values were less than 0·01 for the three higher groups while being 1 and 0·09
for the 0·75 and 1·5 mg/kg groups respectively. Similar results are obtained considering the time
of development of the first tumor as a summary of the tumor trajectory. As partly illustrated in340

Figure 2, which shows the empirical and estimated mean tumor burdens in each group, the model
has a good fit to the data.

4·3. Asthma inhaler use application
We additionally analyzed data on daily usage of albuterol asthma inhalers (Grunwald et al.,

2011). Daily counts of inhaler use were recorded for a period between 36 and 122 days for 48345

students previously diagnosed with asthma. The total number of observations was 5,209. As
discussed by Grunwald et al. (2011), the data are under-dispersed. Let yit denote the number of
times the ith student used the inhaler on day t. Interest focuses on the impact of morning levels
of PM25, small particles less than 25 mm in diameter in air pollution, on asthma inhaler use.
At each day t, a vector xt = (xt1, . . . , xtp)

T of environmental variables are recorded including350

PM25, average daily temperature, in Fahrenheit degree/100, % humidity and barometric pressure,
in mmHg/1000. We modify (8) to include these predictors in an additive model as follows.

yit = h(y∗it), y∗it = ξi +
4∑
j=1

bj(xjt)
T θj + εit, (9)
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Fig. 3. Time varying chemical exposure posterior mean ef-
fect on tumorigenicity (continuous line) with 95% credible
bands (dashed lines) for (a) 0·75 mg/kg and 1·5 mg/kg, (b)
3 mg/kg, (c) 6 mg/kg and (d) 12 mg/kg dose groups. Dotted

line at zero corresponds to no effect of the chemical.

where ξi is a random effect modeled as in §4·2, bj is a B-spline basis with θj the basis coefficients
and εi ∼ N(0, τ−1R), with R the correlation matrix arising from a first order autoregressive
process with correlation parameter ρ. The prior for each θj is identical to the prior used for θg in 355

§4·2 and each predictor is normalized to have mean zero and unit variance prior to analysis. The
correlation parameter is given a uniform prior on [−1, 1]. Computational details are reported in
the Supplementary Material.

We ran our Markov chain Monte Carlo algorithm for 10,000 iterations with a 1,000 iteration
burn-in discarded. Convergence and mixing were diagnosed by monitoring the non-linear effects 360

of the different predictors at several values and also monitoring hyperparameters; The trace plots
showed excellent mixing, with effective sample size over 9,000. Autocorrelation functions tend
to drop near zero between lag 1 and 2. To obtain interpretable summaries of the non-linear
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covariate effects on the inhaler use counts, we recorded for each predictor at a dense grid of xjt
values at each sample after burn-in the conditional expectation of the count for a typical student365

having ξi = µQ, where µQ is the mean of the random effects distribution Q,

µj(xjt) = E(yit |xjt, xj′t = 0, j′ 6= j, ξi = µQ, θ, τ, ρ)

≈
dKe∑
k=0

k[Φ{ak+1;µ
∗
j (xjt), τ} − Φ{ak;µ∗j (xjt), τ}], (10)

where Φ(·;µ, τ) is the cumulative distribution function of a normal random variable with mean
µ and precision τ , K is the 99·99% quantile of N{µ∗j (xjt), τ−1}, and

µ∗j (xjt) = bj(xjt)
Tθj +

∑
l 6=j

bl(0)Tθl + µQ, (11)

with the other predictors fixed at their mean value. Based on these samples, we calculated poste-
rior means and pointwise 95% credible intervals, with the results reported in Figure 4.370

These data were previously analyzed by Grunwald et al. (2011) using a Faddy distribution
with a log-linear mixed model for the mean,

logE(yit |xt, β, ui, eit) =

p∑
j=1

xjtβj + ui + eit, (12)

where ui is a subject-specific random effect and eit is a residual following a first-order autore-
gressive process. They estimated a coefficient of 0·013 for PM25, which is close to zero with
95% confidence interval including zero. A Poisson log-linear model analysis yielded a similar375

coefficient of 0·014 but with a 50% wider confidence interval. Our approach, which is based on
a substantially more flexible model that allows nonlinear effects and a nonparametric random
effects distribution, produces results that are consistent with these earlier analyses.

5. DISCUSSION

We have proposed a simple new approach for modeling count stochastic processes based on380

rounding continuous stochastic processes. The general strategy is flexible and allows one to use
existing algorithms and code for posterior computation for continuous stochastic processes. Al-
though rounding of continuous underlying processes is quite common for binary and categorical
data, such approaches have not to our knowledge been applied to induce new families of count
stochastic processes. Instead, the vast majority of the literature for count processes relies on385

Poisson process and hierarchical Poisson constructions, which have well-known limitations. We
have explored some basic properties of rounding, but the primary contribution of this article is to
introduce the idea that rounding is useful in this context. It is likely that some properties of the un-
derlying continuous process, which are well known for Gaussian processes and for other standard
cases, may carry over to the induced count process. However, this deserves further study. There390

are also interesting directions in terms of modeling counting processes corresponding to non-
decreasing count processes via rounding non-decreasing continuous processes using monotone
splines (Ramsay, 1998; Neelon & Dunson, 2004; Shively et al., 2009) and other constructions.
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Fig. 4. Posterior mean and 95% pointwise credible bands
for the effect of (a) concentration of PM25 pollutant, (b)
average daily temperature, (c) % of humidity, and (d)
barometric pressure on asthma inhaler use calculated with

equation (10).
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APPENDIX 1
Proof of Lemma 1. For any count stochastic process y0 satisfying Assumption 1, we can partition the405

domain S into mutually disjoint sets Sl(y0), with y0(s) constant within the interior of each Sl(y0) and
with unit increments at the boundaries. There are clearly infinitely many continuous functions y∗ : S → <
satisfying the constraints (i) y∗(s) ∈ [ay0(s), ay0(s)+1) for all s ∈ S and (ii) y∗(s) = ay0(s) for s ∈ B(y0).
For all such y∗, we have y0 = h(y∗). �

Proof of Theorem 1. Theorem is an immediate consequence of Lemma 1 and of the following Lemma410

ensuring that the mapping h maintains L1 neighborhoods.

LEMMA 2. Suppose y∗ and y∗0 are continuous and bounded by M ∈ < such that d1(y∗, y∗0) = ε∗,
y = h(y∗) , y0 = h(y∗0). Then, y ∈ ηε(y0) for all ε > ζ(ε∗; y∗0), where ζ(ε∗; y∗0) is non-decreasing in ε∗

having limε∗→0 ζ(ε∗; y∗0) = 0.

Proof of Lemma 2. Take S = [0, 1]p without loss of generality. Let {Sl(y0, y)}ml=1 the partition of S415

induced by {Sl(y0)}m0

l=1 and {Sl(y)}m1

l=1 such that y(s) = jl and y0(s) = kl for all s ∈ Sl(y0, y) and
some jl, kl ∈ N . Let δl(y0, y) = |jl − kl|, for l = 1, . . . ,m and λ(·) be the Lebesgue measure. Define

ζ(ε∗; y∗0) = sup
y∗∈ηε∗ (y∗0 )

 max
l=1,2,...

[δl{y0, h(y∗)}]
∑
l:δl 6=0

λ[Sl{y0, h(y∗)}]

 .

Clearly y ∈ ηε(y0) for all ε > ζ(ε∗; y∗0) since

d1(y0, y) =

m∑
l=1

δl(y0, y)λ{Sl(y0, y)} ≤ ζ(ε∗; y∗0).

We show first that limε∗→0 ζ(ε∗; y0) = 0. What follows holds for all y∗ ∈ ηε∗(y∗0). Consider the general
y∗ ∈ ηε∗(y∗0). Since

∑
l:δl 6=0 λ[Sl{y0, h(y∗)}] is finite, ζ(ε∗; y0) goes to zero if max δl{y0, h(y∗)} goes420

to zero. Define Mε∗ = max |y∗(s)− y∗0(s)| and let sM = arg max |y∗(s)− y∗0(s)| with sM belonging to
a given Sl where y∗(s) ≤ ajl+1 and y∗0(s) ≤ akl+1. For construction |all+1 − akl+1| ≤Mε∗ and so for
Mε∗ → 0 we have all+1 = akl+1. Considering that max |y∗(s)− y∗0(s)| → 0 then |y∗(s)− y∗0(s)| → 0
for all s ∈ S leading also to max δl → 0. Whereas the absolute value of the difference |y∗(s)− y∗0(s)| is
bounded and continuous we have that if

∫
S |y
∗(s)− y∗0(s)| ds goes to zero, also lim supS |y∗0(s)− y∗(s)|425

goes to zero and hence also Mε∗ .
The fact that ζ(·; y0) is non decreasing follows directly from its definition. �

By Lemma 2 with suitable ε∗ we have

Π{ηε(y0)} = Π[h{ηε∗(y∗0)}] = Π∗{ηε∗(y∗0)} > 0.

Proof of Theorem 2. Since y0(si) is equal to the observed yi for all i, we can rewrite the posterior (5)
as430

Π
{
y ∈ ηCε (y0) | y1, . . . , yn

}
=

∫
ηCε (y0)∩Cn

∏n
i=1 δyi(yi)dΠ(y) +

∫
ηCε (y0)∩CCn

∏n
i=1 δyi(yi)dΠ(y)∫

C
∏n
i=1 δyi(yi)dΠ(y)

≤ Φn +
(1− Φn)

∫
ηCε (y0)∩Cn

∏n
i=1 δyi(yi)dΠ(y) +

∫
ηCε (y0)∩CCn

∏n
i=1 δyi(yi)dΠ(y)∫

C
∏n
i=1 δyi(yi)dΠ(y)

= Φn +
I1,n(y1, . . . , yn) + I2,n(y1, . . . , yn)

I3,n(y1, . . . , yn)
,
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where δa is a delta mass at a, Φn is a test function and Cn is a sieve that grows eventually to the whole
space C. It suffices to show that

Φn → 0, (A1)
eβ1nI1,n(y1, . . . , yn)→ 0, (A2)
eβ2nI2,n(y1, . . . , yn)→ 0, (A3)
eβnI3,n(y1, . . . , yn)→∞ (A4)

with β < min{β1, β2}.
Denote bac the integer part of a and let S =

⋃bn1/pcp
j=1 Gj with Gj an L∞ ball of size 0.5(bn1/pc)−1

and center s′j , where the centers are chosen on a grid so that bn1/pcp balls cover S and each Gj contains 435

at least one element of (s1, . . . , sn)T under Assumption 2. Define Xi = 1{y(si) = y0(s′j)} with s′j being
the centroid of the Gj in which si is contained. Let Φn = 1{

∑n
i=1Xi < n} the test on the set

Cn =
{
y : y is constant in Gj , for all j = 1, . . . , bn1/pcp, ||y||∞ < Mn

}
(A5)

withMn = O(nα) and 1/2 < α < 1. The first condition on the sieve governs the regularity of the process
while the second gives an upper bound for the infinity norm as in Choi & Schervish (2007). The true y0
belongs to Cn for a given n and hence for n sufficiently large the test functions have exactly zero type I and 440

type II probability. From this ( A1) is directly verified. We continue to prove ( A2). By Fubini’s theorem
we have

Ey0{I1,n(y1, . . . , yn)} = Ey0

{
(1− Φn)

∫
ηCε (y0)∩CCn

n∏
i=1

δyi(yi)dΠ(y)

}

=

∫
ηCε (y0)∩CCn

Ey{(1− Φn)} = 0

where the final equality is directly verified by the test construction. Next we prove ( A3). Again by Fubini’s
theorem we have

Ey0{I2,n(y1, . . . , yn)} = Ey0

{∫
ηCε (y0)∩CCn

n∏
i=1

δyi(yi)dΠ(y)

}
≤ Π(CCn ) ≤ c1e−c2n,

and hence for β2 < c2, eβ2nI2,n(y1, . . . , yn)→ 0. Finally the prior positivity of Π makes I3,n(y1, . . . , yn) 445

to be positive. This proves also ( A4) and concludes the proof. �

REFERENCES

BANERJEE, A., DUNSON, D. B. & TOKDAR, S. T. (2013). Efficient gaussian process regression for large datasets.
Biometrika 100, 75–89.

BANERJEE, S., GELFAND, A. E., FINLEY, A. O. & SANG, H. (2008). Gaussian predictive process models for large 450

spatial data sets. Journal of the Royal Statistical Society, Series B: Statistical Methodology 70, 825–848.
BEHSETA, S., KASS, R. E. & WALLSTROM, G. L. (2005). Hierarchical models for assessing variability among

functions. Biometrika 92, 419–434.
CANALE, A. & DUNSON, D. B. (2011). Bayesian kernel mixtures for counts. Journal of the American Statistical

Association 106, 1528–1539. 455

CHOI, T. & SCHERVISH, M. J. (2007). On posterior consistency in nonparametric regression problems. Journal of
Multivariate Analysis 98, 1969–1987.

CHU, W. & GHAHRAMANI, Z. (2005). Gaussian process for ordinal regression. Journal of Machine learning
Research 6, 1019–1041.

DUNSON, D. B. & HERRING, A. H. (2005). Bayesian latent variable models for mixed discrete outcomes. Biostatis- 460

tics 6, 11–25.
ERHARD, V. & CZADO, C. (2009). Sampling count variables with specified Pearson correlation - a comparison be-

tween a naive and a C-vine sampling approach. In Dependence Modeling - Handbook on Vine Copulae, D. Kurow-
icka & H. Joe, eds. World Scientific, pp. 73–87.



16 ANTONIO CANALE AND DAVID B. DUNSON

FADDY, M. J. (1997). Extended Poisson process modeling and analysis of count data. Biometrical Journal 39,465

431–440.
FERGUSON, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1, 209–230.
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