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Abstract

Many tasks require the input by more than one person very often with
members of the team contributing sequentially. However, team production
is plagued by disincentive problems. We investigate individual incentives
to team production with sequential contributions and competing teams. We
show that earlier contributors free-ride on team members contributing later
on. We test our predictions on sports data using an athlete’s performance
in the individual race as a natural control for his relay performance. Our
empirical findings strongly support the theoretical claims.
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1 Introduction

It is widely acknowledged that team production is plagued by disincentive prob-
lems because individuals free-ride on the contributions of other team members
(Alchian and Demsetz, 1972; Holmstrom, 1982). Yet, little seems to be known on
the structure of such disincentives when there is between-team competition and
individuals’ contributions build on previous work done by the other team mem-
bers. In this paper we provide both a theoretical and an empirical investigation of
the issue.

Sequential contributions to a team are indeed quite common in real-world pro-
duction processes. For instance, in the era of globalization work is done around
the clock, with computer programmers, planners and other workers producing
output that can easily be sent electronically around the globe; at the end of the day
they hand over their work to colleagues located in a country where the sun is about
to rise. The problems involved are the same that occur when drafting a document:
a bad draft requires more effort by the people working on it at later stages in order
to achieve a certain level of quality. Another example is the training of students at
universities. Colleagues who do a proper job teaching first year courses prepare
students well for courses to be taught by other faculty in the second year. One may
also think of mail delivery. In many countries, parcels or registered letters have to
be delivered personally by the postman. It is a common perception that postmen
sometimes do not even bother to ring the bell and just leave a notice on the door
saying that the mail can be retrieved at some mail delivery center. Thus, they save
on their time while increasing the workload at the center. Finally, in production
processes organized along assembly lines a poor job by some worker at an early
stage can increase the workload of subsequent workers in order to achieve the tar-
get quality. In all these examples it may be difficult or very expensive to track the
responsibility for a poor final outcome down to the contributions of all the team
members involved.

It is most natural to identify a team with an individual firm. In this interpre-
tation, competition comes directly from market forces. However, having multiple
teams performing the same task in a competitive environment might also be a
strategy of internal organization within the firm, specifically targeted at reducing
free-riding of employees. Whatever the interpretation, it is interesting to know a
priori whether and to what extent there are incentives to free ride in a competitive
environment, and whether such incentives change along the production process.

To this aim we develop a model where members of competing teams contribute
sequentially to win a commonly shared prize. The main finding is that free-riding
remains pervasive, with earlier contributors exploiting team members contributing
later on.

For testing our predictions we turn to swimming data. This has several advan-



tages. Typically, it is difficult to measure the performance of workers and their
individual contribution to a team in standard work situations. Moreover, from a
researcher’s perspective it is usually infeasible to construct a convincing counter-
factual that would allow to draw causal inference from the observations in an en-
vironment of an operating firm. In order to overcome these problems economists
have increasingly turned to sports data recognizing that these environments pro-
vide a number of natural experiments which allow for the testing of the effects
of incentives on labour market behavior (Ehrenberg and Bognanno, 1990; Kahn,
2000; Szymanski, 2003). Our comprehensive data-set covers swimming compe-
titions from all over the world during the years 1972 to 2009 with a total of more
than 300,000 observations. It seems to be particularly suited for our purposes as it
allows us to construct a counterfactual for each individual’s performance by com-
paring times swam in individual races with the same swimmer’s performance in
a relay at the same event typically taking place within a time period smaller than
2 days. This solves a major identification problem, that arises because the team
members starting order in a relay depends on individual ability, with better swim-
mers generally placed first or last. Moreover, the richness of the data allows us to
exclude a series of other potentially confounding factors. The evidence supports
the prediction that even competitive environments are characterized by substantial
free-riding, with a marked first-mover advantage.

We proceed in the following way. After reporting on the related literature
in the next section, in section 3 we set-up the theoretical model. In section 4
we provide some background on the rules and main characteristics of swimming
competitions, describe the data that we use and present our empirical testing strat-
egy. In section 5 we present and discuss our empirical results. Section 6 offers
our conclusions.

2 Related literature

Our paper builds a bridge between two separate strands of the literature. The first
one looks at contributions to public goods.Varian (1994) argued that with sequen-
tial choice the free-riding problem is exacerbated with respect to the simultaneous
contributions mechanism, and that there exists a first mover advantage with early
contributors contributing less. While this contribution is akin to ours in the sense
that agents make sequential choices, there is no competition between teams.
Experimental evidence by Andreoni et al. (2002) specifically tailored to test
the predictions of Varian (1994) confirms the first mover behavior but also shows
that the difference between simultaneous and sequential play vanishes to the end
of the experiment. More recent experiments by Gaechter et al. (2009) support
the prediction that the overall contribution is lower in sequential contributions but



do not find evidence for the predicted first mover advantage. In another, earlier
experimental study Erev and Rapoport (1990) compared sequential and simulta-
neous contributions to public goods showing that simultaneous choice is signif-
icantly less effective in solving the dilemma. However, we are not aware of an
empirical assessment of free-riding with sequential contributions in natural work
environments. Moreover, none of the studies reviewed above considers the effect
of competition between groups on within-group performance.

This is the focus of the second strand of the literature we are relating to. Mod-
els of between-group competitions with simultaneous contributions have been de-
veloped in the vast literature on contests, which goes back to the seminal contribu-
tion of Tullock (1980).! Again, empirical analyses of between-group competition
have mainly involved laboratory experiments. For instance, Bornstein et al. (1990)
compared the performance of groups in a social dilemma situation under two con-
ditions: one in which groups were not facing competition and another in which
groups were competing for an additional reward. They found that between-group
competition significantly increased the contributions of the simultaneously acting
team members, a finding that was replicated by Erev et al. (1993) in a different
work environment where subjects picked oranges, as well as by Gunnthorsdot-
tir and Rapoport (2006). However, all these experiments involved simultaneous
contributions. In summary, surprisingly, little seems to be known on whether
competition between teams eliminates free-riding as team members contribute se-
quentially.

Our contribution aims at filling this gap. In our theoretical model we follow
the approach developed by Tullock, and extend it to the case when team members
contribute sequentially. We are then able to test our implications in a setting where
one would a priori expect very little free-riding. The fact that swimmers in the
first legs of a relay slow down with respect to their potential performance strongly
suggests that they free-ride on swimmers in subsequent legs, who appear to exert
close to full effort. That this happens to be true even in the Olympic finals speaks
of the ubiquity of free-riding.

We are not the first to look at swimming competitions as a test-bed. Exist-
ing studies mostly involve experimental work stemming from the area of social
psychology with mixed results on the existence of free riding. One of the ear-
liest contributions (Sorrentino and Sheppard, 1978) classified swimmers on the
basis of a questionnaire in approval-oriented ones and others threatened by re-
jections. They found that the approval-oriented types had faster swimming times
in relays. Williams et al. (1989) devised an experiment in which swimmers in
the treatment group knew their swimming time would be announced at the end

''See for instance Katz et al. (1990), Ursprung (1990), and Gradstein (1993). Two recent sur-
veys are Corchon (2007) and Konrad (2009).



of the competition, while swimmers in the control group knew their swimming
time would remain concealed. Relay swimming times were faster when scores
were identifiable. In a similar setting, Everett et al. (1992) measured social cohe-
sion in teams, again by means of a questionnaire. They looked at the difference
between relay and individual competition swimming times. Social cohesion was
found to affect free-riding for female but not for male swimmers, while the an-
nouncement of performances bore no effects. Miles and Greenberg (1993), too,
compared performances in relays with individual competitions and analyzed the
effect of punishment threats. They found that the threat of punishment attenuated
free-riding. In a more recent contribution, Hiiffmeier and Hertel (2011) found
that later swimmers in a relay tend to perform better which they interpret as a
self-motivation effect found in an accompanying field study on local sports club
swimmers who were asked about their perceived indispensability in relays.

Differently from these contributions, we draw inference from swimmers who
performed in a natural setting. Moreover, the statistical power of our dataset is
much stronger, involving more than 300,000 observations rather than a handful of
observations (often less than 30) as in many experimental studies.

3 A model for inter-group competition with intra-
group choices

3.1 The model

We model competition between groups along the lines of a Tullock-contest. Tul-
lock (1980) employed a contest success function (CSF) where the probability of
winning the competition is equal to the ratio of own effort to global effort, the sum
of efforts of all contenders.>

There are two teams ¢t = A, B competing for a prize S. Each team has two
players, denoted with n = 1, 2. Inputs of players are substitutes. All players are of
homogeneous ability. The prize S has equal value to each of the team members.

Team members exert effort e at cost c(e). For simplicity, we employ a linear
cost function c(e) = ke, with k > 0. The contributions of team members to the
overall team output enter additively. In order to reflect the sequential nature of
the game, however, first members of teams A and B choose their level of effort
first. Last players make their choice on the basis of first players’ outcome. Thus,
members 1 are Stackelberg leaders vis-d-vis members 2 in their teams. We denote

2Tullock’s idea was to compare rent seeking activity —group contribution in our setting— to the
purchase of lottery tickets: the higher the number of tickets, the more likely to win the lottery.
Skaperdas (1996) provided an axiomatic foundation for the Tullock CSF, while more recently Jia
(2008) offered a distribution based justification for its ratio form.
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with e 4, effort spent by the team member moving first in team A, and e 4, as effort
spent by the team member who moves second in team A. The notation for team
B is chosen accordingly.

The fact that effort is not deterministically transformed into performance, and
that there are stochastic elements in the competition is taken into consideration by
CSFs. In our setting, however, uncertainty is partly resolved after the first players
finish their task. Hence, second players face a different informational content. We
model this by introducing an additional random term

e={ °© (1)

—&

having two support points with equal probability, and actual realizations restricted
to 0 < e < S/(4k). Realization of this random variable takes place after first play-
ers made their choices and before second players choose their effort; following
Hirshleifer’s micro-foundation of the Tullock contest function (Hirshleifer, 1989)
it contributes to the odds of winning of each team according to:

DA €Al T €+ ea
A _CaTIToA )
DB €1 — €+ €p2
This is to say that the advantage unfolding for team A as its first player finished
the task is to the disadvantage of team B, and vice versa.’
As pa + pp = 1 we can write team A’s and B’s respective probabilities of
success in this either-or competition as
ea1 + €+ eq

pa = ; (3a)
ea1 +eas +epr+epo

€p1 — €+ epo
PB = . (3b)
ea1 +ear +epr+epo

Expected payoffs follow as
E‘/;n:pts_ketn t:{A,B}, n:{]-?Z} (4)

where each player of a team ¢ weighs the prize S with the team’s probability of
winning and subtracts from that his individual effort costs.

3In the lottery analogy, nature is allowed to buy some tickets and give them to one of the teams,
thus increasing its chances of winning and decreasing those of the opponent correspondingly.



3.2 Effort choices

The game is solved by backward induction. Second players take the level of effort
of first players as given, know the realization of ¢, and choose their own effort
simultaneously. First players make their choices taking into account the later re-
alization of ¢, and the reaction of the second players.

Proposition 1 [First mover advantage] In equilibrium, the optimal level of effort
provided by first players is €'y, = e, = 0 and is lower than the average level of
effort provided by second players, which is €', = ey = S/(4k).

Proof Any positive level of effort put by last players must solve the fol-
lowing first order conditions (s.o.c. being satisfied):

(631 + 632)8 + €S = k?DQ (Sa)
(ea1 +ea2)S — €S = kD?, (5b)
with D = e4; + eas + ep1 + ep2. Optimal choices follow as
e’ max | 0, —e4; + 5 (6a)
pr— X —_— —_—
A2 ) Al Ak €
. S
€py = Max 0,—631-1-@-0-6 . (6b)

These are the reaction functions of second players to effort choices of the first
players. Corner solutions with zero effort level by one or both second players
may arise. Due to substitutability of efforts within teams, second players decrease
their optimal efforts as first players put in more effort. Efforts of second players
are non-decreasing in the valuation of the prize and non-increasing in the marginal
effort costs k. A positive realization of the random term ¢, implying that team A
has a lead over team B, induces the second player of team A to decrease his level
of effort (if not already in the corner solution), while the second player of team B
puts in more effort.

We now turn to the optimal choices of first players. These two players also
make their decisions simultaneously. They take into account the reaction of the
subsequent players and form expectations on the realization of €. Accordingly,
their payoft functions follow as

€Al + €+ €l
€a1 + 622 +ep1 + 6732

EVAl = E[ S — k'GAl] (73.)



€B1 — €+ €p9y
ea1 + €4y +ep1 + €p

EVBl = E[ S — keBl]- (7b)

In the Appendix we show that the condition 0 < ¢ < S/(4k) rules out the
possibility of multiple equilibria, and guarantees an interior solution for second
players. In such a case, inserting the reaction functions (6) in (7) and simplifying
gives

E[VAl] = S/2 — keAl (821)
E[VBl] == 8/2 — ]{7631. (Sb)

Obviously, we get corner solutions and first players choose effort
ey =ep = 0. ©)

Inserting back €%, = e, = 0 into the reactions functions (6) yields

622:%—e>0 (102)
S
€py = 1 +e>0. (10b)

OJ

These results stem from the substitutability of within team members’ efforts.
The team member moving first knows that an increase in his effort is leading to
a decrease in the effort of the team member moving second. Thus higher effort
on his side is not reflected by a larger chance of winning the competition, though
he would still have to carry the burden of a higher cost of effort. Interestingly,
what deters the first player from contributing is the reaction of the second player,
who will respond one-by-one reducing his contribution. Under this perspective,
the first player is simply restraining from a useless (but costly) action. It is the
second player’s self interest that eventually turns against himself.

That we get a corner solution where first players reduce effort to zero is due
to the assumption of linear effort costs. Applying a convex function in numerical
simulations yields positive efforts for first players, which, however, remain below
the level for second players.* Given the inherently difficult tractability of contest
models with quadratic cost functions, we opted for a presentation of a model with
linear cost functions.

“For instance, assuming a quadratic cost function c(e) = e2, a random term ¢ = 0.1 and a
prize S = 2, we get e;; =~ 0.2 for first players, while es is approximately equal to 0.37 for the
second player of the leading team, and to 0.45 for the second player of the lagging team.

7



4 Empirical strategy

We use swimming data on relays and individual competitions to test the main
implications of our model. Relays come very close to the setting we focus on. In
a relay, there is sequential contribution to a team with one swimmer performing
after the other, and teams competing against each other. Moreover, the task is
simple, the rules are clear to everybody and performance is exactly measured.

4.1 Swimming competitions

Swimming competitions entail four competitive styles —backstroke, breaststroke,
butterfly and freestyle— at varying distances (e.g. 100 meters, 200 meters, etc.)
typically in 25 or 50 meter pools.’ Relays are a group of swimmers who either all
swim freestyle or each swim one different style in the order of backstroke, breast-
stroke, butterfly and freestyle (medley relay). Except for some specific (usually
minor) events, relay teams, according to FINA rules, consist of four swimmers.
Unless specified by the Promoter’s conditions the nomination of team members
and the relay swimming order must be made before the competition. Any relay
team member may compete in a race only once.

4.2 Data description

Our data-set was kindly provided by GeoLogix AG, a Suisse company which gets
the data directly from the European Swimming Federation (LEN) and other par-
ticipating federations. In total we have 302,576 observations of performances of
individual swimmers at about 7,000 events which took place worldwide between
1972 and 2009. The data comprises athletes who took part in the same event and
for the same style, both in the individual competition and in the relay.

The events included in our sample are major events such as the Olympic
Games, World Championships, European Championships, Pan Pacific Games, the
Commonwealth Games or Universiades, and other events, like national champi-
onships (see table 1).

As for the personal characteristics of the swimmers, we have information on
age, gender, nationality, and FINA points. Age is between 6 and 109 years with
a mean of 17.8 (the median is 16). Gender composition of the sample is more or
less equally split. The FINA Point Scoring assigns point values to swimming per-
formances. Points are assigned at every competition, by comparing a swimmer’s
performance with a base time that is recalculated every year, taking the average of

SRules for these swimming competitions, both national and international, are set by the Feder-
ation Internationale de Natation (FINA) (www.fina.org).



the top ten of the All Time World Rankings. More points go along with better per-
formance. In the sample, FINA points are related to the individual competitions
and vary between 5 and 1,181 with a mean of 502.8 (the median is 506). Michael
Phelps had 1,063 in the year of the Olympic Games in Beijing.

Next we have information on the event (event name, location and beginning
and ending day), the competition (style, distance, date of attendance and round —
heats, preliminary, semifinals, or finals) with the day of the competition allowing
to some extent to control for the sequence of the individual and the relay race,
and finally performances, which include the time in the individual and the relay
competition, the total relay time, as well as the starting order in the relay and the
final placement both for the relay and the individual competition.

For our analysis we classify event importance according to three criteria. The
first one (majorl) includes Olympic games, world championships, European cham-
pionships, pan Pacific games, Commonwealth games and Universiades (3,785
observations at 31 events). The second one (major2) adds also national champi-
onships and major regional championships (140,570 observations at 2,308 events).®
The third one (major750) considers only events for which the average FINA points
of the participants we observe in our sample is above 750 (17,785 observations at
236 events): this corresponds to the top 8% of the distribution of FINA points. All
majorl events are also major2 events. On the other hand, the major750 classifica-
tion has some overlapping with the other two. Of all majorl observations, more
than 90% are also classified as major750, while of all non-majorl events, less
than 5% are classified as major750.” Overall, it seems safe enough to consider the
following ranking of events, in increasing order of importance: all events, major2,
major750, majorl.

4.3 Bringing the theory to the data

Our model predicts that earlier swimmers slack off more than later swimmers
which should be reflected in a sequence of decreasing swimming times of relay
swimmers. However, taking this result straightforwardly to the data is not feasible.
First swimmers in a relay competition start upon hearing the starting signal (a “flat
start”) while the following swimmers start after the previous swimmer touched the

®Event identification for the first two criteria is performed by textual search of the relevant
strings (e.g. “world”, “European”, efc.) and variations in the meeting name, in all the relevant
languages.

"The majorl events that are not classified as major750, are the XX Olympic Games (for which
we have only one observation about a swimmer who happened to be below 750 FINA points),
Canadian World Championship Trials (170 observations), the Canadian Pan Pacific Trials (144
observations) and the Junior Pan Pacific Championships (14 observations).

The non-majorl events that are classified as major750 are mainly national championships.



wall of the pool. Hence, all relay swimmers starting after the first ones can see
their preceding team-mate approaching and fine-tune their start (what is called
a “flying start”): they enjoy a reaction time advantage. Therefore, we are not
able to disentangle the reaction time effect from a potentially slacking off of later
swimmers.

However, as all swimmers but the first ones benefit from the same reaction
time advantage, we may employ those swimmers to test free-riding on later con-
tributors to the team. But again, one has to be cautious to straightforwardly go for
such a test. If swimmers are not allocated randomly to slots, say faster swimmers
are systematically swimming at later positions in the relay, we would not be able
to infer that there is free-riding from the observation that later swimmers are faster
in a relay. And, indeed, we do find that the starting order is not random. In order
to overcome this problem, we use information on each relay swimmers’ perfor-
mance in the individual competition of the same event to control for his ability:
our dependent variable is, therefore, the relative difference in swimming time be-
tween the relay and the individual competition. In other words, each swimmer
acts as his own control.

Note that our empirical test does not require any assumption on how athletes
evaluate the prize to be won in the individual competition, as long as that eval-
uation is common to all swimmers in the team. If one is also willing to accept
that individuals value relay and individual competition prizes equally —and there
are good reasons to believe that this is a reasonable assumption, which we will
discuss in the Conclusions— then our data allows for another test of free-riding
by employing first swimmers only. Given the assumption of equal valuation of
the prize, the relay and the individual competition have the same structure of in-
centives and costs. Hence, the performance in the individual competition offers a
natural counterfactual to evaluate the optimal effort, absent any free-riding con-
cern. It follows that we can directly compare swimming times in the relay with
performances in the individual competition for first swimmers as there is no reac-
tion time issue involved. If free-riding prevails we should find slower swimming
times in relays than in individual races for first swimmers.

Finally, one can exploit the data on fourth swimmers in order to learn more on
the reaction time advantage relative to free-riding. The fourth swimmers are the
last swimmers in the relay and, according to our model, bear the bulk of the burden
of the competition. Consensus estimates among experts and practitioners quantify
the reaction time advantage to about .6 secs (.7 secs for a good flat start®, and .1
secs for a good flying start”). Finding a similar advantage for swimming times

8See http://www.swimmingscience.net/2012/06/reaction-time.html
9See http://forums.usms.org/showthread.php?16261-FINA-Relay-Take
-Off-Rule-w-Automated-Equip
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in relays with respect to the individual competition would suggest that the last
swimmers perform about the same in the relay and in the individual competition.
Again, if we are willing to assume equal valuation of the prize between the relay
and the individual competition, we could conclude that free-riding vanishes at the
end of the race.!”

To recapitulate, in order to get rid of composition issues we look at the rel-
ative difference between the relay and the individual competition. We interpret
a diminishing difference as we move from the second to subsequent swimmers
as evidence in favor of our main proposition, which states that early swimmers
enjoy a first-mover advantage. The swimming time in the individual competition
is used only as a control here. Moreover, we interpret a positive difference for
first swimmers as a measure of free-riding in our context, conditional on an equal
valuation of the prizes in the relay and in the individual competition. Turning to
last swimmers only, finding an absolute difference in swimming times between
the relay and the individual competition of about .5-.7 seconds. would suggest
that last swimmers perform in relays as well as in individual competitions. With
equal valuation of the prizes, this would point to free-riding vanishing toward the
end of the competition.

S Empirical evidence

5.1 Starting order is not random

As a preliminary analysis, we check whether the assignment by team managers
of swimmers to particular slots depending on their ability is a concern. First we
focus on the subset of observations for which we have data on all swimmers in a
team (5.8% of the sample, or 17,532 observations).!! Table 2 reports the average
FINA points of these swimmers by starting order. First and last swimmers are on
average better than second and third swimmers. Second, we ran OLS regressions
of FINA points on the characteristics of the competition, the characteristics of the
swimmer and the starting order, first restrincting only to teams for which we have
information on all players (table 3, column 1) and then considering the whole sam-

19Extending our model to individual competitions indeed suggests that the optimal effort should
be the same as for last swimmers in the relay. In an individual competition, only two players
compete to win the prize S; the game has only one stage, and there is no revelation of information
during the play. The odds of winning are p4/pp = ea/ep, and expected payoffs are V; =
peS — ke, t = {A, B}. Equating marginal benefits to marginal costs, we obtain e* = S/4k,
which is equal to the average effort for last swimmers in the relay, over all possible realizations of
€.

"Our data, as already stressed, contains only swimmers that swam both the individual and the
relay competition.
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ple of swimmers (column 2). The evidence suggests that stronger swimmers are
placed either first or last, while weaker swimmers are in the middle. These find-
ings are in line with common knowledge among team managers and athletes, and
motivates our choice of the relative difference between the relay and individual
performance as the outcome variable in the analyses that follow.

5.2 Descriptive evidence on free-riding

The first column of table 4 reports average swimming time in the individual com-
petition. The additional columns show the relative difference in swimming times
between the relay and the individual competition for different starting orders in
the relay. First swimmers are, on average, slower in relays with respect to their
performance in the individual competition. The difference amounts to .21%, i.e.
12/100 of a second in absolute terms.

Testing the relative difference for the first swimmers against the null of there
being no difference in performance yields a highly significant p-value. This result
is robust against splitting the sample along gender or age. It is furthermore valid
for swimmers with higher or lower FINA points than the median swimmer. It also
holds over all styles if we focus on the sign of the difference in swimming times
and in 6 out of 7 subgroups for the various styles in terms of significance.

There is some evidence that the difference in performance decreases with the
importance of the competition, although it becomes non significant only for ma-
jorl events.

There are no indications that training or the use of illegal substances targeted
to a specific competition (individual or relay) might disturb our results. In 87%
of the observations individual and relay competitions are within 1 day of separa-
tion which implies that training efforts influence individual and relay competitions
equally. With illegal substances targeting longer term goals such as the building
up of red blood cells basically the same logic applies as with legal training meth-
ods.

One might also be concerned that fatigue decreases performance in later events.
However, the distribution of days of separation between individual and relay com-
petitions is quite symmetric. In any case, we also split the sample along the timing
of competitions to check whether it makes a difference if the individual race took
place before or after the relay at the particular swimming event for which we com-
pare the swimming times. It is still true that relay performances are weaker than
individual performances.

As we have already noted, direct comparison between the relay and the indi-
vidual competition is possible only for first swimmers as subsequent swimmers
enjoy an advantage in terms of reaction time. This explains why the time differ-
ence turns negative for the second to the fourth swimmers in the relay (columns
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3-5). More importantly, however, last swimmers in relays seem to be relatively
faster (with respect to their own individual performance) than swimmers starting
2nd or 3rd. Again, this is what we would have expected from our theory.

Summarizing these findings, faster relative swimming times for later swim-
mers in the relays provide evidence in support of our main proposition. Further-
more, if one is willing to accept the assumption of equally valuable prizes in the
individual and the relay competition, the evidence presented for first swimmers
can be interpreted as a measure of free-riding.

The fact that first swimmers under-perform in relays with respect to individ-
ual competitions, and that relative swimming times in relays decrease at the end
of the race raises the question whether fourth swimmers still under-perform, over-
perform or perform about the same in relays and in individual competitions. Table
5 reports the estimated intercepts in a linear regression model of the (absolute) dif-
ference between relay and individual competition swimming times, controlling for
age, gender, style and length of the race, estimated on fourth swimmers only with
different sample selections. For each subsample, the intercept is the estimated ad-
vantage in relays over individual competitions for the reference category (100m
Freestyle, male swimmers aged 15-30), and can be attributed to the reaction time
advantage coming from the flying start and a possible free-riding effect. Consid-
ering all events it seems that fourth swimmers are still slower in relays than in
individual competitions (their advantage is lower than the presumed reaction time
advantage). For more competitive events we find an absolute difference of com-
parable size to the reaction time advantage (.5-.6 secs). This suggests that —at least
in more competitive events— fourth swimmers swim the relay about as fast as the
individual competition. If one is willing to assume that the prize is equally eval-
uated in the two circumstances, one might conclude that fourth swimmers exert
approximately full effort.

In the remaining part of the section we elaborate on the findings of table 4
by means of a multivariate analysis, which allows us to increase the number of
controls. The multivariate analysis is run for first swimmers and for second to
fourth swimmers, separately.

5.3 Regression analysis for first swimmers

The analysis on first swimmers allows to identify how much first players reduce
their effort in relays with respect to their individual performance under the as-
sumption of equal valuation of the prizes. We run both an OLS and a fixed effects
model, the latter to take into account unobserved heterogeneity. The controls in-
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clude gender, age!?, style, event importance and schedule (whether the individual
competition is on a day before the relay, on the same day, or on a day after).
Standard errors are clustered at the individual level.'?

Table 6 reports the results. The coefficient in the OLS regression of the swim-
merl indicator gives the average of the relative difference in swimming perfor-
mance for the reference category. It implies that first swimmers slow down by
0.1 percentage points (ppt). In the fixed-effects model we get a point estimate
of 0.2 ppt, the coefficient of the swimmerl indicator being the average of all in-
dividual effects. For both specifications the p-values for the coefficient on the
first swimmer are smaller than .001. As for the controls, we find that both young
and old swimmers perform relatively worse in relays, while the gap in relative
performance is reduced in major events.

These results are robust to various variations of the underlying sample. For
instance, one could object that free-riding depends on competitive pressure. While
we already control for the type of events with a set of dummies, we may further
restrict the sample to competitions with closer outcomes. So we estimate the same
models focusing on freestyle competitions with swimmers aged 15-30 swimming
in finals.'* We do this on all events, and then separately on major events only,
using all three definitions. The results are reported in table 7: still swimmers
are slower in relays as compared to their individual performances in a range of
0.15-0.3 ppt.

The filter on major2 events is our preferred sample, as it achieves a good
balance between selecting highly competitive events and not throwing away too
much data. We therefore use it as a basis for further robustness checks. First, we
select swimmers who finished in the first four positions both in the relay and in
the individual competition. This should shield our results from the influence of
uncompetitive teams and uncompetitive swimmers. The results (first two columns
of table 8) still go through, with even higher estimated coefficients (0.3-0.4 ppt).
We then check more thoroughly whether the timing of the competitions matters,

12We use three age groups rather than a continuous age variable, in order for the coefficients of
the starting order indicators to show the effects for the reference group (swimmers aged 15-30),
rather than for swimmers of a specific age; the consequential reduction in explanatory power —as
measured by R%— is very small.

I3For fixed effect estimation, we use the xtreg procedure in Stata, which does not adjust the
degrees of freedom for the number of fixed effects swept away in the within-group transformation.
This approach is appropriate when the standard errors are nested within clusters (meaning all the
observations for any given group are in the same cluster), as in our case, see Wooldridge (2010,
ch. 20) and Gormley and Matsa (2012). The R?, on the other hand, is obtained with the areg
procedure, which takes into account the contribution of the individual effects to the overall fitness
of the model, as unobserved heterogeneity is part of the explanation of the outcome.

“Further restricting the sample to a specific length —50m, 100m or 200m— does not alter the
results in any significant way, both here and in what follows.
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by estimating our models separately when the individual competition is on a day
before, on the same day, or on a day after the relay (columns 3-8). The differ-
ences turn out to be very small. Indeed, if one lesson can be learnt from all the
regressions, it is that the coefficient for first swimmers is remarkably stable: we
find robust evidence of free-riding for first swimmers, and we quantify it in the
order of 0.2-0.3 ppt.

5.4 Regression analysis for swimmers 2-4

The analysis on swimmers 2-4 allows to test for free-riding without assuming
equal valuation of prizes. As suggested by our main proposition we should ob-
serve earlier swimmers free-riding on later swimmers, and due to the reaction time
advantage, we expect the coefficients for the indicator variables to be negative. If
our main proposition holds true, we would then observe that the indicator vari-
ables change in size with higher orders becoming more negative (later swimmers
exert on average more effort).

We estimate on swimmers 2-4 the same models as on first swimmers. Table
9 reports the results of OLS and fixed-effect regressions on the full sample. The
coefficients of the order indicators are negative due to the reaction time advantage.
More importantly, as predicted by our theoretical model, their absolute value is
increasing from -0.4 to -0.7 for the OLS model. Also, there seems to be a big
jump from the third to the fourth swimmer, coherently with our intuition that it is
the last swimmer who bears most of the burden of the competition. Controlling
for fixed-effects reduces the coefficients of the order indicators, implying that a
part of the relative difference in relay and individual swimming times is actually
explained by individual idiosyncratic characteristics, possibly reaction times.!?
What matters, however, for our test is that the coefficients of the starting order
indicators are still decreasing. Moreover, the fact that the differences between the
starting order coefficients remain roughly constant and are statistically different
from zero speaks for our free-riding interpretation. For what concerns the control
variables, again, both junior and senior swimmers appear to slack off more than
prime age swimmers, and the same pattern as with first swimmers is found with
respect to major events.

This very robust result that free-riding wanes at the end of the competition and
that unobserved heterogeneity is not responsible for this persists all our sample
selections. As with first swimmers, we first filter on individuals aged 15-30 swim-
ming a freestyle final. We then run our OLS and fixed-effect regressions first on

ISNote that the near-zero coefficient for 2nd and 3rd swimmers does not mean that there is no
free-riding. Their swimming times in the relay and in the individual competition are about the
same, but in the relay they enjoy the reaction time advantage.
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all events (table 10, columns 1 and 2), and then separately on major events only,
using all three definitions (columns 3-8). The coefficients of the order indicators
tend, if anything, to become more negative, but the pattern we look for does not
change: last swimmers are relatively faster, and the amount by which they are rel-
atively faster is not affected by the inclusion of fixed-effects. The only difference
with respect to our analysis on the full sample is that the coefficients of 2nd and
3rd swimmers are no longer significantly different. This is in line with what our
model suggests: the burden of the competition lies on the shoulders (and arms and
legs) of last swimmers.

Finally, we perform the additional robustness checks on our preferred setting
(15-30 age group, freestyle finals, major2 events). We first estimate our two spec-
ifications on those individuals who finished in the first four positions both in the
relay and in the individual competition (table 11, columns 1-2), then perform sep-
arate estimations depending on the timing of the competitions (columns 3-8). Our
results still hold.

5.5 Regression analysis for swimmers 1-4

In order to fully exploit our fixed-effects estimation strategy to control for time-
invariant pro-relay unobserved factors in later swimmers (motivation, for instance),
we also perform a joint analysis of all swimmers, in our preferred setting (15-30
age group, freestyle finals, major2 events). This is reported in table 12. The
OLS coefficients of the order indicators are 0.26 (first swimmers), -0.44 (second
and third swimmers alike) and -0.66 (fourth swimmers), respectively. With fixed-
effects, the coefficients change slightly in size, but the difference among them
remains approximately constant, with the coefficient of the 1st swimmer being
positive and the coefficient of the last swimmer being smaller than those of 2nd
and 3rd swimmers.

5.6 Size of the effects

For establishing a benchmark against which to evaluate the size of free-riding,
we calculate the average lag in swimming time between individuals belonging to
teams that finished in nth place in relays and individuals belonging to teams that
finished in n-1th place, for n > 1. On average this lag is between 1% and 2% for
those who finished in the first 3 positions, and between 0.3% and 1% for those
who finished in the first 10 positions (with little differences between males and
females, and between different event importance, see table 13).

These numbers can then be compared with the size of free-riding for first play-
ers as shown in tables 6 and 7, which is in the range 0.2-0.3 ppt: if a first swimmer
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did not engage in free-riding, keeping constant the behavior of his opponents, he
would recoup between 10% and 100% of his lag, a non-negligible amount.

6 Summary and conclusions

In this paper we developed a simple model of sequential contributions to a team
when teams compete against each other. We find that team members contributing
earlier to a team’s common task contribute less than the team members contribut-
ing later. The mechanism underlying the free-riding in teams is substitutability of
inputs between team members to a Tullock contest. At the margin a team member
contributing earlier refrains to increase costly efforts as he can foresee that the
following team members will reduce their input.

Our theoretical claims find considerable empirical support. Drawing on a
unique data set of more than 300,000 observation from swimming competitions
from all over the world during the last four decades we find evidence for free-
riding and the pattern of efforts over the course of sequential contributions to a
team as suggested by our model.

The basic idea employed for empirical testing was to compare for a given
event the swimming performance of the same individual athletes for individual
and relay competitions. By definition no free-riding occurs in an individual com-
petition which is why swimmers should exert full effort at these occasions. Taking
their performance in the individual race as a control we find that on average first
swimmers swim slower in relays. Moreover, controlling for reaction times and
confounding factors including individual effects we find that free-riding dimin-
ishes as we move from the second, to the third and finally to the fourth swimmers
in relays. These estimated time differences occur to be of meaningful size.

That free-riding is still prevalent as we use each swimmer’s time in the indi-
vidual competition as a control for individual ability and as we additionally run
a fixed-effect model may also be interpreted as supporting evidence for our mod-
eling choice in the first part of the paper. We assumed that all swimmers have
the same ability when deriving our proposition. If heterogenous ability mattered,
then we should have found that free-riding vanished as we run fixed-effects mod-
els on top of controlling for individual ability with swimming times of individual
competitions. As it did not, we feel quite confident with the (simplifying) mod-
eling choices made. Although heterogeneous ability is certainly given among the
swimmers of the teams, it seems that team managers cannot solve the free-riding
problem by allocating swimmers to particular slots.

Our attribution of the lower performance of the first swimmer in the relay —but
not the pattern of free-riding for swimmers two to four— with respect to individual
competitions depends on the assumption that the prize S is equally valuable in
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relays and individual competitions. This assumption may need some discussion
for those who believe that individual competition might be more valuable as the
honors do not have to be shared.!® One may argue that for a vast majority of
athletes what actually matters is that they are medalists. The difference in util-
ity from winning it in the individual competition rather than in the relay may be
of minor importance. Indirect evidence for this comes from the observation that
sport federations generally award the same monetary prizes to athletes irrespective
of whether they have won a medal in an individual competition or as a member
of a relay team. The Deutsche Sportforderung, the major German funding body
for top-level sports, adopts this incentives scheme, for instance. Similarly, in Italy
individual race and relay medalists including those who only swam in the prelims
receive the same prize money. This is true not only for the Olympic games, but
also for the world and European championships (though, obviously, the prize for
more important events is bigger). Turning to endorsement deals that may follow
from winning a competition, it occurs that very few athletes are having consid-
erable incomes coming from this source. Quite the contrary: cases have been
reported that medal winners are trying to sell their medals for cash.!” What seems
to shape public perception, however, are the very few superstars that are actually
able to monetize their success. At the Olympic games in Beijing, Michael Phelps
was offered a contract by his sponsor which would award him one million dollars
in case he won at least seven gold medals.!® But actually, with such an incen-
tive scheme, there is no difference between winning an individual race or a relay.
In the end, he won eight gold medals. While certainly not representative for a
discussion on prize money, it is, however, another example that the assumption
of equal valuation of prizes in individual and relay competitions cannot be easily
dismissed. A similar circumstance occurred to UK athletes at the 2012 Olympic
games in London. To them, no prize money was awarded, but the Royal Mail
promised to issue a special postage stamp for any British gold medal winner."”
Finally, for many athletes winning a medal in the relay is the only possibility to
become a medalist at all. Accordingly, we would expect them to show particular
effort in relays. That we, nevertheless, find free-riding speaks for the strength and
ubiquity of our findings.

16The other side of ’two in distress make sorrow less’.

17See www . news . de, “Von Gold zu Geld, ”August 18th, 2010.

8See www . spiegel.de, “Es geht um die Wurst”, August 2nd, 2012.
19Same source as above.
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Appendix: Complete proof of Proposition 1

Distinguishing between interior and corner solutions, the optimal choices of sec-
ond players (their reaction functions) can be written as

ey = max|0, —ea + S/(4k) — €] (11)
ey = max[0, —ep + S/(4k) + €]

if team A has the lead, and

ey, = max|0, —eq; + S/(4k) + € (12)
ey = max[0, —epy + S/(4k) — €|

if team B has the lead. First players do not know the realization of € and form
expectations. The expected payoffs for the first player of team A are

BV, — 1 ear + € +max[0, —eq; + S/(4k) — €] St
2 es1 + max|0, —eq; + S/(4k) — €] + ep1 + max|0, —epy + S/ (4k) + €]
+1 ear — € +max(0, —ear + S/(4k) + €] s
2 ea1 + max|0, —ear + S/(4k) + €] + ep1 + max[0, —ep + S/(4k) — €]
— kea, (13)
where the first line relates to the case that team A has the lead, the second line
to the case that team B has the lead, and the last line are the effort costs. Analo-
gously, the expected payoffs for the first player of team B are
1 ep1 — € + max[0, —epy + S/(4k) + €]
EVp = - S+
2 e41 + max|0, —eq; + S/(4k) — €] + ep1 + max|0, —epy + S/ (4k) + €]
+1 ep1 + € + max[0, —ep + S/(4k) — €] g
2 ea1 + max|0, —ear + S/(4k) + €] + ep1 + max[0, —ep + S/(4k) — €]
—kep. (14)

Resolving the max functions gives us nine different cases that we have to consider
when deriving the reactions functions of first players of team A and B (figure 6).
The cases are defined in terms of e4; and ep;. It is therefore possible, in principle,
to have multiple equilibria, with the reaction functions intersecting at different
values of e 41 and e, in different cases. However, for an equilibrium to be valid,
it must lie within the relevant range of values of e4; and ep; which define the
case being considered. We will proceed by showing that this happens only for
Case 1, given the assumption ¢ < S/(4k). The equilibrium identified in Case 1 is
therefore unique.
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Figure 1: Case distinction for the calculation of the reaction functions for first
players
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e Case 1: eq1,ep < S/(4k) — e. The expected payoffs for players Al and
B1 write

1

EVAl = 53 — k:eAl (15)
1

EV31 = §S — k:eBl,

respectively. Zero effort choices of both first players constitute the Nash
equilibrium.

e Case 2: ea1,ep; € [S/(4k) — ¢,5/(4k) + ¢). The expected payoffs for
players Al and B1 write

1 eate 1 5/(4k)
M 2ea + 5/(4k) + ¢ 25/(4k) + e+ em (10
1 S/(4k) 1 ep1+¢€
EVg = = = S—k
B S e £ S/(4k) 1 e 2S/(Ak) tetem OBV
respectively. The first order conditions follow as
1 S/(4k)
- =k l Al 17
2 (e + S/(4k) + )7 (plagerdl) (D)
1 S/(4k)
- = k. B1
2(SI@R) +etep)? " (player B1)
Solving yields
eAl——(4k+5)i\/§4k (18)

S S
6*31:—(E+€) iﬂ@

We can rule out the negative solution. The positive solution violates the
lower bound of Case 2 as €%y, = €}y = (V2 —1) —¢) < 5/(4k) — . No
Nash equilibrium exists for this case.

e Case 3: eq1,ep > S/(4k) + e. The expected payoffs for players Al and
B1 write

EVy = —5—kea (19)
ea1l + eB1

EV31 = €51 S — /{631,
ear +éepi



respectively. First order conditions follow as

(ea1 +ep1) —ear
=k layer Al (20)
(en + en)? (player A1)
(ea1 +ep1) — em S =k. (playerB1)

(ea1 +€p1)?

The solution to these first order conditions is €47 = egy = S/(4k) which is
outside of the restriction of Case 3. No Nash equilibrium exists.

Case 4: eq; > S/(4k)+¢c and ep; < S/(4k) — €. The expected payoffs for
players Al and B1 write

1 eal+ ¢ 1 eql — €
FE — — k 21
Va = S E S/ 1 e 2en SR~ rea @D
gy JL SR sy

T 2ea + S/(4k) +e | 2ea + S/(4k) — ¢

Player B1 will choose zero effort given any choice of player Al. The reac-
tion function of player A1 follows from the first order condition

1 S/(4k) S/(4k)

1
2(ear 4+ S/(4k) +)2° " 2(ea + S/(4k) —¢)?

S=k. (22)

As the left hand side is decreasing in e4; there will be no intersection of
reactions function if for the smallest possible realization of e 4; the left hand
side is smaller than k:

1 S/ (4k) gy ! S/ (4k)
2(S/(4k) + e+ S/(4k) +)2" " 2(S/(4k) + ¢ + S/(4k) — )

2S<l<:.

(23)
The inequality is fulfilled for any € > 0, implying that there is no Nash
equilibrium for Case 4.

Case 5: eq; < S/(4k) — ¢ and ep; > S/(4k) + . No Nash equilibrium
exists. The result follows from the same reasoning as in Case 4.

Case 6: e41 € [S/(4k)—e,S/(4k)+¢e) and ep; < S/(4k)—e. The expected
payoffs for players Al and B1 write

1 €A1+ € 1
EVg = = S+-5—k 24
N e+ Sk 12 4 o 24)
1 S/(4k) 1
EVg = = S+-S—k
B e 1 S/ 1o 1 b1



respectively. Player B1 chooses zero effort. Player Al’s choice follows
from the first order condition
1 S/(4k)

2lem 5/ T )

which solves as: S g
=—(— +V2—. 2
en = (g +e)£V2 (26)
The negative solution can be excluded. The positive solution fulfills €%, =
2 (V2 —1) — e < 5/(4k) — & which violates the lower bound of Case 6.

No Nash equilibrium exists.

Case 7: eq; < S/(4k) — e and ep; € [ep1 > S/(4k) —e,S5/(4k) + €). No
Nash equilibrium exists. The result follows from the same reasoning as in
Case 6.

Case 8: e41 > S/(4k)+candep; € [S/(4k)—e, S/(4k)+¢<). The expected
payoffs for players Al and B1 write

1 eal+ € 1 eq1 — ¢
EVy == S+-———95—-k 27
Al 2e4 + S/(4k) + ¢ 2e41 + e Al @D
1 S/(4]{2) 1 €p1 +¢&
EVp = = ———— S — kep,
Bl 2eq1+S/(4k) + ¢ 2ea1 +ep1 cB1

respectively. Effort choice of player B1 follows from the first order condi-
tion
1 (ear +ep1) — (ep1+¢€)

SR e el (28)
as
—e £ /2041728
ep = > . (29)

For the positive solution the slope of the reaction function is

d S 1
€B1 — 14

d ﬂ €A1—E ’
€A1 /9 Ak S

Note that the second part of the right hand side is decreasing in e 4. If the
slope is negative at the smallest possible choice of e 4, it would be decreas-
ing everywhere within Case 8:

dep \/§

E‘em:S/(M)—&-e =—-14+—<0. (31)

(30)
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Thus, the reaction function is sloping downwards everywhere. Furthermore,

we have
1 S

€B1|es1=5/(4k)+e = 2k < S/(2k) (32)

so that the reaction function of player B1 is outside of the area of Case 8.
No Nash equilibrium exists.

o Case 9: eqy € [S/(4k) —¢,S/(4k) + ¢) and ey > S/(4k) + €. No Nash
equilibrium exists. The result follows from the same reasoning as in Case
8.

This completes the proof that the only Nash equilibrium with ¢ < S/(4k) entails
zero effort for first players.
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Table 1: Descriptive statistics: distribution of the sample

Number of events 6,973 Schedule
Overall no. of observations 302,576 individual first(®)
(of which) (144,130) relay first(¢)
Olympic games 660 same day
World championships 1,531 Round (individual comp.)
European championships 716 timed finals (default)
National championships(®) 136,785 finals
Pan Pacific games 390 semi-finals
Commonwealth games 184 preliminaries
Universiades 304 others(®
Nationalities 142 Round (relay)
Gender timed finals (default)
male 150,243 finals
female 152,333 preliminaries
Age: mean [min-max] 17.8 [6-109] others(®)
FINA points: mean [min-max] 502.8 [5-1181] Order (relay)
Style 1st
50m Breaststroke 20,092 2nd
50m Fly 17,599 3rd
50m Freestyle 99,081 4th
100m Breaststroke 28,588
100m Fly 25,096
100m Freestyle 91,079
200m Freestyle 21,041

79,564
81,671
141,341

136,917
75,290
2,620
87,489
260

193,881

94,280

13,847
568

64,481
86,841
78,358
72,896

(a) Includes major regional championships.
(b) Day of individual competition before day of relay
(c) Day of individual competition after day of relay

(d) Swim-off after semi-finals, swim-off after preliminaries
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Table 2: Average FINA points by starting order

Starting order  FINA points  std.dev.

1 486.8 160.5
2 450.3 161.5
3 441.9 157.6
4 474.1 161.1
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Table 3: Predicting FINA points based on starting order (OLS regression)

Dependent variable FINA points
complete teams  all swimmers

age <15 -152.3  HkxE -1752  wE*
age >30 -125.4  kE* -161.1  *%*
major](®) -6.4 20.6  HEE
major750(%) 223.1 ek 206.0 ik
major2(©) 254 32,1 e
female 42.0  kE* 25.6  FE*
same day -36.3  kwE -30.1
relay first -11.6 *** =137 wEE
50m Breaststroke -86.1  *** -31.9
100m Breaststroke -109.0  *** 6.6 FE¥
50m Fly -110.0  *** -31.5  wEE
100m Fly -3.8  kEE
50m Freestyle -75.9  wE* -67.0 ¥F*
200m Freestyle 97.1 k¥* 529 wxE
swimmer 1 588.8  kE*E 596.6  Fx*E
swimmer 2 556.7  kx*E 573.6 k¥
swimmer 3 5499 k¥ 561.3 k%
swimmer 4 578.3 k¥ 592.8  kEE
obs. 17,532 302,576

R2 0.95 0.95

test sw.1 = sw.2 168.3  *** 661.0  ***
test sw.2 = sw.3 8.12  Hk* 195.0  ***
test sw.3 = sw.4 1352 % 1,276.0  ***

(a) Olympic, Pan Pacific and Commonwealth Games, World and European Champi-
onships, Universiades.

(b) majorl events plus national and major regional championships.

(c) Average FINA points equal or above 750.

Rk p <01, ¥ p < .05, * p < .10.



Table 4: Descriptive statistics: individual and relay swimming time

Swimming times
Individual | Relative difference b/w relay and individual
Ist swimmers 2nd to 4th swimmers
(secs.) (%)
I Ri—1 Ro—1I R3—1I Ry—1I
I T I I
Overall 55.97 21 ok -33 -.34 =77
(std.dev.) (27.15) (1.34) (1.48) | (1.58) | (1.64)
Gender
male 53.80 .20 kK -42 -42 -.84
female 58.12 23 oAk -.25 -.26 -.70
Age (yrs)
<15 55.03 .36 oo -.03 -.02 -48
15— 30 58.56 A1 Rl -48 -.51 -.94
> 30 38.10 31 oAk -.58 -52 -1.00
Ability of swimmer(®)
< median 52.63 .26 oAk -.19 -.17 -.61
> median 59.31 A7 ok -.48 -.53 -.93
Style
50m Breaststroke 39.67 44 oAk -51 -12 -25
50m Fly 33.58 .62 oAk -.10 -.48 -32
50m Freestyle 32.05 32 oAk -.70 =71 -1.15
100m Breaststroke 78.30 32 ok -.05 -.05 =22
100m Fly 67.89 .05 -.53 -.04 -47
100m Freestyle 62.87 .14 HokE -31 -32 -.46
200m Freestyle 128.54 .07 oAk -.03 -.08 -.04
Event importance
majorl events(?) 71.06 .03 -.54 -.57 -91
major750 events(®) 63.12 04 'k |67 -75 -1.12
major2 events(® 60.89 13 ek | 4] - 42 -.84
others 55.66 22 kK -.33 -.34 -75
Schedule of competitions
individual first(®) 54.93 19 e | .39 -41 -.99
relay first(/) 60.00 14 k|49 -.50 -77
same day 54.23 27 HokE -.22 -21 -.66
I - individual competition swimming time.
Ry, -+, R4 - relay swimming time, starting order 1, - - - , 4.

T-test, Hy : % =0; *** p < .01

(a) As measured by FINA points.

(b) Olympic, Pan Pacific and Commonwealth Games, World and European Championships,
Universiades.

(c) Average FINA points equal or above 750. 32

(d) Major1 events plus national and major regional championships.

(e) Day of individual competition before day of relay.

(f) Day of individual competition after day of relay.



Table 5: Estimated absolute difference in swimming times between the relay and
the individual competition, fourth swimmers.

Event type Ry — 1 std.dev. obs.
Olympic games -0.66 0.06 167
World championships -0.54 0.05 357
European championships  -0.66 0.06 174
majorl -0.59 0.03 906
major750 -0.55 0.01 3,870
major2 -0.38 0.01 33,236
all events -0.34 0.01 72,896

I - individual competition swimming time.

Ry - relay swimming time, fourth swimmers.

The table reports the OLS estimated intercepts of a linear regression model of R4 — I, controlling
for age, gender, style and length of the competition, estimated on different subsamples. The

reference category is 100m Freestyle, male swimmers aged 15-30. Standard errors clustered at
the individual level.
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Table 6: Regression results, first swimmers, full sample

Dependent variable (R—1)/I

OLS FE
age <15 0.19  #%=*
age >30 0.11  *%*
major](®) 0.04 -0.07
major750(®) -0.03  * 0.13 e
major2(¢) -0.07  F¥EF - -0.08  F**
50m Breastroke 0.19 #** (.33  **
100m Breastroke 0.20 *** 027 *
50m Fly 036 ***  0.24
100m Fly -0.03 -0.06
50m Freestyle 0.12  *k*  (0.04 **
200m Freestyle -0.02  ** -0.04  **
female -0.01
same day 0.04 *kx (.07 FF*
relay first -0.01 0.00
swimmer 1 0.10 *** 020 F**
obs. 64,481
swimmers 36,796
R2 0.01 0.67

(a) Olympic, Pan Pacific and Commonwealth Games, World and European Champi-
onships, Universiades.

(b) Average FINA points equal or above 750.

(c) Majorl1 events plus national and major regional championships.

Reference category: Male swimmers, 100m freestyle, individual competition on a day
prior to the relay.

Standard errors clustered at the individual level.

#EEp < .01, ** p < .05, * p < .10.
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Table 9: Regression results, swimmers 2-4, full sample

Dependent variable (R—1)/I

OLS FE
age <15 0.56  ***
age >30 0.36  ***
major1(®) 0.09 ¥k .0.04
major750() -0.33 ek DD ek
major2(¢) S0.17  wEE 014 e
50m Breastroke -041 k¥ (068  FF¥
100m Breastroke 0.20  w** 0.18  ***
50m Fly -0.34  kxk (055 Rk
100m Fly 0.27 #Fx (030 FE*
50m Freestyle -0.75  FFx 108 k¥
200m Freestyle 0.48 *F¥* (.55  ¥F*
female 0.09  H#*
same day 0.18 *** (.08  ***
relay first -0.04  FFE o 0.07  FE*
swimmer 2 -0.42  FFE 0,04 FF*
swimmer 3 -0.44 F¥E 20,03 FF*
swimmer 4 -0.69  F¥E - .0.26  F**
obs. 238,095
swimmers 90,696
R2 0.17 0.54
test sw.2 = sw.3 5.0 ¥* 323 k¥k
test sw.3 = sw.4 600.0  F¥* 3510 kE*

(a) Olympic, Pan Pacific and Commonwealth Games, World and European Champi-
onships, Universiades.

(b) Average FINA points equal or above 750.

(c) Majorl events plus national and major regional championships.

Reference category: Male swimmers, 100m Freestyle, individual competition on a day
prior to the relay.

Standard errors clustered at the individual level.

Rk p <01, ¥ p < .05, * p < .10.
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Table 12: Regression results, swimmers 1-4, filtered sample, major events

Dependent variable (R—1)/I

Filter: 15-30 age group, freestyle finals, major2 events(®)
OLS FE

50m Freestyle -0.70  Fxx 0.93  wk*

200m Freestyle 0.18  *** (.33  wk*

female 0.16  *%**

same day 0.07 ***  0.01

relay first 0.01 -0.09

swimmer 1 0.27 #%* 044  FE*

swimmer 2 -0.69  FFE 070  FkF

swimmer 3 -0.71  **E 0 .0.76  *F*E

swimmer 4 -0.93  FFE - .0.96  F**

obs. 32,960

swimmers 16,264

R2 0.15 0.66

test sw.2 = sw.3 0.18 2.88 %

test sw.3 = sw.4 04.6  ¥F¥ 420  kwE

(a) Olympic, Pan Pacific and Commonwealth Games, World and European Champi-
onships, Universiades, national and major regional championships.

Reference category: Male swimmers, 100m freestyle, individual competition on a day
prior to the relay.

Standard errors clustered at the individual level.

Rk p <01, ¥ p < .05, * p < .10.
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Table 13: Average lag over a preceding team

all filtered
first 3 positions

Males

50m freestyle 1.7% 1.6%
100m freestyle 1.4% 1.5%
200m freestyle 0.9% 1.0%
Females

50m freestyle 1.7% 2.0%
100m freestyle 1.7% 1.9%
200m freestyle 1.1% 1.1%

first 10 positions

Males

50m freestyle 0.5% 0.9%
100m freestyle 0.6% 0.7%
200m freestyle 0.3% 0.5%
Females

50m freestyle 0.8% 1.0%
100m freestyle  0.7% 0.9%
200m freestyle 0.3% 1.0%

Filter: 15-30 age group, freestyle finals, major2 events
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