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Abstract

The onset of diabetic retinopathy is charactertzgdhorphologic alterations of the microvesselshwfitickening of the
basement membrane, loss of inter-endothelial fighttions and early and selective loss of pericytegether with
increased vascular permeability, capillary occlosjanicroaneurysms and, later, loss of endothediié. A key role in
the evolution of the disease is played by perigyspgcialized contractile mesenchymal cells of mesmal origin,
that, in capillaries, exert a function similar tma@oth muscle cells in larger vessels, regulatingcukar tone and
perfusion pressure. Thickening of the basement mamneh together with systemic and local hypertension
hyperglycaemia, advanced glycation end-product &ion and hypoxia, may disrupt the tight link betwepericytes
and EC causing pericyte apoptosis, while endothelideprived of proliferation control, can give rigenew vessels.
Pericyte dropout has great consequences on cgpi#arodelling and may cause the first abnormalitiethe diabetic
eye which can be observed clinically. Hyperglycaeand local hypertension are known to be a direase of pericyte
apoptosis and dropout, and intracellular biochehgathways of the glucose metabolites have beeloesgh However,
the exact mechanisms are not yet fully understondreeed further clarification in order to develawneffective drugs

for the prevention of retinopathy.



Introduction

Generalized increase of capillary blood flow andodilatation are among the first features obsemednset of
diabetes. Subsequently, morphologic alterationshefmicrovessels are described, especially in ¢ti@al district,
where the early phases of diabetic retinopathy (&1&)characterized by thickening of the basememntlmnene, loss of
inter-endothelial tight junctions and early andeséle loss of pericytes, together with increasaskcular permeability,
capillary occlusions, microaneurysms and, latess lof endothelial cells (EC) [1, 2]. Endotheliurayd a complex role
in the regulation of the vessel tone, the mainteeaof the coagulation balance and the modulatiorplafelet
activation. It also regulates the metabolism oftiheement membrane, vascular permeability, migratfdeucocytes
and macromolecules from the vessel lumen to theesdbthelium andice versd3, 4].

However, a key role in the evolution of this cornption of diabetes is played by the other capillegll type, the
pericyte, a specialized contractile mesenchymélatehesodermal origin which exerts in capillargefunction similar
to that of smooth muscle cells (SMC) in larger eéssregulating vascular tone and perfusion presgir Retinal
capillary vessels are composed of a 1:1 ratio ofda@ pericytes, the highest in the whole body yéih pericytes
closely linked to EC through gap-junctions [7] apldying a role in the regulation of their proliféom, while
receiving nourishment and growth factors from tHeinThickening of the basement membrane duringfitise phases
of DR, together with systemic and local hypertensibyperglycaemia, advanced glycation end-prodédtE)
formation and hypoxia may all disrupt this link acelise pericyte apoptosis and drop-out, while dvadioim, deprived
of proliferation control, can initiate to proliféein microaneurysms in the early phases and, eatiyt new vessels in
later stages of retinopathy [6]. Pericyte dropoas lyreat consequences on capillary remodellingnaayl cause the

first abnormalities of the diabetic eye which candbbserved clinically.



The pericyte: mor phology and function

Pericytes are ubiquitous, pluripotent, mesenchyoadls which derive from the neural crest during @rmabryonic
development [8] and mediate physiological and datfical repair processes [9]. They were first dibsat by Rouget
in 1873 [10] and named by Zimmerman in 1923 [11¢gé&n and Kubawara in 1961 [12, 13] for the firsbei
associated them with diabetic retinopathy.

Pericytes have several similarities with SMC, fio$tall their contractile properties, and sharehwitiem common
markers ¢-smooth muscle actin and desmin) [14]. Other marl@mmonly used to identify these cells are the
proteoglycan NG2 and PDGHH15]; however, it has been demonstrated that rafnthem is able to recognize
pericytes at all stages and in all contexts [5].

A common precursor for pericytes and SMC in theettggment of the retina has been identified in aahprecursor
cell type, positive for desmin and NG2 (a markertfoth immature smooth muscle cells and pericydaes) present on
undifferentiated vessels. After birth, this celpgy differentiates to pericytes or SMC [16]. Possiderivation of
pericytes from a trans-differentiation of EC to a&pvessel wounds [17] and/or from bone marrowupp®rt adult
angiogenesis [18] has been also postulated. Sesteidies have underlined a strict relationship lkeetwmesenchymal
stem cells (MSC) and pericytes. In fact, pericytesheir tissue of origin natively express the M8@rkers CD44,
CD90, CD73 and CD105 [19, 20]; cells expressing MB&tkers, express also pericyte onesrfiooth muscle actin,
NG2 and PDGF-B) [21] and pericyte clones have osteogenic, chagehi@, adipocytic and myogenic properties,
characteristic of MSC [22]. Moreover, bone marrogvided MSC injected in rats with glioblastoma migraround
the vessels and differentiate into pericytes, asatestrated by phenotype expression of the typieacpte markers,
and not EC ones [23].

Pericytes are present in the capillaries of altridis in the body with a role of support of thecnoivasculature.
However, their density is rather variable, randirmgn 1:100 (pericyte:EC) in the cardiac and skéletascle to 1:1 in
the retina [24]. The reason for this high ratidhie need for an extremely high barrier functioritia retina itself, to
preserve it from extra fluid deposition that colédd to visual loss [25]. Pericytes have a prontimercleus and long
cytoplasmic processes, some of which embrace thselavall while others run parallel to the axistloé capillary
itself or protrude to reach other capillaries [2blese processes mediate pericyte-pericyte, peflegt and pericyte-
retinal neuroglia cell-to-cell communications [13h the retina, pericytes live in pockets embedaethin the
basement membranmframural pericytes[26] and participate to its anabolism by prodgocghtycoproteins (especially
collagen) and glycosaminoglycans [27]; they surmbtire ECs which form the capillary tube and stabithe vessel.
The contractile phenotype of pericytes, in additiorthe presence of contractile proteins (smootlsateuand non-
smooth muscle isoforms of actin and myosin), isficored by their response to a series of paracrinéeaules which
regulate their contractility, both vasoconstrictossich as angiotensin I, endothelindb;adrenergic agonists, and
vasodilators, such as NO apgadrenergic agonists [28]. In the brain and thimagpericyte contractility is induced by
arise in extracellular Gaconcentrations and the signal can sometimes patpag reach distapiericytes [29]; on the
other hand, it is demonstrated that calcium-aa@tantracellular cascades play key roles in théediht steps of

angiogenesis [30].



Pericyte-endothelial cell interactions

Pericytes are closely linked to EC through tigiciions, gap junctions, adhesion plaques, and pegacket contacts
[31] with continuous exchange of nucleotides anélsmolecules [32]. Interactions between the twb tges are
also mediated by cell adhesion molecules secretdubth, whose imbalance may cause leakage of tdibarrier
during the early phases of DR [15]. Tight junctignoteins (such as claudins and occludins), intareoting pericytes
and EC, are structural components of the bloodwaétbarrier [33] while it is through the gap jumcts, membrane
channels directly connecting the cytoplasms oftiveecell types, that pericytes exert a key rol¢éhia regulation of EC
proliferation during physiological angiogenesis J[3Adhesion plaques, rich in fibronectin, are rasgble for the
anchorage of the pericyte to the endothelium ducmgraction or propagation of the shear stresk [35

Pericyte coverage is required for the stabilizatbbimmature endothelial tubes [36], and vasculadathelial growth
factor (VEGF), angiopoietin-2 (Ang-2), Transformi@owth Facto3 (TGF{), PDGF-B and metalloproteinases are
among the required factors for the survival andéaruitment and differentiation of pericytes. Irrtpaular, PDGF-B,
secreted by endothelium, and its receptor PD@BFfxpressed in pericytes only) [37] are important the
proliferation, migration and recruitment of periegtto the vasculature during retinal developmerd am the
stabilization of newly-formed vessels [38, 39]. iPge-produced VEGF stimulates EC proliferation,d athe
interaction EC-pericyte is responsible for theation of TGFg, which induces the differentiation of pericyted)ily
inhibiting EC proliferation and migration, thanksits involvement in the interactions between miasxzular cells and
ECM [15]. Angiopoietin-1 is secreted by pericytexlaacts on ECs through its receptor Tie2, stahijaiessels and
reducing permeability, while, in contrast, Ang-2rieases permeability. On the other hand, it has bkewn that Ang-
2 in combination with VEGF induces angiogenesisleyhin the absence of VEGF, it causes vessel reigre$40].
The proliferation control exerted by pericytes dd & mediated by soluble factors able to upregwdatiothelin-1 and
downregulate iINOS production [41].

Besides endothelium, pericytes is also in contattt Muller cells, the main retinal glial cells, vdhi contribute to the
stability of the blood-retinal barrier and the maimance of retinal homeostasis. Miiller cells hagenbshown to
protect both neurons and pericytes from damageedahyg hyperglycaemia-induced reactive oxygen spe@OS)
(see below) [42].

Pericytelossduring DR: evidences and clinical consequences

Early pericyte loss is a recognized hallmark of [AR]. The so-called “pericyte ghosts”, empty poskefithin the

basement membrane of a viable capillary formergupéed by the pericytes themselves, a common featithe early

phases of the disease, are characteristic of th@rehile they are rare or absent in the capéwf the optic nerve
and cerebral cortex [43]. Together with later lo$€EC, pericyte disappearance provokes the formatioacellular

capillaries (i.e. tubes formed by basement membaarhg), capillary occlusion and formation of micreaurysms, the
first clinically relevant lesion in the diabeticeeyProgressive vessel occlusion is followed bydased permeability,
partly due to VEGF over-expression [44], which alBa@uces intravessel EC proliferation and, evehgual

neovascolarization, with consequent hemorrhagewizodl loss [45]Fig. 1).
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Fig. 1. Mechanisms and consequences of pericyte loss ipath@genesis
of diabetic retinopathy.

Although pericyte disappearance in the first phasésDR is widely understood to be the result ofedtr
hyperglycaemic damage, the exact mechanisms umdgtlyeir degeneration are still unclear. High glse levels, in
vitro as well as in vivo, induce pericyte apoptddis-50], leading to the well-known alterationsrefinal capillaries.

In particular, human retinal pericytes (HRP) arghhi-susceptible to fluctuating glucose levelsheatthan stable
exposure to high glucose conditions [51, 52]. Imigtent exposure to high glucose has been desctibédcrease
apoptosis related to oxidative stress also in EXS96] and a ROS - mediated cell “memory” of vascgimess after
glucose normalization has been shown in human ECirathe human retinal pigment epithelial cell |iRPE-19
[56]. These findings are consistent with the chihicobservation that daily fluctuations in plasmaucgise
concentrations, such as they occur in diabetiepttj are correlated to increased risk of cardiowar disease [57]
and microvascular complications [58]. Hyperglycagimpairs retinal vessel autoregulation in hum&®g, [therefore
pericytes are likely to be exposed to an increasedhanical insult secondary to systemic and capihgpertension.
Contraction and relaxation of pericytes is thoughtegulate the luminal diameter of retinal capifta and these cells
are believed to play a major role in adjusting bldlow through the retinal capillary bed [60], assdribed above: the
contractile phenotype of pericytes is thus an irtgodrdeterminant of the haemodynamic stress exparéeby retinal
capillaries. It has been showed that mechaniceicsty alone or combined with high glucose, redeedisproliferation,
increases apoptosis and induces morphological @singhe pericyte cytoskeleton [61].

Autoregulation of the vessel tone is impaired frima first phases of diabetes due to hyperglycaewith, different
haemodynamic alterations characteristics of théutiom of the disease. Initially, the blood flowcireases in several
vascular districts, particularly in the retina [62hd glomerulus, due to a strict correlation betwée arteriolar

vasodilatation and the high blood glucose concéatra [63]. In a second phase, endothelium seerteswits ability
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to induce vasodilatation, due to impaired balanegvben vasoconstrictors, such as endothelin-1,vasddilators,
such as NO, the concentrations of which are red[&&d

Reduced adhesion and increased apoptosis in psisgeded on extracellular matrix (ECM) produce&Gycultured
in high glucose concentrations, possibly due taafign of the matrix proteins, have been descrip&d65, 66]. Since
the ultrastructural analysis of retinal microanemng shows the absence of pericytes, impaired vegselrity after
pericyte loss could make the capillary wall morecgptible to dilatation, leading to microaneurysmsreover, the
correlation between pericyte absence and retimalaseolarization may indirectly confirm the rolepericytes in the
inhibition of the capillary growth [6, 35, 67]. Thimpaired cell-to-cell and cell-to-ECM interactionge also due to
alterations to the molecules mediating these ctsitalsickening of the basement membrane derivas faoprocess
involving hyperglycemia-induced excess synthesiscomponents of the basement membrane itself, swch a
fibronectin, collagen type IV and laminin [68, 69pgether with increased integrin expression [T@]contrast with
what happens with pericytes, increased integrirrasgion and fibronectin production seem to coreeleith greater
EC/ECM adhesion [71, 72]. This may negatively iefiae EC proliferation through the induction of skeleton
modifications [73] in the later phases of DR. Rabeiit has been suggested that a long-term styabaged upon small
interference RNA (RNA sequences which interferethwviie expression of specific genes through comeigary
nucleotide sequence) may regulate fibronectin oyession and improve vascular lesions in retirfadiabetic rats
[74].

Capillary occlusion is probably caused by the caxpf the alterations above mentioned: increasedular tone,
thickening of the basement membrane, loss of pescgnd EC with formation of acellular capillaraasd obstruction
of the vessel lumen, due to leucocyte adhesiorptatdlet aggregation. Ischemia and hypoxia regufiom capillary
occlusion lead to an angiogenic response to conaperfer the reduction of the blood flow downstreamthe
occlusion [75].

As described above, pericyte coverage is essebptigdhe stabilization of immature endothelial tubBOGF-B and
PDGFR$ are important in the proliferation, migration aretruitment of pericytes to the vasculature duriegnal
development and in the stabilization of newly-fodmessels [38, 39] and seem to play a key rol@énnbechanisms
underlying vascular changes in DR [15]. Pericytag, not endothelial cells, express PDGFR3 vivo [37, 38]. In
diabetic mouse retinas, PDGF-B mRNA is decreasedomparison with non-diabetic mice, suggesting la for
PDGF-B in hyperglycaemia-induced pericyte loss [R@tinas of mice with endothelium-restricted ablabf PDGF-
B showed that up to 50% pericyte loss is accomjplahie vasoregression, while pericyte reduction edirep 50%

induces retinal vasoproliferation mimicking PDR [38].

Pericytelossduring DR: therenin-angiotensin system

The severity of vascular complications in diabéetes been associated not only with the duration degtee of
hyperglycaemia, but also with those of hyperten§idn 77] Fig. 1).

The renin-angiotensin system (RAS), an endocrirgtesy that, at a systemic level, regulate blood siwasand
electrolyte homeostasis, some twenty years agdées described to be present also locally, witfedihces among
the various tissues [78]. In particular, local R&® present in the organs mainly affected by deshetuch as kidney,
peripheral nerves and the eye [79]. All componehthie RAS system have been described in the neetinh, as well
as in the capillaries [80]. In diabetes, RAS is eguiated, hyperglycemia increasing the transciptiof
angiotensinogen and the production of angioterisitié most important end-product of the RAS systetnich binds
to both angiotensin type 1 (AR) and type 2 receptors (ARF) [81].



In the eye, RAS contributes to the diabetes-indwtadage through two different mechanisms: the aetikation of
ATiR by high levels of angiotensin Il increases VEG#pression in pericytes, leading to vascular leakgg,
pericyte-mediated vasoconstriction [83], oxidatsieess [84], thickening of the basement membrabg d8d NF«kB
activation [86]. Moreover, RAS has been descrilzedlay a role in several of the biochemical dysfioms described
in the following paragraph, which are directly iced by hyperglycaemia: angiotensin Il increases AGimation
[87], protein kinase C (PKC) synthesis [88] and R@®duction [82], and enhances the flux through ploéyol
pathway [89], while hyperglycaemia induces angisiieogen gene expression through the hexosamingvpai®0].
There is evidence to indicate that blockade of Rf&@fers retinal protection in experimental modelsD&R and
ischemic retinopathy, ameliorating retinal hypermeability [91] and restoring blood flow [92]. Ret¢gnit has been
demonstrated that the angiotensin converting enZy@&) inhibitor captopril can block capillary deggration in the
early stages of DR, inhibiting hyperglycemia-inddicacellular capillary formation and pericyte ghof8]. At a
clinical level, blockade of the RAS, through the RA@hibitor lisinopril, has been shown to reducghbiacidence and
progression of DR in type 1 diabetes [94], whilsules from the Dlabetic Retinopathy Candesartaal3(iDIRECT)
show that the AIR blocker candesartan during a 4 year trial was tibteduce the incidence of retinopathy in pasient

with type 1 diabetes [95] and determine a regrassfdR in type 2 diabetic patients [96].

Pericytelossduring DR: glucose metabolism pathways

Chronic hyperglycaemia and daily fluctuations irodd glucose have been clearly associated to therigewof
microvascular complications and it is widely acktedged that pericyte loss in the first phases ofi®ke result of
direct hyperglycaemic damage.

It is possible to discriminate between two diffdre/pes of mechanisms involved in glucose-media@chage: while
the former induces acute but reversible metabdiamnges, the latter causes a cumulative damagsdhatimes even
worsens if glycaemia is rapidly restored to physiidal levels [97].

Vascular cells have been widely reported to beikknto direct exposure to high glucose concertreti49, 98, 99],
their increased apoptosis being correlated to as@é expression of the pro-apoptotic Bax prot@ingvo andin vitro
[99] and activation of NkeB in vitro [48]. However, as already mentioned, human refieaicytes seem to be more
sensible to intermittent than stable high glucosecentrations, due to impairment in the Bcl-2/Batiar [51, 52],
while rapid glucose normalization, explained as :ROmediated cellular memory” of vascular stresslieen shown
in EC and retinal ARPE-19 [56], consistently witietclinical observation that daily fluctuationsplasma glucose
concentrations in diabetic patients are relatedntveased risk of cardiovascular disease [57] amctavascular
complications [58]. DR itself has been seen to lecate after restoration of physiological glycaeneigels, mostly if
glycaemic control is rapidly achieved [100-103].

A possible explanation to hyperglycaemic damagemtiorovascular cells, and pericytes in particulas, the
involvement of four major biochemical pathwaysirtreased flux through the polyol pathway; 2. imsed formation
of advanced glycation end-products (AGE); 3. atithra of the protein kinase C; 4. increased fluxotigh the
hexosamine pathway [15, 104].

1. Aldose-reductase, the key-enzyme of the polyol wath reduces toxic aldehydes to inactive alcohals
physiological conditions. However, in the case wtess intracellular glucose, aldose-reductase ctsvieto
sorbitol, consuming NADPH and giving rise to a sofrthyperglycaemic pseudohypoxia [105], togethethvein

increased susceptibility to intracellular oxidatateess [106, 107].



2. Excess intracellular glucose is able to react vptteins, amino acids and nucleic acids via Schdbe
condensation, this initial reaction being followld irreversible rearrangement into an Amadori psadAGE
may be produced ex-novo by a slower Maillard resctr directly derive from these early productsotiyh
glycoxidation reactions or reactive dicarbonyl freants generated from free glucose [108]. AGE arécto
products which can modify intracellular proteinsgluding those involved in the regulation of geranscription
[109], or diffuse outside the cell modifying thetcellular matrix [110], with consequent reductwfrthe cell-to-
cell adhesion and vascular dysfunction [65, 668 also modify circulating blood proteins, inducimpgduction of
inflammatory cytokines and growth factors [111, 112

3. High glucose concentrations inside the cell alstivaie PKC synthesis througlte novosynthesis of the lipid
second messenger diacylglycerol (DAG) [113]. Thimyntead to decreased synthesis of endotheliakritxide
synthase (eNOS), increased synthesis of endothellfGF-R3, plasminogen activator inhibitor-1 [114paNF«B
[115].

4. Finally, high availability of intracellular glucodeads to an excess of fructose-6-phosphate whittansformed
to glucosamine-6-phosphate and then UBRcetyl-glucosamine; the latter acts on serinetanebnine residues
of transcription factors, giving rise to patholagichanges in gene expression [116, 117].

A common denominator of these apparently indepenbiechemical pathways, the so-called “unifying maagism”,
was identified by Brownlee and co-workers in exd@&S production by the mitochondria, induced byhtagucose as

a result of increased flux through the Krebs’ cyfld5]. ROS would activate the poly-(ADP-ribose)ypoerase

(PARP), which in turn inhibits glyceraldehyde-phbate-dehydrogenase (GAPDH) activity [118], therefpushing

metabolites from glycolysis in the upstream pathsvaaentioned above.

Evidence in the literature shows that oxidativesdr implicated in pericyte loss, may be induced 8 extravasated,

modified plasma LDL, present in the diabetic but the healthy retina [119, 120].

New hypothesisfor pericytelossinvolvement in the pathogenesis of DR

Recent findings hypothesize that some pericytegingalost contact with their original capillariedp not undergo
apoptosis, but migrate to other capillaries or i perivascular space. Ang-2 overexpressioncedily excess AGE
in the hyperglycaemic milieu, may play a key rotethis process, since Ang-2 deficient mice did sledbw any
migration in the presence of hyperglycaemia [121].

High glucose was reported to induce mitochondrialgfentation and dysfunction in retinal endothekalls,
contributing to apoptosis. Recently, it has beemalestrated that, in hyperglycaemic-like conditiomstochondria of
retinal pericytes also show fragmentation, metabayisfunction and reduced extracellular acidifizatjl22].

It has also been suggested that pericyte are imsuppoessive and protect EC from inflammation-mediatpoptosis.
Hyperglycemic conditions may impair their T celhibitory activity, favouring retinal inflammatiomd contributing to
the pathogenesis of DR [123].

Another recent work verified the hypothesis thabaantibodies against pericytes could develop in DRucing retinal

pericyte dysfunction or eventually death throughmptement activation [124].
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Conclusions

Early pericyte dropout and apoptosis are amongetmdiest events in the natural history of diabe#tinopathy.
Hyperglycaemia and hypertension have been corcktatéhis disappearance but the exact mechanisensadryet fully
understood. Thickening of the basement membrase,adcurring in the first phases of retinopathyy mantribute to
disrupt the tight connections between pericytesambthelial cells, impairing their reciprocal,dheontrolled balance.
Without the proliferation control exerted by petiey, EC are free to duplicate, giving rise to aggitesis and leading
to the advanced phases of diabetic retinopathy.

Despite advancements in ophthalmic care and maregeofi both type 1 and type 2 diabetes, prolifesatiiabetic
retinopathy and diabetic macular oedema remainidgacauses of blindness, for which at the momeatettare no
specific forms of prevention, apart from the dayd&y struggle of keeping blood glucose and pressader optimal
control. Even so, the onset and progression afiaptithy are delayed but not entirely preventedrdtbee, there is a
need for alternative, low cost pharmacologic apgihea which should be addressed towards the meaohsupiesiding

over of the first key events of the disease, anttyte loss may well be an important one.
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