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The H. Niewodniczański Institute of Nuclear Physics,

Polish Academy of Sciences,

ul. Radzikowskiego 152,

PL-31-342 Kraków, Poland

W.M. Alberico

Dipartimento di Fisica dell’Università di Torino and
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Abstract

The quark-gluon plasma (QGP) excitations, corresponding to the scalar and pseudoscalar meson

quantum numbers, for different temperatures are calculated. Analysis is performed in the Hard

Thermal Loop (HTL) Approximation and leads to a better understanding of the excitations of

QGP in the deconfined phase and is also of relevance for lattice studies.
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I. INTRODUCTION

In this paper we consider the scalar and pseudoscalar mesonic correlation function at

high temperature Quantum Chromodynamics (QCD) in the framework of the Hard Thermal

Loop (HTL) approach. The evaluation of the mesonic correlator at finite momenta allows,

by Fourier transform, to get information on its large distance behavior. This, in turn, is

governed by the mesonic screening mass, a quantity which has been evaluated in lattice

QCD at large temperature. Hence the present, perturbative results can be compared and

tested versus the lattice results.

A similar approach was carried out by the authors a few years ago for the pseudoscalar

channel only[1]. The results were encouraging but showed some non-negligible discrepancy

with respect to the lattice data. The present work contains significant improvements in

the numerical precision of the calculations as well as a new approach to the analytical

representation of the spatial correlators, thus providing a more accurate extraction of the

mesonic screening masses in the QGP. Moreover the investigation is extended to the scalar

channel, for which more recent lattice QCD data are available, hence allowing for a more

complete discussion of the present result.

The features of the meson-like excitations inside the hot Quark-Gluon Plasma (QGP)

provide interesting information on the persistence of interaction effects up to rather large

temperatures, a characteristic which renders QGP a somewhat peculiar status of matter and

strengthens the interest on the present experiments which aim to investigate and clarify the

many issues and questions posed by QCD calculations.

In spite of the well-grounded reputation of lattice QCD results, an analytical calculation,

like the one presented in this work, although contained within the limits of the model

approach, may allow a deeper understanding of the physical behavior of quarks inside the

plasma and the identification of the relevant degrees of freedom.

The paper is organized as follows: in Section 2 we shortly recall the details of the cal-

culation of the mesonic spatial correlation function and spectral function, both within the

HTL approximation and for the free case. In Section 3 we illustrate the details of the fitting

procedure adopted in order to derive precise values of the asymptotic mass. The results

for the scalar and pseudoscalar channels are shown and compared with a few lattice data.

Comments and conclusions are reported in Section 4.
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II. SCALAR MESON SPATIAL CORRELATION FUNCTION

The spatial correlation function is conveniently obtained from the finite temperature

correlator of currents carrying the proper quantum numbers to create/destroy mesons:

GM(−iτ,x) ≡ 〈J̃M(−iτ,x)J̃†M(0,0)〉 , (1)

where τ ∈ [0, β = 1/T ] and J̃M denotes the fluctuation of the current operator JM = q̄ ΓMq,

the vertex ΓM selecting the appropriate channel (scalar, pseudoscalar, etc.). The correlator

in Eq.(1) is usually expressed through its Fourier components:

GM(−iτ,x) =
1

β

+∞∑
n=−∞

∫
d3p

(2π)3
e−iωnτeip·xGM(iωn,p) , (2)

ωn = 2nπT (n = 0,±1,±2 . . . ) being the bosonic Matsubara frequencies.

We are now interested in the z-axis correlation function G(z),

GM(z) ≡
β∫

0

dτ

∫
dx⊥GM(−iτ,x⊥, z) , (3)

where the integrations select in Fourier space the vanishing frequency and transverse mo-

mentum components. The asymptotic behavior of static plane-like perturbations with the

quantum numbers of a (scalar) meson is expected to be exponentially suppressed at large

values of z (the distance from the plane in the transverse direction)

G(z) ∼
z→+∞

e−mscrz . (4)

The suppression parameter, which is governing the large distance behavior, is the so-called

screening mass mscr. It gives information on the nature of the excitations characterizing

the QGP phase; the correlator G(z) is frequently studied in lattice simulations, from which

the screening mass can be extracted as well.

One can express the spatial correlation function through the finite momentum spectral

function of the quark-antiquark excitations in QGP, σ(ω,p). Here we shall consider explicit

formulas for the scalar channel only, though results will be presented both for the scalar

and pseudoscalar channels. The latter was dealt with in Refs [1, 2] and we refer the reader

to these works; moreover in the massless case chiral symmetry provides similar formulas for

the scalar and pseudoscalar cases, as it will be pointed out below.
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In the scalar channel the spectral function σS(ω,p) is related to GS(z) by:

GS(z) =

+∞∫
−∞

dpz
2π

eipzzGS(pz)

=

+∞∫
−∞

dpz
2π

eipzz
∫ +∞

−∞
dω
σS(ω,p⊥=0, pz)

ω
, (5)

where pz is the momentum in the z-direction. This is the starting point for investigating

z-axis correlations.

In spectral representation one can relate the spectral function σS(ω,p) with the meson

propagator χS(iωn,p) as follows:

χS(iωn,p) = −
+∞∫
−∞

dω
σS(ω,p)

iωn − ω
⇒ σS(ω,p) =

1

π
ImχS(ω + iη,p). (6)

The scalar meson 2-point function [3], in turn, is

χS(iωl,p) = −NfNc
1

β

+∞∑
n=−∞

∫
d3k

(2π)3
Tr[11S(iωn,k)11S(iωn− iωl,k − p)] , (7)

where S(iωn,k) is the quark propagator and NfNc are the numbers of flavors and colors.

In HTL approximation the quark propagator is dressed by the interaction with the other

particles of the thermal bath (antiquarks and gluons), carrying typical hard momenta (pro-

portional to the temperature of the thermal bath); in the spectral representation one can

write:

SHTL(iωn,p) = −
+∞∫
−∞

dω
ρHTL(ω,p)

iωn − ω
, (8)

where the HTL quark spectral function is

ρHTL(ω,p) =
γ0 − iγ · p̂

2
ρ+(ω, p) +

γ0 + iγ · p̂
2

ρ−(ω, p) , (9)

with

ρ±(ω, k) =
ω2 − k2

2m2
q

[δ(ω − ω±) + δ(ω + ω∓)] + β±(ω, k)θ(k2 − ω2) , (10)

and

β±(ω, k) = −
m2
q

2

±ω − k[
k(−ω ± k) +m2

q

(
±1− ±ω−k

2k
ln k+ω

k−ω

)]2
+
[
π
2
m2
q
±ω−k
k

]2 . (11)

Here the thermal gap mass of the quark is mq = gT/
√

6.
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Inserting (8) into (7) and setting q = k − p one gets:

χHTL
S (iωl,p)= −NfNc

1

β

+∞∑
n=−∞

∫
d3k

(2π)3

+∞∫
−∞

dω1

+∞∫
−∞

dω2
1

iωn − ω1

1

iωn − iωl − ω2

× Tr[11ρHTL(ω1,k)11ρHTL(ω2, q)] . (12)

Then we sum over the Matsubara frequencies in Eq. (12) with a standard contour integration,

we perform the usual analytical continuation iωl → ω + iη+ (corresponding to retarded

boundary conditions) and extract the imaginary part of the result, thus obtaining:

σHTL
S (ω,p) = NfNc

∫
d3k

(2π)3
(eβω − 1)

+∞∫
−∞

dω1

+∞∫
−∞

dω2ñ(ω1)ñ(ω2)

× δ(ω − ω1 − ω2) · Tr[11ρHTL(ω1,k)11ρHTL(−ω2, q)] . (13)

Now, by inserting Eq. (9) into Eq. (13) and since

Tr

[
11
γ0 ∓ iγ · k̂

2
11
γ0 ∓ iγ · q̂

2

]
= (1− k̂ · q̂), (14a)

Tr

[
11
γ0 ∓ iγ · k̂

2
11
γ0 ± iγ · q̂

2

]
= (1 + k̂ · q̂) , (14b)

one gets

σHTL
S (ω,p)= NfNc

∫
d3k

(2π)3
(eβω − 1)

+∞∫
−∞

dω1

+∞∫
−∞

dω2ñ(ω1)ñ(ω2)δ(ω −ω1 −ω2)

×
{

(1 + k̂ · q̂)[ρ+(ω1, k)ρ+(ω2, q) + ρ−(ω1, k)ρ−(ω2, q)]

+ (1− k̂ · q̂)[ρ+(ω1, k)ρ−(ω2, q) + ρ−(ω1, k)ρ+(ω2, q)]
}
, (15)

which is exactly equal to the σPS(ω,p) of Ref. [2], since for massless quarks chiral symmetry

holds (the thermal mass mq acquired in the bath does not affect the symmetries of the

original Lagrangian).

In the case of a non-interacting system of quarks with mass m, at finite momentum the

free quark spectral function reads:

ρfree(K) = (K/+m)
1

2εk
[δ(k0 − εk)− δ(k0 + εk)] , (16)
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where εk =
√
k2 +m2 and K = (k0,k). Then, by inserting [instead of ρHTL] (16) into

Eq. (13) one gets the analytic expression [4]:

σfreeS (ω,p)=
NcNf

8π2
(ω2 − p2 − 4m2)

×

{
θ(ω2 − p2 − 4m2)

[√
1− 4m2

ω2 − p2
+

2

pβ
A

]
+ θ(p2 − ω2)

2

pβ
B

}
, (17)

where

A = log

(
1 + e

−β
2

(
ω+p

√
1− 4m2

ω2−p2

))
−log

(
1 + e

−β
2

(
ω−p

√
1− 4m2

ω2−p2

))
,

B = log

(
1 + e

−β
2

(
ω+p

√
1− 4m2

ω2−p2

))
−log

(
1 + e

+β
2

(
ω−p

√
1− 4m2

ω2−p2

))
.

For high energy (ω → ∞) the spectral function diverges quadratically (σ → ω2), hence in

order to get a finite result for G(z) Eq. (5) one has to regularize integrals. For the non

interacting QGP the problem was solved for all mesonic channels in Ref. [5] by adopting the

Pauli-Villars regularization scheme. In the scalar channel one gets:

GfreeS (z) =
NfNcT

4πz2
(18)

×
+∞∑
l=−∞

e−2z
√

(2l + 1)2π2T 2 +m2
(

2z
√

(2l + 1)2π2T 2 +m2 + 1
)
,

The same procedure cannot be adopted for the interacting case, since the meson spectral

function is obtained only via numerical evaluation. Nevertheless a “numerical” regularization

of the integrals can be performed by following the same method proposed in Ref. [1]. We

notice that the high frequency divergence is of the same order both for the free and for the

interacting system; hence we first define the difference between the two spectral functions:

σdiffS (ω, pz) = σfreeS (ω, pz)− σS(ω, pz). (19)

The numerical evaluation of this quantity was accurately tested to converge to zero for high

energies and, for a given momentum pz, it can be numerically integrated as well. In Eq. (19)

the asymptotic mass m =
√

2mq has been used in the free spectral function (the so-called

auxiliary spectral function of Ref. [1]).

Here we shall not limit ourselves to consider the scalar channel, for which no result exists

yet: we also present results for the pseudoscalar channel since we have significantly increased

the precision of the numerical calculations with respect to previous works [1].
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FIG. 1: The meson scalar and pseudoscalar differences of spectral functions, Eq. (19) divided by ω,

for different momenta p = pz and different temperatures: T/Tc = 1 in the upper panel, T/Tc = 4

in the lower panel.
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In Fig. 1 we show the ω dependence of Eq. (19) for a few values of the momenta pz. The

numerical calculations were carried out up to ω = 2500fm−1, in order to check the perfect

convergence to zero, in the infinite ω limit, of the difference between the full and the free

spectral functions.

Then we fit the numerically obtained GdiffS (pz) = GfreeS (pz)−GS(pz) to a sum of Yukawa

like functions:

Gdiff (pz) =
n∑
i=1

2mici
m2
i + p2z

, (20)

which can be easily converted by the Inverse Fourier Transform (IFT) to Gdiff (z) in coor-

dinate space

Gdiff (z) =

+∞∫
−∞

dpz
2π

eipzz Gdiff (pz) =
n∑
i=1

cie
−miz . (21)

The parameters mi and ci for different temperatures ranging from 1 to 10 Tc are collected

in Table I for the pseudo-scalar channel and in Table II for the scalar one. We remark that

two terms are sufficient in the pseudoscalar channel, while the scalar one requires up to four

terms, depending upon the temperature. The number of digits reported in the tables is

required to ensure an accurate fit of the function.

T/Tc c1 m1 c2 m2

1 -0.7159 6.7027 -23.5261 148.9711

2 -3.5432 13.5179 -106.3161 285.0631

4 -17.7817 24.6371 -290.4082 251.5351

10 -202.8622 60.8533 -1931.3612 355.4231

TABLE I: Parameters of Gdiff (pz) defined in Eq. (20) for the pseudoscalar channel; the mi are in

[fm−1].

The accuracy of the fit is shown in Fig. 2 for the two channels, at two different tem-

peratures above Tc. One can notice a similar behavior (apart from sign and size) at the

higher temperature, while T/Tc = 2 shows that the two channels have the same sign, but

the minimum in the scalar channel is absent in the pseudoscalar one.

After Fourier transforming, according to Eq. (21), the final formula for the full spatial
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T/Tc c1 m1 c2 m2 c3 m3 c4 m4

1 -92.31 84.98 -834.71 512.86 -17.92 17.52 -1.92 5.34

2 -44.95 15.86 30.08 8.42 -323.78 317.84

4 104.97 10.27 1088.71 487.25

10 1176.17 231.28 1084.73 30.03 1081.82 30.05 88.52 10.54

TABLE II: Parameters of Gdiff (pz) defined in Eq. (20) for the scalar channel; the mi are in [fm−1].

correlation function in coordinate space is:

Gfull(z) = Gfree(z)− Gdiff (z) . (22)

For large z the final results (22) is once again fitted to an analytic function as follows

Gfull(z) =
n∑
i=1

bi
e−miz

z
. (23)

At variance with the previous approach, where we have assumed that the interaction

part Gdiff (pz) of the correlation function is dominating and we have extracted the screening

mass mscr = m1 directly from its asymptotic contribution, namely from the lightest masses

of Table I (only the pseudoscalar channel was considered in Ref. [1]), here we improve the

fitting procedure by extracting the screening masses directly from the fit of the the total

spatial correlation function Eq. (23). This makes a small but significant difference (in the

previously considered channel): indeed now the masses approach the high temperature limit

from below the free, massless non interacting system limit (2πT ). We should also notice

that, while in the pseudoscalar channel the choice of the lightest mass is rather obvious at

all considered temperatures, in the scalar channel this procedure would be questionable (see

Table II).

In Table V we summarize the results for the screening masses at all temperatures and

for all channels considered here. The numbers in the table are calculated assuming Nf = 2

and Tc = 202 MeV for the transition temperature, according to Ref. [6] (this value is also

close to the one resulting from the lattice calculations we shall compare later on). The

ratio Tc/ΛMS = 0.7721 for the Nf = 2 case was taken from Refs. [7–9]. Throughout the

calculation we have employed a running gauge coupling as given by the two-loop perturbative

9



FIG. 2: Fit for the meson scalar and pseudoscalar difference, Eq.(20) of the momentum p = pz

correlation function as a function of ω, for two values of T/Tc.

T/Tc b1 m1 b2 m2

1 6.843 6.953 2.381 10−2 4.875

2 26.643 13.505 8.133 10−3 10.466

4 101.705 26.389 -5.991 10−1 23.027

10 626.345 65.553

TABLE III: Parameters of Gfull(z) defined in Eq. (20) for the pseudoscalar channel; the mi are in

[fm−1].
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FIG. 3: Fit for the meson scalar and pseudoscalar (23) spatial correlation function for different

T/Tc values.

beta-function, leading to the expression:

g−2(T ) = 2b0 log
µ

ΛMS

+
b1
b0

log
{

2 log
µ

ΛMS

}
, (24)

where b0 = 1
16π2

(
11 − 2

Nf
3

)
, b1 = 1

(16π2)2

(
102 − 38

Nf
3

)
. The choice of the renormalization

scale µ should reflect the typical momentum exchanged by the particles which, in an

ultra-relativistic plasma, is of order T . Here, for the sake of simplicity, we adopt the choice

µ = 1.142πT , which was suggested in Ref. [6]. For reference, we also recall that the thermal

gap mass of the quark is mq = g(T )T/
√

6.

Next we compare our results for the screening masses with recent lattice results. In

particular we refer to the lattice data of Cheng et al. [10], which are the most recent and
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T/Tc b1 m1 b2 m2

1 5.8132 6.9986 0.8941 4.5283

2 -18.2976 9.5012

4 -66.1941 21.7911

10 -166.7731 75.5921 328.4512 64.2514

TABLE IV: Parameters of Gfull(z) defined in Eq. (20) for the scalar channel; the mi are in [fm−1].

T/Tc m/2πT mfree
scr /2πT mscr

PS/2πT mscr
S /2πT

1 0.229 1.101 0.758 0.704

2 0.176 1.060 0.814 0.738

4 0.150 1.044 0.895 0.847

10 0.129 1.033 1.019 0.998

TABLE V: The columns display, respectively: m =
√

2mq, the HTL asymptotic quark mass,

mfree
scr = 2

√
π2T 2 +m2, the free screening mass, mscr

PS and mscr
S , which are the screening masses of

the interacting QGP, in the pseudo-scalar and scalar channels, respectively

employ two different lattice sizes, but are obtained in pseudoscalar channel only; in addition

we show a comparison with the results of Mukherjee [11], who also provides data in the scalar

channel. Fig. 4 shows the temperature dependence of the screening masses obtained in the

present work, both in the scalar (black circles) and pseudoscalar (black diamonds) channels,

divided by the free massless asymptotic limit (2πT ). Three values of temperature are shown

(1, 2 and 4 Tc), the last being the upper limit for which lattice data are also available. We

report our result at T = Tc only for sake of comparison, but we remind the reader that the

HTL approach can be considered as a reliable one only at higher temperatures (e.g. T = 2Tc

or more).

In the left panel we compare with the results of Cheng et al. [10] in the pseudoscalar

channel. The agreement is not very satisfactory and appears to be better for the smaller lat-

tice (open squares). In the right panel we compare with the results of Mukherjee [11], which

allow for a full comparison in both channels: with the exception of the lowest temperature

points, already commented above, the agreement between lattice data and our calculation
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is rather good. The scalar and pseudoscalar lattice results are closer to each other than in

our approach, but the trend and the size are quite comparable.

FIG. 4: Temperature dependence of the scalar and pseudoscalar screening masses compared with

the lattice results extracted from Refs [10, 11]

The same considerations apply to the results illustrated in Fig. 5, where we extend

the scale of the temperature up to 10 Tc, the highest value considered in this work: here

we also compare with the screening mass of the “non-interacting quarks”, namely with the

screening mass value of the auxiliary spectral function employed to evaluate the full HTL

results: mfree
scr = 2

√
π2T 2 +m2. The latter is obviously always larger than 2πT but we can

assume it as the asymptotic value, which in the figure appears to be almost reached at

T = 10 Tc.

III. CONCLUSIONS

The main goal of this paper was to calculate the asymptotic mass, at different tempera-

tures, of the scalar and pseudo-scalar mesons in an interacting quark gluon plasma described

within the HTL approximation. For this purpose we considered the scalar and pseudo-scalar

mesonic correlation function at high temperature QCD. The evaluation of the mesonic cor-

relators allowed us to obtain information on its large distance behavior, which, in turn, is

governed by the mesonic screening mass.

The main issue of the present approach, which extends to the scalar channel the method-

ology employed in a previous work [1], was to improve the precision in the numerical deter-
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FIG. 5: Temperature dependence of the scalar and pseudoscalar screening masses compared with

the lattice results extracted from Ref. [11] and with the screening mass in the non-interacting

system, mfree
scr = 2

√
π2T 2 +m2.

mination of the correlators at large distances, hence obtaining a more precise determination

of the screening mass, the parameter which governs the large distance behavior. We have

thus modified the procedure for fitting the numerically determined HTL correlator: the full

(interacting) correlator is determined via the asymptotic (analytic) behavior of the free sys-

tem, which allows for an appropriate regularization of the otherwise divergent integrations.

Then a sequence of fitting procedures, first in momentum space and then in coordinate

space, allowed us to determine the screening mass more accurately than in the past.

Although the differences do not appear to be dramatic, an important feature of the

screening masses presently obtained is that they approach, with increasing temperature, the

non interacting limit from below rather than from above, as in the previous work. The

comparison with the available lattice data confirms this characteristic. Moreover the values

for the screening masses we obtained here are in fair agreement with at least one set of

lattice data [11]. Only close to the critical temperature our approach shows disagreement

14



with respect to lattice results, which does not come as a surprise, since the HTL approach

is considered to be reliable only well above Tc.

We also notice that other perturbative computations of the static correlation lengths [12,

13], led to a small but positive correction to the free screening mass:

mscr ' 2πT +

(
1

3π
+ ∆

)
g2T , (25)

∆ being an additional correction term, to the same order. The numerical values turn out

to be above free limit 2πT , whereas all available results from lattice collaborations lie

below it [6–8, 10, 11, 14–23]. This fact strengthens the validity of the present approach and

particularly of the double fitting procedure which allowed us to obtain smaller screening

masses within, basically, the same HTL approach used in the past.
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