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ABSTRACT: We present an accurate ab initio study of the structure and surface energy at 0 K of 
the (010), (101), (111), (001), (110), (120) and (021) faces of forsterite (Mg2SiO4), by using the 
hybrid Hartree-Fock/Density Functional B3LYP Hamiltonian and a localized all-electron Gaussian-
type basis set. According to the surface energy values, the stability order of the forsterite faces 
results to be (010) < (120) < (001) < (101) < (111) < (021) < (110). Then, the equilibrium shape of 
forsterite is drawn and compared with the previous ones obtained at empirical level. 

Our results are combined with experimental evidences to develop some considerations about 
the shape and genesis of olivine included in diamond. They provide crucial information on the 
diamond formation mechanism with respect to its guest inclusions, a topic which is still under 
strong debate in the scientific community. In particular, we have discussed the peculiar crystal 
morphology of olivine included in diamond and we have demonstrated that it cannot be considered 
as an evidence of syngenesis (i.e., inclusion and host diamond formed at the same time). 
Furthermore, if the morphology of olivine was modified during its encapsulation in diamond, but it 
does not show a preferential orientation with respect to diamond, we can state that: (i) the bulk of 
olivine is protogenetic (i.e., a piece of previously formed olivine is encapsulated by the host 
diamond), whereas (ii) its shape is syngenetic, that is the morphology is rearranged during the 
encapsulation. 
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1. Introduction 

Olivine exists as a complete isomorphous series, with composition ranging from forsterite 

(Mg2SiO4) to fayalite (Fe2SiO4), but the most common olivines are richer in magnesium than in 

iron.1 Other than being one of the major components of the Earth's mantle and of many meteorite 

classes, it is often detected on the surface of extra-terrestrial planetary bodies and, more generally, 

in the spectra of astronomical targets.2 As a consequence, olivine plays a fundamental role in 

defining the properties, in influencing the physico-chemical processes and in recording the history 

of both terrestrial and extra-terrestrial environments.3-6 

 Within the wide family of natural phenomena that involve olivine, of particular interest are 

those occurring at the interface between olivine and other materials, such as minerals and water 

environments. For example, the olivine/water interface is increasingly raising the attention of the 

whole international scientific community due the natural and widespread occurrence of reactions 

that can lead to i) carbon dioxide storage; ii) the production of hydrogen and the synthesis of 

organic molecules; iii) the formation of serpentines (lizardite, antigorite, chrysotile).7-10 

 An important process where the olivine/mineral interface plays a fundamental role is relative 

to the inclusions of olivine in diamond (DIs). Such inclusions, together with other silicates, oxide 

and sulfides found in diamonds are among the deepest materials originating from Earth's interior 

and reaching the planet surface. Diamonds are billion years old and remain unaltered over time 

preserving the pristine conditions of Earth. Therefore, their study plays a key role in understanding 

and interpreting the geodynamics, geophysics, petrology, geochemistry and mineralogy of Earth's 

mantle from the lithospheric to the lowermost part (see Stachel and Harris,11 and references 

therein).  

A comprehensive knowledge of olivine surface energetics and morphology at the atomic 

level is of extreme importance to understand the true nature of these and, more generally, all those 

processes involving the olivine interface. However, to the authors’ knowledge, there are only a few 

studies that address this issue, and they all deal with the Mg end member only (forsterite). In 

particular, two computational studies based on force field calculations have been performed on the 

main surfaces of forsterite,12,13 whereas all of the other computational studies in the literature deal 

with the adsorption of H, H2 and H2O on the (010) surface.14-19 

In this paper we present a preliminary study to provide a new insight into the structure and 

energetics of the crystal faces of forsterite, by means of ab initio quantum-mechanics calculations 

and a two-dimensional slab model. In particular, the equilibrium geometry and the surface energy at 

0 K of the (010), (101), (111), (001), (110), (120) and (021) faces of forsterite were determined. 

These results were then combined with experimental evidences to develop some considerations 
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about the shape and genesis of olivine included in diamond, which displays, as we will show in the 

following, a very different crystal morphology with respect to that of olivine crystals not entrapped 

inside the diamond and to the equilibrium shape determined in this work. We proposed an 

explanation accounting for these differences, by demonstrating that our results could provide crucial 

information on the diamond formation mechanism with respect to its guest inclusions, a topic that is 

still under strong debate in the scientific community.  

Furthermore, as future computational works of our research group will be devoted to the study of 

the structure and energy of diamond/olivine interfaces (in order to study the epitaxial relationships 

between these phases and to estimate the shape of olivine crystals included in diamond), the first 

step for such investigation is the assessment of our quantum mechanical ab initio method in the 

description of clean olivine surfaces. Therefore, the present paper can also be considered an 

essential work to set the best computational parameters to use in the ab initio calculations that will 

be performed for simulating the diamond/olivine interfaces. 

A hybrid Hartree-Fock (HF)-DFT approach was adopted, which notably has never been 

applied before to the study of olivine surfaces. In particular, the B3LYP20-22 functional was used, 

which has already demonstrated great accuracy in describing the surfaces of diamond,23 as well as 

the structural, vibrational and thermophysical properties of forsterite and fayalite.24-28  

The paper is structured as follows: (i) outline of the adopted computational methodology; 

(ii) description of the structure and energy of the surfaces, and comparison with previous 

computational studies; (iii) application of computational findings to understand the shape and 

genesis of olivine included in diamonds, and (iv) main conclusions. 

 

2. Computational details 

The calculations were performed at the DFT (Density Functional Theory) level with the periodic ab 

initio CRYSTAL09 code.29-31 The hybrid B3LYP20-22 Hamiltonian, already shown to provide 

accurate results for structural and dynamical properties of olivine end members,24-26,28 was 

employed. Crystal surfaces were simulated by using a 2D periodic slab model, consisting of a film 

formed by a set of atomic layers parallel to the hkl crystalline plane of interest.32 The output files are 

freely available at http://mabruno.weebly/download. 

In CRYSTAL the multi-electronic wave-function is constructed as an anti-symmetrized 

product (Slater determinant) of mono-electronic crystalline orbitals (COs) which are linear 

combinations of local functions (i.e. atomic orbitals, AOs) centered on each atom of the crystal. In 

turn, AOs are linear combinations of Gaussian-type functions (GTF, the product of a Gaussian 

times a real solid spherical harmonic to give s-, p- and d-type AOs). In this study, silicon, oxygen, 



5 
 

and magnesium were described by (8s)−(6311sp)−(1d), (8s)−(411sp)−(1d), and (8s)−(511sp)−(1d) 

contractions, respectively. The exponents (in bohr−2 units) of the most diffuse sp shells are 0.32 and 

0.13 (Si), 0.59 and 0.25 (O), and 0.68 and 0.22 (Mg); the exponents of the single Gaussian d shell 

are 0.6 (Si), 0.5 (O), and 0.5 (Mg).26,28 

The thresholds controlling the accuracy in the evaluation of Coulomb and exchange 

integrals (ITOL1, ITOL2, ITOL3, ITOL4 and ITOL5, see Dovesi et al.29) were set to 10-8 (ITOL1 

to ITOL4) and 10-16 (ITOL5). The threshold on the SCF energy was set to 10-8 Hartree. 

In the adopted package the DFT exchange and correlation contributions are evaluated by 

numerically integrating functions of the electron density and of its gradient over the cell volume. 

The choice of the integration grid is based on an atomic partition method, originally developed by 

Becke.33 In the present study, a pruned (75, 974) p grid was adopted (XLGRID in the code29), which 

ensured a satisfactory accuracy in the numerically integrated electron charge density (the error is on 

the order of 1·10-4 |e| on a total of 1120 |e| for all the considered surfaces).  

The reciprocal space was sampled according to a Monkhorst-Pack mesh34 with shrinking 

factor 4, corresponding to 10 k points in the first irreducible Brillouin zone.  

Structures were optimized by using the analytical energy gradients with respect to atomic 

coordinates and lattice parameters within a quasi-Newton scheme, combined with the Broyden-

Fletcher-Goldfarb-Shanno scheme for Hessian updating.35-37 Convergence was checked on energy, 

gradient components and nuclear displacements. The threshold on energy between two subsequent 

optimization steps was set to 10−7 Hartree; the thresholds on the root-mean-square of the gradient 

components and of the nuclear displacements were set to 3.0·10−4 Hartree bohr-1 and 1.2·10−3 bohr, 

respectively; those on the maximum components of the gradients and displacements were set to 

4.5·10−4 Hartree bohr-1 and 1.8·10−3 bohr, respectively. 

The specific surface energy γ (J/m2) at a temperature T = 0 K was calculated as follows:32 

 

A
nEnEnE bulkslab

nsn 2
)(lim)(lim −

==
∞→∞→

γ   (1) 

 

where E(n) is the energy of a n-layer slab; Ebulk is the energy of the bulk; A is the area of the surface 

unit cell; the factor 2 in the denominator accounts for the upper and lower surfaces of the slab 

model. Es(n) is thus the energy per unit area required for the formation of the surface from the bulk. 

As more layers are added in the calculation (n → ∞), Es(n) will converge to the surface energy per 

unit area (γ). 
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 The number of dhkl layers to be considered in each slab, n, was set to values such that the 

relative difference between Es(n) and Es(n-1) is < 1%, in order to ensure a satisfactory convergence 

on surface energy and structure. In particular, within the adopted computational scheme, n is equal 

to 8, 4, 5, 8, 4, 4, 4 for the (010), (101), (111), (001), (110), (120) and (021) surfaces considered in 

this work (see Figures 1 and 2 and Figures S1-S5, Supporting Information). Then, the thickness of 

the converged (010), (101), (111), (001), (110), (120) and (021) slabs are 8d020=40.96, 4d101=14.96, 

5d111=17.55, 8d002=23.92, 4d110=17.32, 4d120=14.00 and 4d021=15.56 Å, respectively; the optimized 

2D cell parameters of the slabs are listed in Table 1. All of these converged slabs are charge neutral 

and contain 112 atoms; the center of inversion or a mirror plane parallel to the face was retained in 

the calculations, to ensure the dipole moment perpendicular to the slab is equal to zero.  

 

Table 1. Optimized 2D cell parameters of the seven slabs under study. 

  a(Å) b(Å) a^b(°) area(Å2) 
(010) 4.7947 6.0432 90.00 28.97 
(101) 7.7449 10.2534 90.11 79.41 
(111) 7.6837 11.1473 105.08 82.70 
(001) 4.8055 10.1488 91.03 48.76 
(110) 6.1046 11.0616 90.00 67.53 
(120) 6.0087 13.9318 90.40 83.71 
(021) 4.8276 15.6504 89.66 75.55 
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Figure 1. (010) surface viewed along [001]; d020 is the interplanar distance, i.e. the distance between adjacent 020 

planes. 

 

 

Figure 2. (120) surface viewed along [001]; d120 is the interplanar distance, i.e. the distance between adjacent 120 

planes. 

 

3. The structure of the forsterite surfaces 

The experimental bulk crystal structure (space group Pbnm; a0=4.7490, b0=10.1985, c0= 5.9792 

Å38) was allowed to relax within the adopted computational scheme, giving a0=4.7868, b0=10.2552, 

c0=6.0108 Å. The crystal was then cut taking inspiration from ‘T Hart39 who classified and studied 

the structures of the crystallographic forms of forsterite by applying the Periodic Bond Chain 

analysis (PBC) by Hartman and Perdok.40-42 According to this analysis, the (010), (101), (111), 

(001), (110), (120) and (021) faces are classified as F (flat) faces, having at least two PBCs running 

inside the slices with thickness dhkl. Therefore, they are the most important faces in naturally 

occurring crystals. 

Let us analyse the surface structural modifications in vacuo at T = 0 K by taking the ideal 

bulk structure as a reference. In particular, the distortion of the SiO4 tetrahedral units belonging to 

the first layer of the slab, i.e. that in contact with vacuum, can be used as a quantitative measure of 

how much the surfaces reconstruct.  

Table 2 reports the values for the Si-O bond distances for both the bulk and the seven 

surfaces. Notably, the first layer of the (010), (111) and (001) slabs is made up by two independent 

tetrahedra, whereas in the case of the (101), (110), (120) and (021) slabs non-equivalent polyhedra 

are four. Two statistical indices can be adopted to summarise the effect of atomic relaxation: the 

average Si-O bond distance per tetrahedron, <Si-O> [Å], and the difference between the maximum 

and the minimum bond distance per tetrahedron, Δ [Å].  
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 The average Si-O distance in forsterite is 1.6516 Å. Out of the 22 symmetry independent 

surface tetrahedra belonging to the seven slabs, 15 have average distances lying within 0.01 Å from 

the bulk value. The 7 average deviations from the bulk larger than 0.01 Å are found in the cases of 

(111) (both tetrahedra, 1.6684 and 1.6647 Å), (001) (1.6651 Å), (101) (1.6646 Å), (110) (2 

tetrahedra, 1.6793 Å and 1.6405 Å), and (120) (1.6667 Å). At the other extreme, all the tetrahedra 

of both (010) and (021) slabs have average Si-O distances differing by only ±0.1 % from the bulk 

value (absolute difference ≤ 0.003 Å).  

 The difference between the maximum and minimum Si-O distances in forsterite is 0.0446 Å. 

Only in two cases (0.0301 Å in (001), 0.0381 Å in (110)) this deviation Δ is smaller in the slabs 

than in the bulk; in all other cases it is larger, indicating the preference of tetrahedra at surfaces to 

increase their degree of distortion. The maximum Δ is found in the case of (101), 0.1624 Å. The 

marked distortion of the tetrahedra comes along with large variations of the Mg-O distances and is 

due to a significant structural rearrangement suffered by the surfaces in order to increase their 

atomic density and reach a more stable configuration. Having a look at the single Si-O distance 

values, we note that the longest Si-O distance (1.7376 Å) is observed for the (110) slab, whereas the 

shortest one (1.5679 Å) for the (101) slab. 

The relaxed structures of the (010) and (120) surfaces (the most stable ones, see Section 4) 

are shown in Figures 1 and 2; structures for the other five crystallographic orientations are reported 

in the Supporting Information.  

 Upon inspection of Figures 1, 2 and S1-S5, and of the data reported in Table 2 and 

commented in the previous paragraphs, it is worth noting that the face displaying the smallest 

surface relaxation is the (010). In this case the first d020 layer suffers an extremely slight structural 

modification, as expected on the basis of experimental findings.43 Furthermore, such a weak 

relaxation is associated with the lowest surface energy value (see Section 4). 

 
Table 2. Optimized Si-O distances [Å] of forsterite and of its (010), (101), (111), (001), (110), (120) and (021) surfaces 
at 0 K. Surface data are reported for the SiO4 tetrahedra lying on the first layer. Each column stands for a symmetry 
independent tetrahedron: they are two in (010), (111) and (001) surfaces, four in the other surfaces. <Si-O> [Å] is the 
average Si-O bond length per tetrahedron; Δ [Å] is the difference between the maximum and minimum Si-O distance 
values. The relative % difference of <Si-O> and Δ with respect to the bulk is reported. 

  Bulk   (101) 

Si-O 1.6282 1.5940 1.5679 1.6261 1.6247 
1.6527 1.6232 1.6626 1.6453 1.6414 
1.6527 1.6878 1.6974 1.6560 1.6597 
1.6728 1.7079 1.7303 1.7061 1.6784 

<Si-O> 1.6516 1.6532 1.6646 1.6584 1.6511 
   +0.1 +0.8 +0.4 0.0 
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Δ 0.0446  0.1139 0.1624 0.0800 0.0537 
   +155.4 +264.1 +79.4 +20.4 

  (010)   (110) 

Si-O 1.6110 1.6272 1.5972 1.6438 1.6037 1.6131 
1.6437 1.6399 1.6971 1.6438 1.6037 1.6476 
1.6437 1.6399 1.7114 1.6716 1.6168 1.6476 
1.6967 1.7015 1.7114 1.6819 1.7376 1.6750 

<Si-O> 1.6488 1.6521 1.6793 1.6603 1.6405 1.6458 
 -0.2 0.0  +1.7 +0.5 -0.7 -0.4 

Δ 0.0857 0.0743  0.1142 0.0381 0.1339 0.0619 
 +92.2 +66.6  +156.1 -14.6 +200.2 +38.8 

  (111)   (120) 

Si-O 1.6131 1.5877 1.5855 1.5916 1.6206 1.6373 
1.6622 1.6488 1.6513 1.6452 1.6526 1.6399 
1.6813 1.7099 1.7143 1.6615 1.6644 1.6549 
1.7170 1.7122 1.7156 1.6918 1.7058 1.7095 

<Si-O> 1.6684 1.6647 1.6667 1.6475 1.6609 1.6604 
 +1.0 +0.8  +0.9 -0.2 +0.6 +0.5 

Δ 0.1039 0.1245  0.1301 0.1002 0.0852 0.0722 
 +133.0 +179.1  +191.7 +124.7 +91.0 +61.9 

  (001)   (021) 

Si-O 1.6179 1.6298 1.6053 1.6162 1.6112 1.6331 
1.6468 1.6362 1.6269 1.6428 1.6366 1.6392 
1.6684 1.6564 1.6625 1.6499 1.6501 1.6533 
1.7274 1.6599 1.7057 1.7054 1.7086 1.6895 

<Si-O> 1.6651 1.6456 1.6501 1.6536 1.6516 1.6538 
 +0.8 -0.4  -0.1 +0.1 0.0 +0.1 

Δ 0.1095 0.0301  0.1004 0.0892 0.0974 0.0564 
 +145.5 -32.5  +125.1 +100.0 +118.4 +26.5 

 

 

4. The surface energies and the equilibrium shape at 0 K of forsterite 

 Table 3 lists the surface energies γ of the seven crystallographic forms of forsterite analyzed 

in this work; they refer to the converged thick slabs discussed in Section 2. The faces with the 

lowest and highest surface energy result to be the {010} and {110}, respectively. Then, the stability 

order of the surfaces is (010) < (120) < (001) < (101) < (111) < (021) < (110). 

 As a comparison, Table 3 reports the surface energy values previously calculated by Watson 

et al.,13 de Leeuw et al.,12 and Garcia-Gil et al.;14 de Leeuw et al.12 did not provide a surface energy 

value for the (120) face, therefore it has been calculated in this work by using their force field. 

There is a good agreement between our values and those obtained at an empirical level by Watson 
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et al.13 and de Leeuw et al.12 for the surfaces in vacuum. As concerns de Leeuw et al.,12 the highest 

difference (-12.8%) is observed for the (120) face, while the lowest one (1.6%) is related to the 

(111) face. Instead, as concerns Watson et al.,13 the highest (-12.8%) and lowest (-1.6%) differences 

are observed for the (120) and (101) faces, respectively. These evidences suggest that the force field 

employed by Watson et al.13 and de Leeuw et al.12 for describing atomic interactions in forsterite 

could be an effective starting point to study the surfaces of this mineral.  

Here, it is worth noting that Watson et al.13 calculated the surface energy for three different 

terminations of the (110) face: (i) the surface termination with the highest surface energy (2.28 

J/m2) corresponds to the one considered in our work (2.18 J/m2); (ii) the surface termination with 

the lowest surface energy (1.70 J/m2), that is the more stable surface termination, was not taken into 

account in our work. Then, for sake of comparison with our data, in the following we only discuss 

the case (i), but it is important to underline that the more stable surface termination of the (110) face 

is that reported in the paper by Watson et al.13 Moreover, due to the very good agreement between 

our results and those from Watson et al.,13 it is likely that the energy of most stable (110) 

termination if calculated by our approach would be very similar to that of Watson et al.13 

 Finally, the work recently published by Garcia-Gil et al.14 reports a (010) surface energy 

value (1.20 J/m2) that is very close to the one estimated in the present study (1.22 J/m2). This is not 

surprising, because these authors performed periodic first principles DFT calculations with the PBE 

functional.25,44 Unfortunately, they studied the adsorption of H atoms on the (010) surface only; as a 

consequence, other crystal faces were disregarded. 

By applying the Gibbs–Wulff’s theorem45 and considering our surface energy values listed 

in Table 3, we were able to draw the equilibrium shape (ES) of a forsterite crystal in vacuum at 0 K 

(Figure 3a). As a comparison, we also drew the ESs by using surface energy values calculated by 

Watson et al.13 (Figure 3b) and de Leeuw et al.12 (Figure 3c).  

In order to analyze quantitatively the differences occurring between the ES presented in this 

work and those published in previous studies, we computed the morphological relevance index MRI 

for all the {hkl} forms; it is defined as the percent ratio between the total area of the faces belonging 

to a given {hkl} form and the total surface area of the crystal. Values are reported in Table 4. The 

morphological relevance order for the ES proposed in this study (Figure 3a) is {120}, {010}, {001}, 

{101}, {111} and {021}. A quite similar ES is observed when considering the Watson et al.’s data13 

(Figure 3b), with the following morphological relevance order: {010}, {120}, {001}, {111}, {101} 

and {021}. The main difference is the inverted ranking of the {010} and {120} forms, and of the 

{101} and {111} forms. Note that absolute differences between MRI values can be as large as 12.0 

in the case of (120); the smallest deviation is 3.4 for (021). 
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 Finally, we consider the ES obtained by de Leeuw et al.12 (Figure 3c); it turns to be quite 

similar to the one determined in this work. The morphological relevance order is the following: 

{111}, {120}, {010}, {001}, {101} and {021}. The main difference is the ranking of the {111} 

form, 1st instead of 5th. Only 3 out of 7 forms have absolute deviations larger than 3.5: {111} with -

17.4, {120} with 11.5 and {101} with 8.2. 

 Unfortunately, the comparison between theoretical and real ESs of olivine is not possible for 

the following two main reasons: (i) the olivine does not grow in the vacuum, but it is found in 

magmatic and metamorphic rocks. A correct evaluation of the ES requires the knowledge of the free 

energy of the olivine/growth medium interfaces; (ii) the real morphologies are always obtained at T 

> 0 K, whereas our calculations were performed at T = 0 K. For a correct comparison between 

theoretical and real ESs, the knowledge of how the temperature affects the interface free energy 

values, and hence the crystal ES, is fundamental. This implies the ability to calculate the vibrational 

and configurational entropy of the different olivine interfaces at the temperature of interest.  

 

Table 3. Surface energies γ at 0 K [J/m2] of the main crystal faces of forsterite. Percentage variations Δ(%) with respect 
to previous studies are reported. 

face  this work Watson et al.13 Δ(%) de Leeuw et al.12 Δ(%) Garcia-Gil et al.14 Δ(%) 
(010) 1.22 1.28 -4.7 1.28 -4.7 1.20 1.7 
(101) 1.78 1.81 -1.6 1.88 -5.3 - - 
(111) 1.84 1.80 2.2 1.81 1.6 - - 
(001) 1.78 1.61 10.1 1.74 2.3 - - 
(110) 2.18 2.28 -4.4 1.96 11.2 - - 
(120) 1.36 1.56 -12.8 1.56a -12.8 - - 
(021) 1.90 1.95 -2.6 1.94 -2.1 - - 

a Calculated in this work by using the force field of de Leeuw et al.12 
 
Table 4. Morphological relevance index MRI at 0 K [%] of the main crystal faces of forsterite. Absolute variations Δ 
with respect to previous studies are reported.  

face  this work Watson et al.13 Δ de Leeuw et al.12 Δ 
(010) 21.7 25.9 -4.2 24.9 -3.2 
(101) 12.2 8.6 3.6 4.0 8.2 
(111) 8.2 19.1 -10.9 25.6 -17.4 
(001) 15.8 19.7 -3.9 16.2 -0.4 
(110) 0.0 0.0 0.0 0.0 0.0 
(120) 37.0 25.0 12.0 25.5a 11.5 
(021) 5.1 1.7 3.4 3.8 1.3 

a Calculated in this work by using the force field of de Leeuw et al.12 
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Figure 3. Equilibrium shape (ES) of forsterite at 0 K: (a) ES obtained with surface energy values from this study; (b) 
ES obtained with the surface energy values calculated by Watson et al.;13 (c) ES obtained with the surface energies 
calculated by de Leeuw et al.12 

 

5. Some considerations about the shape and genesis of olivine included in diamond 

The importance of studying the surfaces and shape of olivine is elucidated in this paragraph, 

where it is shown how a detailed analysis of the crystal shape can reveal fundamental information to 

understand the genesis of mineral inclusions in diamond. Indeed, the shape of olivine included in 

diamond is very different from that of olivine crystals not entrapped inside the diamond and from 

the equilibrium one determined in this work. Therefore, in the light of the results above reported 

and discussed, in this section we try to explain such a morphological difference.  

Diamond inclusions (DIs) are divided into three groups: protogenetic, syngenetic and 

epigenetic.46 DIs are classified as protogenetic when they formed before the encapsulation by the 

host diamond, whereas they are considered syngenetic when the inclusion and its host diamond 

formed at the same time and by the same genetic processes. Both groups play a key role in the study 

of diamond formation processes, contrary to epigenetic phases, which are secondary minerals, 

usually associated with crustal processes, and atypical with respect to the primary minerals in 

mantle xenoliths.  

 Such distinction is important, because in the case of syngenesis any geological information 

extracted from the inclusion (e.g., pressure and temperature of formation, geochemical 
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environment, age) would also unequivocally apply to its host diamond. On the other hand, a 

protogenetic inclusion would record conditions that existed before its encapsulation; the 

corresponding time range might span from short to very long geological timescales. In the latter 

case the protogenetic inclusion could be completely unrelated to the formation of host diamond. 

Demonstrably protogenetic inclusions would support models of diamond formation involving 

fluxes of C-bearing fluids through pre-existing mantle rocks and could help explain occurrences of 

isotopically different inclusions in the same generation of diamond (e.g., Thomassot et al.47). 

Distinguishing between syngenesis and protogenesis is as crucial as extremely difficult and 

controversial, as demonstrated by Taylor et al.48 The most common observation used to deduce 

syngenesis is the imposition of the host diamond morphology on the DI (e.g., Meyer,46,49 Pearson 

and Shirey,50 Harris51). Concerning this argument, it is worth noting that the morphology of 

orthorhombic minerals (such as olivine and enstatite) included in diamond (with its well known 

cubic symmetry) is usually described as "cubo-octahedral".11,48,52 In order to explain such an 

"exotic" morphology, as reported by Taylor et al.,48 a "... greater form energy of diamond (also 

named crystalloblastic force of diamond faces)" is invoked, "that thereby imposes its morphology 

upon the inclusion, during mutual growth". In the present study we will show that it is not necessary 

to resort to a rather undefined force to explain the shape of DIs; indeed, the observed morphology of 

olivine inclusions may be interpreted by only means of the crystallographic forms of the 

orthorhombic system, with no recourse to the crystallographic forms of diamond cubic system. 

Another significant contribution to the syngenesis vs protogenesis debate derives from the 

observation that some DIs occur in a specific orientation relationship with respect to diamond, 

which can be considered as an evidence in favor of epitaxial growth of the DI above the diamond or 

vice versa, and hence of syngenesis.46,49,50,53-59 The first findings concerning possible epitaxial 

growth were those by Mitchell and Giardini,59 who reported oriented inclusions of olivine in 

diamonds: the (010) face of olivine was parallel to the (111) one of diamond and the zone [101] of 

olivine was parallel to that [101] of diamond. Wiggers de Vries et al.60 recently reported on electron 

backscatter diffraction observations, showing that the <100> crystallographic directions of diamond 

were parallel to the <100> directions of their chromite inclusions. Instead, in a very recent work by 

our research group,61 the crystallographic orientations of forty-seven olivines incorporated in 

twenty-one diamonds from Udachnaya kimberlite (Siberia) were analyzed and, at variance with the 

finding by Mitchell and Giardini,59 no preferential orientation was observed between olivine and 

diamond. On this basis, a protogenetic origin was hypothesized for these olivines. In the present 

study we will discuss in more detail the mechanism of formation of DIs initially proposed by 
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Nestola et al.61 Such mechanism is able to explain the somewhat different morphology of olivine 

crystals included in diamond with respect to that of crystals outside the diamond host. 

As pointed out above, the morphology of olivine included in diamond (i.e. orthorhombic 

against cubic symmetry, respectively) is usually described as “cubo-octahedral”.11,48,52 Indeed, the 

crystallographic forms of an orthorhombic mineral are pinacoid ({100}, {010} and {001}), 

orthorhombic prism ({hk0}, {h0l} and {0kl}) and orthorhombic bipyramid ({hkl}). Therefore, it is 

evident that the cube and octahedra cannot be used to properly describe the morphology of olivine; 

from a crystallographic point of view, referring to olivine morphology as “cubo-octahedral” is 

wrong and can generate ambiguities in the process of interpreting the genesis of an inclusion. 

 Using an example, we will now show that the so called “cubo-octahedral” shape of olivine 

inclusions is nothing more than a consequence of the association of orthorhombic forms. Figure 4 

depicts a diamond showing the {100}-cube and {111}-octahedra forms, along with an olivine 

crystal having the pinacoids ({100}, {010} and {001}) and the bipyramid {495}; the a≡[100], 

b≡[010] and c≡[001] axis of olivine are parallel to the [100], [010] and [001] ones of the diamond, 

respectively. Interestingly, the (495) face of olivine is a vicinal one, which results to be parallel to 

the (111) face of the diamond; this can make very difficult to distinguish olivine from diamond by 

only observing their morphology: the shape of olivine may be equal to that of diamond, even if the 

forms making up the two crystals are completely different. The simple example reported here is 

meant to explain the origin of the ambiguities in describing the olivine morphology; it is worth 

stressing that also in other cases of mutual orientation between olivine and diamond it is possible to 

identify a vicinal face of olivine having the same orientation of the (111) of diamond. 
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Figure 4. Diamond and olivine crystals showing the same shape, but different crystallographic forms. The a≡[100], 
b≡[010] and c≡[001] axes of olivine are parallel to the [100], [010] and [001] ones of diamond, respectively. 

 

In what follows, by taking into account our analysis on the olivine morphology and our 

previous study on the orientation of olivines included in diamonds from Udachnaya,61 some 

considerations about the genesis of the DIs are reported. 

 As stated above, the most common observation used to deduce syngenesis is the imposition 

of the host diamond morphology on the DI (e.g., Meyer,46,49 Pearson and Shirey,50 Harris51). 

However, as demonstrated by Taylor et al.,48 some peridotitic garnet inclusions (the garnet is a 

silicate mineral and peridotite is a rock composed mainly by olivine), having morphology imposed 

by the host diamond, clearly show a Rare Earth Element (REE) pattern typical of garnets found 

worldwide and not included in diamonds. Taylor et al.48 stated that this observation is consistent 

with a protogenetic nature, at least for peridotitic garnets. Similar conclusions were drawn by 

Thomassot et al.,47 who investigated isotopes of sulfide inclusions in diamonds, and Spetsius et 

al.,62 who analysed inclusions found in zircons extracted from diamonds.  

In order to conciliate the geochemical observations on the REE pattern with the 

morphological ones, we propose the following mechanism for explaining the genesis of the DIs; 

this mechanism, briefly described in the paper by Nestola et al.,61 is here exemplified by 

considering the formation of an olivine DI, but it can be easily generalized to a DI of any kind. Let 

us suppose that a diamond nucleates at time t0 in a peridotitic rock (Figure 5), i.e. when a C-H-O 

fluid becomes supersaturated with respect to the diamond phase. Then, the diamond grows and 
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gains space at the expense of olivine, which dissolves at the diamond/olivine interface (Figure 5, 

time t1). At a certain point of its growth history (Figure 5, time t2), the diamond begins to include a 

piece of olivine and, at the same time, the diamond/olivine interface is adjusted throughout transport 

of matter by means of interface diffusion; in this way the diamond/olivine interface strain energy is 

minimized and the olivine morphology is modified. Finally, at time t3 (Figure 5), the diamond fully 

envelops the olivine, which has now a completely different morphology with respect to the external 

crystals; in parallel, the original geochemical fingerprint is left unchanged, as in the case of the 

peridotitic garnet inclusions described by Taylor et al.48 As reported by Nestola et al.,61 the result of 

the proposed mechanism is that, if the diamond growth is fast enough and the process temperature 

is not high enough to allow chemical and isotopic re-equilibration, then the DI might record age and 

P-T conditions of formation that could be older than those of the host diamond. 

A strong proof in favor of this model is the finding of multiple inclusions of olivine within 

the same diamond showing a similar orientation. Indeed, no more than three sets of iso-oriented 

olivines were found within single diamond.61 This could suggest that the probability to incorporate 

more than three original olivine monocrystals in a growing diamond is very low and, as a 

consequence, diamond should grow between adjacent grains of olivine. 

 Some interesting consequences derive from the proposed diamond growth mechanism: 

(i) the morphology of the DI cannot be considered as an evidence of syngenesis; 

(ii) the DI preserves the original orientation of the crystal from which it is detached; 

(iii) if the crystal morphology is modified, but the DI does not show a preferential orientation with 

respect to the diamond (i.e., no epitaxial relationship between diamond and DI), then it is 

highly likely that the growth mechanism we propose is correct. This implies that the bulk of 

the DI is protogenetic, while its shape is syngenetic; 

(iv) if the crystal morphology is modified and the DI shows a preferential orientation with respect 

to the diamond (i.e., epitaxial relationship between diamond and DI), then it is highly likely 

that the DI nucleated above a diamond face or vice versa. Therefore, both the bulk and shape 

of the DI are syngenetic. 

Up to now we have discussed the case of a well-shaped DI, but the majority of them display a 

rounded shape, which is likely due to the development of a great number of vicinal faces during the 

process of diamond growth. As a matter of fact, some orientations of olivine are not able to produce 

the “cubo-octahedral”-like shape discussed above. Then, in order to reduce the interface strain 

energy, the shape of olivine could adapt to diamond by realizing an envelope of vicinal faces that 

mime a rounded morphology. Otherwise stated, in some cases the olivine has a crystallographic 

orientation that does not allow the development of a simple shape formed by a limited number of 
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vicinal faces; a complex morphology composed by a large number of crystallographic forms is 

developed instead, to minimize the strain energy of diamond/olivine interface. However, further 

studies are required to develop and validate this hypothesis. In particular, a detailed crystallographic 

analysis should be performed for determining the forms of the olivine included in diamond. 

 

 

Figure 5. Schematic drawing representing the formation of an olivine inclusion in diamond. 

 

6. Conclusions 

In this work, we have presented an accurate ab initio study of the structure and surface energy at 0 

K of the low-index (010), (101), (111), (001), (110), (120) and (021) forsterite faces, by using for 

the first time, at the best of our knowledge, the hybrid Hartree-Fock/Density Functional B3LYP 

Hamiltonian and a localized all-electron Gaussian-type basis set. Furthermore, these results have 

been combined with experimental evidences to develop some considerations about the shape and 

genesis of olivine included in diamond, which show a very different crystal morphology with 

respect to that of olivine crystals not entrapped inside the diamond. 

We can summarize our results in the following points: 

(i) the face displaying the smallest surface relaxation is the (010): the first d020 layer suffers an 

extremely slight structural modification and, as expected, such a weak relaxation is associated 

with the lowest surface energy value. 
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(ii) According to the surface energy values, the stability order of the forsterite faces is (010) < 

(120) < (001) < (101) < (111) < (021) < (110). 

(iii) The equilibrium shape (ES) of a forsterite crystal has been drawn by using our surface energy 

values. It results to be quite similar to the one determined at empirical level by Watson et al.13 

and de Leeuw et al.12 This suggests that the force field employed by these authors could be 

used as a starting point for fitting a new interatomic potential for studying the chemical 

reactions occurring at the olivine/water interfaces. 

(iv) As an example of the importance of understanding the surfaces and shape of olivine and in 

order to contribute to the syngenesis vs protogenesis debate, we have discussed the peculiar 

crystal morphology of olivine included in diamond (DI). First, we have showed that the 

observed "cube-octahedral" shape of olivine in diamond is actually a combination of 

orthorhombic bipyramid (i.e., {495}) and pinacoids. This implies that the shape of olivine 

may be equal to that of diamond, even if the forms making up the two crystals are completely 

different. Second, we have demonstrated that the morphology of the DI cannot be considered 

as an evidence of syngenesis. In particular, if the crystal morphology is modified, but the DI 

does not show a preferential orientation with respect to the diamond, the bulk of the DI is 

protogenetic, while its shape is syngenetic. 
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Synopsis 

An accurate ab initio study of the structure and surface energy at 0 K of the (010), (101), (111), 
(001), (110), (120) and (021) faces of forsterite (Mg2SiO4), by using the hybrid Hartree-
Fock/Density Functional B3LYP Hamiltonian and a localized all-electron Gaussian-type basis set, 
is presented. 


