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Resistance to targeted therapies: a role for microRNAs? 
Cristina Migliore , Silvia Giordano  

 

Highlights 

Resistance represents the major limit to targeted therapy efficacy. 
miRNAs can sustain resistance by targeting critical signal transducers. 
Selected miRNAs can be exploited as biomarkers of resistance. 

 

The discovery of oncogene addiction dramatically changed the therapeutic approach for cancer treatment, 
and many drugs targeting specific molecular alterations are now in clinics. Despite the big success of these 
new compounds, the main limit to their efficacy is represented by resistance to therapy. The alteration of the 
activity or of the expression of many proteins has already been linked to the onset of resistance, but recent 
evidence indicates a role of microRNAs (miRNAs) as well. In this context, the idea of exploiting miRNAs as 
predictors of response or resistance to cancer therapy represents an intriguing possibility. The purpose of 
this review is to address the relationship between miRNAs and targeted therapies response and resistance. 

Keywords 

• miRNAs;  
• sensitivity to therapy;  
• mechanisms of resistance;  
• molecular therapies 

 

How miRNAs can modulate resistance to targeted therapies 

One of the major goals of cancer research has been the identification of ‘druggable’ and effective protein 
targets to be used in therapy. The effective molecular target is a protein that plays a critical role in promoting 
growth (or in preventing apoptosis) of tumor cells and on whose constitutive activity cancer cells rely for their 
survival. In other words, a drug is effective when it blocks the gene to which cancer cells are addicted to, 
thus leading them to death. The concept of ‘oncogene addiction’ has contributed strong pressure to the 
development and the introduction of many new molecular drugs in clinics. Tyrosine kinase inhibitors (TKIs; 
see Glossary) and monoclonal antibodies (mAbs) are now widely used to treat patients affected by tumors of 
different histological origins, alone or in combination with standard chemotherapies [1]. 
From experience gained in clinical practice, we know that only a percentage of tumors respond to targeted 
therapy; this condition is referred to as ‘innate’ or ‘primary resistance’. The major mechanisms of resistance 
to target therapies are described in Box 1. The criteria commonly used to enroll or exclude patients from a 
specific treatment are the evaluation of the expression of the target and the genetic status 
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(amplification/mutation) of the target or of its key downstream transducers (http://www.nccn.org). However, 
even the adoption of the most stringent available criteria does not allow proper identification of responsive 
patients. Moreover, responding patients almost invariably develop resistance to therapy during treatment, a 
situation defined as ‘secondary’ or ‘acquired resistance’. Understanding if a tumor cell is resistant to therapy 
is mandatory to properly select patients that will benefit from a specific pharmacological treatment or, on the 
contrary, to avoid treatment of those who are predicted to be non-responders. The final aim is to avoid, or at 
least delay, the onset of resistance or to circumvent it when already present. 
Box 1.  
Mechanisms of resistance to targeted therapies 

The main mechanisms of resistance to targeted therapies are: 

(i) Mutation of the target 
TKIs are developed to bind and block the target kinase in the wild type status or in the presence of a 
sensitizing mutation. To escape from blockage, cancer cells can acquire secondary mutations that hamper 
the interaction between the small molecule and the target, allowing ATP binding and receptor activation. 
The EGFR T790M mutation in patients treated with first generation anti-EGFR compounds (Erlotinib and 
Gefitinib) represents a paradigmatic event: this mutation decreases the affinity for the drug and increases the 
affinity for the ATP, leading to EGFR pathway activation in the presence of the drug [76]. 
Resistance to mAb treatment can also be due to the mutation onset in the target: a recent report by 
Montagut and colleagues [77] showed the presence of a mutation in the extracellular portion of EGFR that 
impairs Cetuximab binding. Interestingly, Panitumumab remains effective in inhibiting EGFR and represents 
an alternative clinical strategy for CRC patients who become resistant to Cetuximab treatment. 
(ii) Activation of downstream signal transducers 
The activation of molecules downstream of the target is a system exploited by cancer cells to circumvent 
treatment efficacy. One paradigmatic example is observed in CRC, where activation of downstream proteins 
has been reported both as a primary and a secondary mechanism of resistance to the anti-EGFR mAbs 
Cetuximab and Panitumumab. These mAbs are indeed ineffective in CRC patients 
harboring KRAS mutations (primary resistance 78, 79 and 80), and the same genetic alterations have also 
been shown as a mechanism of secondary resistance [81]. 
(iii) Activation of parallel pathways 
The blockage of signaling pathways important for cell proliferation can be overcome by the activation of 
parallel pathways. A typical example is the activity of anti-EGFR drugs hampered by the activation of the 
MET pathway. In fact, amplification of the MET tyrosine kinase receptor has been shown as a mechanism of 
both primary and secondary resistance to anti-EGFR drugs in CRC and NSCLC 82 and 83. MET-mediated 
resistance can also be due to the increase of hepatocyte growth factor (HGF) availability, leading to 
constitutive MET activation: this non-cell autonomous mechanism of resistance to targeted therapies is 
important to understand, because growing evidence indicates the stroma as a source of 
resistance 24 and 71. 
Additional criteria for selecting patients eligible for treatment with targeted therapies are currently under 
investigation. Modulation in the expression of specific miRNAs or of miRNA families could be one of such 
criteria (general features of miRNAs are depicted in Box 2). In fact, miRNAs can modulate drug response in 
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several ways. It has been shown that miRNAs can behave as tumor suppressors 2, 3 and 4 or 
oncogenes 5,6 and 7, controlling the expression of key components of signal transduction pathways. 
Deregulation of key miRNAs can lead to the generation of alternative and compensatory signals (parallel or 
downstream to those blocked by the drug), which can sustain resistance. The activation/inactivation of 
miRNAs can be transcriptional, due to the presence/absence of specific transcription factors controlling their 
expression5 and 8, or epigenetic, through the control of the methylation status of miRNA promoters or 
histone acetylation 9 and 10 (Figure 1A). Interestingly, mutations either in the miRNAs or in the 3′ 
untranslated regions (UTRs) of miRNA targets have been described: in both cases the miRNA/target 
recognition is altered and thus new targets can be hit or, vice versa, the negative control for the expression 
of some key targets is lost 11 and 12 (Figure 1B). Finally, other genetic alterations such as genomic 
amplifications or loss of heterozygosity (LOH) can involve miRNA loci and alter levels of miRNAs and of their 
targets 11, 13 and 14(Figure 1C). 
Box 2.  
General features of miRNAs 

miRNAs are small endogenous noncoding RNAs responsible for the post-transcriptional regulation of target 
messenger RNAs (mRNAs). miRNAs, when processed in the mature form, are incorporated in the RNA-
induced silencing complex (RISC) and bind preferentially the 3′ UTR of mRNAs with imperfect base pairing. 
Protein synthesis from targeted mRNAs is prevented either by mRNA degradation or, more frequently, by 
inhibition of translation. 

miRNAs are located in almost all regions of the genome, including repeats. They can be intronic or exonic, 
and can be positioned in noncoding regions between annotated genes (intergenic) or in coding regions; they 
may be grouped into clusters or be single. Regulation of miRNA expression is still poorly understood: 
miRNAs can be transcribed by the promoter of the gene in which they are inserted or they can have their 
own promoter. 

A peculiar feature of miRNA regulation is their ability to control different targets at the same time, either 
allowing widespread action on different pathways or increasing their effect by operating at different levels in 
the same pathway. This is particularly important in embryogenesis, where miRNA activity can orchestrate the 
complexity of developmental processes. 
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Figure 1.  

Mechanisms of microRNA (miRNA) deregulation. miRNA alterations in cancer can lead to resistance to targeted 

therapies for several reasons. (A) Altered transcriptional control: (i) increase/decrease of specific transcription factors 

acting as activators or repressors of miRNA transcription; (ii) increase/decrease of the methylation status of miRNA 

promoters; and (iii) change in the histone acetylation in the genomic region codifying miRNAs. In all of these 

conditions the final effect is an altered level of the miRNA in the cell. (B) Mutations: (i) presence of mutations in the 

miRNA or (ii) in the target mRNA 3′ untranslated region sequences, altering the proper recognition and control of the 

target by the miRNA. The final outcome is a change in the level of the target. (C) Amplifications/deletions: change in 

miRNA copy number due to: (i) loss of heterozygosity (LOH) of a specific miRNA gene or (ii) miRNA gene 

amplification. These genetic events modify the amount of miRNA present in the cell. 

 

The literature on the role of miRNAs in drug response/resistance is just at the beginning: the first 
examples of miRNA involvement in the response to therapy or in the onset/modulation of resistance to 
antineoplastic drugs have recently been reported. An overview of miRNAs involved in resistance to 
targeted therapies is reported in Table 1 and Figure 2. The following sections recapitulate the main 
findings related to the role of miRNAs in sustaining resistance to molecular therapies in different 
tumors. 
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Table 1. 

miRNAs involved in response/resistance to targeted therapies 
miRNA Drug Tumor Refs 

Let-7 Gefitinib NSCLCa Zhong et al. [17] 

Sorafenib HCCa Shimizu et al. [65] 

Tamoxifen/Fulvestrant BCa Nam et al. [37] 

ADTb PCa Nadiminty et al. [45] 

miRNA-15a Tamoxifen/Fulvestrant BCa Nam et al. [37] 

miRNA-21 Tamoxifen BCa Gong et al. [40] 

Tamoxifen/Fulvestrant BCa Nam et al. [37] 

ADTb PCa Ribas et al. [47] 

miRNA-27a Tamoxifen/Fulvestrant BCa Nam et al. [37] 

miRNA-30b/c Gefitinib NSCLCa Garofalo et al. [20] 

miRNA-31 ADTb PCa Lin et al. [44] 

miRNA-122 Sorafenib HCCa Bai et al. [64] 

miRNA-125b Tamoxifen/Fulvestrant BCa Nam et al. [37] 

miRNA-126 Gefitinib NSCLCa Zhong et al. [17] 

miRNA-128b Gefitinib NSCLCa Weiss et al. [16] 

miRNA-144 Imatinib CMLa Liu et al. [58] 

miRNA-145 Gefitinib NSCLCa Zhong et al. [17] 

Tamoxifen/Fulvestrant BCa Nam et al. [37] 

miRNA-146a Tamoxifen/Fulvestrant BCa Nam et al. [37] 

miRNA-155 Tamoxifen/Fulvestrant BCa Nam et al. [37] 

miRNA-200b Cetuximab CRCa Mekenkamp et al. [29] 

miRNA-200c Erlotinib NSCLCa Bryant et al. [19] 

miRNA-210 Trastuzumab BCa Jung et al. [70] 

miRNA-212 Cetuximab HNSCCa Hatakeyama et al. [23] 

miRNA-214 Gefitinib NSCLCa Wang et al. [18] 

miRNA-216/7 Sorafenib HCCa Xia et al. [66] 

miRNA-221/2 Gefitinib NSCLCa Garofalo et al. [20] 

Tamoxifen BCa Zhao et al. [36], Nam et al. [37] 

ADTb PCa Sun et al. [49] 

miRNA-342 Tamoxifen BCa Cittelly et al. [33] 

miRNA-375 Tamoxifen BCa Ward et al. [31] 

miRNA-451 Tamoxifen BCa Bergamaschi et al. [34] 

Imatinib CMLa Lopotovà et al. [56], Scholl et al. [57], Liu et al. [58] 

miR-488* ADTb PCa Sikand et al. [46] 

miR-616 ADTb PCa Ma et al. [52] 

a 

NSCLC, non-small cell lung cancer; HNSCC, head and neck squamous cell carcinoma; CRC, colorectal cancer; BC, breast cancer; CML, 

chronic myeloid leukemia; HCC, hepatocellular carcinoma; PC, prostate cancer. 

b 

ADT, androgen deprivation therapy. 
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Figure 2.  

MicroRNAs (miRNAs) modulate pathways commonly activated in cancer. miRNAs can control key pathways often 

activated in cancer: (A) Tyrosine kinase receptors (RTKs) promote proliferation by activating PI3K–AKT and K-RAS–

ERK pathways and block apoptosis by inhibiting BIM and APAF pathways. Both RTKs and downstream transducers 

are good candidates for targeted therapy and many of these key proteins are under the control of miRNAs. miRNAs 

deregulated in: non-small cell lung cancer = blue; head and neck squamous cell carcinoma = green; colorectal 

carcinoma = pink; chronic myeloid leukemia = light blue; breast cancer = violet; hepatocellular carcinoma = 

gray. (B) Hormone responsive breast cancer becomes resistant to Tamoxifen. ERα, estrogen receptor α. (C) ADT 

(androgen deprivation therapy) resistant tumors. AR, androgen receptor. Abbreviations: HB-EGF, heparin binding-

EGF-like growth factor; PTEN, phosphatase and tensin homolog; PI3K, phosphoinositide 3-kinase; MTDH, 

methaderin; MEK, MAP/ERK kinase; ERK, extracellular signal-regulated kinase; APAF, apoptotic protein activating 

factor; BIM, BCL-2 interacting mediator of cell death. 

Non-small cell lung cancer (NSCLC) 

NSCLC accounts for 80–85% of all lung cancer cases [15]. The main focus of targeted therapy in NSCLC 
patients is the tyrosine kinase receptor for epidermal growth factor (EGFR); the most widely used inhibitors 
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of EGFR in NSCLC are currently the two TKIs Erlotinib and Gefitinib, even if new and more potent drugs are 
under study. 
The first paper investigating the role of miRNAs in modulating the response to targeted therapies was by 
Weiss et al. [16], who hypothesized that a miRNA able to regulate EGFR could be a predictor of response to 
EGFR–TKIs ( Figure 2A). In fact, genomic loss of an EGFR targeting miRNA would increase the EGFR level, 
offering a target for EGFR–TKI. Thus, they looked for miRNAs predicted to regulate EGFR that were located 
in chromosomal regions frequently lost in lung cancer: this led to the identification of miRNA-128b, located 
on chromosome 3p (lost in 96% of lung cancers and 78% of preneoplastic or preinvasive lung epithelial 
samples [16]). Interestingly, the authors found that the LOH for miRNA-128b correlated with an improved 
response to Gefitinib. The major limits of this work are the relatively small number of patients studied (n = 58) 
and the retrospective type of analysis. Moreover, as stated by the authors themselves, the analysis of 
miRNA-128b in a cohort of advanced NSCLC patients not receiving EGFR–TKI treatment is required to 
determine whether miRNA-128b LOH is also a prognostic factor or only a predictor of survival for patients 
receiving EGFR–TKI therapy. 
Starting from the identification of miRNA alterations with a predictive prognostic value in lung 
adenocarcinoma patients, Zhong et al. [17] aimed at investigating whether the restoration of three tumor 
suppressive miRNAs (let-7, miRNA-126, and miRNA-145) elicits an inhibitory growth response and 
overcomes the cellular resistance to Gefitinib in vitro. They showed that forced expression of these miRNAs 
contributed to Gefitinib cytotoxicity in lung cancer cells; in particular, miRNA-126 expression increased 
Gefitinib sensitivity sixfold and resulted in the inhibition of AKT and extracellular signal-regulated kinase 
(ERK) pathways. 
A role for miRNA-mediated modulation of the AKT pathway in regulating acquired resistance to Gefitinib was 
also found by Wang et al. [18]. The authors observed that miRNA-214 was significantly upregulated in a lung 
cancer cell line made resistant to Gefitinib and showed that this miRNA and its target PTEN were inversely 
expressed in resistant cells. Knockdown of miRNA-214 altered the expression of PTEN and the activation of 
AKT and resensitized HCC827 cells to Gefitinib. Taken together, these data show that miRNA-214 may 
contribute to the acquired resistance to Gefitinib via modulation of the PTEN/AKT signaling pathway. 
The first example of the role of miRNAs as predictors of response to the anti-EGFR compound Erlotinib was 
published by Bryant et al. [19], who hypothesized that miRNA expression patterns in samples (cell lines or 
tumors) with different responses to EGFR inhibition could provide biological insights into the mechanism of 
sensitivity and could function as biomarkers of response to therapy [19]. They identified a signature of 13 
miRNAs predicting a response to EGFR inhibition in cancer cell lines and tumors. Notably, this signature was 
able to separate primary from metastatic tumor samples using unsupervised clustering methods. Because 
ontological annotation of the potential targets of the 13 miRNAs revealed enrichment in components of 
epithelial-to-mesenchymal transition (EMT), they hypothesized that members of the signature could mediate 
both EMT and response to Erlotinib. As a proof of concept, they ectopically expressed a representative 
member of these miRNAs, miRNA-200c, and confirmed the alteration of both the expression of EMT proteins 
and the sensitivity to Erlotinib. 
Finally, Garofalo et al. [20] showed that MET, the receptor for hepatocyte growth factor, and EGFR control 
Gefitinib-induced apoptosis and EMT by modulating specific miRNAs. In particular, they found that miRNA-
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30b/c and miRNA-221/2 control the expression of genes involved in the apoptotic response and thus in 
sensitivity to Gefitinib, suggesting that these miRNAs are involved in TKI resistance. 
Despite the presence of these interesting and provocative reports, none of the identified miRNAs is ready for 
a direct clinical application and further validations are required in order to exploit these findings in everyday 
clinical practice. Moreover, no report tackles the modulation of resistance/sensitivity in response to newer 
anti-EGFR drugs that have already entered the advanced phases of clinical trials: Afatinib and Dacomitinib, 
two irreversible inhibitors of the whole EGFR family (anti-pan-HER), and AZD8931, a reversible pan-HER 
inhibitor. 

Head and neck squamous cell carcinomas (HNSCCs) 

Ninety per cent of HNSCCs overexpresses EGFR and the level of expression correlates with a negative 
prognosis [21]. Cetuximab (an anti-EGFR mAb) is the only molecular targeted agent showing significant 
survival benefits in HNSCC patients as monotherapy or in combination with radiation and/or 
chemotherapy[22]. Despite the huge cohort of patients that could benefit from an anti-EGFR therapy, only a 
small subset responds to the treatment and even the responders soon develop resistance. However, the 
mechanisms of response and resistance to anti-EGFR therapy in HNSCC tumors are largely unknown. 
An interesting work by Hatakeyama et al. [23] hypothesized a role for miRNA-212 in Cetuximab response in 
HNSCCs. Analyzing 33 HNSCCs and keratinocyte cell lines, the authors correlated miRNA-212 
downregulation with the increase of its target, the heparin-binding EGF-like growth factor (HB-EGF), one of 
the EGFR ligands. They hypothesized that HB-EGF increase (also detected in Cetuximab-resistant cells and 
in plasma of HNSCC patients) could compete with Cetuximab for EGFR binding, leading to resistance. 
Although certainly many other mechanisms of resistance coexist and cooperate to assure survival and 
growth of HNSCC tumors, this work highlights the role of ligands for tyrosine kinase receptors in response to 
targeted drugs and reveals the possible involvement of miRNAs in controlling their expression. An increasing 
number of papers, in fact, have underlined how paracrine/autocrine production of ligands can confer both 
primary and secondary resistance to targeted therapies, reactivating inhibited pathways or activating parallel 
pathways that join common key downstream players [24]. 

Colorectal carcinoma (CRC) 

Recent advances in understanding the molecular mechanisms underlying CRC progression led to the 
introduction of anti-EGFR targeted therapies in clinics, with the approval of the EGFR mAbs Cetuximab and 
Panitumumab [25]. Treatment with these mAbs, both as monotherapy and in combination with 
chemotherapy, has shown a survival benefit in metastatic CRC patients with KRAS wild type tumors [26]. 
Tumors harboring a KRAS codon 12 or 13 mutation are resistant to anti-EGFR therapy and therefore are not 
eligible for this treatment [27]. Mutations of BRAF, phosphoinositide 3-kinase (PI3K), phosphatase and 
tensin homolog (PTEN), and amplification of HER2 have recently been identified as negative predictors of 
response to anti-EGFR therapies [28]. However, 10–15% of tumors, negative for all these genetic lesions, do 
not respond to anti-EGFR treatment, suggesting the need for additional predictive markers [28]. 
In this context, evidence of the deregulation of a specific KRAS targeting miRNA (miRNA-200b) has been 
reported in patients treated with Cetuximab in combination with other drugs: increase of this miRNA 
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correlated with improved progression free survival (PFS) in KRAS mutated tumors [29]. This report is of 
particular interest because, as stated above, KRAS mutated patients fail to respond to Cetuximab. From the 
work of Mekenkamp et al. [29], it appears that not only the genetic status of KRAS but also the level 
of KRASpost-transcriptional regulators can be important for Cetuximab response in CRC. The deregulation 
of KRAStargeting miRNAs may be one of the reasons why a small fraction of patients harboring a mutation 
in theKRAS gene may still benefit from anti-EGFR therapy. However, the mechanisms underlying Cetuximab 
response in CRC patients remain complex: in fact, the same report also describes the downregulation of 
another KRAS targeting miRNA (miRNA-143), which also correlates with a better PFS. 
Although the proposed new miRNA-based molecular markers have potentially important clinical implications, 
they still remain strictly linked to already known mechanisms of resistance, involving KRAS activation in 
cancer cells. Deeper investigations are needed to find new prognostic markers of resistance to EGFR-
targeted therapy, working independently from KRAS/BRAF/PI3K genetic status: this is a challenging goal, 
mandatory to explain why a high percentage (10–15%) of patients without the already known genetic 
alterations predictive of lack of response is not responsive to anti-EGFR therapy [28]. 

Breast cancer 

Breast cancer appears as a heterogeneous disease, characterized by the presence/absence of molecular 
targets that determine the choice of the therapeutic strategy [30]. Breast cancer patients expressing 
hormone receptors (HRs, i.e., receptors for estrogen and/or progesterone) in the tumor undergo anti-
estrogenic therapy and are generally treated with either Tamoxifen or Fulvestrant [two estrogen receptor 
(ER) antagonists] or aromatase inhibitors (interfering with the synthesis of estrogen). HER2 positive patients 
(displaying HER2 gene amplification) receive in most cases Trastuzumab (a humanized anti-HER2 mAb) or 
Lapatinib (a dual anti-HER2/EGFR TKI). Because primary and secondary resistance to targeted treatments 
are commonly observed in both HR and HER2 positive cases, the mechanisms of resistance and the role of 
miRNAs have been investigated. 
Ward and colleagues [31] observed features of EMT and identified a strong downregulation of miRNA-375 in 
MCF-7 breast cancer cells resistant to Tamoxifen. Interestingly, miRNA-375 restoration recovered sensitivity 
to Tamoxifen and partially reversed EMT. One of the direct targets of miRNA-375 is Metadherin (MTDH), an 
oncogenic protein downstream to Ha-RAS and c-MYC, often overexpressed in human tumors[32]. MTDH 
silencing partially phenocopied the effect of miRNA-375 expression, increasing the sensitivity to Tamoxifen 
and reversing EMT. The authors also observed a shorter disease-free survival and a higher risk of relapse in 
Tamoxifen-treated patients with higher expression of MTDH. However, whether or not miRNA-375 alone can 
predict onset of resistance in Tamoxifen-treated patients remains unclear. Cittelly et al. [33] used the same 
cellular model and observed miRNA-342 downregulation in Tamoxifen-resistant versus parental cells. 
Interestingly, they detected a reduced expression of miRNA-342 in Tamoxifen refractory human breast 
tumors, opening the possibility of exploitation of these findings to predict patient outcome during Tamoxifen 
therapy. Bergamaschi and Katzenellenbogen [34] identified a role of miRNA-451 in Tamoxifen-associated 
development of endocrine resistance. In fact, they found that Tamoxifen downregulates miRNA-451 and 
upregulates 14-3-3ζ and that 14-3-3ζ is a target of miRNA-451. 14-3-3ζ belongs to the family of 14-3-3 
proteins that bind and stabilize key signal transducers, such as EGFR, HER2, and protein kinase C (PKC). 
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Tamoxifen upregulation of 14-3-3ζ results from its ability to prevent miRNA-451 transcription. In Tamoxifen-
resistant breast cancer cells, the levels of 14-3-3ζ were high indeed, whereas those of miRNA-451 were 
greatly reduced. They also showed that Tamoxifen, but not Raloxifene, was able to regulate miRNA-451 and 
14-3-3ζ, paving the way to understand the differences in activity of these two drugs [35]. 
Interestingly, Zhao et al. [36] found that miRNA-221/2 are involved in the resistance to Tamoxifen, besides 
their role in mediating resistance to Gefitinib, as stated above. They reported that these miRNAs are 
frequently upregulated in ERα-negative breast cancer cell lines and primary tumors. The increased 
expression of these miRNAs reduces ERα levels as a consequence of post-transcriptional negative 
regulation, whereas their knockdown restores ERα expression and Tamoxifen sensitivity. 
In line with this report, Nam et al. [37] confirmed the role of miRNA-221/2 in anti-estrogen therapy resistance 
and highlighted new network clusters involving miRNAs-146a, -27a,-145, -21, -155, -15a, -125b, and let-7s. 
Analyzing MCF-7 cells resistant to Tamoxifen and Fulvestrant, the authors identified potentially interesting 
interactions between miRNAs and important targets implicated in the resistance to these targeted therapies. 
This work represents a starting point for further validation in vitro and, more importantly, in clinics. 
Finally, miRNA-21 is involved in chemoresistance 38 and 39 and in Trastuzumab resistance in breast 
cancer[40], where its upregulation is observed in tumor biopsies from patients treated with Trastuzumab and 
is associated with poor response. Interestingly, miRNA-21 is regulated by NF-κB [41] and targets the tumor 
suppressor PTEN. 

Prostate cancer 

Prostate cancer starts as a hormone-dependent disease. Androgen receptor (AR) expression and activity 
are crucial for prostate cancer growth and maintenance. This evidence led to the introduction of androgen 
deprivation therapy (ADT) as standard first line treatment of hormone responsive tumors [42]. Unfortunately, 
prostate cancer cells after some time become androgen-independent and thus resistant to ADT. Very often, 
the cause of ADT resistance is strictly linked to AR: in fact, recent studies have shown that AR can be 
mutated or amplified in ADT-resistant tumors [43]. For these reasons, the control of AR levels is crucial for 
prostate cancer cells and thus miRNAs targeting AR can impinge on hormone responsiveness. 
In this context, Lin et al. [44] described a new mechanism of regulation of AR mediated by miRNA-31, as AR 
and miRNA-31 mutually control each other. Interestingly, miRNA-31 is often downregulated in advanced 
prostate cancer, thus favoring AR overexpression and androgen independency. Moreover, miRNA-31 
bindsAR mRNA in the coding region, in a position often mutated in prostate cancer. This work highlights the 
importance of miRNA control of key pathways as the loss of miRNA-31 may impact on AR levels and, thus, 
on the efficacy of ADT. 
Another miRNA, namely let-7c, has been shown to control AR levels and thus the responsiveness to ADT. 
Nadiminty et al. [45] reported that let-7c impairs c-MYC expression that in turn regulates AR transcription. 
Furthermore, they showed a negative correlation between let-7c and AR in human prostate cancers. 
Finally, Sikand et al. [46] also identified miRNA-488* as a direct regulator of AR. Indeed, they showed that 
miRNA-488* ectopic expression impairs prostate cancer cell growth and induces apoptosis. 
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These reports describing new miRNAs targeting AR are very interesting because they link ADT 
responsiveness to post-transcriptional control of AR. Nevertheless, the direct proof of the biological role of 
these miRNAs in ADT resistance in clinical samples needs further investigations. 
A different approach was undertaken by Ribas et al. [47], who looked for androgen-regulated miRNAs. They 
found that AR directly promotes the transcription of miRNA-21, which in turn elicits oncogenic activities 
promoting androgen-independent growth in vitro and enhanced tumor growth and castration resistance in 
vivo. 
Sun et al. 48 and 49 further proved the role of miRNA-221/2 in resistance to targeted therapy. In particular, 
after describing the overexpression of these miRNAs in androgen-independent cells, they focused on 
miRNA-221 and identified HETCD2 and RAB1A as its crucial targets involved in ADT resistance. 
Interestingly, miRNA-221 also affects the expression of a group of androgen responsive genes without 
modifying the expression of AR. 
The involvement of miRNA-221/2 in resistance to different agents, in diverse tissues, represents an 
interesting circumstance. miRNA-221/2 are transcriptionally regulated by two cellular stress sensors, namely 
NF-κB [50] and c-JUN [51], which are often activated in cells exposed to oncogenic stress due to the 
inhibition of a pathway responsible for constitutive promotion of cell growth. This might explain why miRNA-
221/2 expression is altered in both lung cancer cells, where EGFR drives proliferation, and breast and 
prostate cancer cells, where ERα and AR activation, respectively, play a growth promoting role. 
Ma et al. [52] approached the problem of ADT resistance comparing miRNA profiling in androgen sensitive 
versus insensitive cells: they described miRNA-616 overexpression in androgen-resistant cell lines and 
tumor samples. More intriguingly, in vivo experiments injecting androgen-sensitive cells ectopically 
overexpressing miRNA-616 suggested that miRNA-616 expression is sufficient for maintaining an androgen-
independent phenotype, because mice castration did not affect tumor growth rate. 
Using the same approach, Boll et al. [53] identified three miRNAs (miRNA-130a, miRNA-203, and miRNA-
205) that are downregulated in prostate cancer and whose restoration mimics androgen deprivation, 
impairing the expression of AR-dependent genes. From the perspective of better characterizing the shift of 
prostate cancer cells towards hormone resistance, these findings appear very intriguing even if the authors 
did not directly address whether or not the loss of these miRNAs is necessary for ADT resistance. 

Chronic myeloid leukemia (CML) 

CML is characterized by a chromosomal translocation in which part of the BCR (breakpoint cluster region) 
gene from chromosome 22 is fused with the ABL (Abelson) gene on chromosome 9, encoding for a 
cytoplasmic tyrosine kinase. The resulting BCR–ABL fusion protein is a constitutively active kinase that 
drives proliferation of leukemic cells. Pharmacological inhibition of the BCR–ABL kinase by the targeted drug 
Imatinib drastically improved the prognosis of CML patients [54]. Nevertheless, even in this perfect scenario 
of complete addiction of cancer cells to a single defined genetic alteration, targeted therapy may become 
inefficient to block cancer progression, because resistance to therapy may occur, frequently due to the onset 
of secondary mutations inhibiting the binding of the drug to the target [55]. 
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In this context, Lopotovà et al. [56] and Scholl et al. [57] reported a correlation between miRNA-451 level and 
response to Imatinib treatment: patients with Imatinib-resistant CML have lower levels of miRNA-451 
compared with responders, and upon response to Imatinib miRNA-451 levels are increased. 
Liu et al. [58] described the presence of a reciprocal regulatory loop between c-MYC and miRNA-144/451. 
Interestingly, c-MYC overexpression, detected in Imatinib-resistant K562 cells, directly repressed miRNA-
144/451 transcription, whereas miRNA restoration resensitized cells to the drug. Even if these data are 
interesting, the link between miRNA-451 level and BCR–ABL activity remains unclear, as well as the possible 
direct involvement of miRNA-451 in CML pathogenesis. 
Finally, after profiling a small number of Imatinib responder and resistant patients, San José-Enériz et 
al. [59]identified a group of 19 miRNAs differentially expressed between the two groups. This set of miRNAs 
shares predicted targets already involved in different mechanisms of resistance. Surprisingly, miRNA-451 is 
not among the 19 listed miRNAs. 

Hepatocellular carcinoma (HCC) 

HCC treatment still represents a challenging issue because effective targeted therapies are not yet available, 
although molecular mechanisms of liver tumorigenesis have been deeply studied. At present, only Sorafenib 
[a VEGFR (vascular endothelial growth factor receptor), PDGFR (platelet-derived growth factor receptor), C-
RAF and BRAF KI] is approved for HCC treatment [60]. 
Concerning miRNAs, the peculiarity of the liver is that a single miRNA, namely miRNA-122, accounts for 
more than 70% of all miRNAs present in hepatic cells [61], explaining the profound interest in its 
characterization. miRNA-122 is very well conserved among different species [61], it is required for hepatitis C 
virus (HCV) replication cycle [62] and is downregulated in liver carcinogenesis [63]. From these starting 
points, Bai et al. [64] studied the role of miRNA-122 in liver cancer: they showed that the ectopic expression 
of miRNA-122 inhibits tumorigenic properties of liver cancer cells and, more interestingly, sensitizes HCC 
cells to Sorafenib treatment. Even if the molecular mechanisms by which miRNA-122 makes cells sensitive 
to Sorafenib were not shown, these results provide the rationale for testing a combination therapy of miRNA-
122 mimetic and Sorafenib in animal models. In line with this report, Shimizu et al. [65] described the ability 
of the let-7 family to cooperate with Sorafenib in inducing apoptosis in liver cancer cell lines through the 
downregulation of BCL-XL. 
Recently, miRNA expression in recurrent and non-recurrent human HCC tissue samples allowed the 
identification of miRNA-216a/217 cluster upregulation in recurrent HCCs [66]. The main identified targets 
were SMAD7 and PTEN, both downregulated in HCC. Moreover, they found that miRNA-216a/217 positively 
regulate the transforming growth factor (TGF)-β/PI3K/AKT pathway that further contributes to acquired 
resistance to Sorafenib. 
Despite these reports, the clinical translation of these findings remains elusive. More investigations involving 
animal models and patient-derived specimens are needed to unravel the role of these miRNAs in drug 
response. 

Circulating miRNAs 
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Recently, the presence of miRNAs in cell free components of body fluids (such as blood, serum, and plasma) 
has been described. Because miRNAs are very stable, this discovery gave the opportunity of exploiting 
miRNAs for diagnostic and prognostic purposes. 

The first report considering the possibility of evaluating the presence of miRNAs in blood as a noninvasive 
tool for the diagnosis of cancer was by Lawrie et al. [67]: they described higher levels of miRNA-21 in the 
serum of patients with B cell lymphoma compared with healthy individuals, and correlated miRNA-21 amount 
with relapse. A few months later, Mitchell et al. [68] extended monitoring of circulating miRNAs to solid tumor 
diagnosis: in their work, serum levels of miRNA-141 could distinguish patients with prostate cancer from 
healthy controls. These pioneering reports opened the field of research towards the use of circulating 
miRNAs for diagnostic and prognostic purposes: currently, circulating miRNAs associated with almost every 
type of cancer have been reported and their role as biomarkers has been proposed [69]. 
Future studies of the correlation between the presence of miRNAs in plasma/serum and 
sensitivity/resistance to therapy would prove if circulating miRNAs can represent a powerful noninvasive tool 
for monitoring tumor response. 

In this regard, a very intriguing but preliminary report recently described the association between miRNA-210 
plasma levels in breast cancer patients and Trastuzumab sensitivity, tumor presence and lymph node 
metastases: in particular, high miRNA-210 plasma levels correlated with Trastuzumab resistance, both in a 
cohort of breast cancer patients (n = 29) and in a breast cancer cell line rendered resistant to 
Trastuzumab[70]. These data highlight once more the value of in vitro studies exploiting cell lines rendered 
resistant to antineoplastic compounds and make more concrete the perspective of monitoring the tumor 
behavior through circulating miRNA levels. Nevertheless, more studies are needed to make use of 
circulating miRNA levels as markers of response and resistance to current targeted therapies. The goal for 
the future is the translation of basic research in every day clinical practice for an earlier diagnosis and a more 
effective treatment. 

Concluding remarks 

Over the past few years, cancer treatment drastically changed. Upon the discovery of targeted therapies it 
appeared that, hitting the right ‘heal’, many tumors could become curable. Since the initial enthusiasm, we 
discovered that although the introduction of targeted therapies certainly represented a big step forward in the 
field, the occurrence of resistance strongly limits their efficacy. Many efforts are now directed towards the 
study of the mechanisms underlying resistance to treatment. The remaining goal is to predict resistance 
onset before cancer reacquires the initial aggressiveness or, vice versa, to predict tumor response, avoiding 
wasting time and money in useless treatments. In this scenario, miRNAs can represent a powerful tool: if the 
levels of defined miRNAs in the blood can foresee tumor behavior, we can offer a precise diagnosis and 
treatment plan to every individual. From the available studies, it appears that some miRNAs are associated 
with already established mechanisms of cancer development (such as the activation of stress sensors or the 
inactivation of key tumor suppressors) and are thus involved in the onset of resistance to different therapies 
in different contexts. A brand new field is now opening, investigating the role of the microenvironment in 
inducing resistance of cancer cells to targeted therapies. Many studies, in fact, have shown that the 
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microenvironment is not an ‘innocent bystander’ but plays an active role in tumor responses to 
therapies24 and 71. To date, many studies have demonstrated that it acts by producing soluble factors that 
activate in tumor cells signaling pathways able to confer resistance to molecular drugs. However, some 
papers have recently shown that the microenvironment can also modulate miRNA expression in neoplastic 
cells through secretion of soluble molecules [72], cell–cell adhesion 72 and 73, and other yet unknown 
mechanisms [74]. Moreover, because miRNAs are a potential strategy to suppress the expression of 
proangiogenic signaling components, their role in resistance to antiangiogenic therapies is still an unexplored 
field [75]. 
Overall, miRNA involvement in the onset of resistance to targeted therapies remains in most cases drug- and 
tissue-specific, rendering its clinical exploitation more difficult. Nevertheless, the first clinical trials evaluating 
the levels of miRNAs during exposure to targeted therapies are ongoing (http://www.clinicaltrials.gov). Their 
results will show if miRNA changes can have a predictive function and, provided the demonstration of their 
causative role in the onset of resistance, will also identify new possible therapeutic targets. Another 
important aid to advance our knowledge in this field comes from the availability of several bioinformatic tools 
for the study of molecular determinants of tumor cell behavior and drug sensitivity/resistance. Wide 
integromics studies will be required to join together biological data, obtained in different preclinical and 
clinical systems, in order to obtain a more general view of the role of each miRNA in different tumors and in 
response to different drugs. 
In summary, even if the research on the role of miRNAs in sustaining resistance to antineoplastic treatments 
is promising, many questions are still unanswered: are there miRNAs impinging on general mechanisms of 
cell survival that are involved in resistance to different drugs? Do they generate the same mechanisms of 
resistance in different tumors? Can miRNA evaluation help foresee the onset of resistance? Very likely, in 
the near future some of these questions will be answered and robust validation studies will clarify if the 
preclinical findings lead to clinical translation. 
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Glossary 

Monoclonal antibodies (mAbs) 

recombinant antibodies that recognize antigens on the cancer cell surface and induce target inactivation or 
downregulation and/or antibody-dependent cell mediated cytotoxicity (ADCC). Rituximab was the first mAb 
approved for the treatment of lymphomas and directed against the CD20 antigen expressed on B cells. 
 
Primary (or innate) resistance 
mechanism that renders cancer cells refractory to drug treatment from the beginning (patients never benefit 
from treatment). 
 
Resistance 
mechanism exploited by cancer cells to overcome the inhibitory effect of a drug in order to survive and 
proliferate. 
 
Secondary (or acquired) resistance 
mechanism that renders cancer cells refractory to the treatment after a period of time of response (patients 
initially respond to treatment but become resistant over time). 
 
Tyrosine kinase inhibitors (TKIs) 
chemically synthesized small molecules that bind tyrosine kinase proteins with different degrees of specificity 
and compete with or prevent ATP binding. Tyrosine kinase proteins represent good candidates for cancer 
treatment because they are key regulators of cell proliferation and are often constitutively active in cancer 
cells due to overexpression, amplification, or mutations. The first TKI approved by the FDA was Imatinib for 
the treatment of CML harboring BCR–ABLtranslocation. 
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