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Type Reconstruction for the Linear π-Calculus
with Composite and Equi-Recursive Types

Luca Padovani – Dipartimento di Informatica, Università di Torino, Italy

Abstract. We generalize the linear π-calculus so that multiple processes can ac-
cess the same composite, possibly recursive data structure containing linear val-
ues, provided that there is no overlapping access on such values. We define a
complete type reconstruction algorithm for the type system. En passant, we solve
the problem of reconstruction for equi-recursive session types.

1 Introduction

The linear π-calculus [9] is a formal model of communicating processes where chan-
nels are either unlimited or linear. Unlimited channels can be used for any number of
input/output operations, while linear channels can only be used once for an input and
once for an output. The ephemeral nature of linear channels contrasts with their value.
In fact, they occur frequently in actual systems, they admit efficient implementations
and enable important optimizations [6,5,9], and communications on linear channels are
interference-free and partially confluent [9,10]. In addition, linearized channels can be
encoded using linear channels [8,2] meaning that the vast body of research done on
session types initiated with [3,4] has its foundations just on the linear π-calculus.

Type reconstruction is the problem of inferring the type of entities – channels in
our case – given a program using them. For the linear π-calculus this problem was
addressed in [7], although that work did not consider composite or recursive types. The
goal of this work is the definition of a type reconstruction algorithm for the linear π-
calculus extended with pairs, disjoint sums, and equi-recursive types. These constructs,
albeit standard, gain relevance and combine in non-trivial ways with the features of the
linear π-calculus. We explain why this is the case in the rest of this section.

By definition, linear channels can only be used for one shot communications, but it
is a known fact that more sophisticated interactions can be implemented taking advan-
tage of channel mobility using a continuation-passing style [8,2]. The basic idea is that,
along with the proper payload of a communication, one can send another channel on
which the rest of the converation takes place. To illustrate this mechanism, consider the
process definitions

P(x,y) def
= (νa)(x!〈y,a〉 |P〈a,y+1〉) C(x) def

= x?(y,z).C〈z〉 (1.1)

modeling a producer P that sends messages to a consumer C. At each iteration, the
producer creates a new channel a, sends the payload y to the consumer on x along with
the continuation a on which subsequent communications will take place, and iterates.
In parallel, the consumer waits for the payload and the continuation from the producer
on x and then iterates. Explicit continuations are key to preserve the order of produced
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messages. Had we modeled producer and consumer using the same x channel at each
iteration, there would be no guarantee that messages were received in order.

Let us now assign types to the channels in (1.1) starting from x in the consumer.
There, x is used once for receiving a pair made of an integer y and another channel z.
Say the type of z is t and note that z is used in C〈z〉 in the same place as x, meaning that
x and z must have the same type. Then, also x has type t and t must satisfy the equation
t = [int× t]1,0 where the numbers 1 and 0, henceforth called uses, indicate that the
channel of type t is used once for input and never for output. Channel x is used once
in the producer for sending an integer y and a continuation a. Clearly, the continuation
must have type t for that is how it is used in C. Therefore, x in P has type s= [int×t]0,1

where the uses 0 and 1 indicate that x never used for input and is used once for output.
Finally, there are two (non-binding) occurrences of a in the producer: a in x!〈n,a〉 has
type t because that is how a will be used by the consumer; a in P〈a,y+ 1〉 has type s
because that is how a will be used by the producer. Overall, the uses in the types of a
say that a is a linear channel: it is used once by the producer for sending the payload
and once by the consumer for receiving it.

We note three facts. First, the explicit continuation-passing style easily leads to
channels with recursive types. This recursion represents an iterative communication be-
havior that takes place over channels rather than nesting structure of some data. Second,
linear channels, like a, may syntactically occur multiple times and in general are used
twice, once for input and once for output. Third, different occurrences of the same chan-
nel may have different yet compatible types. In the case of (1.1), the types t and s of
the non-binding occurrences of a are compatible because corresponding uses in t and s
are never 1 at the same time. The binding occurrence of a in (νa) has type [int× t]1,1,
which is the composition of t and s.

One legitimate question is whether and how the notions of type compatibility and
combination extend from channel to composite types. In this respect, the existing bibli-
ography provides rather unsatisfactory answers: the standard references on (type recon-
struction for) the linear π-calculus [9,7] do not consider composite or recursive types.
Channels in these works are polyadic, meaning that there is an implicit notion of tuple
type, but there are no actual values of this type: tuples are created just before and de-
stroyed right after each communication. Linear type systems with composite types have
been discussed in [5,6] for the linear π-calculus and in [11] for a functional language.
All these works, however, see linearity as a “contagious” property: every structure that
contains linear values becomes linear itself. Such interpretation may be appropriate in
a sequential setting, but is not the only sensible one in a concurrent/parallel setting. In
fact, it is acceptable (and desirable, for the sake of parallelism) that several processes
simultaneously access the same composite data structure, provided that they access dif-
ferent linear values stored therein. The problem is whether the type system is expressive
enough to capture the fact that there are no overlapping accesses to the same linear val-
ues. For example, consider the type satisfying the equation

tlist = unit⊕ ([int]0,1× tlist)

which is the disjoint sum between unit and the product [int]0,1× tlist and which can
be used for describing lists of linear channels with type [int]0,1. If we follow [11,5,6],
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an identifier l having type tlist can syntactically occur only once in a program, and a
composition like for instance Odd〈l〉 |Even〈l〉 is illegal. However, suppose that Odd
and Even are the two processes defined by

Odd(x) def
= case x of [] ⇒ 0

y: z⇒ y!〈3〉 |Even〈z〉
Even(x) def

= case x of [] ⇒ 0
y: z⇒ Odd〈z〉

which walk through a list x: if x is the empty list [] they do nothing; if x has head y and
tail z, Odd sends 3 on y and continues as Even〈z〉 while Even ignores y and continues
as Odd〈z〉. So, Odd〈l〉 sends 3 on every odd-indexed channel in l and Even〈l〉 sends 3
on every even-indexed channel in l. The fact that Odd and Even access different linear
values of a list is reflected in the two (mutually recursive) types of x in Odd and Even:

todd = unit⊕ ([int]0,1× teven) and teven = unit⊕ ([int]0,0× todd) (1.2)

where the two 0’s in teven denote that Even does not use at all the first (and more gen-
erally every odd-indexed) element of its parameter x. The key observation is that just
like a was allowed to occur twice in (1.1) with two compatible types t and s whose
composition was [int× t]1,1, then we can allow l to occur twice in Odd〈l〉 |Even〈l〉
given that the two occurrences of l are used according to two compatible types todd and
teven whose composition is tlist. The “only” difference is that, while t and s were channel
types and their composition could be expressed simply by composing the uses in them,
todd and teven are recursive, structured types that compose to tlist in the limit.

To summarize the contributions of this paper:

– We study a natural generalization of the linear π-calculus that allows multiple pro-
cesses to simultaneously access composite data structures containing linear values.

– We define a complete reconstruction algorithm for the type system which supports
basic and channel types, pairs, disjoint sums, and equi-recursion.

– Given that sessions can be fully encoded into the linear π-calculus [8,2], we indi-
rectly provide a complete reconstruction algorithm for equi-recursive session types.

We proceed with the formal definition of the language and of the type system (Sec-
tion 2). The type reconstruction algorithm consists of a constraint generation phase
(Section 3) and a constraint solving phase (Section 4). Section 5 concludes. The full
version of the paper (with proofs) and a Haskell implementation of the algorithm are
available at http://www.di.unito.it/~padovani/hypha/.

2 The Linear π-Calculus

We use the following conventions: we let m, n, . . . range over natural numbers; we
use a countable set of channels a, b, . . . and a disjoint countable set of variables x, y,
. . . ; names u, v, . . . are either channels or variables. We work with the asynchronous
π-calculus extended with constants, pairs, and disjoint sums. The syntax of expressions
and processes is defined below:

e ::= n
∣∣ u
∣∣ e,e

∣∣ inl e
∣∣ inr e

∣∣ · · ·
P ::= 0

∣∣ u?(x).P
∣∣ u!〈e〉

∣∣ (P |Q)
∣∣ ∗P ∣∣ (νa)P

∣∣ let x,y = e
in P

∣∣ case e of
{ inl x⇒ P,
inr y⇒ Q }

http://www.di.unito.it/~padovani/hypha/
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Table 1. Reduction of processes.

[R-COMM]
a!〈v〉 |a?(x).Q a−→ Q{v/x}

[R-LET]
let x,y = v,w in P τ−→ P{v,w/x,y}

[R-CASE]
k ∈ {inl,inr}

case (k v) of{i xi⇒ Pi}i=inl,inr
τ−→ Pk{v/xk}

[R-PAR]

P `−→ P′

P |Q `−→ P′ |Q

[R-NEW 1]
P a−→ Q

(νa)P τ−→ (νa)Q

[R-NEW 2]

P `−→ Q ` 6= a

(νa)P `−→ (νa)Q

[R-STRUCT]

P≡ P′ P′ `−→ Q′ Q′ ≡ Q

P `−→ Q

Expressions e, . . . are either integers, names, pairs e1,e2 of expressions, or the in-
jection (i e) of an expression e using the constructor i ∈ {inl,inr}. Expressions can
be easily extended with additional data types and constructors without invalidating the
results that follow. Values v, w, . . . are expressions without variables.

Processes P, Q, . . . comprise the standard constructs of the asynchronous π-calculus:
the idle process 0 performs no actions; the input process u?(x).P waits for a message
from channel u, binds the message to x, and continues as P; the output process u!〈e〉
sends (the value of) e on channel u; the parallel composition P |Q executes P and Q in
parallel; the replication ∗P denotes infinitely many copies of P executing in parallel; the
restriction (νa)P creates a new channel a with scope P. In addition to these, we include
two process forms for deconstructing pairs and disjoint sums. In particular, the process
let x1,x2 = e in P evaluates e, which must result into a pair v1,v2, binds each vi to xi,
and continues as P. The process case e of{i xi⇒ Pi}i=inl,inr evaluates e, which must
result into a value (i v) for i ∈ {inl,inr}, binds v to xi and continues as Pi.

Notions of free names fn(P) and bound names bn(P) of P are as expected. We iden-
tify processes modulo renaming of bound names and we write P{v/x} for the capture-
avoiding substitution of the free occurrences of x in P with v.

The operational semantics of the language is defined in terms of a structual congru-
ence relation, which rearranges terms that we do not want to distinguish, and a reduction
relation, as usual. Structural congruence ≡ is completely standard (in particular, it in-
cludes the law ∗P ≡ ∗P |P). Reduction is defined in Table 1 and is also conventional,
except that we decorate the reduction relation with labels ` that are either channels or the
special symbol τ , denoting an unobservable action: in [R-COMM] the label is identified
as the channel a on which a message is exchanged, while in [R-LET] and [R-CASE] it is
τ to denote the fact that these are internal computations not involving communications.
Rules [R-PAR], [R-NEW 1], and [R-NEW 2] propagate labels through parallel compositions
and restrictions. In [R-NEW 1], the label a becomes τ when it crosses the binder for a.
Rule [R-STRUCT] closes reduction under structural congruence.

The type system makes use of a countable set of type variables α , β , . . . and of uses
κ , . . . which are elements of the set {0,1,ω}. Types t, s, . . . are defined by

t ::= int
∣∣ α

∣∣ t× t
∣∣ t⊕ t

∣∣ [t]κ,κ ∣∣ µα.t
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and include the type of integers int, products t1×t2 denoting values of the form (v1,v2)
where vi has type ti for i = 1,2, and disjoint sums t1⊕ t2 denoting values of the form
(inl v) when v has type t1 or of the form (inr v) when v has type t2. Throughout the
paper we let� stand for either× or⊕. The type [t]κ1,κ2 denotes channels for exchanging
messages of type t. The uses κ1 and κ2 respectively denote how many input and output
operations are allowed on the channel: 0 for no use, 1 for a single use, and ω for any
number of uses. For example: a channel with type [t]1,1 must be used once for receiving
a message of type t and once for sending a message of type t; a channel with type [t]0,0

cannot be used; a channel with type [t]ω,ω can be used any number of times for sending
and/or receiving. Type variables and recursions are used for building recursive types, as
usual. Notion of free and bound type variables are as expected. We assume that every
bound type variable is guarded by a constructor to avoid meaningless terms such as
µα.α . We identify types modulo renaming of bound type variables and if their infinite
unfoldings are the same (regular) tree [1]. In particular, we have µα.t = t{µα.t/α}
where t{s/α} is the capture-avoiding substitution of the free occurrences of α in t with
s.

We now define some key relations on uses and types. In particular, ≤ is the least
partial order such that 0≤ κ and compatibility � is the least relation such that

0� κ κ � 0 ω � ω (2.1)

The meaning of ≤ is the obvious one: when κ1 ≤ κ2, the use κ2 allows at least as
many operations on a channel as the use κ1. In what follow we will write κ1 < κ2 if κ1≤
κ2 and κ1 6= κ2 and κ1∨κ2 for the least upper bound of κ1 and κ2, when it is defined.
Compatibility determines whether the least upper bound of two uses expresses their
combination without any loss of precision. For example, 0� 1 because the combination
of 0 uses and 1 use is 0∨ 1 = 1 use. On the contrary, 1 6� 1 because there is no 2 use
that expresses the combination of 1 and 1 and ω is less precise than 2. Similarly, 1 6� ω

because there is no use expressing the fact that a channel is used at least once.
Every binary relation Ruse on uses induces a corresponding relation Rtype on types,

defined coinductively by the following rules:

int Rtype int
κ1 Ruse κ3 κ2 Ruse κ4

[t]κ1,κ2 Rtype [t]κ3,κ4

t1 Rtype s1 t2 Rtype s2

t1� t2 Rtype s1� s2
(2.2)

Similarly, the partial operation ∨ on uses coinducively induces one on types so that
t ∨ s is the least upper bound of t and s, if it is defined. Note that ≤ is antisymmetric,
in particular t = s if and only if t ≤ s and t ≥ s. Note also that [t]κ1,κ2 R [s]κ3,κ4 holds
provided that t = s. The relation t � t is particularly interesting, because it gives us a
neat characterization of unlimited types, those denoting values that must not or need
not be used. Linear types, on the other hand, denote values that must be used:

Definition 2.1. We say that t is unlimited if t � t. We say that t is linear otherwise.

Channel types are either limited or unlimited depending on their uses. So, [t]1,0,
[t]0,1, and [t]1,1 are all linear types whereas [t]0,0 and [t]ω,ω are both unlimited. Other
types are linear or unlimited according to the channel types occurring in them. For
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Table 2. Type rules for expressions and processes.

Expressions

[T-CONST]
Γ � Γ

Γ ` n : int

[T-NAME]
Γ � Γ

Γ ,u : t ` u : t

[T-PAIR]
Γ ` e : t Γ ′ ` e′ : s

Γ + Γ ′ ` e,e′ : t× s

[T-INL]
Γ ` e : t

Γ ` inl e : t⊕ s

[T-INR]
Γ ` e : s

Γ ` inr e : t⊕ s

Processes

[T-IDLE]
Γ � Γ

Γ ` 0

[T-IN]
Γ ,x : t ` P 0 < κ

Γ +u : [t]κ,0 ` u?(x).P

[T-OUT]
Γ ` e : t 0 < κ

Γ +u : [t]0,κ ` u!〈e〉

[T-PAR]
Γi ` Pi

(i=1,2)

Γ1 + Γ2 ` P1 |P2

[T-REP]
Γ ` P

Γ + Γ ` ∗P

[T-NEW]
Γ ,a : [t]κ,κ ` P

Γ ` (νa)P

[T-LET]
Γ ` e : t× s Γ ′,x : t,y : s ` P

Γ + Γ ′ ` let x,y = e in P

[T-CASE]
Γ ` e : t⊕ s Γ ′,xi : t ` Pi

(i=inl,inr)

Γ + Γ ′ ` case e of{i xi⇒ Pi}i=inl,inr

example, [t]0,0× [t]1,0 is linear while [t]0,0× [t]0,ω is unlimited. Recursion does not affect
the classification of types into linear and unlimited. For example, µα.[int×α]1,0 is a
linear type that denotes a channel that must be used once for receiving a pair made of
an integer and another channel with the same type.

We type check expressions and processes in type environments Γ , . . . , which are
finite maps from names to types that we write as u1 : t1, . . . ,un : tn. We identify type
environments modulo the order of their bindings, we denote the empty environment
with /0, we write dom(Γ) for the domain of Γ , namely the set of names for which there
is a binding in Γ , and Γ1,Γ2 for the union of Γ1 and Γ2 when dom(Γ1)∩dom(Γ2) = /0. We
extend the relation � between types pointwise to type environments. Following [9] we
define a partial operation + to combine type environments:

/0+ Γ = Γ + /0 def
= Γ

(Γ1,u : t)+(Γ2,u : s) def
= (Γ1 + Γ2),u : t ∨ s if t � s

Note that Γ1 + Γ2 is undefined if there is u ∈ dom(Γ1)∩dom(Γ2) and Γ1(u) 6� Γ2(u) and
that dom(Γ1 + Γ2) = dom(Γ1)∪dom(Γ2). Thinking of type environments as of specifi-
cations of the resources used by expressions/processes, Γ1 + Γ2 expresses the combined
use of the resources specified in Γ1 and Γ2. Any resource occurring in only one of these
environments occurs in Γ1 + Γ2; any resource occurring in both Γ1 and Γ2 must be used
according to compatible types, and its type in Γ1 + Γ2 is their least upper bound. For
example, if a channel a is used by a process for sending a message of type int, it has
type [int]0,1 in that process; if it is used by anther process for receiving a message of
type int, it has type [int]1,0 in that process. Overall, the channel is used by the two
processes for sending and receiving a message of type int, namely according to the
type [int]0,1∨ [int]1,0 = [int]1,1.

Type rules for expressions and processes are presented in Table 2. In general these
rules are basically the same as those found in the literature [9,7]. All the additional
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flexibility enabled by our type discipline is actually a consequence of the more general
notion of type combination ∨. The rules for expressions are unremarkable. Just observe
that the part of the type environment that is not used in the expression must be unlimited
(Γ � Γ ), and that [T-PAIR] uses + for combining the type environments that are necessary
for typing the two components of the pair. This makes it possible to type an expression
such as (a,a), for example in the type environment a : [int]1,1. The idle process does
nothing, so it is well typed only in an unlimited environment. Input and output processes
require a strictly positive use of the corresponding operation in the type of the channel
u used for communication. Rule [T-REP] states that a replicated process ∗P is well typed
in the environment Γ+Γ provided that P is well typed in Γ . The rationale for this is that
∗P stands for an unbounded number of copies of P composed in parallel, hence each
copy of P requires a corresponding copy Γ of the type environment. In principle this
would require typing ∗P in the environment Γ + Γ + · · · , but because of the way + is
defined, we know that Γ + Γ = Γ whenever Γ + Γ is defined. The rules [T-PAR], [T-LET],
and [T-CASE] are conventional. Note again the use of + for combining environments
used in different parts of the process. Finally, rule [T-NEW] states that (νa)P is well
typed if so is P, where P has visibility of a. We require the type of a to have the same
uses for input and output. This is not necessary for the soundness of the type system,
although it is a reasonable choice in practice.

The type system is sound and the results in Section 4.3 of [9] can be formulated in
our setting. In particular, the operations on a channel never exceed the uses in its type. It
is possible to establish other basic safety properties, for instance that closed, well-typed
let’s and case’s always reduce. The long version of the paper gives more details.

Example 2.1. We model a recursive process definition using unlimited channels: a repli-
cated input on the channel represents the definition, while an output on the channel
represents an invocation of the definition. For example, for Odd and Even we have

∗a?(x).case x of
inl y1 ⇒ 0
inr y2 ⇒ let y,z = y2 in y!〈3〉 |b!〈z〉

∗b?(x).case x of
inl y1 ⇒ 0
inr y2 ⇒ let y,z = y2 in a!〈z〉

and we assume that inl 0 represents the empty list [] and inr (y,z) represents the non-
empty list y: z with head y and tail z. Below is a derivation showing that Odd encoded
as shown above is well typed, where we take todd and teven defined in (1.2):

[T-IDLE]
y1 : int ` 0

[T-OUT]
y : [int]0,1 ` y!〈3〉

[T-OUT]
b : [teven]

0,ω ,z : teven ` b!〈z〉
[T-PAR]

b : [teven]
0,ω ,y : [int]0,1,z : teven ` y!〈3〉 |b!〈z〉

[T-LET]
b : [teven]

0,ω ,y2 : [int]0,1× teven ` let y,z = y2 in · · ·
[T-CASE]

b : [teven]
0,ω ,x : todd ` case x of · · ·

[T-IN]
a : [todd]

ω,0,b : [teven]
0,ω ` a?(x).case x of · · ·

[T-REP]
a : [todd]

ω,0,b : [teven]
0,ω ` ∗a?(x).case x of · · ·

Note that a and b must be unlimited channels because they occur free in a replicated
process, for which rule [T-REP] requires an unlimited environment. A similar deriva-
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tion shows that Even is well typed in an environment where the types of a and b have
swapped uses

a : [todd]
0,ω ,b : [teven]

ω,0 ` ∗b?(x).case x of · · ·

so the combined types of a and b are [todd]
ω,ω and [teven]

ω,ω respectively. We conclude

a : [todd]
ω,ω ,b : [teven]

ω,ω , l : tlist ` a!〈l〉 |b!〈l〉

because todd � teven and todd ∨ teven = tlist. �

3 Constraint Generation

The problem of type reconstruction is the following: given a process P, find a type envi-
ronment Γ such that Γ ` P, provided there is one. In general we also want to maximize
the number of channels that have a linear type. The rules shown in Table 2 rely on a
fair amount of guesses regarding the structure of types in the type environment, how
they are split/combined using ∨, and the uses occurring in them. So, these rules cannot
be easily turned into a type reconstruction algorithm. The way we follow to define one
is rather conventional: we give an alternative set of syntax-directed rules that compute
constraints on types and uses and then we search for a solution of such constraints. The
novelty is that we will need constraints expressing not only the equality between types
and uses, but also the order ≤ and compatibility �, which affect the solution phase in
non-trivial ways.

To get started, we generalize uses to use expressions, which are either uses or use
variables ρ , . . . that denote an unknown use. We also define type expressions as types
without µ’s and where we admit use expressions wherever uses can occur. We keep
κ and t for ranging over use and type expressions and we say that t is proper if it is
different from a type variable. Constraints ϕ , . . . have one of these forms:

ϕ ::= κ1 Rc κ2 | t1 Rc t2

where R ∈ {≤,<,�,∼} and ∼ is the trivial relation between uses. The subscript ·c re-
minds us that κ1 Rc κ2 and t1 Rc t2 are just triples made of two use or type expressions
and a symbol Rc denoting a relation. Equality constraints =c can be expressed as the
conjunction of two constraints ≤c and ≥c, given that ≤ is antisymmetric. Constraints
with the strict order <c will be generated only for use expressions. Compatibility con-
straints�c will be generated for expressing type and use composition, as well as for ex-
pressing the assumption that a type/use is unlimited (see e.g. the premises of [T-IDLE]).
Finally, ∼c constraints propagate information on the structure of types. We will see in
Section 4 how this information is used for verifying the satisfiability of constraints.

We let C , . . . range over finite sets of constraints. The domain of C , written dom(C ),
is the (finite) set of use and type expressions occurring in the constraints in C . We let σ

range over finite maps from type variables to types and from use variables to uses. The
application of σ replaces use variables ρ and type variables α with the corresponding
uses σ(ρ) and types σ(α). We write σκ and σt for the application of σ to κ and t. We
say that σ is a solution of C if σt R σs for every t Rc s ∈ C and σκ1 R σκ2 for every
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κ1 Rc κ2 ∈ C . We say that C is satisfiable if it has a solution. We say that C1 and C2
are equivalent if they have the same solutions.

We need two operators for combining and merging type environments in the recon-
struction algorithm. They take two environments Γ1 and Γ2 and produce a pair consisting
of another type environment Γ and a set of constraints C :

dom(Γ1)∩dom(Γ2) = /0
Γ1t Γ2 Γ1,Γ2; /0

Γ1t Γ2 Γ ;C α fresh
(Γ1,u : t)t (Γ2,u : s) Γ ,u : α;C ∪{t �c s, t ≤c α,s≤c α}

/0u /0 /0; /0
Γ1u Γ2 Γ ;C

(Γ1,u : t)u (Γ2,u : s) Γ ,u : t;C ∪{t =c s}

The relation Γ1 t Γ2  Γ ;C combines the type environments Γ1 and Γ2 into Γ when
the names in dom(Γ1)∪ dom(Γ2) are used both as specified in Γ1 and also in Γ2, so
t is analogous to + in Table 2. When Γ1 and Γ2 have disjoint domains, their combi-
nation is just their union and no constraints are generated. Any name u that occurs in
dom(Γ1)∩ dom(Γ2) must be used according to compatible types Γ1(u) � Γ2(u) and its
type must be an upper bound of both Γ1(u) and Γ2(u). In general Γ1(u) and Γ2(u) are
type expressions with free type variables, hence these relations cannot be checked right
away. Rather, they are symbolically recorded in the set of constraints C . Note in partic-
ular that the combined type of u is unknown and is represented by a fresh type variable
that is an upper bound of Γ1(u) and Γ2(u). The relation Γ1u Γ2 Γ ;C merges the type
environments Γ1 and Γ2 into Γ when the names in dom(Γ1)∪ dom(Γ2) are used in al-
ternative branches of a case construct. Note that Γ1 u Γ2  Γ ;C holds if and only if
Γ1(u) = Γ2(u) for every u ∈ dom(Γ1) = dom(Γ2). This corresponds to the fact that in
[T-CASE] we use the same type environment Γ ′ for typing the two branches of the case.

The rules to synthesize type environments and generate constraints are presented
in Table 3 and derive judgments of the form e : t . Γ ;C for expressions and P . Γ ;C
for processes. They closely correspond to those in Table 2; for this and space reasons
we will not describe them in detail. In general, unknown uses and types become fresh
use and type variables (all variables introduced by the rules are assumed to be fresh),
every application of the + operator in Table 2 becomes an application of t in Table 3,
and every assumption on uses and types becomes a constraint. Constraints accumulate
from the premises to the conclusion of each rule. In rules [I-INL] and [I-INR] the type
of the disjoint sum which was guessed in [T-INL] and [T-INR] is becomes a fresh type
variable. In rules [I-IN] and [I-OUT] it is not known whether the used channel u is linear
or unlimited, so the constraint 0 <c ρ records the fact that ρ must be either 1 or ω .
Rule [I-NEW] requires a to have a channel type with equal uses by having the same use
variable ρ twice. There is also a rule [I-WEAK] that has no correspondence in Table 2. It
is necessary because [I-IN], [I-NEW], [I-LET], and [I-CASE], which correspond to binding
constructs of the calculus, assume that the bound names occur in the premises on these
rules. This may not be the case if a bound name is never used. With rule [I-WEAK] we can
introduce missing names in type environments wherever is convenient. Of course, an
unused name must have a type α that is unlimited, which is recorded by the constraint
α �c α . Strictly speaking, with [I-WEAK] this set of rules is not syntax directed, which
in principle is a problem if we want to obtain an algorithm. In practice, the places where
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Table 3. Constraint generation for expressions and processes.

Expressions
[I-INT]
n : int. /0; /0

[I-NAME]
u : α .u : α; /0

[I-PAIR]
ei : ti . Γi;Ci

(i=1,2) Γ1t Γ2 Γ ;C3

e1,e2 : t1× t2 . Γ ;C1∪C2∪C3

[I-INL]
e : t . Γ ;C

inl e : t⊕α . Γ ;C

[I-INR]
e : t . Γ ;C

inr e : α⊕ t . Γ ;C

Processes

[I-IDLE]
0. /0; /0

[I-IN]
P. Γ ,x : t;C Γ tu : [t]ρ,0 Γ ′;C ′

u?(x).P. Γ ′;C ∪C ′∪{0 <c ρ}

[I-OUT]
e : t . Γ ;C Γ tu : [t]0,ρ  Γ ′;C ′

u!〈e〉. Γ ′;C ′∪{0 <c ρ}

[I-PAR]
Pi . Γi;Ci

(i=1,2) Γ1t Γ2 Γ ;C3

P1 |P2 . Γ ;C1∪C2∪C3

[I-REP]
P. Γ ;C Γ t Γ  Γ ′;C ′

∗P. Γ ′;C ∪C ′

[I-WEAK]
P. Γ ;C

P. Γ ,u : α;C ∪{α �c α}

[I-NEW]
P. Γ ,a : t;C

(νa)P. Γ ;C ∪{t =c [α]ρ,ρ}

[I-LET]
e : t . Γ1;C1 P. Γ2,x : t1,y : t2;C2 Γ1t Γ2 Γ ;C3

let x,y = e in P. Γ ;C1∪C2∪C3∪{t =c t1× t2}

[I-CASE]
e : t . Γ1;C1 Pi . Γi,xi : ti;Ci

(i=inl,inr) Γinlu Γinr Γ2;C2 Γ1t Γ2 Γ3;C3

case e of{i xi⇒ Pi}i=inl,inr . Γ3;C1∪C2∪C3∪Cinl∪Cinr∪{t =c tinl⊕ tinr}

[I-WEAK] may be necessary are easy to spot (in the premises of all the aforementioned
rules for binding constructs). What we gain with [I-WEAK] is a simpler presentation of
the rules for constraint generation.

There is a tight correspondence between the type system and constraint generation.
Every satisfiable set of constraints generated from P corresponds to a typing for P.

Theorem 3.1. If P. Γ ;C and σ is a solution for C , then σΓ ` P.

In fact, when P.Γ ;C we can think of Γ ;C as the principal typing of P, because any
type environment Γ ′ such that Γ ′ ` P can be obtained by applying a solution for C to Γ .

Theorem 3.2. If Γ ′ ` P, then P. Γ ;C for some Γ , C and σ solution of C and Γ ′ = σΓ .

Example 3.1. We show the constraint set generated by two processes accessing the
same composite structure containing linear values. The Odd and Even processes in Sec-
tion 1 are too large to be discussed in here, so we focus on a simpler, artificial process
that exhibits the same phenomenon. We consider

a?(x).(let y,z = x in y!〈1〉 |let y,z = x in z!〈2〉)
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Table 4. Constraint solver algorithm.

Input: a finite set of constraints C .
Output: either fail or a solution of C .

1. Compute C ;
2. Compute a solution σu for the use constraints in C , or fail if there is none;
3. If t ∼c s ∈ C and t,s are proper and are different constructors, then fail;
4. Let σt = {α 7→ supC ,σu

({α}) | α ∈ dom(C )};
5. Return σu∪σt.

which receives a pair x of channels from a and sends 1 and 2 on them. Note that the pair
x is deconstructed twice, but every time only one of its components is used. We obtain

[I-OUT]
y!〈1〉. y : [int]0,ρ1 ;C1

[I-WEAK]
y!〈1〉. y : [int]0,ρ1 ,z : γ;C2

[I-LET]
let y,z = x in y!〈1〉. x : α1;C3

[I-OUT]
z!〈2〉. z : [int]0,ρ2 ;C4

[I-WEAK]
z!〈2〉. y : β ,z : [int]0,ρ2 ;C5

[I-LET]
let y,z = x in z!〈2〉. x : α2;C6

[I-PAR]
let y,z = x in y!〈1〉 |let y,z = x in z!〈2〉. x : α;C7

[I-IN]
a?(x).(let y,z = x in y!〈1〉 |let y,z = x in z!〈2〉).a : [α]ρ3,0;C8

where

C1
def
= {0 <c ρ1} C2

def
= C1∪{γ �c γ} C3

def
= C2∪{α1 =c [int]

0,ρ1 × γ}
C4

def
= {0 <c ρ2} C5

def
= C4∪{β �c β} C6

def
= C5∪{α2 =c β × [int]0,ρ2}

C7
def
=C3∪C6∪{α1 �c α2,α1 ≤c α,α2 ≤c α} C8

def
= C7∪{0 <c ρ3}

Within each let the variable x is assigned a distinct type variable αi. Eventually,
[I-PAR] finds out that x occurs twice, so it records in C7 the fact that the two types α1
and α2 must be compatible and that the overall type α of x must be an upper bound of
both. �

4 Constraint Solving

In this section we define an algorithm that, given a finite set of constraints C , determines
whether C is satisfiable and, if so, computes a solution of C . The algorithm, sketched
in Table 4, comprises 5 steps that can be roughly grouped in three phases: saturation,
verification, and synthesis. The phases are detailed in the rest of the section.

Saturation (step 1). The ≤c and �c constraints determined during constraint genera-
tion relate type expressions, but they are meant to affect the use variables occurring in
these type expressions (recall from (2.2) that every relation Rtype between types is the
extension of Ruse between uses). In order to find all constraints that must hold between
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use expressions, the set C is saturated with all the constraints that are entailed by those
already in C . Entailment is expressed thorugh a binary relation � defined as follows:

[E-REFL] {t Rc s} � {t Rc t,s Rc s} R ∈ {≤,∼}
[E-SYMM] {t Rc s} � {s Rc t} R ∈ {=,∼}
[E-TRANS] {t1 Rc t2, t2 Rc t3} � {t1 Rc t3} R ∈ {≤,∼}
[E-COMP 1] {t1 =c t2, t2 �c t3} � {t1 �c t3}
[E-COMP 2] {t1 ≤c t2, t2 �c t3} � {t1 �c t3}
[E-OPER] {t1� t2 Rc s1� s2} � {t1 Rc s1, t2 Rc s2}
[E-CHANNEL] {[t]κ1,κ2 Rc [s]κ3,κ4} � {t =c s,κ1 Rc κ3,κ2 Rc κ4}
[E-STRUCT] {t Rc s} � {t ∼c s}

The first three rules [E-REFL], [E-SYMM], and [E-TRANS] just compute the reflexive, sym-
metric, and transitive closures of those relations that enjoy such properties. Rule [E-COMP 1]
propagates compatibility constraints between equivalent types, and [E-COMP 2] propa-
gates compatibility constraints “downwards” from a type to a smaller one (indeed, it is
the case that κ1 ≤ κ2 � κ3 implies κ1 � κ3). Rule [E-OPER] propagates constraints be-
tween composite to their components. Rule [E-CHANNEL] propagates constraints from
type to use expressions and imposes the equality of message types for related channel
types. Finally, rule [E-STRUCT] generates trivial ∼c constraints between any pair of re-
lated type expressions. This is necessary to make sure that all message type equality
constrains are generated by [E-CHANNEL], given that � is not transitive. We denote by
C the smallest set that includes C and that is closed by the rules [E-*] above. Observe
that every C generated by the rules in Table 3 is finite, and that the entialment rules
[E-*] do not change the domain of the set C being saturated. Therefore, C is always
finite and can be computed in finite time by a simple iterative algorithm that repeatedly
applies the entailment rules until no new constraints are discovered. We have:

Proposition 4.1. C and C are equivalent.

Verification (steps 2 and 3). In this phase the algorithm verifies that C is satisfiable
and fails if this is not the case. The key observation is that satisfiability of the type
constraints does not depend upon one particular solution of the use constraints be-
cause the previous phase has computed all possible relations that must hold between
use expressions. Therefore, we can independently verify the satisfiabilty of use and
type constraints and fail if any of these check fails.

Recall that there is a finite number of use constraints, which are equations between
use expressions made of a finite number of use variables ranging over a finite domain
{0,1,ω}. Therefore, there exists a complete (albeit combinatorial) verification algo-
rithm that determines whether or not the use constraints in C are satisfiable. It is also
possible to find an “optimal” algorithm that aims at maximizing the number of use
variables that are assigned value 1 as opposed to ω . This algorithm can be improved
in many ways, because the set of use constraints can be usually partitioned into many
small sets of independent constraints, which can be efficiently solved in isolation. We
do not discuss the issues related to solving use constraints any further.

If the use constraints in C are satisfiable, then satisfiability of the type constraints
is granted provided that there are no constraints relating types built with different con-
structors. For example, int ≤c [α]κ1,κ2 is clearly unsatisfiable. Because of [E-STRUCT]
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and [E-TRANS], for any pair of types that must be related there is a constraint t ∼c s in
C . Therefore, if there is any such constraint where t and s are not type variables and
are built using different topmost constructors, then C is for sure unsatifiable and the
algorithm fails.

Proposition 4.2. If the algorithm fails in this phase, then C is not satisfiable.

Synthesis (steps 4 and 5). The last phase computes a solution σt for the type constraints
in σuC , which is the set of constraints C where each use variable ρ has been replaced
by σu(ρ). To compute σt we need the functions below:

clsR,C (T )
def
= {s | s Rc t ∈ C for some t ∈ T and s is proper}

supC ,σ (T )
def
=


[supC ,σ ({ti}i∈I)]

∨
i∈I σκi,

∨
i∈I σκ ′i if cls≤,C (T ) = {[ti]κi,κ

′
i }i∈I 6= /0

supC ,σ ({ti}i∈I)� supC ,σ ({si}i∈I) if cls≤,C (T ) = {ti� si}i∈I 6= /0
zeroC ,σ (T ) otherwise

zeroC ,σ (T )
def
=


[supC ,σ ({ti}i∈I)]

0,0 if cls∼,C (T ) = {[ti]κi,κ
′
i }i∈I 6= /0

zeroC ,σ ({ti}i∈I)� zeroC ,σ ({si}i∈I) if cls∼,C (T ) = {ti� si}i∈I 6= /0
int otherwise

The set clsR,C (T ) is made of the proper type expressions s such that s Rc t ∈ C
for some t ∈ T . Note that not all R’s are symmetric and that s is the type expression
on the left hand side of Rc. So, cls≤,C (T ) is the set of type expressions that are lower
bounds of some t ∈ T , while cls∼,C (T ) is the set of type expressions that are structurally
compatible with some t ∈ T . Note also that cls≤,C (T )⊆ cls∼,C (T ) because≤⊆∼. The
algorithm (Table 4) resolves each variable α to supC ,σu

({α}) where, supC ,σ (T ) is,
roughly speaking, the least upper bound of the types in T (even though the algorithm
always invokes supC ,σ with a singleton, in general we need to define supC ,σ over a
set of type expressions that are known to be equivalent). There are three cases that
determine supC ,σ (T ): if there exists any lower bound for some of the types in T and
these lower bounds are either channel or composite types, then supC ,σ (T ) is defined as
the least upper bound of such lower bounds (first two cases in the definition of supC ,σ );
if there is no lower bound but there exists at least one structural constraint involving
any of the types in T , then supC ,σ (T ) is defined as a type that is structurally coherent
with such constraints but has use 0 for all of its topmost channel types (third case in
the definition of supC ,σ and first two cases in the definition of zeroC ,σ ); if there are
no structural constraints involving any of the types in T , or if some of the types in T
have been determined to be structurally coherent with int, then zeroC ,σ (T ) is defined
to be int (third case in the definition of zeroC ,σ ). An extension of our type system with
polymorphism could further refine this case and leave type variables uninstantiated.

Interpreting supC ,σ and zeroC ,σ as functions is appropriate for presentation (and im-
plementation) purposes, but formally imprecise for two reasons: (1) the equations given
above are mutually dependent and (2) they are undefined for some particular T ’s (for
instance, for T = {int, [int]0,0}which contains two types with incompatible structures
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or for T = {[int]ω,0, [int]1,0} which contains two types with incompatible uses). Con-
cerning (1), the proper interpretation of the equations above is as a set {αi = ti} where
each αi has the form supC ,σ (T ) or zeroC ,σ (T ), T ⊆ dom(C ), and ti is determined by the
right hand side of the equation. We know that this set is always finite because dom(C )
is finite and so is its powerset. Furthermore, zeroC ,σ always yields a proper type when
it is defined and so does supC ,σ when it is not defined in terms of zeroC ,σ . Therefore,
the equations in {αi = ti} are contractive in the sense that there is no infinite chain of
equations involving type variables only. In this case, it is known [1] that these equations
can be folded into a possibly recursive contractive term using µ’s. Concerning (2), it
turns out that when σ is a solution of the use constraints in C supC ,σ (T ) is defined if
T is C -composable and that zeroC ,σ (T ) is defined if T is C -compatible, where we say
that:

– T is C -composable if t ≤c s ∈ C or s≤c t ∈ C or t �c s ∈ C for every t,s ∈ T ;
– T is C -compatible if t ∼c s ∈ C for every t,s ∈ T .

Indeed observe that: cls≤,C (T ) is C -composable if so is T by [E-COMP 2]; cls∼,C (T )
is C -compatible if T is C -composable by [E-STRUCT]; if {[ti]κi,κ

′
i }i∈I is C -composable

then the least upper bounds
∨

i∈I σκi and
∨

i∈I σκ ′i are defined (consequence of the use
constraints generated by [E-CHANNEL] and the hypothesis that σ is a solution of them); if
{[ti]κi,κ

′
i }i∈I is C -compatible, then {ti}i∈I is C -composable (consequence of the =c con-

straints generated by [E-CHANNEL]); if {ti� si}i∈I is C -composable/compatible, then so
are the sets {ti}i∈I and {si}i∈I by [E-OPER]; the type expressions in C -composable/com-
patible sets are built using the same topmost constructor (check in step 3 of the algo-
rithm). Finally, observe that a singleton {α} is always C -composable, so the invoca-
tions of supC ,σu

in Table 4 regard well-defined equations. We conclude:

Theorem 4.1 (correctness). If the algorithm returns σ , then σ is a solution for C .

Each step of the algorithm terminates and if the algorithm fails it is because C has
no solution (Proposition 4.2). Therefore:

Corollary 4.1 (completeness). If C is satisfiable, the algorithm returns a solution.

Example 4.1. The saturation of the constraint set C computed in Example 3.1 con-
tains, among others, the constraints [int]0,ρ1 × γ �c β × [int]0,ρ2 and consequently
[int]0,ρ1 �c β and γ �c [int]

0,ρ2 by [E-COMP 1] and [E-COMP 2]. An optimal solution
of the use constraints in C is σu

def
= {ρ1 7→ 1,ρ2 7→ 1,ρ3 7→ 1}. From this we obtain

sup
σuC ({α}) = [int]0,1× [int]0,1

indicating that the pair of channels received from a is shared by the two let processes
in such a way that each of the two channel contained therein is used exactly once. �

5 Concluding Remarks

Previous works on the linear π-calculus either ignore composite types [9,7] or are based
on an interpretation of linearity that limits data sharing and parallelism [5,6]. Recursive
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types have also been neglected, despite their prominent role for describing complex in-
teractions occurring on linear channels [2]. In this work we extend the linear π-calculus
with both composite and recursive types and we adopt a more relaxed attitude towards
linearity that fosters data sharing and parallelism while preserving full type reconstruc-
tion. The extension is a very natural one, as witnessed by the fact that our type system
uses essentially the same rules of previous works, the main novelty being a more general
type composition operator. This small change has nonetheless non-trivial consequences
on the reconstruction algorithm, which must reconcile the propagation of constraints
across composite types with the impossibility to rely on plain type unification due to
the fact that different occurrences of the same identifier may be assigned different types
and because of recursive types. Technically, we tackle this problem by expressing type
composition (which is a ternary relation t1 + t2 = t3) in terms of two simpler binary re-
lations, namely compatibility t1 � t2 and order ti ≤ t3. Our extension also gives renewed
relevance to types like [t]0,0. In previous works these types were admitted but essentially
useless: channels with such types can only be passed around in messages without actu-
ally ever being used. That is, they can be erased without affecting processes. In our type
system, it is the existence of these types that enables the sharing of composite values
(see the decomposition of tlist into teven and todd).

We have implemented a prototype based on the naı̈ve constraint saturation and
combinatorial verification of use expressions described in Section 4. Support for poly-
morhism and more clever implementations of the type reconstruction algorithm are
obvious yet important subjects for future work.
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A Supplement to Section 2

Lemma A.1. If Γ ` P and Γ ′ � Γ ′ and Γ + Γ ′ is defined, then Γ + Γ ′ ` P.

Lemma A.2. If Γ ` P and P≡ Q, then Γ ` Q.

Proof. The rule relies on the associativity of +. We show two interesting cases only.

[S-PAR 1] Then P = 0 |Q. From [T-PAR] we deduce Γ = Γ1 + Γ2 and Γ1 ` 0 and Γ2 ` Q.
From [T-IDLE] we deduce Γ1 � Γ1. We conclude by Lemma A.1.

[S-REP] Then P = ∗P′ ≡∗P′ |P′ = Q. From the hypothesis Γ ` P we deduce Γ = Γ ′+Γ ′

for some Γ ′ such that Γ ′ ` P′. We conclude with an application of [T-PAR] and observing
that Γ = Γ ′+ Γ ′ = Γ ′+ Γ ′+ Γ ′ = Γ + Γ ′. ut
Lemma A.3 (substitution). If Γ ,x : t ` P and Γ ′ ` v : t and Γ + Γ ′ is defined, then
Γ + Γ ′ ` P{v/x}.

Let `−→ be the least relation between type environments such that

Γ ,a : [t]1,1 a−→ Γ ,a : [t]0,0 and Γ ,a : [t]ω,ω a−→ Γ ,a : [t]ω,ω and Γ
τ−→ Γ

We say that Γ is balanced if every type [t]κ1,κ2 in the range of Γ where 0 < κ1 and
0 < κ2 is such that κ1 = κ2.

Proposition A.1. The following properties hold:

1. If Γ is balanced and Γ
`−→ Γ ′, then Γ ′ is balanced.

2. If Γ `−→ Γ ′ and Γ + Γ ′′ is defined, then Γ + Γ ′′
`−→ Γ ′+ Γ ′′.

Theorem A.1 (subject reduction). Let Γ `P and Γ balanced and P `−→Q. Then Γ ′ `Q
for some Γ ′ such that Γ `−→ Γ ′.

Proof. By induction on the derivation of P `−→ Q and by cases on the last rule applied.
We only show a few interesting cases; the others are either similar or simpler.

[R-COMM] Then P = a!〈v〉 | a?(x).R and ` = a. From [T-PAR] we deduce Γ = Γ1 + Γ2

where Γ1 ` a!〈v〉 and Γ2 ` a?(x).R. From [T-OUT] we deduce Γ1 = Γ ′1+a : [t]0,κ and 0< κ

and Γ ′1 ` v : t. From [T-IN] we deduce Γ2 = Γ ′2 + a : [t]κ,0 and Γ ′2,x : t ` R. The reason
why we know that we have the same t and κ in Γ1 and Γ2 comes from the definition
of + and the fact that these two environments were combined together in Γ which is
balanced. Note that Γ ′1+Γ ′2 is defined and Γ

a−→ Γ ′1+Γ ′2. From Lemma A.3 we conclude
Γ ′1 + Γ ′2 ` R{v/x}.

[R-LET] Then P = let x,y = v,w in R τ−→ R{v,w/x,y}= Q. From [T-LET] we deduce
Γ = Γ1 + Γ2 and Γ1 ` v,w : t × s and Γ2,x : t,y : s ` R. From [T-PAIR] we deduce Γ1 =
Γ11 + Γ12 and Γ11 ` v : t and Γ12 ` w : s. We conclude Γ ` Q by Lemma A.3.

[R-PAR] Then P = P1 | P2 and P1
`−→ P′1 and Q = P′1 | P2. From [T-PAR] we deduce

Γ = Γ1 + Γ2 and Γi ` Pi where Γi is balanced for i ∈ {1,2}. By induction hypothesis we

deduce Γ ′1 ` P′1 for some Γ ′1 such that Γ1
`−→ Γ ′1. By Proposition A.1 we deduce that

Γ
`−→ Γ ′1 + Γ2. We conclude Γ ′ ` Q by taking Γ ′ = Γ ′1 + Γ2. ut
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Note that Theorem A.1 establishes not only a subject reduction result, but also a
soundness result because it says that a channel is used no more than what is allowed by
its type. It is also possible to establish some basic safety properties, in particular that
well-typed let’s and case’s always reduce. The proof is easy, we omit the details.

B Supplement to Section 3

We say that a solution σ for C is minimal if tσ = ∑s≤ct∈C sσ .

Lemma B.1. If Γ1t Γ2 Γ ;C and σ is a solution for C0 ⊇ C , then Γ1σ + Γ2σ = Γσ .

Proof. By induction on the derivation of Γ1t Γ2 Γ ;C .

Γi = /0 for i ∈ {1,2} Then Γ = Γ3−i and we conclude Γσ = Γ3−iσ = Γ1σ + Γ2σ .

Γ1 = Γ ′1,u : t and Γ2 = Γ ′2,u : s Then Γ ′1 t Γ ′2  Γ ′;C ′ and Γ = Γ ′,u : α and C = C ′ ∪
{t �c s, t ≤c α,s≤c α}. If σ is a solution for C0, we deduce that tσ + sσ = σ(α). By
induction hypothesis we deduce Γ ′1σ + Γ ′2σ = Γ ′σ . We conclude Γ1σ + Γ2σ = Γσ . ut

Lemma B.2. If Γ1u Γ2 Γ ;C and σ is a solution for C0 ⊇ C , then Γ1σ = Γ2σ = Γσ .

Proof. Immediate consequence of the definition of Γ1u Γ2 Γ ;C . ut

Lemma B.3. If e : t . Γ ;C and σ is a solution of C0 ⊇ C , then Γσ ` e : tσ .

Proof. By induction on the derivation of e : t .Γ ;C and by cases on the last rule applied.
We only show the case of [I-PAIR], the other cases being either trivial or similar. We have
e= e1,e2 and t = t1×t2 and C =C1∪C2∪C3 where Γ1tΓ2 Γ ;C3 and ei : ti.Γi;Ci for
i = 1,2. By induction hypothesis we deduce Γiσ ` e : tiσ for i = 1,2. From Lemma B.1
we obtain Γ1σ + Γ2σ = Γσ . We conclude with an application of [T-PAIR]. ut

Theorem B.1. If P. Γ ;C and σ is a solution for C0 ⊇ C , then Γσ ` P.

Proof. By induction on the derivation of P. Γ ;C and by cases on the last rule applied.

[I-IDLE] Trivial.

[I-IN] Then P = u?(x).Q and Q . Γ ′,x : t;C1 and Γ ′ t u : [t]ρ,0 Γ ;C2 and C = C1 ∪
C2∪{0 <c ρ}. By induction hypothesis we deduce Γ ′σ ,x : tσ `Q. By Lemma B.1 we
deduce Γ ′σ + u : [tσ ]σ(ρ),0 = Γσ . From the hypothesis that σ is a solution for C0 we
know 0 < σ(ρ). We conclude with an application of [T-IN].

[I-OUT] Then P = u!〈e〉 and e : t . Γ ′;C1 and Γ ′tu : [t]0,ρ  Γ ;C2 and C = C1∪C2∪
{0 <c ρ}. From Lemma B.3 we deduce Γ ′σ ` e : tσ . From Lemma B.1 we deduce
Γ ′σ + u : [tσ ]0,σ(ρ) = Γσ . From the hypothesis that σ is a solution of C0 we know
0 < σ(ρ). We conclude with an application of [T-OUT].

[I-PAR] Then P = P1 |P2 and Pi . Γi;Ci for i = 1,2 and Γ1 t Γ2 Γ ;C3 and C = C1 ∪
C2 ∪C3. By induction hypothesis we deduce Γiσ ` Pi for i = 1,2. By Lemma B.1 we
deduce Γ1σ + Γ2σ = Γσ . We conclude with an application of [T-PAR].
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[I-REP] Then P = ∗Q and Q . Γ ′;C1 and Γ ′ t Γ ′ Γ ;C2 and C = C1 ∪C2. By induc-
tion hypothesis we deduce Γ ′σ ` Q. By Lemma B.1 we deduce Γ ′σ + Γ ′σ = Γσ . We
conclude with an application of [T-REP].

[I-NEW] Then P = (νa)Q and Q . Γ ,a : [t]κ1,κ2 ;C ′ and C = C ′ ∪{κ1 =c κ2}. By in-
duction hypothesis we deduce Γσ ,a : [tσ ]κ1σ ,κ2σ ` Q. Since σ is a solution of C0 we
know that κ1σ = κ2σ . We conclude with an application of [T-NEW].

[I-WEAK] Then Γ = Γ ′,u : α and C = C ′ ∪ {α �c α} and P . Γ ′;C ′. By induction
hypothesis we deduce Γ ′σ ` P. Since σ is a solution of C0 we know that σ(α)� σ(α).
Since u 6∈ dom(Γ ′) we know that Γ ′σ +u : σ(α) is defined. By Lemma A.1 we conclude
Γ ′σ ,u : σ(α) ` P.

[I-LET] Then P = let x,y = e in Q and e : t . Γ1;C1 and Q . Γ2,x : t1,y : t2;C2 and
Γ1 t Γ2  Γ ;C3 and C = C1 ∪C2 ∪C3 ∪ {t =c t1 × t2}. By Lemma B.3 we deduce
Γ1σ ` e : tσ . By induction hypothesis we deduce Γ2σ ,x : t1σ ,y : t2σ ` Q. Since σ is
a solution of C0 we know that tσ = t1σ × t2σ . We conclude with an application of
[T-LET].

[I-CASE] Then P = case e of{i xi⇒ Pi}i=inl,inr and e : t . Γ1;C1 and Pi . Γi,xi : ti;Ci
for i = inl,inr and Γinlu Γinr Γ2;C2 and Γ1t Γ2 Γ ;C3 and C = C1∪C2∪C3∪
{t =c tinl⊕ tinr}. By Lemma B.3 we deduce Γ1σ ` e : tσ . By induction hypothesis we
deduce Γiσ ` Pi for i = inl,inr. By Lemma B.2 we deduce Γinlσ = Γinrσ = Γ2σ . By
Lemma B.1 we deduce Γ1σ + Γ2σ = Γσ . We conclude with an application of [T-CASE].

ut
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A judgment Γ is well formed if every channel in dom(Γ) has a channel type. We
make the implicit assumption that all type environments are well formed.

Lemma B.4. If Γ1σ + Γ2σ is defined, then there exist Γ , C , and σ ′ ⊇ σ such that Γ1t
Γ2 Γ ;C and Γ1σ ′+ Γ2σ ′ = Γσ ′ and σ ′ is solution of C .

Proof. By induction on Γ1 and Γ2.

Γi = /0 for i ∈ {1,2} Take Γ = Γ3−i, C = /0, and σ ′ = σ . We conclude by observing
that Γ1t Γ2 Γ3−i; /0.

Γ1 = Γ ′1,u : t and Γ2 = Γ ′2,u : s Since Γ1σ + Γ2σ is defined, we know that Γ ′1σ + Γ ′2σ

and tσ +sσ are also defined. By induction hypothesis we deduce that there exist Γ ′, C ′,
and σ ′′ ⊇ σ such that Γ ′1 t Γ ′2  Γ ′;C ′ and Γ ′1σ ′′+ Γ ′2σ ′′ = Γ ′σ ′′ and σ ′′ is a solution
of C ′. Take Γ = Γ ′,u : α where α is fresh, C = C ′∪{t �c s, t ≤c α,s≤c α} and σ ′ =
σ ′′∪{α 7→ tσ + sσ}. We conclude by observing that σ ′ is a solution of C . ut

Theorem B.2 (principal typing). If Γ ` P, then there exist Γ0, C0 and σ that is a solu-
tion of C0 such that P. Γ0;C0 and Γ = Γ0σ .

Proof. By induction on the derivation of Γ ` P and by cases on the last rule applied.

[T-IDLE] Then P = 0 and Γ � Γ . Let Γ = {ui : ti}i∈I where I = {1, . . . ,n}. We take
Γ0 = {ui : αi}i∈I and C0 = {αi �c αi} and σ = {αi = ti}i∈I where the αi’s are all fresh
variables. By repeated applications of [I-WEAK] and one application of [I-IDLE] we de-
rive 0. Γ0;C0. We conclude by observing that σ is a solution of C0 and Γ = Γ0σ .

[T-IN] Then P = u?(x).Q and Γ ′,x : t `Q and Γ = Γ ′+u : [t]κ,0 and 0 < κ . By induction
hypothesis we deduce that there exist Γ ′0, t ′0, C ′0, and σ ′ that is a solution of C ′0 and
Q . Γ ′0,x : t ′0;C ′0 and Γ ′ = Γ ′0σ ′ and t = t ′0σ ′. Let σ ′′ = σ ′ ∪{ρ 7→ κ} where ρ is fresh.
By Lemma B.4 we deduce that there exist Γ0, C , and σ ⊇ σ ′′ such that Γ ′0tu : [t ′0]

κ,0 
Γ0;C and Γ ′0σ +u : [t ′0σ ]κ,0 = Γ0σ = Γ and σ is a solution of C . We conclude P.Γ0;C0
with an application of [I-IN] by taking C0 = C ′0∪C ∪{0 <c ρ} and by observing that σ

is a solution of C0.

[T-PAR] Then P=P1 |P2 and Γi `Pi for i= 1,2 and Γ = Γ1+Γ2. By induction hypothesis
we deduce that, for every i = 1,2, there exist Γ ′i and Ci and σi that is solution of Ci
such that Pi . Γ

′
i ;Ci and Γi = Γ ′i σi. We also know that dom(σ1)∩dom(σ2) = /0 because

type/use variables are always chosen fresh. Let σ ′ = σ1∪σ2. By Lemma B.4 we deduce
that there exist Γ ′, C ′, and σ ⊇ σ ′ such that Γ1t Γ2 Γ ′;C such that Γ1σ + Γ2σ = Γ ′σ
and σ is a solution of C ′. We conclude by taking C = C1∪C2∪C ′ with an application
of [I-PAR].

[T-REP] Then P = ∗Q and Γ ′ ` Q and Γ = Γ ′+ Γ ′. By induction hypothesis we deduce
that there exist Γ ′0, C ′0, and σ ′ that is a minimal solution of C ′0 such that Q . Γ ′0;C ′0
and Γ ′ = Γ ′0σ ′. By Lemma B.4 we deduce that there exist Γ0, C ′, σ ⊇ σ ′ such that
Γ ′0 t Γ ′0  Γ0;C ′ and Γ ′0σ + Γ ′0σ = Γ0σ = Γ and σ is a solution of C ′. We conclude
P. Γ0;C with an application of [I-REP] by taking C = C ′0∪C ′.
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C Supplement to Section 4

Definition C.1. We say that C is closed for compatibility if for every t,s1,s2 ∈ dom(C )

and si ≤c t ∈ C for i = 1,2 we have either s1 ≤c s2 or s2 ≤c s1 or s1 �c s2.

Proposition C.1. Let C be a set of constraints generated by the reconstruction system
in Table 3. Then C is closed for compatibility.

Proof. Follows by a simple analysis of the sets of constraints generated by reconstruc-
tion system. ut

Proposition C.2. If C is closed for compatibility, then so is C .

Proof. Consequence of the hypothesis that C is closed for compatibility and the fact
that C is closed under [E-COMP 2]. ut

Proposition C.3 (Proposition 4.1). C and C are equivalent.

Proof. Follows immediately from the saturation laws [E-*]. ut

Lemma C.1. Let /0 6= T ⊆ S where S is composable. The following properties hold:

1. cls∼,C (T,C ) = cls∼,C (S,C );
2. If t,s ∈ S implies t =c s ∈ C , then clsR,C (T,C ) = clsR,C (S,C ) for every R ∈
{≤,∼}.

Proof. Easy consequences of the definition of clsR,C . ut

Lemma C.2. Let C be a saturated set of constraints that has passed the checks at
steps 2 and 3 of the algorithm in Table 4 and whose use constraints are solved. Then
def({t},C ) R def({s},C ) for every t Rc s ∈ C .

Proof. In this proof we write T Rc S ∈ C if t Rc s ∈ C for every t ∈ T and s ∈ S. Let

C (≤) def
= {(def(T,C ),def(S,C )) | /0 6= T ⊆ S⊆ dom(C ) and S is composable}

∪{(zeroC ,σ (T,C ),def(S,C )) | /0 6= T,S⊆ dom(C ) and T ∼c S and S is composable}
∪{(zeroC ,σ (T,C ),zeroC ,σ (S,C )) | /0 6= T,S⊆ dom(C ) and T ∼c S}

C (�) def
= {(def(T,C ),def(S,C )) | /0 6= T,S⊆ dom(C ) and T �c S ∈ C }

∪{(zeroC ,σ (T,C ),def(S,C )) | /0 6= T,S⊆ dom(C ) and T �c S ∈ C }
∪{(def(T,C ),zeroC ,σ (S,C )) | /0 6= T,S⊆ dom(C ) and T �c S ∈ C }
∪{(zeroC ,σ (T,C ),zeroC ,σ (S,C )) | /0 6= T,S⊆ dom(C ) and T �c S ∈ C }

and observe that t Rc s ∈ C implies (def({t},C ),def({s},C )) ∈ C (R) by definition
of C (R). It is enough to prove that C (R)⊆R.

Regarding the case R = ≤, let (t,s) ∈ C (≤). Then there exist T and S such that
/0 6= T ⊆ S and S is composable and t = def(T,C ) and s = def(S,C ). We analyze the
possible cases, taking into account Lemma C.1(1).
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– t = [t ′]
∨

i∈I κi,
∨

i∈I κ ′i and s = [s′]
∨

j∈J κ ′′i ,
∨

j∈J κ ′′′j where cls≤,C (T,C ) = {[ti]κi,κ
′
i }i∈I and

cls≤,C (S,C ) = {[s j]
κ ′′j ,κ

′′′
j } j∈J and /0 6= I ⊆ J. We deduce

∨
i∈I κi ≤

∨
j∈J κ ′′j and∨

i∈I κ ′i ≤
∨

j∈J κ ′′′j . We have ti =c s j ∈ C for every i ∈ I and j ∈ J, therefore t ′ = s′

by Lemma C.1(2). We conclude t ≤ s.
– t = [t ′]0,0 and s= [s′]

∨
j∈J κ ′′j ,

∨
j∈J κ ′′′j where cls∼,C (T,C )= {[ti]κi,κ

′
i }i∈I and cls≤,C (S,C )=

{[s j]
κ ′′j ,κ

′′′
j } j∈J and /0 6= I,J. We conclude t ≤ s using Lemma C.1(2) like in the pre-

vious case.
– t = [t ′]0,0 and s = [s′]0,0 where cls∼,C (T,C ) = {[ti]κi,κ

′
i }i∈I and cls∼,C (S,C ) =

{[s j]
κ ′′j ,κ

′′′
j } j∈J and /0 6= I,J. We conclude t = s using Lemma C.1(2) like in the

previous cases.
– t = t1� t2 and s = s1� s2 where t1 = def({ti}i∈I ,C ) and t2 = def({t ′i}i∈I ,C ) and

s1 = def({s j} j∈J ,C ) and s2 = def({s′j} j∈J ,C ) and cls≤,C (T,C ) = {ti� t ′i}i∈I and
cls≤,C (S,C )= {s j�s′j} j∈J and /0 6= I⊆ J. We conclude (t1,s1)∈C (≤) and (t2,s2)∈
C (≤) by definition of C (≤).

– t = t1�t2 and s= s1�s2 where t1 = zeroC ,σ ({ti}i∈I ,C ) and t2 = zeroC ,σ ({t ′i}i∈I ,C )
and s1 = def({s j} j∈J ,C ) and s2 = def({s′j} j∈J ,C ) and cls∼,C (T,C ) = {ti� t ′i}i∈I
and cls≤,C (S,C ) = {s j � s′j} j∈J and /0 6= I,J. We conclude (t1,s1) ∈ C (≤) and
(t2,s2) ∈ C (≤) by definition of C (≤).

– t = t1�t2 and s= s1�s2 where t1 = zeroC ,σ ({ti}i∈I ,C ) and t2 = zeroC ,σ ({t ′i}i∈I ,C )
and s1 = zeroC ,σ ({s j} j∈J ,C ) and s2 = zeroC ,σ ({s′j} j∈J ,C ) and cls∼,C (T,C ) =
{ti � t ′i}i∈I and cls∼,C (S,C ) = {s j � s′j} j∈J and /0 6= I,J. We conclude (t1,s1) ∈
C (≤) and (t2,s2) ∈ C (≤) by definition of C (≤).

– t = s = int. This case is trivial.

The case R = � is structurally similar. We omit the details of the proof, just ob-
serving that 0 is compatible with every use and that compatibility is closed with respect
to ≤. ut

Theorem C.1 (Theorem 4.1). If the algorithm returns σ , then σ is a solution for C .

Proof. Consequence of Lemma C.2. ut


	Type Reconstruction for the Linear -Calculus  with Composite and Equi-Recursive Types

