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1 Introduction

Let f be a signal in L? (R). Then we can recover frequency information contained in the
signal using the Fourier transform F f given by

(Ff)(£) = (2m) V2 JReing(x)dx, feR.

Sometimes it is not enough to have information regarding the frequency content of the sig-
nal f.In these cases it is useful to look at the Gabor transform V, f of the signal with respect
to a certain window ¢ in L? (R) given by

(Vo £) (0,8) = 27) 2 | e ¥ f (1) (= )dx

R

for all b, £ € R. We can notice that

(Vo £) (b,€) = (27) "2 (£ LM T 9) 12y

forall b,& € R, where (, )2 (g) is the inner product in L?(R),M¢ and T_, are the modulation
operator and the translation operator given by

(M: f) (x) = e f (x), x€eR,

and

(T_pf)(x)=f(x—b), xeR,

for all measurable functions f on R.

The usefulness of the Gabor transforms in signal analysis is enhanced by the following res-
olution of the identity formula, which allows the reconstruction of a signal from its Gabor
transform.

Theorem 1.1. Suppose that”tpHLz(R) =1, where||||;2(w) is the norm in L% (R). Then for all
fandg inL?(R),

(f,8) 1) = fR JR (Vo £) (5,5) (V, 8) (0, E)db dE. W



Another way of looking at Theorem 1.1 is that for all f in L? (R),
f=@n)™ JR JR(f,Mg T p@)rernyM:T_ppdbdé.

The formula in Theorem 1.1 is also known as a continuous inversion formula for the Gabor
transform and it is related to the representations of the Heinsenberg group H.

We can use (1.1) to define localization operators Ly, with symbol F € L” (R) and window
¢ associated to the Gabor transform by

(Ligf 8) sy = [ | F (0,8 (¥, £) (0.0 WV, 8) (b, E)ab .

These operators are studied in detail in [32, 33].

In signal analysis, the term (Vg, f ) (b, &) gives the time-frequency content of a signal f at
time b and frequency & by placing the window ¢ at time b.

It is important to point out that we can extend the Gabor transform here defined to the
multi-dimensional case. In fact it is sufficient to look at

(Vo £) (b,&) = 2m) "2 (f M T 5 0) o (an)

=(27'c)_”/2f e I f(x)p(x—Db)dx, b,& eR".
R

The drawback here is that a window of fixed width is used for all time b. It is more accurate
and desirable if we can have an adaptive window that gives a wide window for low frequency
and a narrow window for high frequency. That this can be done comes from familiarity with
the wavelet transform that we now recall.

This can be done by looking at the wavelet transform W,, f of the signal f € L? (R) with
respect to a certain window ¢ in L? (R) given by

_ x—b
(W, f) (b,a)=a ”ZJf(xw( a >‘”
R
forall b eR, a € R, . We can notice that

(W<p f) (b,(l) = (f’T—bDZ,a (p)LZ(]Rn)

forall b eR, a e R, where D, , is the dilation operator given by

(Doaf)(x)=a2F (7). xeR



for all measurable functions f on R.

The nucleus of the analysis of the wavelet transform is the following resolution of the iden-
tity formula, which is a continuous inversion formula.

Theorem 1.2. Ler ¢ be a nonzero function in L? (R) such that

¢, —an 1Q(E |2E<oo (1.2)

Then for all functions f and g in L*(R),

dbda
az

(&) 1) = JRJWf (b,a) (W, g) (b,a)

Notice that (1.2) is also known as admissibility condition for wavelets. A nonzero function
¢ € L? (R") satisfying (1.2) is called a mother affine wavelet. The adjective affine comes from
the connection with the affine group A that is the underpinning of the wavelet transforms.
See Chapter 18 of [33] in this connection.

A multi-dimensional version of the wavelet transforms has been introduced in [27] and is
given by

(ch f) (b,a,R) = (f,T_Dzur SD)LZ(Rn)

i T (%Rl(x—b)>dx

a”/2 R~

forall (b,a,R) eR" xR, x SO(n,R), where D, ,p is the dilation operator given by

(Dourf)(x)=a "?f(a'R'x), xeR”",

for all measurable functions f on R”.

Now, let ¢ € L' (R) n L? (R). Then, combining the merits of the Gabor transform and the
wavelet transform, the Stockwell transform S, f with window ¢ of a signal f in L*(R) is
defined by

(Sp.f)(b,€) = (2m)~12(E] fRe—fx5f<x>sa<5<x —b))dx, (1.3)
forall b € R and & € R\{0}. We note that for all f in L?(R), all b in R and all £ in R\{0},

(Sp)(b,€) = (2m) ™ (f, M T_y Dy 1 9) 12(s),



where the dilation operator D, 1 is defined by

(D1 £)(x) = [E1f ()

for all x in R and all measurable functions f on R. Besides the modulation with respect
to frequency &, a notable feature in the Stockwell transform is the normalizing factor in the
dilation operator, whichis |-| in lieu of | -|1/2
mathematical underpinning of the absolutely referenced phase information in [31]. These
features distinguish the Stockwell transform from the wavelet transform. Notwithstanding
these differences, we have the following formula in [31] relating the Stockwell transform to

the Morlet wavelet transform Wy .

asin the case of the wavelet transform, and is the

Theorem 1.3. Forall f in L?(R),

(S,£)(b,€) = (2m) 2%, 1] (0 £) (B,1/€)

forall b eR and & € R\{0}, where

Y(x)=ep(x)

forall x inR.

The Stockwell transform is closely related to the wave packet transform of Cordoba and Fef-
ferman [10], which also involves a combination of translations, modulations and dilations.
It should also be mentioned that transforms closely related to the wavelet transforms and
the metaplectic representation abound and can be found in the monographs [14], and the
works [9, 2].

Of particular importance in the Stockwell transform is the phase correction in the preced-
ing formula given by e ~7¢
defining the Stockwell transform. It is crucial to note that this function picks out the fre-

, which is caused by the phase function e ~**¢ inside the integral

quency to be localized, but is not translated with respect to time b as is always done for
the Morlet wavelet transform [17]. To see the full significance of this, we note that in real-
life applications, signals f and windows ¢ are real-valued functions. Therefore information
about the phase arg(S, f)(b, &) of the Stockwell transform (S, f)(b,£) at time b and fre-
quency & comes from the term e ~*¢ at time b = 0. But in the case of the Morlet wavelet
transform, the phase information is obtained by referencing the windowed signal f with re-

spectto e ~1(x—D)E

. Thisis precisely the absolutely referenced phase informationin [13] and is
responsible for the continuous inversion formula in Theorem 1.4 given later. Another point
is that the Stockwell transform is reminiscent of the Morlet wavelet transform, but the ap-
plicability of the computational techniques available for the Morlet wavelet transforms is

undermined by the inversion a = 1/£.



The Stockwell transform has recently been used in geophysics[13, 31] and in medical imag-
ing [16, 35]. More recent applications in imaging are in [18, 19]. In view of its versatility, an
attempt in understanding the mathematical underpinnings of the Stockwell transform is
worthwhile. The following continuous inversion formula for the Stockwell transform can
be found in [13] and [34] for the case when

p(x)=e"
for all x in R.

Theorem 1.4. Let p € L'(R) n L?(R) be such that

| exas-

Then for all f in L?>(R),
f=F4S,f,

where F~! is the inverse Fourier transform and A is the time average operator given by

(AF)(E) = | PO db
forall £ inR and all measurable functions F onR x R, provided that the integral exists.

Another continuous inversion formula for the Stockwell transform akin to the continuous
inversion formulas for the Gabor transform and the wavelet transform is given by the fol-
lowing theorem.

Theorem 1.5. Let p € L?(R) be such that

J |Q(&—1)] m<oo (1.4)
Then forall f and g in L?(R),
_ 1 ac
8w =4[], (51 0.0 Ea) h2ab -

Remark 1.6. Theorem 1.5 tells us that every signal f can be resconstructed from its Stock-
well spectrum by means of the formula

%Jf S,f) bg)(M, bDMp) d;’.



Equation (1.4) means that ¢ (—1) = 0 whenever ¢ is continuous at —1. So, it is important
to observe that the Gaussian window used exclusively for the Stockwell transform in the
literature is not admissible.

The aim of this work is to provide a theoretical setting in which to study the Stockwell trans-
forms. We introduce multi-dimensional Stockwell transforms and we give the correspond-
ing continuous inversion formulas analogous to Theorem 1.4 and Theorem 1.5 for the 1-
dimensional Stockwell transforms. We elucidate a connection between the affine Heisen-
berg group AH and the multi-dimensional Stockwell transforms. Furthermore, we extend
the results given in the one-dimensional case regarding the L” (R")-boundedness of the
localization operators and the instantaneous frequency.

After Chapter 2 on notation, in Chapter 3 we give a brief introduction on group representa-
tion theory and its relations with time-frequency analysis. In particular we are interested in
unitary irreducible and square integrable representations of groups or homogenous spaces.
In this chapter we introduce and study the affine group A, the reduced Heisenberg group H
and the affine Heisenberg group AH. In Chapter 4 we define the multi-dimensional Stock-
well transform and we show its relations with the Gabor transform and the Moritoh wavelet
transform. The role played by a certain section of the affine Heisenberg AH group in defin-
ing the Stockwell transform is mentioned too. In Chapter 5 we prove continuous inversion
formulas for multi-dimensional Stockwell transforms under different sets of hypotheses.
Moreover, we provide a couple of interesting examples of Stockwell transforms that satisfy
these set of hypotheses. The results in this chapter extend those in [24] and [29]. Chapter
6 is devoted to the study of the localization operators associated with multi-dimensional
Stockwell transforms. We write an explicit relation between these operators and the Weyl
transform. This chapter is an extension of the results given in [23]. In Chapter 7 we extend
the results given in [19] for the 1-dimensional Stocwkell transform regarding the instanta-
neous frequency of the signal.



2 Notation

Throughout all this paper we use the following operators on L? (R").

e Let & € R”, then the modulation operator M is given by
(M:f) (x) =e™f(x), VxeR"
o Let b € R”, then the translation operator T_, is given by

(T_,f)(x)=f(x—b), VxeR"

e Let Ae GL(n,R), then the dilation operator D; 4 is given by
(Doaf)(x)=IdetA° f (A"'x), VxeR"

In the following we will often write D 4 instead of D, 4.

Definition 2.1. We define the Fourier transform F f of the signal f by

(Ff) (€)= (&) = (2n) " j e f(x)dx

n

for all £ e R".

Notice that F,M;,T_, and D, are unitary operators on L? (R"). They obey the following
composition rules:

FM: =T_:F, FT_, =M_,F, FD4 =D 1) F,
M:F =FT;, M:T , =e"ST_, Mg, M:Dy =D Myi:,
T_,F=FM,, T yMs=e PSM:T_},, T_,D4=DuT 41,
DAF =FD(,.y, DyM;z =M, 1y Dy, DAT_p, =T_4,Dy.

Definition 2.2. We define the Gabor transform V,, f of the signal f with respect to the win-
dow ¢ by

(Vo £) (,8) = @m) "2 (£ MT 5 9) 12 )



— (2m) " f e v f (1) (x — b)dx

Rn
forall (b,&) e R" x R".

Definition 2.3. We define the wavelet transform W,, f of the signal f with respect to the
window ¢ by

(Wgﬂ f) (b'a’R) = (f»T—b Dz,aR SD)LZ(]RI/:)

= arlz/z f nf(x)np (%R—l (x— b)>dx

forall (b,a,R)eR" x R, x SO(n,R).

Definition 2.4. Let R:R" 5& — R (&) = R: € SO(n,R), then we define the Moritoh wavelet
transform W LR f of the signal f with respect to the window ¢ by

(W%wa f) (b,&) =15"? fRnf (x) ¢ (€1 Rz (x — b)) dx

- (f,be Dz,éRQI (’0)

L2(Rn)
forall (b,&) eR" x R".

Definition 2.5. We define the Wigner transform Wig (f,g) of f and g in L? (R") by

e_"x'gf (b + f) @dx

(Wigi(,g)) (b,2) = (22) "2 | :

n

forall (b,&) e R" x R".

Definition 2.6. We define the Weyl transform W,, f of f in L? (R") by

W £8)imn = 20) " | o (0,2 (Wig(£,9) (b, )abaz,

forall f and g in L? (R").

Definition 2.7. Let {G,o5} and {H,op} be two groups and let ¢ : H — Aut (G). Then
{G xH,ow},where

(8:h)oy (8'h') = (g0 ¢ (h)g' hoy 1),
is a group. This group is called semi-direct product of G and H and itis denoted by G x, H.

Definition 2.8. Let X be an infinite-dimensional complex and separable Hilbert space. Let



A: X — X be a compact operator. Then the operator |A| : X — X defined by
|A] =V A*A

is positive and compact. So there exists for X an orthonormal basis { ¢ } consisting of eigen-
vectors of |A|. Let s; be the eigenvalue of |A| : X — X corresponding to the eigenvector ¢y.
Then we say that the compact operator A : X — X is in the Schatten-von Neumann class
Spy 1< p<wif

18
?T‘M'g

A

8

[
Il
—

By convention, S,, is taken to be simply the C*-algebra of all bounded and linear opera-
tor on X. The Schatten-von Neumann class S; is also known as the trace class. Given an
operator A: X — X in the trace class we can define its trace tr (A) as

18

(APk, Pic) x »

k=1

where {¢; }, is an orthonormal basis for X.

10



3 Group representation theory

3.1 Localization operators and homogeneous spaces

Let X be alocally compact and Hausdorff topological space and let G be a locally compact
and Hausdorff group. We say that G is a left transformation group on X if there exists a
continuous mapping G x X (g, x) — gx € X, such that for all g € G, the mapping X 5 x —
g x € X is ahomeomorphism of X onto X,

(gh)x=g(hx), gheG,xeX,
and
ex=x, xeX,

where e is the identity element in G. The topological space X on which G actsis called a G-
space and G is sometimes called a group action on X. Let G be a left transformation group
on X such that for all x; and x, in X there exists an element g € G for which x, = gx;. Then
we say that the action of G on X is transitive and we say that X is a homogeneous space.

Proposition 3.1. Let X be a homogeneous space on which G acts transitively and let x € X.
Then the set H, defined by

H,={geG:gx=ux},

is a closed subgroup of G. We call H, the stability subgroup of G associated to x.

Let G be alocally compact and Hausdorff group and let H be a closed subgroup of G. Let
X=G/H ={gH :g€G},

and gH, g € G, is the left coset of g in H. Then the action of G on X defined by
GxX>3(g,hH)— (gh)He X, g hegG,

is transitive. Hence G /H is a homogeneous space.

11



3.1 Localization operators and homogeneous spaces

Let G/H be a homogeneous space, where G is a locally compact and Hausdorff group and
H is a closed subgroup of G and let u be a Borel measure on G/H. A Borel measure yu on X
is said to be left quasi-invariant if u and u, are equivalent measures on X, where

ug (S)=u(gs), gegq,

for all Borel subsets S of G/H. Notice that we can always equip G/H with a left quasi invari-
ant measure.

We call the canonical surjection of G on G/H the mapping q : G — G/H defined by
G>g—gHeG/H, geq.

A mapping o : G/H — G such that by
q(o(x))=x, xeG/H,

is said to be a section on G/H. Assume that G admits a unitary representation 7 of G on
L2 (R"), i.e.,

n:G—U (L*(R")),

where U (L? (R")) is the group of all unitary operators on L? (R"). Suppose that there exists
an element ¢ € L? (R") such that

j (0 () g, Pf du(x) <0, VfeI2(R").
G/H

Then we say that o is a strictly admissible section and ¢ is an admissible wavelet.

Remark 3.2. Notice that this definition can be found in [21]. Some authors, for example [33],
talks about square integrable sections.

We define the constant ¢, g, by

Cotp = L/H<<n<a<x>>w,w>|2du<x>.

Let F € L' (G/H) then we define the linear operator Ly, p , : L* (R") — L? (R") by

1

(Lo pfirfo) = L/HF(X)(ﬁ,ﬂ(G(X))w)(H(U(X))so,fz)du(X), ERY)

CU,H,cp
forall f; and f; in L? (R").

Proposition 3.3. Let o be a strictly admissible section. Then the localization operator

12



3.2 Affine group

Lpgm,, : L* (R") — L*(R") is a bounded linear operator and

1

||LF,0',H,<,0||B(L2(Rn)) < p WF L6 /m) -

1,

Proposition 3.4. Let o be a strictly admissible section. Then the localization operator
Lpgm,,: L* (R") — L?(R") is in the trace class Sy, and its trace is given by

1

tr (LF,O',H,QD) =

j F(x)du(x).
G/H

Co,H,p

Remark 3.5. Notice that Proposition 3.3 and Proposition 3.4 are in fact Proposition 25.1,
Proposition 25.3, and Proposition 25.4 on pp.143-145 in [33].

3.2 Affine group

We denote with A the affine group, i.e.
A=RxR; ={RxR,,04}.
Given (b,a) and (b’,a’) in A, then
(b,a)oy (b',a’) = (b+ab',aa’),
and
_ b 1
(b,a)™' = <_E’E>'

Proposition 3.6. The left and right Haar measures on A are given by

dbda
du= o
and
dbd
dy= a
a
respectively.

Proof. To prove left invariance, let f be an integrable function on A with respect to the d u.

13



3.3 Similitude group

Then, for all (b’,a’) in A, we get

dbda
a2z

[r @ arenmanan=[ [ reavaa

Setting p = b’ + a’b and a = a’a, we have

[ riwa)entv.a)an
dbda

:Jnh fRf(b/+a’b,a’a) o
=JR+ | rpa

- | rbaap

Analogously we can prove right invariance for d v.
Remark 3.7. The affine group A is a locally compact non unimodular Hausdorff group.
We can introduce the representation
ma(b,a)p =T _pDygp.
Remark 3.8. Notice that we can write
(W, f) (b,a) = (f,ms(b,a) @) 12 (Rn)
forall (b,a) € A.

Theorem 3.9. 7, is a unitary irreducible and square-integrable representation of A on the
Hardy space H? (R).

3.3 Similitude group

We denote with SIM(n) the n-dimensonal similitude group, i.e.,

SIM(n) =R" x (R; x SO(n,R)) = {R" x R} x SO(7n,R), og1m(n) }-

Given (b,a,R) and (b’,a’,R’) in SIM(n), then

(b,a,R)osp(n) (b',a’,R") = (b +aRb',aa’,RR’),

14



3.3 Similitude group

and
(b,a,R)"' = (—(aR)_l b,a—l,R—l).

Proposition 3.10. Let dm (R) be the Haar measure on SO(n,R), normalized so that
m (SO(n,R)) = 1. Then the left and right Haar measures on SIM(n) are given by

da

du=db pr) dm(R),
and
d
dv=db 2 am(R),
an
respectively.

Proof. To prove left invariance, let f be an integrable function on SIM(7n) with respect to
the du. Then, for all (b’,a’,R’) in SIM(n), we get

J fF((b,a',R") osiny (b,a,R)) dp
SIM(n

)
:J f f F(b' +a'Rb,d'a,RR)db 2% dam(R)
so(nR) Jr, Jrn Y an+l

Setting 8 = b’ +a’R'b, a = a’a and Q = R'R, we have

J f((b/,a’,R’) OSIM(n) (b,a,R)) du
SIM(n

)
/ ! !/ / / da
:J f f f(b'+a'R'b,a’a,RR")db dm (R)
SO(n,R) JR, JR7 antl

da
:J;O(n,R)JR+ Rnf(ﬂ’a'Q)dﬁ aanm(Q)

=J f(b,a,R)du.
SIM(n)

Analogously we can prove right invariance for d ».

Remark 3.11. The n-dimensional similitude group SIM(n) is a locally compact and non-
unimodular Hausdorff group.

We can introduce the representation

TTSIM(n) (b,a,R) ¢ =T_pDyur ¢

15



3.4 Weyl-Heisenberg group

Remark 3.12. Notice that we can write

(ch f) (bYa’R) = (f’TESIM(n) (b’a’R) QD)LZ(]Rn)
forall (b,a,R) € SIM(n).

Theorem 3.13. 7ty i a unitary, irreducible and square-integrable representation of
SIM(n) on L? (R").

3.4 Weyl-Heisenberg group

We denote by WH the n-dimensional Weyl-Heisenberg group, i.e.,
WH ={R" x R" x S, oy}
Given (b,&,%) and (b’,&’,9') in WH, then
(b,&, ) own (b',E,9") = (b + b, E+&,9+0 +£-b"),
where the third entry in the point is intended mod [0,27], and
(b,&,9,a,R)" = (=b,~&,~0+b-&).
Proposition 3.14. The left and right Haar measures on WH are equal and is given by

du=dbdEdd.

Proof. To prove left invariance, let f be an integrable function on WH with respect to d u.
For sake of simplicity, let us assume that f (b,&,) is a periodic function with period 27 for
fixed but arbitrary b and & in R”. Then, for all (b’,&’,%') in WH, we get

JWHf ((v",&,9") owm (b, E,9)) du
=Jf f F(b+bE+E, 0+ +&- b mod[0,2n])dbd&dd.
S1 n n
Settingg=b"+b,p=&+&and p =%+ % + & - b’, we have

j £ (6,29 ou (,2,9)) dps

J f f(b+b,E+E0+9 +£-b' mod[0,2n])dbdEd?
S1 n

16



3.5 Reduced Heisenberg group

:LGfnfnf(b+b’,§+§’,ﬁ+ﬁ’+5-b’)dbd§dﬁ

2n+9 +&-b’
=J f fla,p,p)dqdpdy
17’+€‘b’ n JRn

=f £ (b.£,9) dp.
WH

With similar computations we can check the right invariance of d u.

Remark 3.15. The n-dimensional Weyl-Heisenberg group WH is a locally compact, uni-
modular and Hausdorff group.

We can introduce the representation
Twm (b, E,70) ¢ = eiﬂT—b M.
Remark 3.16. Notice that we can write
(Vi £) (B,€) = (2m) ™" e < (f, 7oy (5,,0) ) 2

forall (b,&,0) € WH.

Theorem 3.17. 7wy is a unitary, irreducible and square-integrable representation of WH
on L?(R").

3.5 Reduced Heisenberg group

We denote by H the n-dimensional reduced Heisenberg group, i.e.
H={R" x R" xR, op}.
Given (b,&,%) and (b’,&’,%') in H, then
(b,&,9) oy (b',&",0)=(b+ b, E+&, 9+ +&-D),
and
(b,&,8) " = (=b,~&~0+b-E).
Proposition 3.18. The left and right Haar measures on H are equal and is given by

du=dbd&do.

17



3.5 Reduced Heisenberg group

Proof. To prove left invariance, let f be an integrable function on H with respect to the d u.
Then, for all (b’,&’,%') in H, we get

JHf((bl'gl’ﬁ/) o (b,€,1)) du
—JJ J F(b+D,E+E,0+0 +&-b')dbdEdv.
R JR? JRn

Settingg=b"+b,p=&+&and p =3 +% + & - b’, we have

fo ((b',€,9") o (b,&,1)) dps
:JRJ nJnf(b+b’,§+§’,ﬂ+ﬁ’+€-b’)dbd§dﬁ
=JRJ” Rnf(q,p,cp)dqdpmﬂ
:JHf(b,g,ﬂ)d,u.

With similar computations we can check the right invariance of d u.

Remark 3.19. The n-dimensional Weyl-Heisenberg group H is a locally compact, unimod-
ular and Hausdorff group.

We can introduce the representation

g (b, E,0) 9 = e T_, M; .
Remark 3.20. Notice that we can write

(Vo £) (B,€) = (2m) "2 e~ < (£, (b, ,0) 9) 2 gy
forall (b,&,0) € H.

Theorem 3.21. 7y is a unitary, irreducible and non-square-integrable representation of H
on L? (R").

Theorem 3.22. Let H be the closed subgroup of H defined as

H=1{(0,0,8)cH}.

Let o :H/H — H be the Borel section given by

U(b’g) = (b,é’,O)

18



3.6 Affine Heisenberg group

Then o is a strictly admissible section. Furthermore, every non zero o € L? (R") is an admis-
sible wavelet for this strictly admissible section, i.e. given ¢ € L? (R") such that ||<,0 H =1, we
have

2
oo = || omulov.2) ) dbaz = (2n)".
Remark 3.23. Notice that we can write

(Vo £) (b,8) = (2m)"? e 0% (f, 52 (0 (B, €)) ¢) 12y

forall (b,&)eH/H.

3.6 Affine Heisenberg group

We denote by AH the n-dimensonal affine Heisenberg group, i.e.
AH=Hx (R; xSO(n,R)) ={R" xR" x Rx R, x SO(n,R),0pp}.

Given (b,&,%,a,R) and (b’,&',%,a’,R’) in AH, then

(b, 5,1?,(,1,}{’) OAH (b/, gl,ﬁ,,d/,R,)
=(b+aRb',E+a 'RE,9+10 +&-(aRb’),aa’,RR’),

and
(b,&,9,a,R)"' =(—a'R"'b,—aR™',~0+b-£,a ' ,R").

Proposition 3.24. Let dm (R) be the Haar measure on SO(n,R), normalized so that
m (SO(n,R)) = 1. Then the left and right Haar measures on AH are equal and is given by

d
duzdbdidﬂj?anRy

Proof. To prove left invariance, let f be an integrable function on AH with respect to the
du. Then, for all (b',&',%,a’,R’) in AH, we get

LHf (0".&"9,a",R') opm (b,,9,a,R)) du

:LO( R)JR JRJR J\R f(V'+a'R'b,&'+a'R'E, ¥ + 9+ - (a'R'b),a'a, R'R)
n, + n n
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3.6 Affine Heisenberg group

d
xdbdgdﬁfdm(}z).

Settingg = b’ +a’'R'b,p=&+a"'R'E p=0+0+& - (a'R'b),a=a’aand Q = R'R,
we have

J f((b/ &9, a R)OAH(b,g,ﬁ,a,R))du

Dk Lo mmn e wer s . on
SO(n,R) JR Rn JRn

X dbdgdﬁ—dm( )

d
=J f ” Flape,aQ)dgdpde ~E dm(Q)
sO(n,R) JR, JR JRr JRn a

= f(b,&,%a,R)du.
AH

Analogously we can prove the right invariance of d u.

Remark 3.25. The n-dimensional affine Heisenberg AH group is a locally compact, uni-
modular and Hausdorff group.

We can introduce the representation
Tam (b,E,9,a,R) ¢ = e T_, Mg Dy g . 3.2)

Theorem 3.26. 7,y is a unitary, irreducible and non-square-integrable representation of AH
on L? (R").

Theorem 3.27. Let H = {(0,0,%,a,R) € AH} be a closed subgroup of AH, let a : R" 5 & —

a(f)eR, andR:R" 3¢ — R (&) € SO(n,R) be two piecewise differentiable functions such
that we can find a fixed (1,2)-tensor F and a fixed (1,1)-tensor G such that

B i . .
(a@ 'R () = FiE' +6}
and letn; :R" —R" be the function given by

N (&)=a(@RE)(-8),

is such thatn; (R") =R", forall{ e R". Let o : AH/H — AH be the section given by

o(b,&)—(b,&,0,a(&),R(E))

20



3.6 Affine Heisenberg group

and let p € L? (R") be such that

~ d
Cv?:f }(p(n)|2 - 77' —— < 0.
R )det (Fj‘knf +5;C)‘

Then we have a resolution of the identity formula, i.e.,

Cp (f»g)LZ(Rn) = JRH fRn (f, mam (o0 (b’g)))LZ(R") (mam (0 (b’g))’g)LZ(]R") dbdc.

Proof. The proofis given in [21].

21



4 Stockwell transforms

Definition 4.1. Let1 < s <ooand A:R" 3£ — A(&) = Az € GL(n,R). Then we define the
Stockwell transform S; 4 , f of the signal f with respect to the window ¢ by

(Ssap f) (b,€) = (2m) "2 |detas| " fRn f(x)e g (A7} (x—b))dx

forall (b,&) e R" x R".
Remark 4.2. Notice that we can write

1/2— l/s

(Ss.ap f) (b, E) = |detA¢| (Sp.a f) (B,€).

Remark 4.3. Choosingn = 1,s =1and A: R 3 & — 1/& € R\ {0}, we recover the 1-
dimensional Stockwell transform defined in 1.3.

We can elucidate the link between the analyzed signal f and the analyzing window ¢.

Proposition 4.4. Let f and ¢ be signals in L? (R"). Then we have

(Ss.ap f) (B,E) =€ "5(Sg a5 ) < _1b Ati) b, eR".

Proof. Tt is sufficient to prove the proposition for s = 2. In this case we can write

(S2.a6 f) (£,€) = (2m) "2 (f’Mi T_sz’Agw)LZ(R”)
= (zn)fn/Z (DZ’A:I T,M_:f, go)Lz(Rn)
— (21)” n/2 (T -1, M_ Atg 2,47 if, )LZ(RH)
= (2m) e ibE (M—AéfTAglbDZ,Aglf’ ('0>L2(Rn)
e~ 10E (o) N/2 <(p, Tyt 2A;If) 2R

— e E(Sy 4 ) (—Ag%,—Aé&).
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Stockwell transforms

We give here an alternative formulation of Stockwell transforms.

Proposition 4.5. Let [ be a signal in L? (R") and let ¢ be a window in L? (R"). Then

(FocSung 1) 05 = (TEEA) @) (D oy P0) @) EeRT

s—17

which implies
(Seaef) (5,8)= (M ¢ (fM:D, 4. 7)) (b),  bEeR"

Proof. Thanks to the Fubini-Tonelli theorem and to the change of variable y = Agl (x—b),
we get

(Fpat Sons £) (2:8)
=<2n>‘"/2f e~ (Sy00 f) (,E) db

n

—(2%)_"/2J e_"b'g(277)_”/2|detA5|71/5

Rn

« —ix-& —1 -
Rnf(x)e <,0(Ag (x b))dxdb

=(27r)_"|detAg|1/SJ eix'gf(x)f e <y (Agl(x—b))dbdx
Rn n

=(2n)™" |detA5|171/s fRn e IS f (x) fRn e_i("—“‘iy)'5¢ (y)dydx

:(2%)"|detA5|1_1/sz e_ix"gf(x)e_ix'gJR eiy'Aéggp(y)dydx

— (27r)*"/2 |detA5|171/S J

Rn

e_ix'gf (x) e_ix'g@dx

=(2n) "2 |detA5|171/S ") (Aé@’) J e O f(x) dx

R~

—|detas| ™ F(e+ )¢ (aL2)

s—1’

=(T:Ff)(2) <D s (Agl)zF> ¢ (¢)

= (FM_£ /) (2) (FDsa ) ()
= (FM_ £) () (FDs -, 7) (1), CE€R™

The second formula follows because

(FoazSonp £) (6,8 = (FM_£ £) (2) (FD, 4. %) (2)
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Stockwell transforms

—(F(M_cf+Ds 2.%)) (@), EeR"
And via the Fourier inversion formula, we get

(Sonpf) (0,8)= (M_cf Dy, 7) (b)
- (M—5 (f*MEDs,—A5¢)> (b), b, eR".

Notice that the Stockwell transform describes the behaviour of the signal f under convolu-
tion with a dilated and modulated window ¢. In fact,

|(Ss,A,s0 f) (b,§)| = ’(f *M5D3,7A5¢> (b)‘, b,EeR".

With the new formulation of the Stockwell transforms in place, we can give the following
estimate.

Proposition 4.6. Let ¢ bein LP (R"),1 < p <. Then

1/p—1/s
LpP(Rn |

(R = |detA5

”‘p&b,i |90HLﬂ(1R<n)’

where
(ps,b,i = Mi be Ds,A @,
and

| (Ss.a6 f) (D, 5)| < (2”)_n/2 {detAir/p_l/s Hf| |U”(Rn) b,CeR",

[lleo @

where p’ is the conjugated index of p.

Proof. Let 1 < p < oo. Then, thanks to the Fubini-Tonelli theorem and to the change of
variable y = Agl (x—b), we get

||()05,b,§||ip(Rn) :fRn |95, (x)|p dx

—J ) |M5T_bDS,Ag0(x)|pdx

:Jn

= JRn | detAg'

eixu’;'

detAér{_l/s v <Ag1 (x — b)) ‘pdx

_p/s‘go <Ag?1(x— b))‘pdx
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Stockwell transforms

- | Jaetad o ) ay
=[detac] " [l ey
If p = o0, we get

||¢S,b,€||LO®(Rn) = fél]é)n |§Os,b,§ (x)|

= sup |Mg T pDsap (x)|

x€eRn
_ ix-& d —1/s —1 —b ‘
fg@ e | etA5| %) (Ag (x ))
= sup detAg}_l/sga (A;l (x*b)ﬂ
xeRn °

= |detA5}7l/s sup | (Agl (x — b))‘

xeRn

- |detAgrl/S ||90HL30(R'1)'

Let 1 < p < . Then applying Holder’s inequality, we have

|(Ss,A,(p f) (b,§)| =

(2m) "2 |detA5|_1/s JRnf (x)e <y (AE1 (x — b))dx

<(27‘c)_"/2|detA5}_l/sf Fx)e iy (Agl (x — b)) dx

R2

_ —n/2 ix-&|d =1/s -1 —-b d
(2m) JRn |f(x)| e etAg| %) (Ag (x )) X

<@l o oo
R

L ()

=(2m)" " |detA5

LP!' (Rn) ‘pHLP(Rn)'

We remark that if s = p, then Proposition 4.6 gives a weighted L*-estimate of the Stockwell
transform. In fact,

1

(Ss.a f) (b, E) |detAg|*

_1
P

sup < @) ™" 11| o ey N2l o ey

(b,&)eRn xR~ ‘
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4.1 Stockwell transforms and affine Heisenberg group

4.1 Stockwell transforms and affine Heisenberg group

Proposition 4.7. Leta : R" — R, and R : R" — SO(n,R) be two piecewise differentiable
functions. Then we can introduce A: R" — GL(n,R) as

A(E)=a(E)R(E),

and write

(Sonp ) (0,8) = (2r) 2| (&) e < (f,mam (0 (5,E)) 9),

where 1 sy is defined in (3.2), Theorem 3.26 and Theorem 3.27.

Proof. Via direct computations, we get

(Ssap f) (b,€) = |detas|*71° s, 4, £ (b,£)

= |det(a (&) R Span f (b,E)

= @m) " a @) (. M Ty Doaierne) @)

= (@m) " a (@)|"F eV (£, Ty M Dy ooy r(e)9)
= 2n) 2| ()" eV (f, (0 (B,E)) ).

4.2 Gabor transforms

We recall here Definition 2.2, i.e., we define the Gabor transform V,, f of the signal f with
respect to the window ¢ by

(Vo £) (,8) = @m) "2 (£ MT 5 9) 12 )
— (2m) " f e~ f (1) ((x— D))dx

forall (b,&) e R" x R".

Proposition 4.8. We can write
(Seap £) (5,8 = (Vo o f) (B,)

forall (b,&) eR" x R".
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4.2 Gabor transforms

Proof. Via direct computation, we get

(Sone 1) (0,2) = @) " (FMTp D 0) o = (Vo0 f) (0,).

Proposition 4.9. Ler f be asignalin L? (R") and let ¢ be a window in L? (R"). Then we can
write

(Ss,A»w f) (b’ ) (Di Ag Dj(Agl)f (Vso <DS.A€_1 f))) (b,é’)
= (vw (Ds'Aglf» <Ag1b,Aé§>, b,EeR".
Proof. Using Proposition 4.8, we get

sAapf)

(s
=(w Mf)
(

fM T bDSA:

)LZ(Rn)
(f M D5A§ ~A7'D SO)LZ(Rn)

<f Dy, As MA’ bzt SO)LZ(Rn)

(DsA 1My ET—A b90>

L2(Rn)

o <3A1f>>< )
(D ¢ (DSYAilf))>(b,§), b,EcR".

Remark 4.10. Notice that, thanks to Proposition 4.9 when A : R" 3 & — A(&) = Ar €
SO(n,R) c GL(n,R), we get

(SS)AAP f) (b,&)= (Ds,A5 (Vlﬂ (Ds,Agl f))) (b, &)
- (VSD (Ds,Aglf>> (Aglb,Aglé'), b, eR".
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4.3 Moritoh wavelet transforms

4.3 Moritoh wavelet transforms

We recall here Definition 2.4, i.e.let R : R" 3 £ — R (&) = Rr € SO(n,R). Then we define
the Moritoh wavelet W LR f of the signal f with respect to the window ¢ by

(Wonrof) (0,0 =122 [ £ (000 (ETR (5~ b))
= (70D 9”)

L2 (Rn)

forall (b,&) e R" x R".

Notice that, setting A- = iRE_ ! we can write

(Wanis £) (5,2 = (£,T -5 Do, 0)

L2(Rn)
Proposition 4.11. Let1 <s <o, letR:R"3&— R(£)=R:€S0(n,R), and let Az = %Rgl
. Then we can write
1/2—1 . _ibE
(SS,A#,f)( |detA }/ /S (2m) n/2 g=ib- (WA M( e gaf) (b,&)

forall (b,&) e R" x R",

Proof. First we can show that

(Soap f) (b,8) = (2m) "2 e7i0< (WAf,M<A,1>wf Jeo),  biex.

In fact, via direct computation, we get for all b and £ in R”,

) e (Wase o f ) (0,0

:(27'5) < ;*(10>
:(Zﬂ)—n/Ze—ibf (f,TbM E( ,1)t£D2’A§ (,0)

=(2m) Mt (f’beMé’DZ,A;—‘P)
(

(27_[ —n/2 —lbf f e—lb gMgT—bDZAr (p)

(2

—n/2 ,—ib-g £,T_, DZ,A:M(A—l)l
° 3

(2m) "2 ik lbr(fM s T_p Do,a, ‘P)
= (Spuy f) (b,E).
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4.3 Moritoh wavelet transforms

Thanks to Remark 4.2, we get

(Ssap f) (B,€)
:|detA€|l/271/s (SZ,A#, f) (b,g)

= |detA€|l/27l/s (27'[)_’2/2 e_ib'5 (WA;—,M

(45)

29
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5 Continuous inversion formulas

Proposition 5.1. Let f be a signal in L?> (R") and let p € L' (R") n L? (R") be such that

f p(x)dx=1.
R~
Then

fRn (Ssap f) (b,E)db = |detas| " f(&),  er™

Proof. Thanks to the Fubini theorem and the change of variable y = A: (x — b) we get

| Gensn).2ab
_JRH ((271)—”/2 |deta| " JRnf(x) e"irEy (Agl (x— b))dx) db

_ (2%)_"/2f f(x)e iy (Agl (x — b)) |detA:| """ dx db
n JRn

= (27) "2 JRn e N (x) : —1/s <fRn @ (A:1 (x — b))db) dx
- (2%)"/2J ) e ¥ f (%) |detA§|1_1/s (JR,: mdy> dx

1-1/s 2

=|detA:| " f (&), EeR™

Proposition 5.2. Let f,p € L*(R") and A:R" 5 — Az € GL(n,R). Then we have

(Ssap f) (b,E) =|detAs) ™" *lbé'(F lbﬁA)( ),  b,EeR",

where

for () =F (03 (4L~ 9)).
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Continuous inversion formulas

Proof. First notice that for all b and & in R”,
FT_b Mg D2,A5 Y = M—b T_g DZ,(A:I)t FQD,
So, by the Plancherel formula,

<f,T_b M Do, 4, 30) L2(Rn)

- <Ff,FT—b M¢ D;, 4, SO) L2(R")

= (Ff’Mb T,g DZ,(A;I)[ FQO)

L2(Rn)
_ 1/2 ~ ib- x%

~fdeead] | F@eep (aLie-2))as

= (2m)"? |detae|  2m) 7 | F(0)e™4G (aLz-9)ac
:(Zﬂ)n/z{detAdl/z (F_l bf:A ) ( )

where

feac () =F()§ (AL —2)).
Since we can write

_ —n/2 ,—ib-&
(Soae f) (0,8)= @) "2 % (£,T_,McDon p) |, o bEER",

thanks to Remark 4.2, we get

1/2— l/s

(Ss.ap f) (b,E) =|detA;]| (Soup f) (B,€)

= |deta|* 7Y (2m) /2 e (f,beMgnz,Agw)Lz(R :
|detA |1/2 l/s )7”/Ze_ib'5(27r)”/2{detA5|1/2F_lbf&A;( b)

— |detA;|' e—”"f (ngb fgyA\{) (b),  b,E€R”".

31



5.1 Constant matrices

5.1 Constant matrices

In this subsection we want to study matrix-valued maps A : R" 3 £ — As € GL(n,R) such
that

As =AeGL(n,R) VZeR", (5.1)

and their associated Stockwell transforms.

Lemma5.3. Let A:R" 5& — Az € GL(n,R) be such that
A = AeGL(n,R), VEeR",
and let p € L?> (R"). Then
|18 =2 Pigecaraz = o]
Proof. Letn=A"'({—¢&).Then
Jp(&) = -4,
SO
dn =|det], (£)|d& = |detA|d&.

Now we can write

| st e—enfidecaias= [ 1ol an=|elf-

Proposition 5.4. Let1 <s <, let A:R" 5& — Az € GL(n,R) be such that
As = AeGL(n,R), VEeR",

and let p € L? (R"). Then

HQPHiZ(]Rn) (f’g)Lz(Rn)
= f ) fR" (Ss,A,SO f) (b,€>mdb |detA|2/S*1 de.

Proof. Using Proposition 5.2, the Fubini-Tonelli theorem, Plancharel’s formula and Lemma
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5.2 Diagonal matrices

5.3, we get
[ [ ons ) (0 om0 0 Er b aeca?sa

:Jan|detAlll/s (L, fen) (b)

x |det Al e‘”"@'FEl » 8z (D) db |det AP/~ dg
JRH JRH —b féA b) (ng,b 85,A) (b)db |detAld&
[ [ 2@z ecara

Jn Rnf @ (AT (-8)8g(0)P (AT (L —¢&))al |detAldE
f( )8 (L )Jn)@(At(é’i))lz |detA|dE dl

=IIsOHLZ(Rn)fRnf@)g(g)dg
= ||(’0Hi2(Rn) (f’g)LZ(Rn) .

5.2 Diagonal matrices

In this subsection we want to study matrix-valued maps A:R" 5 & — A: € GL(n,R) in the
form

((A';X”)_1>= 52“. &L En#£0,  VEER”, (5.2)
En

and their associated Stockwell transforms. For the sake of clarity, we write A; instead of
An><n

PR

S

Lemma5.5. Let A:R" 5 & — As € GL(n,R) be such that
L
&1
A= v ELen&n#0,  YEER”,

(A
) |’_‘

Uy
3 |’_‘
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5.2 Diagonal matrices

and let p € L?> (R"). Then

).

wherel = (1,1,...,1) e R".

7 (ac-0)[ Jdetac|az = | [p(n-1f [deca,|dn,

Proof. Notice that

where1=(1,1,...,1)eR", and letn = AZ{, then

_4 ~mé&
&t &
_% _’7252
I, (&)= 5 = <2
_&n Mn&n
& £
_M
&
_ N2
- & ,
_Nn
&n
SO
n
dn = |det dé¢ = md
n=|det), (£)|d& =] [ 5 d&.
j=1 |€f|

Now we can write

).

Proposition 5.6. Let1 <s <, let A:R" 5& — Az € GL(n,R) be such that

¢ (aLz-9)

2 dé& ~ 2 dn
P B o=V =
szl}gj{ J"| | Hj:l|nf|

L
<1

1
&2 £ &0 #0, VEeR",

N
vy~
Il
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5.3 Rotation matrices in dimension n =1,2,4,8

and let p € L? (R") be such that

Co :JRn |¢(77—l)|2 |detAn}dn < o0,

wherel = (1,1,...,1) e R". Then

¢ (f8)r2mn) = JRW JRW (Ssapf) (5,€) (Ss.a48) (B,E) P g
_ TSI as
B J n JRn (SS’A'SO f) (b’g) (SS’AY‘/’ g) (b’g) db 1_[?:1 |€j|2/sfl :

Proof. UsingProposition 5.2, the Fubini-Tonelli theorem, Plancharel’s formula and Lemma

5.5, we get

2/s— 1

[ [ ons) 0 For 0 Frab e
:Jan|detA |1 1/s —zb<§<F 1bf€A)( )

x |detas| ™ e=ivs (F7L, gea. ) (b)db |detA]

J J bf’Aa (b)<ng>bg€,Ag)<b)db |detA€v
rn JRn
J JRnf () gz ()7 |dete|ag

2/s— 1

=[P (are-2)gp (at - o) az |detas] ag
o e 2

- | 0@ | |o(at¢-a)| detadazas

- | FOF@ | |2 -1 [deta,|anaz

~c, | Fog@az

5.3 Rotation matrices in dimension n =1,2,4,8

In this subsection we want to study matrix-valued maps A : R” 5 £ — Ar € GL(n,

n=1,2,4,8.
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5.3 Rotation matrices in dimension n =1,2,4,8

e n=2

(<A§X2> _1>t = (g; _;2); (5.3)

e Nn=4
N g1 =82 —&3 —&4
() -12 2 22 50
s =83 & &
e N=8

&1 =82 —&3 =&y =& —&6 —&7 &
S2 &1 =& &3 =& &5 &y —¢&7
53 €4 gl _52 _57 _58 55 56
_ 54 *53 €2 gl *§8 €7 *§6 €5 (5.5)
& & & & & —&H &g |
S6 =5 &g —<7 &2 &1 &y —C3
$7 =8 =% S &3 1 &1 &

S &7 =% S5 &1 &3 —5 &

and their associated Stockwell transforms.

Lemma5.7. Let A:R" 5& — Az € GL(n,R) be a matrix-valued function such that
(a) EllAgl €S0(n,R) for every & e R™\{0};

(b) there exists a matrix P € O(n,R) such thatA;flév = PAEIQ'

and letn = AZL.

Then

—1
- ‘detAn

_[n"
Bl

|det]n (§)| =
‘detA;?1

Proof. Using (a), we get
—azz=((lekart) .- 2 () o Laz
R A RGN RE
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5.3 Rotation matrices in dimension n =1,2,4,8

Then, thanks to (b), we have

1 1 i3
t —1 —1 —1
n=Al = —A;'C= —PAE=PAT =,
T 1T ©lgP
and
£ —282 _2¢.8, —2&1&,
R et ok
—25,8, [E1°=28  —28,¢,
J(&)=PA [ el lert
28,8 —28,8 &2
Hi ER ER
1 _
::Easzllagﬁld—zcg)
_ ! PA—1<k1 2(3)
. IS
where

£ &g . &gy
o | B8 g e,
6 - )
and Id is the n-dimensional identity matrix.

At this point it is useful to prove that

2
det <Id—2C§) =—1.
9

To do this first observe that rank C; = 1, C: is a symmetrical matrix, so there exists only one
non-zero eigenvalue. We can check that |£|? is the only non-zero eigenvalue associated to
the eigenvector (£1,&5,...,&,), in fact

<1 & L& a6\ [ &

clel |ea & aal|le
<

&1 0 ... 0 €1 & ... &y 1
0 & -0 €1 & - &y P

0 0 gn 51 gzgn gn
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5.3 Rotation matrices in dimension n =1,2,4,8

&1 0 0 1 &1
0 & - 0 1 £
= [&P ? S
0 0 ' 511 1 gn
So the eigenvalues A¥,...,A¢ of—éCg are AY = =A% =0and Al =-2.
We introduce
2
B:=1d——C:,
€]

and we compute the eigenvalues A8 of B by studying its characteristic equation, that is,
0=det(2°1d—B;)

2
= det (AB Id—Id+|§7Cg)

= det ((AB —1)Id— <—écg>> :

From this follows that the eigenvalues of B; are given by

M=2+1,  j=1..,n.

SoAf=...=2B  =1and A = —1and itis sufficient to observe that
2 n
det <Id—EC5) =detB: = [ [A% = 1.
j=1

By the preceding observations,

1 2
det J,(£) = det(RP,qg1 (Id—@Q))

dt(lPA_1>dt(Id 2 C)
Hal e

_ |§|12” det (P4;")

_ Iillz” (detP) (deta;").
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5.3 Rotation matrices in dimension n =1,2,4,8

It is useful to point out that

71_ _
ety =aer (i1 ar' ) = e ag') =i

and, thanks to the fact that }r)} = é |Z], we get

detA; ! = 21" = |n|" 11"

In the end we get

"
il

|det]n(§)| =

-1
Ay

& ~ g -
Lemma5.8. LerA:R" 5¢& — Az € GL(n,R) be such that
(a) EllAgfl €S0(n,R) for every £ e R"\{0};

(b) there exists a matrix P € O(n,R) such thatAglé' = PAEI&

(c) forevery& e R" we have
Aé’g =ée,

where e; = (1,0...,0) e R".

Then we have
| Jp(atc-9)

Proof. Letn = Aé{ , then using Lemma 5.7 we get
2 d¢

| Jp(ae-0) =

(=) i
2 d&

€1

=] el
HEY |

Il
_—

Rn

Jo [o (=)
| 1em-ef 25

[l

Proposition 5.9. Let A:R" 5& — A € GL(n,R) be such that

(a) EllA;fl €S0(n,R) for every & e R™"\{0};
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5.3 Rotation matrices in dimension n =1,2,4,8

(b) there exists a matrix P € O(n,R) such thatAgIC = PAg_lg;

(c) forevery& e R" we have
Aé‘g = |€| €y,

wheree; = (1,0...,0) e R".

Furthermore let p € L? (R") be such that
~ 2 dn
o= [pn—ef Sk <o
R i

then we have

Cy (f»g)LZ(Rn) :fRn fRn (Ss,A,go f) (b,&) (SS,A,ga g) (b,&)db }detA;'

[ Sane D02 Eoay e BBt

Proof. UsingProposition 5.2, the Fubini-Tonelli theorem, Plancharel’s formula and Lemma

5.8, we get

JWJ . (S5 1) (b’g)mdb |detA5|2/s_1d§
= [ [ et e (5 o) )

x|det A" eiv (Fg.ibgi,Ag) )db |detAg|

2/s— 1

L () 0 (Rl o) 0

S

[ [ a @ @z |decac|as
R» JRn

)db |detA;

[l
D

( (- 5))) l”éfn

40

. F0p (ae-2)8@e (4t~ ) ag fdecad az

ag

_ a8
|€|n(2/s—1) '



5.3 Rotation matrices in dimension n =1,2,4,8

Itis worth to mention that, under this set of hypotheses, it is not possible to extend the result
given in Proposition 5.9 to any dimension . In fact we have the following result.

Proposition 5.10. Let n € N\{1,2,4,8}, then there does not exist a continuous mapping A :

§" 15&— Az € GL(n,R), such that for every £ € S"~! the vector Az£ is parallel to e, .

Proof. The proof of Proposition 5.10 can be found in [28] and it is based on [5] by Bott and
Milnor.

Remark5.11. In view of Proposition 5.10, Hypothesis (c) of Lemma 5.8 and Proposition 5.9
cannot be satisfied for any n e N\{1,2,4,8}.

Remark 5.12. Matrix-valued maps as in (1.1), (1.2) and (1.4) satisfy hypothesys (a),(b) and
(c) of Lemma 5.8 and Proposition 5.9. We can easily check this fact for Aéxz. In this case,

L\ _1 [ & ¢
i (Afé 2> =5 (—512 gj) €SO(n,R),

S0 Aéxz satisfies (a).

Furthermore, taking

pP= <(1) _01> €0O(n,R),

we get
2x2) ! B &1 & 4
(4) 5‘(—@@)(@)
_ 181 +&20
—&:0+810
(10 Se &
0-1 —Z> &y &
=P (Afvxz)_l g,
that is (b).
Finally
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5.4 A unification

2x2t_i g1 & &y _ 1 _
(4 MW&F(—@&)(@) (o) v

that gives us (c).

and

5.4 A unification

Lemma5.13. LetA:R" 5& — Az € GL(n,R) be a piecewise differentiable function such that
we can find a fixed (1,2)-tensor F and a fixed (1,1)-tensor G such that

N

L

<(A§) ).:Fjllg +Gj.
J

JR”

wheren, :R" — R" is given by

Then

P
det (iunt +51)|

p (=) faeadaz=| o)

¢(Rn

e (§) =A; ({=&).

Proof. The proof of this lemma is an extension of the one given in [21]. Introduce for sim-
plicity the (1,1)-tensor

Q= (Ai)’_',

>/

and its inverse

. -1\ !
(0,
then we can define n: R” 5 { — 1, (£) e R", where
(n:(8))' =@/ (¢ =&)".
Then

(J, ()] =0Q] (—&) +QJar (¢~ &)

42



5.4 A unification

= Q] (1 -9~ Q/5;

-/ (siawQ (z - &) ~51)
—of (- (asi) @l (¢ -2y - 6%)
-l (- (e -31)

Using the hypothesis, we know that

si=((a:) g G
= \We) ) =G

SO
6k8; = Fjil511c = Fjik’
and
(7 (&)1 =0} (~Fjen’ - 61).
Observe that
detQij = detAé =detA;,
and
det (J, (£))1 = (~1)" (detAs) det (Fjyn' +5}),
SO

dn = )det (Jy (5))£’ dg = |det A¢ | ‘det (Fiun’ +5}) ‘

In the end, we have

fRn ]sﬁ (Ag (o 5)) )2 |detA;|dg = LW) % (n)

Pt
det (it +51)|

Theorem 5.14. Let1 < s < oo andletA:R" 3 w — A(w) = As € GL(n,R) be a piecewise
differentiable function such that we can find a fixed (1,2)-tensor F and a fixed (1,1)-tensor
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5.4 A unification

G such that

((a2)), - iet v
J

and the function
ne: R" —R"
E—AL({—9),
is such thatn; (R") =R" forall{ eR".
Let ¢ € L? (R") be such that

~ d
szf }(p(n)|2 - 77' —— < 0.
Re )det (Fj‘knf +5;C)‘

Then

2/s— 1

(f g)Lz R7) J J sAsof) (b, 5)( SAsog)(b £)db |detA§|

Proof. Using Proposition 5.2, the Fubini-Tonelli theorem, Plancharel’s formula and Lemma
5.13 we get

|2/s—1

JJ (S £) (5,8) (Ssap8) (b,€) db |detae|" " ag

=), ), e e (vl ) 0

X |detA§| V5 g-ibg (ngb gr,Ag) )db |detA§|

_J n JR (F—l bng,) (b) (P{‘ibgmg) (b)

=J J fen: (0) 8z Q) d |detAg|dg
Rn JR

2/s— 1

ALE—9))8(Q)P (AL - ) at|detac|ag
¢ (Ag (e 5)) )2 |detAz|dEd¢

Rﬂ
g o
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5.4 A unification

=¢, (f,8)r2(mn)-

Remark 5.15. We can recover Proposition 5.4, Proposition 5.6 and Proposition 5.9 as corol-
laries of Theorem 5.14 .
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6 Localization operators

We first introduce localization operators associated to the strictly-admissible section stud-
ied in Theorem 3.27, i.e., forall f; and f, in L? (R"),

(LF,a,H,<pfl»fz)

-— LH/HF(b’@ (fmam (0 ((0,))) @) (mam (o (b,E))) ¢, o) dbdC.

Co,H,cp

Then we can define and study localization operators associated to multi-dimensional
Stockwell transforms using Proposition 4.7.

Definition 6.1. Let a : R” — R, and R : R” — SO(n,R) be two piecewise differentiable
functions. Then we can introduce A:R"” — GL(n,R) as

A(€)=a(E)R(E), EeR",
and write
(Song ) (0,8) = (2m) "|a (@) " e 4 (fimam (0 (b,E)9),  bEER,

where 7,5 is defined in (3.2), Theorem 3.26 and Theorem 3.27. Now assume that A and
¢ are such that they satisfy the assumptions of Theorem 5.14, then the localization op-
erator Ly, , , associated to the multi-dimensional Stockwell transform and with symbol
F e L' (R" x R") is defined by

( ;‘,A,(‘ﬂfl’f2>
() n n

2/s—1

ag
forall f; and f; in L2 (R").

Notice that these localization operators extend the ones given in [20].

Proposition. The localization operator LY, , o L?(R") — L?(R") is abounded linear oper-
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Localization operators

ator and

Furthermore, it is in the trace class S;, and its trace is given by

tr L2 = f f x)dbdé.
(p n n

Proof. It follows directly from Proposition 4.7, Definition 6.1, Proposition 3.3 and Propo-

1
12 H < — 1P|l (e -
FAp B(L2(RY) €, I ”Ll(R xRn)

sition 3.4.

We can elucidate the link between localization operators associated to the multi-
dimensional Stockwell transform and the Weyl transforms.

Proposition 6.2. Let p € L? (R") be an admissible function as in Theorem 5.14 such that
||g0HL2(Rn) = 1. Then, for1 < s <o and forall F € L' (R" x R") n L? (R" x R"),

S
Lypo = We,

where

o) =@ || F0OW o0 (4 (0 b)) dbas
forall(q,p) eR" x R".

Proof. The proof given here follows, with minor changes, the one given in [20] for the 1-
dimensional Stockwell transform. First notice that for all g, p e R”,

(Wig (¢5,6,6:¢50,2)) (@ P)
=(27r)"/2fn TP b (q—i— )%br (q-—)dx

= (2m)~"? JRn e lXP (MEbe Ds,a; <P) (q + 5) <M5be Ds, 4, 90) (q B g)‘”
e o (0 0+3)
<o (47" (a-b-3)) |detas| ™ ax

|detA |1 2/5 n)_n/zfne_ly'Ag’(p_g)go (Agl (g—b)+ <%)>

<o (45 g -0)= (3))dy
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Localization operators

— |detas|' " (Wig (i, )) (47" (9 - b), AL(p — ).

Using the Moyal identity to the effect that for u;, u,, v, and v, in L? (R")
(Wig (uy, v), Wig(uy, Vz))LZ(Rann) = (u, Uz)LZ(Rn) (v, VZ)LZ(R")’
we can write

<L;,A,(p.f1’,f2
_1 2/s—1
T J f F(b,£) (SS'A#J f) (b,€) (Ss,A,Lp ) (b,&)db }detAg| dc
p JR? JR?

2/s—1

ag

1
ZMJ . J . F (b; é’) (flr Sas,b,i)Lz(Rn) (fz» ws,b,E)Lz(Rn) db |detAi

(
x db |detA;

1 . .
~@n e , J ) J F (b,&) (Wig(fi, f>), Wig (ws,b,g,gos,b,g))Lz(R,,xR,,)

2/s—1

de.

Thanks to the preceding computations, we know that

(Wig (fl’fZ) ’Wig (@s,b,é’r Sos,b,&:))Lz(Rn xRn)
~decad [ [ (wigli ) (a.p)
x (Wig(p, ¢)) (Agl (q—b), Az (p - 5)) dqdp,

so, thanks to Fubini’s Theorem,

(Lhaghi )

1 . .
:m J ) J ) F (b,8) (Wig(fi, o), Wig (¢ p.z, Sos,b,i))Lz(Rann)

x db |det A"

ag

:(Zﬂ)ln Cop JR" JRnF(b’g)
X (JJ (Wig(f1, f2)) (a,p) (Wig(¢,¢)) <Agl(q—b),Aé(p—§)) dqdp) dbd&

~e | [ (ﬁ JoJo, 70
¥

x (Wig(,¢)) (47" (q = b), AL(p —£)) dEdb) (Wig(fi, £) (q,p) dq dp
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Localization operators

@0 | | olap) Wiglhih) (@.p) dadp
=(Wo i, f2) 12(rn) -

It is possible to study localization operators in a slightly more general fashion. In fact, we
can define Ly, A by

( IS,A,QOf‘l’f‘Z>
Cl J J ( ’ )( S, fl)( '5)( S, ,(,OfZ)( ’ ) { etA§|2/s 1d§
@ n n S A b é db d

for all f; and f, in L*(R"), where A : R" 5 & — A; € GL(n,R) is such that it satisfies the
assumptions of Theorem 5.14. In this case we have to drop the connections with the affine
Heisenberg group, but still Proposition 6.2 holds with no modifications.
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7 Instantaneous frequency

7.1 Phase of the multi-dimensional Stockwell transform and
instantaneous frequency

Let f € L? (R") be a complex-valued signal. Then we can write f in the polar form
f(x)=a(x)e™), xeR”,

where a (x) = ’ f (x)| and we assume that a (x) # 0 for all x € R”. The phase of the signal
allow us to define the instantaneous frequency I F f by

(IFf)(x)=(V¥)(x), xeR™.
Proposition 7.1. Ler f € L? (R") be a complex-valued signal. Then we can findy : R — C,
n:R*"—>Candr,:R" - Cwithrn,ned (lez), i.e., there exist M, M,, 61, 0, > 0 such
that

|rj (x)| <M;|xl?,  VxeBs (0), j=12 (7.1)
where

Bs, (0) ={xeR" : |x|<5,}.

Then

(Senp f) (b,) = |detas| ™ e~ (1) [@ (AL(Ff) (B)—8)) + e(b,@] :
where

£(b,&) =&1(b, &)+ (b,&) +£5(b,<),

and

1 o N
e1(b,) = (2m) "2 |det | ) f e E=(VIB) (va) (b)) x ¢ <A51x>dx,
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7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

£ (b)) = (271) "2 }detA€|’1 J o TXE D) =0D) () o <A71x>dx,

1
a(b) g

g3(b,&) = (2m) "2 }detAdlf e EEVDWIy (x) 1, (x) <A§_1X>dx

n

a (117) fRn e
% 15 (x)(Va) (b) - x ¢ (Aglx)dx.

U
L
<
>
=
=
S
N
=

+ (2m) "2 |detAg|71

Proof. Let A:R" 5& — Ar € GL(n,R). Then we can write for all b and & inR”,

(Ssap f) (b,€) = (2m) "2 |detas|* fRnf(x) e~ (A7 (x—b))dx

= (2m) ™"/ |detA5|_1/SJ

a(x)e?¥e=ixiy, <Ag1 (x — b))dx

n

_ (27r)_”/2 |detA5|_1/sf a(x+ b)eiﬂ(x+b)efi(x+b)-€¢ (Aglx)dx

n

= (27r)_"/2 |detA5|1/sf a(x + b)e ((x+b)-e=d(x+b)

X @ <A51x>dx.
By Taylor’s formula,
a(x+b)=a(b)+(Va)(b) -x+n(x),
and
P (x+Db)=9(b)+(VI)(b) x+1r(x),
with r, e 0 (|x|2) , i.e., there exist M, M5, 0, 0, > 0 such that
|rj(x)}<Mj|x|2, VxeBs (0), j=12,
where
Bs, (0)={xeR":|x|<d;}.
So, for all b and & in R”,

! P E 0D (S 4y f) (B,€)
:(Zn)_"/2|detA5|1/sf (a(b)+(Va)(b) - x + 1 (x))
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7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

y efix-(ifvﬂ(b))eirz(x)(p (A;lx)dx
— (2m) "2 |detA5|_1/SJ e~ ix(E=(VOB) pin(x)g (b (Aglx)dx

e~ E(E(TNB) o 1n(X) yg (b) - x <A€;1x)dx

e~ (E=(VO)(D)) pira(x) r(x) de'

n

+(2m) "2 |detA§|_l/sJ

n

+(2m) ™2 |detA§|_l/Sf

Notice that there exists 7 : R” — R such that |y (x)| =1forall x e R” and
e =14y (x) 1y (x).

With the change of variable y = Agl x, we getfor all b and & in R”,

(2%)"/2|detA5|_l/sf e—ix~(§—(V17)(b))a(b) ") (Ag1x>dx

n

= (2m) ™" |d9tAé|1_l/Sf o My E Mg (b) ¢ (y)dy

=(2m)”

RS

S
QU

<

. l_l/sa(b)f o iV ALE=(VO)(D))

— (27) "2 |det A |1 1/sa(b)f o~V ALEB-8) 4 1y 4y,

Rn

1-1/s

~ |detag|' ™ a (b) ¢ (AL(V) (D) -9)).

It follows that for all b and £ in R”,
(b -0 ( sAgpf) ( )
1-1/s ~ ¢
— |deta;|'" " a(b)p (A5 (Vi (b) — 5))

+(2m) "2 |detAg|l/sf e FEVID))y (x) 1, (x)a (b) ¢ <Ag1x>dx
Rn

+(27r)_"/2|detA5|1/sf X (E=V0(0) in(0) g g (b) - x o (A—

glx)dx
+(2n)_"/2|detA5|_1/sf e~ ix(§=Vi(b)) pin(x) . L (x )SO(A x)dx.

¢

n

Using the preceding observations

(bi o (sAgof)( )
Ta(b)§ (L) (b) - 9))

|detA§|
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7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

+(2m) "2 |detA5|1/sf e X ETNWDy (x) 1y (x)a(b) ¢ (Aglx)dx

n

+(27r)_"/2|detA5|_l/sf e*"”@*(W)(l’”Va(b)-xso(Aglx)dx

n

+(2m) "2 |detas | f e ENBy (x) 1, (x)(Va) (b) - x ¢ (A;x)dx

n

+(27T)_n/2|detA§|_l/sf e*iX-gei(ﬁ(X+b)*17(b)) n (x) @ (Ag1x>dx, b,gERn.

n

Therefore

el(b-E=0(b)) (Ss,A,sa f) (b, &)

- fdetac] ™ 'a (0) |3 (4L (v0) (0)-2)) + £ (6,5)],

where

E(b’g) :81(b’€)+€2(b’§)+83(b’§>r

and
41 s —
e1(b,€) = (21) 7" |det A¢| " 5 JR e ENWL) (va) (b) - x ¢ (Aglx)dx,
41 L —
€ (b,é’) _ (27_E>—n/2 }detA5| 1@[ eflx{‘:el(ﬁ(erb)*ﬂ(b)) n (JC) @ (Aglx)dx,

£5(b,E) = (2) "2 }detA5|1f e VDY (x) 1, (x) (Aglx)dx

n

v
L
<
>
=
=
S
N
=

401 .
+(27r)_"/2|detA§| l—a(b)f e 1x
Rn

% 15 (x) (Va) (b) - x (Aglx)dx.

Suppose that the term ¢ (b, £) is negligible and assume f (x) = a (x) e’?*) as before. Then

(Ssap £) (0,8) = e 510D |detac| ™ a(b) § (AL (VD) (b) - €))

~ |detaz| ™ e < f (0) § (AL((VD) (b)),

and the multi-dimensional energy distibution for the Stockwell transform is given by

(S £) (0,0 = [detad* o (b | (A ((v0) () )
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7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

Assume that

sup
xeRn

¢ (x)]=]2(0),

then for each fixed b alocal-maxima occours at & (b) = (V1) (b). Notice that these points
of local maxima do not depend on A:. We call these points (b, (b)) ridges and we observe
that the ridge frequency & (b) is the instantaneous frequency (V#) (b) at the point b. Let
us assume in addition that

v(x)>0, VxeR",

and write the Stockwell transform in polar coordinates as
(Ss.ap f) (0,8) =c (b,) ™),

then
O(b,&)=b-—19(b),

and the ridges are the points for which & = V1 (b) or, equivalently,
(Vp0)(b,&) =& — (V) (b) =0.

Finally, we can write

(VD) (b) = (Vp0) (b,8) +&.

Now we can give the hypotheses that guarantee the negligibility of ¢.

Lemma 7.2. Let f € L?(R") be a complex-valued signal. Then we can find y : R" — C,
n:R*"—>Candr,:R" > Cwithr,ned (lez), i.e., there exist My, M, 61, 0, > 0 such
that

|7 ()| <M;|xl?,  VxeBs (0), j=12
where

B, (0) ={xeR":|x| <§;}.

Then

(Sen f) (b,8) = [deta; | e=i0F (b) [@ (AL(aFf)()-0) + s(b,a} :
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7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

where

£(b,&) =&1(b, &)+ (b,&) +£5(b,<),

and we have

|61 (b,)] < (2m) "2

AL (Va) (b)

e oo
—nj2 M 2

et T | el

|r (Aey)||e ()| ay

+ (271)_”/2

b)| JR"\{y:|A5y|<51}
and
—n/2 2
o] <r [ e ey
+ (27r)_"/2f r(Azy) | (y)|dx

{Y'lAEJ’|<52}

AL(Va) ()|

e |a(b)] f{y:|A§y|$52}|A5y}2|y||go(y)|dy

AL(Va) (b)| I
la ()] Jrn{yiacyi<e.)

<|y|le (y)|dy.

+(2m) "2 |72 (e )|

Remark 7.3. Notice thatwhenn =1, s =1and A; = 1/&, we getfor all b,& eR",

e (0,)| < 2) l/zlgl')‘; 1yl ]ay

,(b,8)| < 12 1
|8 2 { 12 {a )! J{y E }

v ()| dy

1/2

J\{ |y/€|<51 n(y/&)le (r)dy

and

le3(b,8)| < (2m) "2 |y|2|s0(y)|dy

e
ER % )y sl<a.)
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7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

“1/2
rem | R ey
1 |a'(b)]
2P Ja(b)] f{y|y/r|<az T le ]y

RE 1 |a’ (b |J
1€l a (b)] Je{yly/zl<s2)

+(2n) VM, —

+(2m 12 (y/8)||7]|e (¥)]dy.

Proof. We can estimate &, €5, €3 via direct computation and obtain
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7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

and
|53(b»§)}
<(2n)™"? |detA§|_1f |r2(x)} ‘gp (Aglx)‘dx
Rn

T (2m)"2|det ;| ! mﬁw |1, (x)]|(Va) () x| ‘go (A;x)’dx

<(2n)™"? |detA§|_1L§ o |r2(x){ ‘go (Ag1x>’dx
2

fRn\Bﬁz(0)|rz(x)| ‘cp (AE x). x

+(27r)—n/2 |detA€|7l mﬁ%(o) |r2 (x)| |(Va) (b)- x| ‘(,0 (Aglx))dx

_ _ 1
Gy e o )
2

+(2m) "2 |detA5

X |(Va)(b)~x| ‘(p (Aglx)’dx

<(2m)™"? |detA§|_1f
Bs, (0)

+(2m) ™2 |detAg|1fR o |r2(x)| ‘(p (Aglx>’dx
n\Bs,

M, |x|? ‘30 <A51x>'dx

—n/2 M, J 2 _ ’ -1 ‘
+(2m) |detA;| |a(b)| Bﬁz(o)|x| |(Va)(b) x| <,0<A5 x) dx
—n/2 d B —1 1 f
+(2m) | etAg| —|a(b)| Rn\352(0)|r2(X)|
><|(Va)(b)-x|‘(p(Ag1x)’dx
<(2m)"* M, sy |* o ()| dy
{y:|4a:y|<6.}

—n/2 _
+ () JR”\{J’:M;—J/KEZ} " (A;y) |<,0 (y)} @
M, 2
|a(b)| [{yilAsyléﬁz} [4c7]
x|(Va)(b)- (Aey)||g (v)]dy

+ (27r)_"/2

+(2m) |r2 (A;ry)|

—n/2 1
|a (b)| fR"\{yrlA;—yIQz}
x|(Va)(b)- (Azy)| | (y)|dy

57



7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

<(2m)"* M, sy o (v)|dy
{r:lAzy|<8.}

—n/2
* (27'5) fR’l\{y:|Agy|<52} & (Agy) |(’0 (y)} ax

AE(Va ‘
—n/2
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A‘ Va)(
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Proposition 7.4. Ler f € L? (R") be a complex-valued signal. Then we can findy : R" — C,
n:R*"—>Candr,:R" > Cwithr, ned (lez), i.e., wecan find My, M,, 6, 6, > 0 such
that

|7 ()| <M;|xl?,  VxeBs (0), j=12
where
B, (0) ={xeR":|x| <§;}.

Then

(Senp f) (b,8) = [deta;| " e=i0F (b) [@ (AL(aFf) () -0) + s(b,a} :
where

E(b’g) 281(19,5)+€2(b,§)+€3(b,§).

Let 0 be the minimum between 6, and 0,, let M be the maximum between M, and M, .
Furthermore assume that there exists
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7.1 Phase of the multi-dimensional Stockwell transform and instantaneous frequency

Let ¢ be a compactly supported function such that

supp ¢ < B, (0).

Then
AL(Va) (b)
|e1(b,8)] < (Zﬂ)n/szﬂ‘L o y[le ()] dy,
,n/z 2
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AL(Va) (b)
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|a(b)| Ly:|Agy|S61}me(0

Proof. The estimate is trivial for &,. Via direct computation we can work on &,.

Notice that since Ar € GL(n,R)
e - sup|acy] <o
y#0

SO

R™\{y:|Azy| <61} ={y:|Acy|> 61} = {y:||A]||y]| > 61}

:{y;|y|>i}c{y;|y)>i}.
As As

o
p < VEeR",
[ Ac]]

Since

we have
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7.2 Examples

So
|‘92(br§)}
—nj2 M 2
<(2m) |a(b)|f{y:|Agy|<51}}A;y| |<p(y)}dy

+ (27?)7”/2

1
|a(b)] JR"\{YZM;'J’IS&} In (Azy)||e ()| dy

—(emy e M r )
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+(2m)” I (Aey)||e ()| ay
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M,

_ (am)"?
& T Satenetoicn

Az v || ()| dy.

Analoguosly we can deal with &3.

7.2 Examples

7.2.1 1-dimensional case

Letn=1,and A:R3&+— Az eR\(0). Then for all _1>p/51

A

{y:|Asy| <81} n B, (0)=B,(0),

and, in the same setting as Proposition 7.4, we have
ool la O llolar

j e 0] ay.

—1/2
0.0 < e ),

and

s8] < em) Pacfna | vl )] ay

b
+ (2m) "2 |A5|3M|<|Vaa()b()|)| L o v’ ()] dy-.

Choosing s = 1 and A = 1/|&]| for all £ € R™\ {0}, we can obtain similar results as the ones

60



7.2 Examples

in[19].

7.2.2 Diagonal matrices

In this subsection we study the estimates given in Proposition 7.4 for diagonal matrices as
in Section 5.2. In this case we have

LS
|detA§| = 1:[1@

Then

AL(Va) (b)|
| | dy,
D] LP(O)IyIIsO(y)I y

|1 (b,€)| < (2m)"/*
ja

le2(b,8)| < (2m) "2 Azy[P o ()| dy.

@l
|a (b)] J{y:|a:y|<51} B, (0)

and
&5 (,2)]
<(2m)™"*M R, sy | (v)|dy
t
+<2n>—n/2M% [N L7 [

7.2.3 Rotation matrices in dimensionn =1,2,4,8

In this subsection we study the estimates given in Proposition 7.4 for diagonal matrices as
in Section 5.3. In this case we have

|detAz| =[&]7".
Then
at(va)(b)
ey (b,8)| < (2m) " i fa(b){ ‘JB (O)Iyllw(y)ldy
aasam)
= (2m)~"? o] ’L(O)Mlso(y)}dy
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Notice that, for all |£| > 5%, we get
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