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SUMMARY

The de novo DNA methyltransferase 3-like (Dnmt3L)
is a catalytically inactive DNA methyltransferase
that cooperates with Dnmt3a and Dnmt3b to meth-
ylate DNA. Dnmt3L is highly expressed in mouse
embryonic stem cells (ESCs), but its function in these
cells is unknown. Through genome-wide analysis of
Dnmt3L knockdown in ESCs, we found that Dnmt3L
is a positive regulator of methylation at the gene
bodies of housekeeping genes and, more surpris-
ingly, is also a negative regulator of methylation at
promoters of bivalent genes. Dnmt3L is required for
the differentiation of ESCs into primordial germ cells
(PGCs) through the activation of the homeotic gene
Rhox5. We demonstrate that Dnmt3L interacts with
the Polycomb PRC2 complex in competition with
the DNA methyltransferases Dnmt3a and Dnmt3b
to maintain low methylation levels at the H3K27me3
regions. Thus, in ESCs, Dnmt3L counteracts the ac-
tivity of de novo DNA methylases to maintain hypo-
methylation at promoters of bivalent developmental
genes.

INTRODUCTION

In mammals, the methylation at 5mC occurs mainly at CpG

dinucleotides and is required for fundamental physiological

processes, such as embryonic development, X chromosome

inactivation, and genomic imprinting (Okano et al., 1999; Pontier

and Gribnau, 2011; Li, 2002). Genome-wide analyses and func-

tional studies allowed researchers to correlate DNA methylation

with epigenetic modifications and to identify DNA elements that

are necessary for DNA methylation (Meissner et al., 2008; Haw-

kins et al., 2010; Lienert et al., 2011). However, the regulation of

DNAmethylation in stem cells and during early differentiation re-

mains elusive.

DNA methylation is mediated by DNA methyltransferases

(Dnmt), which include the maintenance enzyme Dnmt1 and the

de novo Dnmt3. The family of the Dnmt3 includes two catalyti-

cally active members, Dnmt3a and Dnmt3b, and a catalytically

inactive member called Dnmt3-like (Dnmt3L) (Bestor, 2000) (Ju-

rkowska et al., 2011b).

A crystallography study showed that Dnmt3L forms a hetero-

tetrameric complex with Dnmt3a (Jia et al., 2007). It has been

suggested that this tetramerization prevents Dnmt3a oligomeri-

zation and localization in heterochromatin (Jurkowska et al.,

2011a). In vitro experiments showed that Dnmt3L interacts

with Dnmt3a or Dnmt3b and stimulates their activity (Chédin

et al., 2002) (Chen et al., 2005; Gowher et al., 2005; Kareta

et al., 2006).

In mouse embryonic stem cells (ESCs), a large number of pro-

moters are hypomethylated. DNA methylation increases during

implantation to remain stable in fully differentiated cells (Borgel

et al., 2010). This methylation pattern does not correlate with

Dnmt3L, which is highly expressed in ESCs, and its level drops

with ESC differentiation to be re-expressed only in growing

oocytes and in testes during a brief perinatal period (Bourc’his

et al., 2001) (Bourc’his and Bestor, 2004). In germ cells, Dnmt3L

collaborates with Dnmt3a for the methylation of imprinted loci

and retrotransposons (Hata et al., 2002; Kaneda et al., 2004)

(Bourc’his et al., 2001; Bourc’his and Bestor, 2004). Less clear

is the role of Dnmt3L in ESCs, where Dnmt3L is highly

expressed.

In ESCs, the Polycomb complex mediates the transcription

repression of the genes involved in development, which is

different from DNA methylation. Polycomb-mediated repression

is considered to be less permanent because itmaintains the pos-

sibility of activating the genes upon differentiation. It has been

observed that H3K27me3-positive promoters are frequently

DNA methylated during differentiation (Mohn et al., 2008) and

are hypermethylated in cancer (Ohm et al., 2007; Schlesinger

et al., 2007; Widschwendter et al., 2007; Simmer et al., 2012),

thus showing that H3K27me3 premarks genes for DNA methyl-

ation. A direct interaction between EZH2 of the Polycomb-

repressive complex 2 (PRC2) and the DNA methyltransferases

Dnmt3a and Dnmt3b has been demonstrated (Rush et al.,
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2009; Viré et al., 2006). However, a direct effect of this interaction

and DNAmethylation remains controversial because the binding

of PRC2 is inhibited by DNA methylation in vitro (Bartke et al.,

2010), and genome-wide analysis reported mutual exclusive-

ness of H3K27me3 with DNA methylation in CpG islands (Lin-

droth et al., 2008; Wu et al., 2010; Brinkman et al., 2012).

To study the role of Dnmt3L inmouse ESCs, we knocked down

its expression. By genome-wide analysis, we identified differen-

tially methylated genes and demonstrated that a fraction of these

affects ESCdifferentiation.We found that Dnmt3L exhibits a dual

role in DNA methylation because its silencing results in the

reduction of the methylation in gene bodies and increased

methylation at the transcription start sites of bivalent genes. Spe-

cifically, we demonstrate that Dnmt3L-dependent inhibition of

DNA methylation is required for ESC differentiation into primor-

dial germ cells (PGCs).

RESULTS

Dnmt3L Is Required for the Differentiation of Mouse
ESCs into Primordial Germinal Cells
Dnmt3L is highly expressed in mouse ESCs; its expression

decreases after leukemia inhibitory factor (LIF) withdrawal and

remains low in embryoid bodies (EBs). In contrast, Dnmt3a and

Dnmt3b levels increase following LIF withdrawal, with a peak

at day 3 of EB formation, to decrease only at later time points

(Figure 1A). To understand the role of Dnmt3L in ESCs, we

accomplished its acute depletion by RNA interference. Three in-

dependent shRNA constructs strongly reduced Dnmt3L expres-

sion without altering the expression of Dnmt3a or Dnmt3b in

ESCs (Figure 1B).

ESCs that were silenced for Dnmt3L showed minor morpho-

logical alterations and no variation in the expression of the

ESC core factors Oct3/4, Nanog, and Sox2 (Figure 1C). In

contrast, analysis by quantitative PCR (RT-qPCR) of embryonic

markers in Dnmt3L-silenced cells after 7 days of ESC differenti-

ation into EBs showed an unbalanced expression of the markers

of the three embryonic germ layers and of the primordial germ

cells (PGC) (Figure 1D). Importantly, the markers of PGC, Stella

(indicated as Dppa3), Acrosin, Haprin, Gcnf, and LH-R were

almost undetectable (Figure 1D), which suggests that Dnmt3L

is involved in PGC establishment.

Next, we analyzed whether Dnmt3L is actually expressed in

PGC cells (Stella positive) in EBs at 7 days. Fluorescence-

activated cell sorting (FACS) analysis of EBs showed that

Stella-positive PGC cells, which maintain the expression of

Oct3/4 (Wei et al., 2008), were also positive for Dnmt3L (Figure 1E

and Figure S1). The coexpression of Stella with Dnmt3L was

confirmed by immunofluorescence on ESCs that were differenti-

ated in a monolayer (Figure S1A). Dnmt3L mRNA was signifi-

cantly enriched together with other known markers of PGCs,

including Sox2, Acrosin, Haprin, Gcnf, and LH-R, in Stella-posi-

tive versus Stella-negative sorted cells from 7-day EBs (Fig-

ure 1F). Moreover, by FACS analysis, we observed a reduction

of �85% of the Stella-positive PGCs by Dnmt3L silencing (Fig-

ures 1G and H). To verify that the phenotype observed was not

due to silencing-dependent off-target effects, we also performed

the knockout of Dnmt3L by targeting the first exon of Dnmt3L

using the transcription activator-like effector nucleases

(TALENs) (Boch et al., 2009;Moscou andBogdanove, 2009) (Fig-

ures S1D–S1F). Phenotypic analysis of two independent Dnmt3L

knockout ESC clones showed, similarly to the phenotype

observed with knockdown experiments, the impairment of

PGC markers (compare Figures S1H and S1I with Figures 1D

and 1E).

These experiments establish that Dnmt3L is an early marker of

PGCs and that its expression is required for ESC differentiation

toward PGCs.

Dnmt3L Modulates the Expression of the Rhox Genes,
which Are Required for ESC-to-PGC Differentiation
To identify the genes that are regulated by the Dnmt3L, we

performed microarray analysis of the three shRNAs (Pearson

correlation R R 0.87, Figure S2A). The microarray analysis of

the control and Dnmt3L knockdown ESCs identified 777 upregu-

lated and 467 downregulated genes (Table S1). To identify

among the Dnmt3L-regulated genes those that were involved

in ESC differentiation into PGCs, we compared this list of

Dnmt3L-regulated genes with the genes that are differentially

expressed in PGC (Stella-positive) versus non-PGC (Stella-

negative) EBs, which were previously published (West et al.,

2009). This analysis identified 60 genes that are upregulated by

Dnmt3L knockdown and that were also upregulated in Stella-

negative cells and 67 genes that were downregulated in Dnmt3L

Figure 1. Dnmt3L Is a Marker of Primordial Germinal Cells, and Its Knockdown Alters Correct PGCs Formation

(A) Dnmt3L is highly expressed in ESCs and strongly decreases during EBs development, which is different from the other Dnmts. Protein levels were measured

by western blot analysis, as indicated. b-actin was used as a loading control.

(B) Knockdown of Dnmt3L performed with three different shRNAs in ESCs efficiently decreased the Dnmt3L protein level, though it did not alter the level of the

other Dnmts. The protein levels were measured by western blot analysis, as indicated.

(C) Knockdown of Dnmt3L performed as in (B) did not alter the expression of pluripotency-related genes, such as Nanog, Oct3/4, and Sox2. The protein levels

were measured by western blot analysis. b-actin was used as a loading control.

(D) RT-PCR analysis shows a significant reduction in the PGC markers, such as Stella (Dppa3), Acrosin, Haprin, Gcnf, and LH-R in Dnmt3L knockdown

ESCs differentiated in EBs for 7 days, and no significant differences were noted in the markers of the other germinal layers. *p < 0.001. Data are represented as

mean ± SD.

(E) FACS analysis demonstrates that Dnmt3L is expressed together with Stella and Oct3/4 in the PGCs of differentiated EBs.

(F) RT-PCR analysis of Stella-positive cells sorted out of the EBs on the seventh day shows a significant enrichment of Dnmt3L mRNA in Stella-positive cells with

respect to Stella-negative cells (*p < 0.001, **p < 0.05). Data are represented as mean ± SD.

(G) Knockdown of Dnmt3L led to an almost 80% reduction in the Stella-positive cells in differentiated EBs, as shown by the FACS analysis.

(H) Quantification of Stella-positive cells in the FACS experiment shown in (G) (*p < 0.001). Data are represented as mean ± SD.

See also Figure S1.
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Figure 2. Dnmt3L Modulates the Expression of the Rhox Family Genes to Control the PGC Correct Development

(A) A comparison of the genes that are regulated upon Dnmt3L knockdown against the genes that are differentially expressed in PGCs (Stella +) versus non-PGCs

(Stella�) of differentiated EBs.

(B) The heatmap of the shared genes shown in (A). The Rhox5, Rhox6, and Rhox9 genes are the most downregulated genes of those that are clustered with

Dnmt3L.

(C) The downregulation of the three Rhox genes upon Dnmt3L knockdown was confirmed by RT-PCR analysis (*p < 0.001). Data are represented as mean ± SD.

(D) RT-PCR analysis of the Rhox genes upon Dnmt3L rescue. The endogenous Dnmt3L was silenced by a siRNA targeting the 30UTR (*p < 0.001). Data are

represented as mean ± SD.
(legend continued on next page)
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knockdown and were also downregulated in Stella-negative

cells (Figures 2A and 2B). Cluster analysis revealed that Dnmt3L

was coregulated with three members of the Rhox (reproductive

homeobox on X-chromosome) family: Rhox5, Rhox6, and

Rhox9 (Figure 2B). Further comparison of Dnmt3L-regulated

genes versus mouse-derived PGCs and other tissue-regulated

genes (Hayashi et al., 2011; Shen et al., 2008; Turbendian

et al., 2013) confirmed the coregulation of Dnmt3L with Rhox

genes (Figures S2C and S2D).

Because Rhox genes encode for transcription factors that are

regulated by DNA methylation (Maclean et al., 2011) and their

expression is crucial for differentiation of ES cells (MacLean

and Wilkinson, 2010), we further analyzed the expression of

theRhox genes in Dnmt3L knockdown cells. The downregulation

of the three Rhox genes upon Dnmt3L silencing was confirmed

by RT-qPCR (Figure 2C). The specificity of Dnmt3L-dependent

regulation was further verified by a complementation assay in

which the silencing of the endogenous gene with a siRNA that

targets the 30UTR was rescued by the expression of an exoge-

nous Dnmt3L (Figure 2D). Furthermore, we observed the down-

regulation of Rhox genes in Dnmt3L�/� ESCs (Figure S2E). Next,

we verified whether the knockdown of the Rhox genes could

affect the differentiation of ESCs into PGCs. We compared the

efficiency of ESC differentiation into PGCs by expressing shRNA

for Rhox5, Rhox6, Rhox9, or combinations of these constructs

by measuring the number of Stella-positive cells in EBs on day

7. The silencing of Rhox5, either alone or in combination with

Rhox6 and/or Rhox9, induced a significant reduction of Stella-

positive cells in EBs, whereas the silencing of Rhox6 and

Rhox9 did not show a significant reduction in the Stella-positive

cells (Figures 2E and S2F). To establish whether Dnmt3L knock-

down prevents PGC formation by repressing Rhox5, we ex-

pressed Rhox5 in Dnmt3L-silenced cells (Figure 2F). Analysis

of Stella-positive cells showed that Rhox5 ectopic expression

rescues the block of PGC differentiation following Dnmt3L

silencing (Figure 2G). Thus, Dnmt3L is required for the differenti-

ation of PGCs via the regulation of Rhox5.

Dnmt3L Maintains Rhox5 Gene Expression by Inhibiting
DNA Methylation on the Rhox5 Promoter Region
We next analyzed the pattern of Rhox5 methylation in wild-type

and Dnmt3L knockdown ES cells. TheRhox5 gene is transcribed

from two alternative promoters: a distal promoter (Pd) and a

proximal promoter (Pp) (Figure 3A), which transcribe twomRNAs

that differ in their 50 untranslated regions. In ESCs, only the distal

promoter is active (Li et al., 2011) (Figures S2G and S2H).

Because Dnmt3L has been shown to cooperate with Dntm3a

and Dnmt3b to methylate the DNA and because Rhox genes are

upregulated in Dntm3a/3b ESC double knockouts (DKOs) (Fig-

ure S2G) (Maclean et al., 2011), we expected that the Dnmt3L

knockdown would result in Rhox5 downmethylation. Instead,

bisulfite sequencing and methylated DNA immunoprecipitation

(MeDIP) of the Rhox5 promoter region revealed that Dnmt3L

knockdown induces a significant increase in DNA methylation

at both the distal and proximal promoters (Figures 3A and 3B).

Dnmt3L silencing also affected DNaseI accessibility and

increased the level of the repressive mark H3K9me3 within

this region (Figures 3C and S2I). ChIP experiments revealed

that Dnmt3L associates with the Rhox5 promoter region, and

its signal was significantly reduced by Dnmt3L knockdown

(Figure 3D). In contrast, Dnmt3a and Dnmt3b showed a low

association with the Rhox5 promoter region in wild-type ESCs,

and their binding increased significantly upon Dnmt3L knock-

down (Figures 3E and 3F). To measure the dynamics of

Dnmt3L-dependent regulation of Rhox5 we generated

Dnmt3L-ER-Dnmt3L�/� stable clones. Time-course analysis of

4-hydroxitamoxifen (OHT) withdrawal, which leads to the cyto-

plasmic localization of the Dnmt3L-ER fusion protein, showed

a concomitant reduction of the Rhox5 expression and an in-

crease of its DNA methylation, together with a reduction of its

accessibility (Figures S2J–S2M).

The Dual Functions of Dnmt3L in DNA Methylation
The above results demonstrate that Dnmt3L inhibits methylation

at the Rhox5 promoter region and suggest that, in this region,

Dnmt3L acts as a competitor of Dnmt3a and Dnmt3b. This result

is surprising considering that Dnmt3L has been previously re-

ported to cooperate in vitro with Dnmt3a and Dnmt3b to meth-

ylate the DNA (Suetake et al., 2004; Chen et al., 2005). To verify

whether the Dnmt3L-dependent inhibition of DNA methylation is

a general feature, we performed genome-wide methylation anal-

ysis by MeDIP-seq in control and Dnmt3L-silenced cells. The

level of 5mC in the control cells along the entire genome,

including the gene promoters, and the intragenic and intergenic

regions was comparable to other MeDIP-seq analyses (Matar-

ese et al., 2011; Ficz et al., 2011; Pastor et al., 2011) (Figures

S3A and S3B). Dnmt3L silencing resulted in a reduction in the

methylation at 14,107 genomic regions (Figure 4A). This result

is in agreement with the Dnmt3L function of cooperating with

Dnmt3a and Dnmt3b to accomplish DNA methylation. However,

Dnmt3L silencing also induced a significant increase in methyl-

ation in 5,724 genomic regions (Figure 4A), which suggests

that Dnmt3L also plays a role in limiting the DNA methylation.

The reduction in methylation occurred mainly within the gene

bodies, whereas the increase in methylation was more centered

at the transcription start site (TSS) (Figure 4B). Analysis of the

methylation distribution was performed by using a list of the

genes that was ordered with respect to the level of their

(E) Quantification of FACS analysis of Stella-positive cells in PGCs upon knockdown of Rhox genes in ESCs (*p < 0.01). The efficiency of PGC differentiation of

ESCs that express the shRNA forRhox5,Rhox6,Rhox9, or combinations of these constructs wasmeasured as the number of Stella-positive cells in EBs on day 7.

The silencing of Rhox5 either alone or in combination with Rhox6 and/or Rhox9 induced a significant reduction in the Stella-positive cells in EBs, whereas the

silencing of Rhox6 and Rhox9 did not show a significant reduction in the Stella-positive cells. Data are represented as mean ± SD.

(F) Western blot analysis of the total extracts obtained from the control, Dnmt3L knockdown, and Dnmt3L knockdown cells that overexpress exogenous Rhox5.

b-actin was used as a loading control.

(G) Quantification of FACS analysis of Stella-positive cells upon Dnmt3L knockdown and Rhox5 rescue (*p < 0.001). Data are represented as mean ± SD.

See also Figure S2 and Tables S1 and S2.
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expression; this analysis showed a significant increase in

methylation at the promoters of genes that were not expressed

or were expressed at a low level (Figures 4C and S3C). Gene

ontology analysis showed that the genes that had increased

methylation were significantly enriched for developmental

genes, most of which are bivalent in ESCs (Figures S3D and

S3E). The reduction in methylation was centered more on the

body of genes that had higher expression levels and included

genes that are involved in cell growth and metabolism (Figures

4C and S3E).

To explore the relation between histone modifications and the

Dnmt3L-dependent DNA methylation, we compared the in-

crease in DNA methylation that resulted from Dnmt3L silencing

with respect to histone modifications. Dnmt3L-dependent

methylation (Figure 4D, loss of 5mC) showed a 9% overlap

with the bodies of the H3K4me3 genes over a total of 7,931

(p < 10– 7), which is in agreement with a role for Dnmt3L in coop-

erating with Dnmt3a and Dnmt3b tomethylate DNA. Importantly,

we also found that the increase in DNA methylation correlates

with bivalent genes because 55% of the H3K27me3/

H3K4me3-positive genes over a total of 2,189 genes (p = 0.00)

Figure 3. Dnmt3L Maintains the Rhox5

Gene in an ON State by Inhibiting Its DNA

Methylation at Its Promoter

(A) Bisulfite analysis within the Rhox5 promoter

region shows a significant increase of DNA

methylation at the distal promoter (Pd) and at the

second exon (Ex.2) upon Dnmt3L knockdown. Pd,

distal promoter; Pp, proximal promoter. Lower-

case letters show the position of the primers for

the ChIP analysis.

(B) MeDIP analysis shows a significant increase in

DNA methylation at the distal promoter and at the

level of the second exon (Ex.2) upon Dnmt3L

knockdown

*p < 0.01. Data are represented as mean ± SD.

(C) A reduction in the DNaseI sensitivity (measured

as a percentage of chromatin accessibility) is

observed within the shown Rhox5 regions upon

Dnmt3L knockdown. *p < 0.001. The b-actin gene

was used as a control. Data are represented as

mean ± SD.

(D–F) ChIP analysis of Dnmt3L, Dnmt3a, and

Dnmt3b binding to the Rhox5 regions. Dnmt3L

associates with theRhox5 promoter region, and its

signal is significantly reduced upon Dnmt3L

knockdown, whereas Dnmt3a and Dnmt3b show a

low association with the Rhox5 promoter region in

wild-type ESCs, and their binding increases

significantly upon Dnmt3L knockdown. *p < 0.001.

Data are represented as mean ± SD.

See also Figure S2.

showed an increase in DNA methylation

following Dnmt3L silencing (Figure 4D,

gain of 5mC). Remarkably, Dnmt3L

silencing induced an increase of 5mC in

the H3K27me3-positive regions (Fig-

ure 4E). Interestingly, the analysis of the

gain of methylation on the H3K27me3

promoters classified by the level of DNA methylation resulted

to be independent of their initial methylation state and correlates

with the increase of DNA methylation that is observed during

ESC differentiation (Stadler et al., 2011) (Figures S3F and S3G).

The gain in 5mC was validated by the bisulfite technique (Fig-

ure S4). These results establish that one role of Dnmt3L in

ESCs is to maintain the hypomethylated state of the bivalent

genes.

Dnmt3L Forms a Complex with PRC2 via its Direct
Interaction with Ezh2
The above results show that, in ESCs, the increase in DNA

methylation by Dnmt3L silencing overlaps with H3K27me3

modification. In differentiated cells, the Polycomb PRC2 com-

plex associates with Dnmt3a and Dnmt3b (Viré et al., 2006).

However, in ESCs, the majority of H3K27me3 genes are hypo-

methylated (Fouse et al., 2008; Rush et al., 2009), which sug-

gests that a more complex interplay between PRC2 and DNA

methyltransferases takes place in ESCs.

By using coimmunoprecipitation of endogenous proteins, we

tested whether the PRC2 complex could interact with Dnmt3L.
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We observed that, in ESCs, in addition to Dnmt3a and Dnmt3b,

Dntm3L also coimmunoprecipitated with Ezh2 and Suz12 (Fig-

ure 5A), and in the reciprocal experiment, both proteins of the

PRC2complex coimmunoprecipitatedwithDnmt3L (FigureS5A).

We further demonstrated through an in vitro interaction assay

using the recombinant FLAG-Dnmt3L and GST-Ezh2 proteins

that the observed interaction is direct (Figures 5B and S5B).

Moreover, by increasing salt concentrations, we observed a

higher affinity of Ezh2 with Dnmt3L with respect to Dnmt3a/b

(Figures S5B and S5C). By deletion mutants, we mapped the

interaction of Dnmt3L with Ezh2 to the Dnmt3L N-terminal part,

within its PHD like domain; in agreement with previous reports

(Suetake et al., 2004), the deletion of theC-terminal domain abol-

ished its interaction with Dnmt3a (Figure 5C).

Furthermore, we fractionated the nuclear protein complexes

through gel filtration chromatography and immunoprecipitated

each fraction with anti-Dnmt3L antibody. Western blot analysis

revealed that the Dnmt3L protein immunoprecipitated different

complexes containing Ezh2, Dnmt3a, or Dnmt3b at different mo-

lecular weights (Figure 5D).

Dnmt3L Competes with Dnmt3a and Dnmt3b for Binding
with PRC2
The above results suggest that Dnmt3L forms a complex with

PRC2 that is independent from Dnmt3a or Dnmt3b. To verify

this hypothesis, we first coimmunoprecipitated Dnmt3L with

Ezh2 in Dnmt3a/3b DKO ESCs and still observed the reciprocal

interaction (Figure 6A). Then, we immunodepleted both Dnmt3a

Figure 4. The Double Role of Dnmt3L in 5mC Regulation

(A) Venn diagram showing the DNA methylated regions in the control and/or the Dnmt3L knockdown cells. Dnmt3L silencing results in a reduction in the

methylation in 14,107 genomic regions as well as in an increase in the methylation in 5,724 genomic regions.

(B) Loss of methylation occurs mainly within gene bodies, whereas a gain of methylation occurs at the TSS of the gene promoters.

(C) Heatmap representations of genomic regions marked by H3K36me3, H3K4me3, and H3K27me3 modifications and by 5mC in control and Dnmt3L knock-

down cells. The heatmap is rank ordered from the less-expressed (top) to the most-expressed (bottom) genes. Analysis of the methylation distribution shows an

increase in methylation at the gene promoters of nonexpressed or low-expressed genes.

(D) Heatmap representations of genomic regions ordered by the H3K27me3 level at gene promoters. The regions that show a gain in the DNA methylation upon

Dnmt3L knockdown positively correlate with H3K27me3 modification.

(E) Example of four bivalent genes that become methylated upon Dnmt3L knockdown. The difference between the 5mC genomic occupancy of the control and

Dnmt3L knockdown cells (in black) are shown, together with associated histone modification patterns.

See also Figures S3 and S4.
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and Dnmt3b from the nuclear extracts of wild-type ESCs to

remove all Dnmt3a- and Dnmt3b-associated complexes. The

immunodepleted extracts still coimmunoprecipitated Dnmt3L

with Ezh2 but no longer coimmunoprecipitated Dnmt3a or

Dnmt3b with Ezh2 (Figure S6A). Finally, we performed a double

immunoprecipitation of transfected FLAG-Dnmt3L. The first

immunoprecipitation performed with the anti-FLAG antibody

coimmunoprecipitated Ezh2 as well as the Dnmt3a and Dnmt3b

proteins (Figure 6B, lane 1). Then, we performed re-immunopre-

cipitations using antibodies against the endogenous proteins of

interest. We observed that Dnmt3L forms a different complex

with Ezh2 compared with the complex that it forms with

Dnmt3a/3b (Figure 6B, lanes 3–5). Taken together, the above

experiments establish that, in ESCs, Dnmt3L interacts directly

with PRC2 in a complex that is independent from those formed

by PRC2 with Dnmt3a or Dnmt3b.

Because the ChIP experiments showed increased binding of

Dnmt3a and Dnmt3b on the Rhox5 gene in Dnmt3L-silenced

cells (Figures 3E and 3F), we further verified whether Dnmt3L

could compete with Dnmt3a or Dnmt3b for the interaction with

the PRC2 complex.

Figure 5. Dnmt3L Interacts with PRC2

through Its Direct Binding to Ezh2

(A) Endogenous Dntm3L interacts with PRC2

proteins Ezh2 and Suz12 in ESCs, as shown by

immunoprecipitation. Two different antibodies

against Dnmt3L were used. 1% of the nuclear

extract was loaded as an input.

(B) In vitro interactionassaywith recombinantGST-

Ezh2 and FLAG-Dnmt3L proteins demonstrates a

direct interaction between the two proteins.

(C) The PHD-like domain of Dnmt3L is responsible

for the direct interaction with the Ezh2 protein, as

demonstrated by deletion mutant analysis. The

ESCs were transiently transfected with the indi-

cated FLAG-tagged deletion mutants, and the

proteins were immunoprecipitated by anti-FLAG

M2magnetic beads. The interacting proteins were

analyzed by immunoblotting using the indicated

antibodies. One percent of the nuclear extract

was loaded as an input.

(D) Gel filtration analysis of Dnmt3L protein com-

plexes. ESC nuclear extract was separated on

Superose-6 10/300 GL column and immunopre-

cipitated with anti-Dnmt3L antibody followed by

immunoblotting with the indicated antibodies to

reveal the different complexes. The bottom panel

shows the quantification.

See also Figure S5.

We observed that there was an in-

crease of the Ezh2 coimmunoprecipitate

with Dnmt3a and Dnmt3b in extracts

from Dnmt3L-silenced cells, compared

with the extracts from control cells

(Figure 6C, top) as well as a significant in-

crease of the DNA methylation activity of

the immunoprecipitated fractions (Fig-

ures 6C, bottom and S6B). To further

demonstrate the competition between

Dnmt3L and Dnmt3a/3b for the interaction with the PRC2 com-

plex, we analyzed the immunoprecipitate of Ezh2 with Dnmt3

proteins in HEK293 cells, which do not express Dnmt3L, by

expressing in these cells a FLAG-tagged Dnmt3L under an

inducible promoter. Increasing the concentration of FLAG-

Dnmt3L completely abolished the coimmunoprecipitation of

Ezh2 with Dnmt3a and Dnmt3b (Figure 6D). These experiments

demonstrate that Dnmt3L is a direct competitor of Dnmt3a and

Dnmt3b for the interaction with PRC2.

Dnmt3L Is Recruited by PRC2 at H3K27me3 Genes
Because Rhox5 is a bivalent gene that is marked by H3K27me3

and is bound by Ezh2 (Figure S7A) (Li et al., 2011), we further

analyzed the interplaybetweenDnmt3LandPRC2on itspromoter

region (Figure 7A). Suz12 silencing resulted in a significant reduc-

tion of PRC2 binding to the Rhox5 promoter region, as measured

by the chromatin immunoprecipitation (ChIP) of Ezh2 (Figures 7B

and 7C), together with a reduction in H3K27me3 (Figure S7B).

Importantly, the reduction of PRC2 associationwithRhox5 signif-

icantly affected the Dnmt3L binding to this region (Figure 7D),

which demonstrates that Dnmt3L is recruited by PRC2 onRhox5.
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To verify whether Dnmt3L is recruited to the chromatin via

PRC2 genome wide, we performed ChIP-seq analysis of Bio-

Dnmt3L in control or Suz12-silenced ESCs (Figure 7E). As

expected, we observed that Bio-Dnmt3L was localized on gene

bodies of transcriptionally active genes involved in cell meta-

bolism and on the H3K27me3-positive promoters of develop-

mental genes (Figures 7F–7I and S7C–S7E). Analysis of Bio-

Dnmt3L distribution on genes ordered by the level of

H3K27me3 showed a significant reduction of Bio-Dnmt3L bind-

ing specifically at the H3K27me3 promoters, but not on the

H3K27me3-negative genes (Figures 7J and 7K), as is evident

from the representative cluster of the Hoxa genes (Figure 7L). In

contrast, the silencing of Dnmt3L did not alter the genomic distri-

butionofPRC2measuredbyChIP-seqofSuz12 (FigureS7F–S7I).

DISCUSSION

Although it has been demonstrated that there is a correlation be-

tween certain epigenetic marks and DNA methylation (Meissner

Figure 6. Dnmt3L Competes with Dnmt3a/

3b for PRC2 Binding in ESCs

(A) Dnmt3L coimmunoprecipitates with Ezh2 pro-

tein also in Dnmt3a/b dKO ESCs. The endogenous

proteins were immunoprecipitated using the indi-

cated antibodies. One percent of the nuclear

extract was loaded as an input.

(B) Re-immunoprecipitation analysis demon-

strates that Dnmt3L together with Ezh2 occur in a

protein complex that does not contain Dnmt3a/3b

proteins. The ESCs were transiently transfected

with FLAG-Dnmt3L, and the first immunoprecipi-

tation was performed using the anti-FLAG anti-

body. The interacting proteins were eluted with

FLAG peptide and were subsequently re-immu-

noprecipitated using the indicated antibodies.

(C) Dnmt3L knockdown in ESCs leads to an in-

crease in the interaction between the Ezh2 and

Dnmt3a/3b proteins and, in addition, leads to a

corresponding increase in the DNA methylation

activity of the immunoprecipitates (bottom). The

immunoprecipitation experimentswere performed

using two different shRNAs for Dnmt3L. *p <

0.001. Data are represented as mean ± SD.

(D) Competition analysis in HEK293 cells that

stably express the FLAG-Dnmt3L protein. The in-

duction of FLAG-Dnmt3L protein by the tetra-

cycline treatment for the indicated times leads to

a loss in the interaction between the Ezh2 and

Dnmt3a/3b proteins, as shown by immunopre-

cipitation.

See also Figure S6.

et al., 2008), the mechanism that regu-

lates its specificity has not yet been clar-

ified. Here, we have shown that, in ESCs,

the noncatalytic member of the de novo

DNA methyltransferases Dnmt3L plays a

regulatory role on the DNA methylation

by enhancing or inhibiting the activity

of Dnmt3a and Dnmt3b in different

chromatin contexts. Specifically, Dnmt3L enhances the DNA

methylation at gene bodies of active genes and prevents DNA

methylation at the promoters of H3K27me3-positive genes.

We observed that, in ESCs, Dnmt3L interacts with Dnmt3a

and Dnmt3b, suggesting that Dnmt3L could stimulate their activ-

ity and/or their redistribution. This result is in agreement with the

previous observation that Dnmt3L enhances in vitro the methyl-

ation activity of Dnmt3a and Dnmt3b (Suetake et al., 2004) and

mediates the release of Dnmt3a from heterochromatic to

euchromatic regions (Jurkowska et al., 2011a).

In ESCs, the repression of developmental genes is mediated

by the Polycomb complex, which provides a reversible repres-

sion that ensures their dynamic regulation either by gene activa-

tion or by DNA methylation during differentiation (Boyer et al.,

2006; Lee et al., 2006; Mohn et al., 2008; Schuettengruber and

Cavalli, 2009).

Our genome-wide analysis shows that Dnmt3L, recruited by

PRC2 on the H3K27me3 promoters, inhibits the methylation of

the DNA at such promoters, suggesting that Dnmt3L cooperates
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with Polycomb to keep developmental genes able to be acti-

vated upon differentiation.

It was previously shown that PRC2 is not required for ESC self-

renewal but that ESCs that are defective in their PRC2 function

show misregulation in their developmental programs (Pasini

et al., 2007; Margueron and Reinberg, 2011). Similarly,

Dnmt3L-dependent modulation of DNA methylation is not

required for ESC maintenance, but it is necessary for the correct

differentiation of ESCs. Previous studies have established that

Dnmt3L is required in germ cells for the methylation of DNA of

imprinted genes (Hata et al., 2002; Kaneda et al., 2004; Bourc’his

et al., 2001). We have now observed that Dnmt3L also plays a

role in ESC commitment because Dnmt3L knockdown showed

unbalanced differentiation and failure to form PGCs. We found

that the expression of the homeotic gene Rhox5 depends on

Dnmt3L in ESCs, and we demonstrated that Rhox5 expression

is required for ESC differentiation into PGCs. In the absence of

Dnmt3L, Dnmt3a and Dnmt3b significantly increase their associ-

ation to theRhox5 promoter region, which becomes heavily DNA

methylated, leading to gene repression. PRC2 is the key player

of this regulation because we demonstrated that Dnmt3L inter-

acts directly with Ezh2 of the PRC2 complex and that Dnmt3L

is recruited to the Rhox5 promoter region via PRC2 through its

PHD-like domain in competition with Dnmt3a and Dnmt3b.

Thus, on the Rhox5 promoter region, Dnmt3L binding via

PRC2 inhibits the recruitment of Dnmt3a and Dnmt3b, which

keeps the region hypomethylated.

Interestingly, the PHD-like domain is conserved in all three

Dnmts, and it has been previously demonstrated to be in-

strumental for the recruitment of these methylases to the unme-

thylated H3K4 (Zhang et al., 2010; Ooi et al., 2007), which is not

present on promoters of active and bivalent genes. We have now

described a new regulatory function of the PHD-like domain that

mediates the competition of Dnmt3L with Dnmt3a and Dnmt3b.

We propose a model in which Dnmt3L, recruited to the chro-

matin at the Polycomb target genes, inhibits the recruitment of

the active DNA methyltransferases Dnmt3a and Dnmt3b, in

this way inhibiting the methylation at the H3K27me3-positive re-

gions. Upon ESC differentiation, the downregulation of Dnmt3L

permits de novo DNA methylation on the sites that maintain

H3K27me3 modification and transcriptional activation of the

genes that lose this chromatin mark.

EXPERIMENTAL PROCEDURES

Cell Culture and Differentiation Conditions

Mouse ESCs were cultured in DMEM high-glucose medium (Invitrogen)

supplemented with 15% FBS (Millipore), 0.1 mM nonessential amino

acids (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 0.1 mM 2-mercaptoe-

thanol, 1,500 U/ml LIF (Millipore), 25 U of penicillin/ml, and 25 mg of strepto-

mycin/ml.

Culture and differentiation of E14 mouse ESCs into EBs has been described

previously (Neri et al., 2012). For monolayer differentiation, 3 3 105 cells

per well were plated on collagen IV (Col. IV)-coated 6-well dishes (BectonDick-

inson) in differentiation medium (a-MEM with 15% FCS and 50mM 2-

mercaptoethanol).

The T-Rex 293 cell line was cultured in DMEMhigh-glucosemedium (Invitro-

gen) supplemented with 10% fetal bovine serum (FBS) (Sigma), 1 mM sodium

pyruvate (Invitrogen), 50 U of penicillin/ml, and 50 mg of streptomycin/ml.

Generation of Dnmt3L�/� ESCs

Knockout was performed using TALEN technology. In brief, cells were trans-

fected with the two TALEN constructs targeting Exon 1 of murine Dnmt3L

and after 16 hr were seeded as a single cell. After 1 week, clones were picked

and screened by western blotting. Positive clones were analyzed by genomic

sequencing of the TALEN target.

For generation of a Dnmt3L-ER-Dnmt3L�/� stable ES clone, Dnmt3L KO

cells were transduced with pBABE-Dnmt3L-ER retrovirus and were main-

tained under the selection with 1 mg/ml of puromycin for 7 days. Cells were

treated with 1 mM of 4-OHT to induce nuclear localization of Dnmt3L-ER.

Generation of Mouse BirA-ES Cell Lines Stably Expressing Bio-

Dnmt3L

To obtain Bio-Dnmt3L stable clone, BirA-ESCs (Driegen et al., 2005) were

transfected with linearized Bio-Dnmt3L construct using Lipofectamine 2000

Transfection Reagent (Invitrogen) according to the manufacturer’s protocol.

Transfected cells were cultured for 10 days in growth medium with Blasticidin

(Sigma), and drug-resistant clones were selected for Dnmt3L expression.

Figure 7. PRC2 Protein Ezh2 Recruits Dnmt3L on H3K27me3 Promoters

(A) Knockdown of Suz12 by shRNA led to an efficient downregulation of the Ezh2 protein and did not alter the level of the Dnmt3L protein, as demonstrated by

immunoblotting analysis. b-actin was used as a loading control.

(B) Schematic representation of theRhox5 promoter region. Pd, distal promoter; Pp, proximal promoter. Lowercase letters show the position of the primers for the

ChIP analysis.

(C and D) ChIP analysis of Ezh2 and Dnmt3L association with the Rhox5 gene in Suz12 knockdown ESCs. Suz12 silencing resulted in a significant reduction in

Ezh2 binding to the Rhox5 promoter region as well as in Dnmt3L binding to this region. *p < 0.01. Data are represented as mean ± SD.

(E) Knockdown of Suz12 led to an efficient downregulation of the Ezh2 protein and did not alter the levels of the endogenous Dnmt3L or the Bio-Dnmt3L proteins,

as demonstrated by immunoblotting analysis. b-actin was used as a loading control.

(F) Distribution of ChIP-seq Bio-Dnmt3L targets between intergenic (45%), promoter (3%), and gene body (52%) regions in ESCs.

(G) Normalized distribution of Bio-Dnmt3L-bound regions indicates that Bio-Dnmt3L is enriched on gene bodies and promoters on exons and repetitive

sequences as microsatellites and LINE-SINE.

(H) Bio-Dnmt3L is enriched on bivalent and H3K27me3-only promoters with respect to the H3K4me3-only promoters.

(I) Gene ontology analysis revealed that Bio-Dnmt3L is enriched on the promoter of developmental-associated genes and on the body of cell-metabolism-

associated genes.

(J) Heatmap representations of Ezh2, Suz12, and Bio-Dnmt3L distribution in control and Suz12 knockdown cells on TSS (±5 kb). The heatmap is rank ordered by

H3K27me3. Bio-Dnmt3L correlates with PRC2 proteins Ezh2 and Suz12 in control cells, and this localization is reduced in shSuz12 cells.

(K) Plotting of the Bio-Dnmt3L ChIP-seq profile around TSS of H3K27me3-positive and -negative promoters confirms the reduction of signal following Suz12

knockdown.

(L) Genomic view of a representative PRC2 target region. Hoxa cluster is marked by H3K27me3 and Ezh2 in ESCs, and it shows an increase of 5mC after silencing

of Dnmt3L. Bio-Dnmt3L signal is reduced after Suz12 knockdown.

See also Figure S7.
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Nuclear Protein Extractions

Cells were harvested in PBS 13 and were resuspended in Isotonic Buffer

(20mM HEPES [pH 7.5], 100 mM NaCl, 250 mM sucrose, 5 mM MgCl2, and

5 mM ZnCl2). Successively, cells were resuspended in isotonic buffer supple-

mented with 1% NP-40 to isolate the nuclei. The isolated nuclei were resus-

pended in digestion buffer (50 mM Tris-HCl [pH 8.0], 100 mM NaCl, 250 mM

sucrose, 0.5 mM MgCl2, 5 mM CaCl2, and 5 mM ZnCl2) and were treated

with Microccocal Nuclease at 30�C for 10 min.

Immunoprecipitation

Nuclear proteins from about 103 106 cells were incubated with 3 mg of specific

antibody overnight at 4�C. Immunocomplexes were incubated with protein-G-

conjugated magnetic beads (DYNAL, Invitrogen) for 2 hr at 4�C. Samples were

washed four times with digestion buffer supplemented with 0.1%NP-40 at RT.

Proteins were eluted by incubating with 0.4M NaCl TE buffer for 30 min and

were analyzed by western blotting.

In Vitro Interaction Assay

The in vitro interaction assay was performed as previously described (Galvagni

et al., 2001) (see Extended Experimental Procedures for details).

Microarray Analysis

Microarray analysis was performed on the Illumina Platform, and the results

were analyzed using the BeadStudio Gene Expression Module (GX) (see

Extended Experimental Procedures for details).

MeDIP-Seq and ChIP-Seq Analysis

MeDIP was performed using the MeDIP kit (55009, Active Motif), according to

the manufacturer’s protocol. The ChIP of Ezh2 was performed as previously

described using 1% SDS buffer (Mikkelsen et al., 2007). ChIP of Bio-Dnmt3L

and bioinformatics analyses are described in Extended Experimental

Procedures.

Bisulfite Analysis

Bisulfite conversion was performed using EpiTect Bisulfite Kits (QIAGEN), and

converted DNA was amplified using AccuPrime Taq DNA Polymerase (Invitro-

gen). ThePCRproductwas cloned in TOPO-Blunt (usingZeroBlunt TOPOPCR

Cloning Kit, Invitrogen), and colonies were sequenced. Oligos for amplification

were designed using Meth Primer Software (http://www.urogene.org/cgi-bin/

methprimer/methprimer.cgi). Oligonucleotide sequences are in Table S5.

Chromatin Accessibility Assay

Chromatin accessibility was performed using EpiQ Chromatin Analysis Kit

(from Biorad), according to the manufacturer’s protocol. DNA was analyzed

by quantitative real-time PCR by using a SYBR GreenER kit (Invitrogen).

Antibodies

The antibodies were purchased by Abcam (anti-Dnmt3l ab3493; anti-Dnmt3a;

anti-Dnmt3b; anti-Nanog; anti-H3K9me3), by Immgenex (anti-Dnmt3a; anti-

Dnmt3b; anti-Dnmt1, anti-Rhox5), by Cell Signaling (anti-Ezh2; anti-Suz12;

anti-Rbbp4/7), by Millipore (anti-Sox2; anti-H3K27me3), by Sigma (anti-

FLAG M2), by SantaCruz (anti-Oct3/4 sc-5279, anti-LaminA sc-20680), and

by Neuromics (anti-Stella GT15240). Antibody anti-Dnmt3L was kindly pro-

vided by Dr. S. Yamanaka (Kyoto University, Japan).

ACCESSION NUMBERS

The ChIP-seq, MeDIP-seq, and expression microarray data sets have been

deposited in Gene Expression Omnibus (GEO) under the accession number

GSE44644.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

MeDIP-Seq and ChIP-Seq Analysis
MeDIP was performed using the MeDIP kit (55009, Active Motif), according to the manufacturer’s protocol. The ChIP of Ezh2 was

performed as previously described using 1%SDS buffer (Mikkelsen et al., 2007). For ChIP of Bio-Dnmt3L, approximately 2x107 cells

were cross-linked by addition of formaldehyde to 1% for 10 min at RT, quenched with 0.125 M glycine for 5 min at RT, and then

washed twice in 1x PBS. The cells were resuspended in Isotonic buffer supplemented with 1% NP-40 to isolate nuclei. The isolated

nuclei were then resuspended in ChIP Buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.15% SDS and

protease inhibitors). Extracts were sonicated using the Bioruptor� Twin (Diagenode) for 2 runs of 10 cycles [30 s ‘‘ON,’’ 30 s ‘‘OFF’’] at

high power setting. Cell lysate was centrifuged at 12,000 g for 10 min at 4�C. Streptavidin beads (Dynabeads� MyOneTM Strepta-

vidin T1) were saturated with PBS/1% BSA at RT for 1 hr, and then incubated with sample at 4�C for 4 hr on a rotator. Immunopre-

cipitated complexes were successively washed with Washing Buffer I (2% SDS), Washing Buffer II (50 mM HEPES pH 7.5, 500 mM

NaCl, 0.1%Deoxycholate, 1% Triton X-100, 1 mMEDTA), Washing Buffer III (10 mM Tris-Cl pH 8.1, 250 mM LiCl, 0.5%NP-40, 0.5%

Deoxycholate, 1 mM EDTA,) and TE buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA). All washes were performed at RT for 8 min on a

rotator. SDS Elution Buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS) was added and incubated at 65�C overnight to reverse

crosslink protein-DNA complexes. After decrosslinking, DNA was purified using QIAQuick PCR Purification Kit (QIAGEN) according

to the manufacturer’s instructions.

Sequencing was performed on the Illumina HiScanSQ Platform. Reads weremapped to themouse genome (mm9 assembly) using

Bowtie version 0.12.7, reporting only unique hits with up to two mismatches. Redundant reads were collapsed, and peak calling was

performed using MACS version 1.4.1. For comparative analysis, we downloaded GEO Data sets data for ESC histone modifications

(GSE12241 andGSE11172), MeDIP (GSE31343, GSE28682 and Sequence Read Archive ERP000570), MethylCap (GSE31343), tran-

scription factors (GSE11431) and Bisulfite-seq (GSE30206). Data mapped on mouse mm8 assembly were transposed to mm9

assembly using a liftover tool. Heatmap and comparative analysis were performed using custom Perl scripts. Motif discovery was

performed using Homer v4.2 (Heinz et al., 2010). The significance of ChIP-seq data sets overlapping was given by Z-Scores.

Generation of a Tetracycline-Inducible 293 Stable Cell Line
A tetracycline-inducible HEK293 cell line that stably expressed FLAG-Dnmt3L was generated by using the Invitrogen’s Flp-T-Rex

System. The FLAG-pcDNA5/FRT/TO expression vector containing the gene of interest was inserted into the cells via Flp recombi-

nase-mediated DNA recombination at the FRT site. The transfected cells were selected on the basis of hygromycin B (Sigma) resis-

tance, and pool clones were isolated.

Clones were cultivated in DMEM high glucose medium (Invitrogen) supplemented with 10% FBS (Sigma), 1mM sodium pyruvate

(Invitrogen), 50 U of penicillin/ml, 50 mg of streptomycin/ml, and 100 mg/ml hygromycin (Invitrogen) for 2/3 weeks.

Transfection and Transduction
For silencing, ES cells were transfected as previously described in (Neri et al., 2012) and were maintained under the selection with

1 mg/ml of Puromycin for 3 days prior to perform experiments in ESCs.

Virus particles for transduction were prepared according to the manufacturer’s instructions (Retro-X HTX Packaging System,

Clontech).

HEK293 T-Rex cell lines were transfected using Attractene Transfection Reagent (QIAGEN) according to the manufacturer’s

protocol.

For overexpression experiments, E14 mouse ES cells were transfected using Lipofectamine 2000 Transfection Reagent

(Invitrogen) according to the manufacturer’s protocol. Transfected cells were harvested 24 hr after transfection.

DNA Constructs and Recombinant Proteins
Murine Dnmt3L cDNA construct was purchased from Addgene (plasmid 13356) and cloned into FLAG-pcDNA5/FRT/TO vector using

the EcoRI and XhoI restriction sites. The deletion mutants Dnmt3L DPHD (aa 1-120;199-421) and Dnmt3l DC (aa 1-206) were gener-

ated by PCR amplification of the corresponding fragments and cloned into FLAG-pcDNA5/FRT/TO expression vector using the EcorI

and XhoI restriction sites. Biotag-Dnmt3L construct was generated by PCR amplification of the Biotag-Dnmt3L fragment and cloned

into pEF6/V5-His TOPO expression vector.

To generate the Dnmt3L-ER construct, Dnmt3L was subcloned into the pBABE-ER expression vector using the BglII and EcoRI

restriction sites. Rhox5 FL cDNA (cDNA-Rhox5 pSPORT1) was purchased by Open Biosystem and cloned into pcDNA5/FRT/TO

using the KpnI and NotI restriction sites.

The shRNA constructs were purchased from Open Biosystems for Dnmt3L (TRCN0000039104, TRCN0000039106,

TRCN0000039108), Rhox5 (TRCN0000086148, TRCN0000086151), Rhox6 (TRCN0000070736, TRCN0000070737), Rhox9

(TRCN0000070408, TRCN0000070409), and Suz12 (TRCN0000123889). Talen vectors targeting Exon 1 of murine Dnmt3L were pur-

chased from ZGeneBio. Recombinant GST-Ezh2 was purchased from Abnova (Cat. No. H00002146-P01). Control siRNA (AllStars

negative Control siRNA) was purchased from QIAGEN. siRNA targeting Dnmt3L (UGAAUCACCAUAAGAUGA) and targeting

Rhox5 (1: AGCCAUCUCCCUGCACAG, 2: CUCACCUCCUGCCUUCCG) were purchased from Eurofins MWG Operon.
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Immunodepletion
Each round of immunodepletion was performed by incubating the nuclear extract with 2 mg of specific antibody for 2 hr at 4�C on a

rotator and, then, with Protein G-conjugated magnetic beads (DYNAL, Invitrogen) for 2 hr at 4�C on a rotator. In total, four rounds of

immunodepletion were performed.

Purification of FLAG-Dnmt3L
Recombinant FLAG-Dnmt3L protein was produced and purified from the tetracycline-inducible 293 cell line, which stably expresses

FLAG-Dnmt3L, using anti-FLAGM2 affinity gel (Sigma). The isolated complexes were eluted with 3xFLAG peptide (Sigma) for 1 hr at

4�C on a rotator and, then, were additionally purified on a Superdex 200 column (GE Healthcare, Life Sciences), to isolate free FLAG-

Dnmt3L.

In Vitro Interaction Assay
The in vitro interaction assay was performed as previously described (Galvagni et al., 2001), by incubating recombinant GST-Ezh2 or

GST with FLAG peptide or FLAG-Dnmt3L magnetic beads in Interaction buffer (50mM Tris-HCl pH 8.0, 100mM NaCl, 10% glycerol,

0.5mM MgCl2, 5 mM ZnCl2) for 2 hr at 4�C on a rotator. After four washes with the same buffer, the interacting proteins were eluted

with 0.4M NaCl TE buffer for 30 min and were analyzed by western blotting.

DNA Methyltransferase Activity Assay
Quantification of DNA Methyltransferase activity was performed using the EpiQuik DNA Methyltransferase Activity/Inhibition Assay

Kit (Epigentek).

Gel Filtration Chromatography
Gel filtration chromatography was performed on a Superose-6 10/300 GL column (GE Healthcare) using an AKTA purifier system (GE

Healthcare). Nuclear extract from about 60x106 cells was loaded onto the column and separated in gel filtration buffer (50 mM Tris-

HCl pH 8.0, 100mMNaCl, 250mM sucrose, 0.5 mMMgCl2, 5 mMCaCl2, 5 mMZnCl2) at a flow rate of 0.3 ml/min and 0.5-ml fractions

were collected. The molecular mass standards (GE Healthcare) used to calibrate the column were blue dextran (2000 kDa),

thyroglobulin (669 kDa), ferritin (440 kDa), catalase (240 kDa) and aldolase (158 kDa). The void volume was between 8 and 8.5 ml

(corresponding to the fractions 3 and 4). The fractions 2 to 22 were immunoprecipitated with anti-Dnmt3L antibody and analyzed

by western blotting.

Chromatin Immunoprecipitation
Each ChIP experiment was performed on at least three independent biological samples and was performed as previously described

(Zippo et al., 2009). DNAwas analyzed by quantitative real-time PCRby using a SYBRGreenER kit (Invitrogen). All of the experimental

values were normalized to those obtained with a nonimmune serum, and the values were divided by the input. The data shown repre-

sent triplicate real-time quantitative PCRmeasurements of the immunoprecipitated DNA. The data are expressed as (%) 1/100 of the

DNA inputs. Error bars represent standard deviations that were determined from triplicate experiments. Oligonucleotide sequences

are in Table S4.

RNA Analysis
RNA samples were extracted directly from cultured cells using the Trizol reagent (GIBCO) followed by isopropanol precipitation. RNA

was analyzed by quantitative real-time PCR by using a Superscript III platinum Onestep qRT-PCR System kit (Invitrogen). Error bars

represent standard deviations determined from triplicate experiments. Oligonucleotide sequences are in Table S3. For RT-PCR anal-

ysis of the pd and the pp Rhox5 transcripts, primers were designed on exons 2 and 3 for the pd transcript and on exon 3 (in the 50UTR
region not corresponding to the pd transcript) for the pp transcript.

FACS Analysis
Cultured cells were harvested after incubation with dissociation buffer (GIBCO) under gentle agitation and were incubated for 30 min

in phosphate-buffered saline (PBS)-5% FBS on ice, to block nonspecific binding. Cells were then incubated with primary antibodies

for 30 min in PBS-1% bovine serum albumin (BSA) and, after 3 washes, were stained with conjugated secondary antibodies. Cells

were analyzed by a fluorescence-activated cell scan (FACS).

Immunostaining
Cells were plated on coated cover glasses; they were fixed with 4% paraformaldehyde in PBS for 20 min at room temperature (RT);

they were washed twice and were incubated with the blocking buffer (PBS + 1% BSA + 0.1% Triton X-100). The fixed cells were

incubated with primary antibody in blocking buffer for 1 hr at RT followed by 3 washes and incubation with conjugated secondary

antibodies in blocking buffer for 1 hr at RT.
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Microarray Analysis
Microarray analysis was performed on the Illumina Platform and the results were analyzed using the BeadStudio Gene Expression

Module (GX). To exclude shRNA off-targets, we considered only genes that were regulated by at least two different shRNAs; the fi-

delity and efficiency of the three knockdowns was validated by applying the Pearson correlation, which shows high similarity. Data

were background adjusted and quartile normalized using default parameters in the Genome BeadStudio Software. Probes with Log2

jFCj > 1 and p value < 0.05 were selected for downstream analysis. Heatmap plots were performed through the Bioconductor pack-

age in R. Differential expression analysis of the upregulated or downregulated genes was performed by plotting genes with their Log2

expression value using Excel. Microarray data from Literature were obtained from Gene Expression Omnibus (GEO Data set:

GSE7948, GSE43831, GSE12982). Upregulated or downregulated genes in Dnmt3L knockdown ES cells are shown in Table S1

and Table S2.
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Figure S1. Dnmt3L Is a Marker of Primordial Germinal Cells, Related to Figure 1

(A) Immunofluorescence analysis shows the coexpression of Stella together with Dnmt3L in ESCs differentiated by a monolayer differentiation method.

(B and C) Specificity of the antibodies used in FACS analyses.

(D) Scheme of Dnmt3L gene and TALEN target site used in this study.

(E) TALEN caused biallelic deletion of part of the first exon of Dnmt3L in ESCs, leading to loss of frame.

(F and G) Knockout of Dnmt3L did not alter the expression of the other Dnmts and of the pluripotency-related genes, such as Nanog, Oct3/4, and Sox2. The

protein levels were measured by western blot analysis. b�Actin was used as a loading control.

(H) Dnmt3L�/� cells show a reduction of PGC markers during differentiation as shown by RT-qPCR analysis of EBs at seven days. The data are represented as

mean ± SD.

(I) FACS analysis demonstrates that Dnmt3L�/� do not forms Stella positive cells.
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Figure S2. Dnmt3L Modulates the Expression of PGCs’ Specific Genes, Related to Figure 2

(A) Correlation analysis of the three different Dnmt3L knockdowns used in microarray analysis of the misregulated genes (Pearson correlation R R 0.77).

(B) Validation of West et al. microarray data by RT-qPCR analysis demonstrating that Dnmt3L and Rhox genes are upregulated together in Stella positive cells at

7 days EBs. The data are represented as mean ± SD.

(C) A comparison of the genes that are regulated upon Dnmt3L knockdown in ESC against the genes that are differentially expressed in PGCs versus the average

of the other differentiating layers.

(D) Clustering analysis of the shared genes shown in Figure 2A of microarray data of PGC versus other differentiation stages. This analysis confirms the clustering

between Dnmt3L and the Rhox5, Rhox6 and Rhox9 genes.

(E) The downregulation of the three Rhox genes Dnmt3L�/� was measured by RT-qPCR analysis (*p value < 0.001). The data are represented as mean ± SD.

(F) The efficiency of the Rhox5, Rhox6 and Rhox9 knockdowns using various shRNAs in ESC was evaluated by RT-PCR analysis. The data are represented as

mean ± SD.

(G and H) RT-PCR analysis of the Rhox5 proximal or distal promoter transcripts in ESCs, differentiated ESCs, and Dnmt3a/3b DKO ESCs. CT26 mouse colon

cancer cells were used as a positive control for the proximal promoter transcript. The data are represented as mean ± SD.

(legend continued on next page)
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(I) ChIP analysis demonstrates an increase of H3K9me3 heterochromatin mark upon Dnmt3L knockdown within the shown Rhox5 regions. The data are rep-

resented as mean ± SD.

(J) The nuclear exit timing of the DnmtL-ER fusion protein after OHT withdrawal. The nuclear extracts obtained from the time course analysis of

Dnmt3L�/�-Dnmt3L-ER cells were analyzed by western blotting. Lamin was used as a loading control.

(K) RT-PCR analysis demonstrates that the Rhox5 expression increases in Dnmt3L�/� cells expressing the exogenous activated Dnmt3L-ER fusion protein and

that it decreases following OHT withdrawal. The data are represented as mean ± SD.

(L) MeDIP analysis of the Rhox5 promoter on the probe ‘‘c’’ (as shown in Figure 3A) shows a decrease in DNA methylation in Dnmt3L�/� cells expressing the

exogenous activated Dnmt3L-ER and an increase following OHT withdrawal. The data are represented as mean ± SD.

(M) An increase of chromatin accessibility of Rhox5 promoter on probe ‘‘c’’ (as shown in Figure 3A) is observed in Dnmt3L�/� cells expressing the exogenous

activated Dnmt3L-ER respect to the Dnmt3L�/� cells. A decrease of chromatin accessibility is observed after OHT withdrawal. The data are represented as

mean ± SD.

S6 Cell 155, 1–14, September 26, 2013 ª2013 Elsevier Inc.



Figure S3. The Double Role of Dnmt3L in 5mC Regulation, Related to Figure 4

(A and B) Heatmap representations of MeDIP-seq analyses performed in this work and by others, and the overlapping correlation between them.

(C) The percentage of genes that became DNA methylated upon Dnmt3L knockdown shows an enrichment in genes that are not expressed or expressed at low

level while the percentage of genes with a decrease in DNAmethylation uponDnmt3L knockdown shows an enrichment in genes that are expressed atmedium or

high level.

(D) Significant enrichments in genomic overlappings between DNA and histone modification with differentially methylated regions (DMR) between control or

Dnmt3L knockdown cells.

(E) Gene ontology analysis of genes that show differentially methylated regions.

(F) Gain of methylation occurs in all H3K27me3-positive promoters independently from the initial methylation state of the promoter. H3K27me3 promoters have

been classified in unmethylated, low methylated, and methylated as defined in (Stadler et al., 2011).

(G) H3K27me3 promoters tend to becamemore methylated during differentiation in NPC and very few show a loss of methylation (Stadler et al., 2011). About half

of the H3K27me3-positive promoters that gain DNA methylation are hypermethylated in Dnmt3L silenced ESCs.
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Figure S4. Dnmt3L Maintains Developmental Genes in the Hypomethylated State, Related to Figure 4

(A and B) Bisulfite-sequencing analysis of the indicated genes in control and Dnmt3L knockdown cells, and its quantification shown as apercentage DNA

methylation.
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Figure S5. Dnmt3L Interacts with PRC2 in ESCs, Related to Figure 5

(A) Endogenous PRC2 proteins Ezh2 and Suz12 coimmunoprecipitate with Dntm3L in ESCs as shown by immunoprecipitation. 1% of the nuclear extract was

loaded as an input.

(B) Endogenous Ezh2-Dnmt3L interaction is less susceptible to high salt concentrations than Ezh2-Dnmt3a/3b interaction. 1% of the nuclear extract was loaded

as an input.

(C) Quantification of the bands of the western blotting of Figure S5B. The values are normalized on Ezh2 immunoblot and on the first condition (100mM of NaCl).

(D) GST does not interact with the FLAG-Dnmt3L recombinant protein.
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Figure S6. Dnmt3L Forms a Dnmt3a/b-Independent Complex with PRC2, Related to Figure 6

(A) Immunodepletion of the endogenous Dnmt3a and Dnmt3b proteins in ESCs. Four rounds of immunodepletion were performed using antibodies against

Dnmt3a and Dnmt3b. The final flow-through was subsequently immunoprecipitated by anti-Dnmt3L antibody and the interacting proteins were analyzed by

immunoblotting using the indicate antibodies.

(B) No significant changes in DNA methylation activity of the Dnmt3a/3b immunoprecipitated complexes were found between control shGFP and shSuz12 cells.

The data are represented as mean ± SD.
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Figure S7. PRC2 Protein Ezh2 Recruits Dnmt3L on Developmental Genes, Related to Figure 7

(A) The Rhox genes are marked by H3K27me3 modification and bound by the Ezh2 protein in ESCs as shown by ChIP-analysis. The Gata6 gene was used as a

positive control, the E2f1 gene was used as a negative control. (*p value < 0.001) The data are represented as mean ± SD.

(B) Knockdown of Ezh2 leads to a reduction of H3K27me3 within the shown regions of the Rhox5 gene as shown by ChIP-analysis. (*p value < 0.01) The data are

represented as mean ± SD.

(C) Motif discovery of the regions enriched in Bio-Dnmt3L ChIP-seq shows a significant enrichment of the CG dinucleotide.

(D) Bio-Dnmt3L is enriched on the promoters of not and low expressed genes and on the bodies of the medium and high expressed genes.

(E) Bio-Dnmt3L is enriched on H3K27me3, H3K9me3, H3K36me3, H3K20me3 and 5mC marked genomic regions and correlates with the PRC2 protein Ezh2.

(F) Clustering analysis of the global Pearson correlation of the Ezh2 ChIP-seq used in this study with the other available in literature, shows the bona fide of our

analysis.

(G) Heatmap representations of Ezh2 ChIP-seq in shGFP and shDnmt3L cells show no change in global Ezh2 distributions.

(H and I) Ezh2 ChIP-seq profiles on average gene or on Hoxa clusters shows a minor signal intensity in shDnmt3L cells respect to control shGFP cells, but no

changes in Ezh2 localization.
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