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Abstract 

The growing demand of biodegradable plastic polymers is increasing the industrial need of enantiospecific L-lactic 

acid (L-LA), the building block to produce polylactides. The most suitable industrial strategy to obtain high amounts 

of LA is the microbial fermentation of fruit and vegetable wastes by lactic acid bacteria (LAB). In this paper seven 

LAB strains from our laboratory collection, were screened for their ability to produce the highest amount of pure L-

LA. A strain of Enterococcus faecium (LLAA-1) was selected and retained for further investigations. E. faecium 

LLAA-1 was grown in different culture media supplemented with the most abundant sugars present in agricultural 

wastes (i.e., glucose, fructose, cellobiose and xylose) and its ability to metabolize them to L-LA was evaluated. All 

tested sugars proved to be good carbon sources for the selected strain, except for xylose, which resulted in 

unsatisfactory biomass and LA production. Growth under aerobic conditions further stimulated L-LA production in 

fructose supplemented cultures with respect to anoxic-grown cultures. Proteomic profiles of E. faecium LLAA-1 

grown in aerobiosis and anoxia were compared by means of two-dimensional electrophoresis followed by MALDI-

TOF mass spectrometry. Seventeen proteins belonging to three main functional groups were differentially expressed: 

the biosynthesis of 6 proteins was up-regulated in aerobic-grown cultures while 11 proteins were biosynthesized in 

higher amounts in anoxia. The de novo biosynthesis of the f-subunit of alkyl hydroperoxide reductase involved in the 

re-oxidation of NADH seems the key element of the global re-arragement of E. faecium LLAA-1 metabolism under 

aerobic conditions. An improved oxidative catabolism of proteinaceous substrates (i.e., protein hydrolisates) seems 

the main phenomenon allowing both higher biomass growth and improved LA production under these conditions.  
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1. Introduction 

The need to replace various petro-chemical derived materials with polymers produced from renewable sources has 

strongly stimulated research on bio-based degradable plastic polymers such as polylactides (PLA). This has led to a 

growing demand of lactic acid (LA), the monomeric unit, resulting in a rapid increase of its production, that was 

about 150000 metric tons per year in 2003 (Hester, 2000a; Bizzarri and Kishi 2003) and has been estimated to grow 

yearly at 5–8% (Yadav et al., 2011). The annual world market demand for LA was expected to reach 259,000 metric 

tons by the year 2012 (Martinez et al., 2013), and is forecasted to reach 367,300 metric tons by the year 2017. PLA 

production capacity was evaluated as high as of 450,000 metric tons per year in 2008, however, it is still dwarfed by 

the 200 million metric tons of total plastics which are produced every year (Okano et al., 2010). The high cost 

associated with the production of LA by fermentation is among the main factors limiting PLA to compete with fossil-

fuel-based plastics in extensive application (Okano et al., 2010). The primary costs of LA production by fermentation 

include expensive nitrogen sources and pure sugars required for cell growth along with LA downstream recovery and 

purification process (Abdel-Rahman et al., 2013).  

The promising application of polylactides as biodegradable plastics (Hester, 2000b) requires the availability of high 

amounts of optically pure LA. LA can exist in two optical isomers: L-LA and D-LA. Relevant technological 

characteristics of PLA strongly depend on precise LA enantiomer mixture. Generally, poly-L-LA is more 

appreciated, since polymers obtained with D-LA are generally amorphous and not so requested by the market. On the 

contrary, L-LA polymers display crystalline structure and have different applications such as re-absorbable plates and 

screws, surgical suture thread (Lasprilla et al., 2012), disposable dishes, waste plastic bags and mulch (Jamshidian et 

al., 2010).  

LA can be obtained by chemical synthesis (mostly lacto-nitrile route) or by microbial fermentation of carbohydrates 

and agro-industrial feedstocks (Wee and Ryu, 2009). LA-producing microorganisms reduce pyruvic acid, generally 

generated through glycolysis or by the phosphoketolase route, into LA as a mean to re-oxidize NADH generated by 

these metabolic pathways. Fermentative production displays several advantages as compared to the chemical 

synthesis: lower substrate costs, lower working temperature and reduced energy consumption during the process 



(Djukic-Vukovic et al., 2012). Biotechnological production of LA shows further benefits since optically pure LA can 

be obtained by choosing suitable microbial strains. Currently, about 90% of the LA produced worldwide derives from 

fermentation processes, including that commercialized by the largest companies such as Cargill Dow (USA), Purac 

(The Netherlands), Galactic (Belgium) and Musashino Chemical Laboratory Ltd (Japan) (Datta and Henry, 2006).  

In this scenario, lactic acid bacteria (LAB) are among the most suitable microorganisms, since LA is generally their 

major metabolic end product. LAB show homo-lactic, or hetero-lactic, or mixed-acid fermentative phenotypes, 

depending on the considered strain and the used growth conditions. Homofermentative LAB produce LA as the main 

end-product through the Embden-Meyerhof pathway. Heterofermentative and mixed-acid fermenting LAB produce 

additional end-products such as ethanol, acetic acid, formic acid and carbon dioxide through either the Embden-

Meyerhoff or the pentose phosphate pathways and the biosynthesis of additional enzymes (i.e., pyruvate 

dehydrogenase and pyruvate-formiate lyase) which divert a part of pyruvic acid from its conversion to LA towards 

other end-products (Vink et al., 2003). Of course, the highest LA yields are obtained by homofermenters since 

theoretically 100% of the sugar carbon substrate can be converted to LA. Homofermenting LAB can produce L-LA 

and/or D-LA depending on their genetic repertoire: some LAB strains possess only the L-LA dehydrogenase (L-

LDH) gene(s) or the D-LA dehydrogenase (D-LDH) gene(s) thus generating pure L-LA or D-LA, respectively 

(Garvie, 1980). Other species possess multiple genes encoding for both enzymes, and/or lactate racemase, that 

catalyzes D-LA / L-LA interconversion (Goffin et al., 2005), resulting in the production of LA racemic mixture. It is 

worth noting that genetic determinants for D-LDH, L-LDH and racemase can be easily acquired by horizontal gene 

transfer (plasmid conjugation), followed or not by transposition and stable localization on the chromosome. 

Products at the highest purity are obtained if highly pure sugar is used as the fermentation substrate. Furthermore, this 

results in lower purification costs. However, taken as a whole, this process configuration is not economically viable, 

since pure sugars are expensive. Therefore, different biomasses such as molasses, starch, lignocellulose and wastes 

from agricultural and agro-industrial activities, featuring both low purchase price and renewability, have already been 

investigated as fermentative substrates for LAB. As the majority of LAB strains is not able to directly use starchy and 

lignocellulosic materials, these substrates must be pre-treated by physical-chemical and/or enzymatic methods prior 

to LAB fermentation (Okano et al., 2010). Relatively few natural LAB strains, e.g., Lactobacillus amylophilus, 

Lactobacillus amylovorus, Lactobacillus amylolyticus and some strains of Lactobacillus plantarum, which have 

starch-degrading properties (i.e. ALAB), have been isolated so far (Giraud et al., 1994; Guyot et al., 2000; Narita et 

al., 2004). However, most of them has shown either low LA yield or low enantioselectivity (John et al., 2007; Okano 



et al., 2010). Production of LA from cellobiose and cellotriose by Lactobacillus delbrueckii was described by Adsul 

and co-workers (Adsul et al. 2007). However, as far as we know, no natural cellulolytic LAB has been isolated to 

date. 

Several attempts have been performed to produce LA at both high productivity and final concentration (Wee et al., 

2006; Zhang et al., 2007; Okano et al., 2010; Zhao et al., 2010a; Zhao et al., 2010b; Moon et al., 2012). In the present 

study, our laboratory collection of LA bacteria has been screened to select a strain able to produce high amounts of 

optically pure L-LA in complex media. Afterwards, the ability of the selected Enterococcus faecium LLAA-1 to 

produce optically pure LA from different sugars present in fruit and other vegetable waste biomasses (glucose, 

fructose, cellobiose and xylose) was tested. Cellobiose is the disaccharidic repetitive unit of cellulose and consists of 

two glucose moieties linked by β(1-4) glycosidic bonds (Kumar et al., 2008); it may originate from cellulose 

hydrolysis, by cellobiohydrolase activity, and it is present in vegetable wastes such as cereals, carrots, fruits, mainly 

apples, and bran. Xylose is a pentose sugar and is the main component of hemicellulose (e.g., 

arabinoglucuronoxylan) present mainly in oat, rye, barley and wheat bran (Bercier et al., 2007). Fructose is the most 

abundant sugar present in several fruits and vegetables both as free fructose and linked to glucose in the form of 

sucrose. The fruits containing the highest fructose amount are apples, bananas, pears and grape (Park and Yetley, 

1993). A proteomic analysis on the strain grown in a fructose-supplemented medium in aerobiosis and anoxia was 

then performed to better elucidate the molecular mechanisms underlying the different amounts of LA which are 

produced in these two growth conditions. 

 

2. Materials and Methods 

2.1 Bacterial strains 

Seven strains of LA bacteria belonging to the culture collection of the Department of Life Sciences and Systems 

Biology of Torino (Italy) were used in the present study: Lactococcus lactis 89A, Lactococcus lactis lactis 92A, 

Lactococcus lactis NCDO 2118, Lactococcus lactis cremoris 88 A, Lactococcus lactis lactis 150 A, Lactobacillus 

plantarum 31 A and Enterococcus faecium LLAA-1. All the strains were maintained at -24°C in aliquots of 0.5 mL 

of exponential phase cultures and 0.5 mL 40% v/v glycerol.  

2.2 Culture conditions in vials and bottles  



For the preliminary screening all the strains were cultured in 30 mL screw cap-glass vials at 37°C without agitation in 

standard commercial culture medium, i.e., M17 (Fluka) for cocci and MRS (Difco) for L. plantarum 31 A, 

respectively.  

The selected E. faecium LLAA-1 was then cultured in 250 mL screw-cap glass bottles at 37°C without agitation in 

both modified M17 (29 g/L tryptone casein, 16 g/L Soy peptone, 10 g/L Yeast extract, 0.5 g/L ascorbic acid, 0.25 g/L 

Magnesium sulphate, 2.5 g/L hydrogen potassium phosphate, 19 g/L sodium glycerophosphate) and Chemically 

Defined Medium (CDM) (Petry et al., 2000). Bacterial cultures were performed in either one or the other of these 

media after supplementation with 111 mM glucose, or 111 mM fructose, or 56 mM cellobiose or 111 mM xylose. 

Replicates of these cultures were perfomed by additional supplementation of 0.1 M sodium acetate. Bacterial growth 

was monitored by measurement of optical density at 600 nm (Pharmacia Biotech, Spectrophotometer Ultrospec 

2000). 

All the described cultures were performed with inocula from pre-cultures grown in the same media in order to have 

an initial OD600 of about 0.1. 

2.3 Culture conditions in fermenter 

A Diaferm Basic fermenter (DiaChrom Sa) was used to compare E. faecium LLAA-1 growth and LA production 

under aerobic and anoxic conditions. Experiments were performed in 3.5 L of modified M17 medium, as described 

above, fortified with 111 mM fructose. The fermentations were performed at 37°C, under 200 rpm shaking with an 

initial pH of 6.9 that was not subsequently adjusted. All the fermentations were performed with inocula from pre-

cultures grown in the same medium in order to have an initial OD600 of about 0.1. 

The aerobic condition was maintained by blowing air into the medium throughout bacterial growth. The anoxic 

condition was achieved by nitrogen bubbling into the medium; to ensure the latter condition butyl rubber tubings with 

low permeability to gases were used.  

2.4 LA quantification 

Two mL of stationary phase cultures for all the tested strains were collected and biomass were separated from 

supernatant by centrifugation (12000xg, 10 min, 4°C). Since LAB extrude LA in the external environment to gain 

energy by a membrane transport system (Konings 2002), the analyses were performed on the supernatants. The 

concentration of the two LA enantiomers was determined by the K-DLATE enzymatic kit (Megazyme).  

2.5 HPLC analysis 



An Agilent 1200 Series Technologies HPLC system equipped with a multichannel diode array detector (DAD) and a 

refractive index detector (RID) was used. Separation of metabolites in the extracellular growth media was performed 

by an Aminex HPX-87H 300 x 7.8 mm column equipped with a thermostat and a guard column. Isocratic elution was 

obtained by 0.5 mL/min of 5 mM H2SO4 at 40°C. 

Standards of L-LA, fructose, acetic acid and ethanol were prepared at different concentrations ranging from 0.5 to 30 

g/L. Eight-hundred μL of fermentation broths were subjected to precipitation with 200 μL zinc sulfate 0.3 M and 200 

μL barium hydroxide 0.3 M to remove free proteins and peptides.  

Chromatogram record and analysis, both peak integration and analysis of the purity of peaks, were performed with 

the ChemStation software (Agilent Technologies).  

2.6 Proteomic analysis 

2.6.1 Protein sample preparation 

Fifty mg of cells were treated in each protein preparation. The cells were collected in the late exponential growth 

phase by centrifugation (4000xg, 20 min, 4°C) and washed three times with NaCl 0.85% (w/v). The obtained pellets 

were re-suspended in 3 mL 50 mM Tris-HCl pH 7.3, 1 mM EDTA and disrupted by sonication twice as previously 

described (Pessione et al., 2009), to recover the highest amount of proteins. After clarification (4000xg, 20 min, 4°C), 

supernatants were supplemented with 10 μL/mL Nuclease mix (GE Healthcare) and after 30 min incubation at room 

temperature they were centrifuged (100000xg, 1h, 4°C) in a Beckman L8-60M ultra-centrifuge (Type 60 rotor). The 

obtained supernatants were then dialyzed against four volumes of ddH2O and precipitated with methanol/chloroform 

according to Wessel and Flugge (Wessel and Flugge, 1984). The obtained pellets were then dissolved in rehydration 

solution [6.5 M urea, 2.2 M thiourea, 4% (w/v) CHAPS, 5 mM Tris-HCl pH 8.8, 0.5% IPG buffer 4-7 (GE-

Healthchare), 100 mM DTT]. The protein concentrations were evaluated by the 2-D Quant-Kit (GE Healthcare).   

2.6.2 Two-dimensional electrophoresis experiments 

Isoelectrofocusing was performed using 13 cm IPG strips (GE Healthcare) with a linear gradient ranging from 4 to 7. 

Three-hundred μg proteins were loaded by in-gel rehydration and IEF was performed using IPGphor (Amersham 

Biosciences) at 20°C with 59000 VHrs. After IEF, the strips were equilibrated for 15 minutes in 6.0 M urea, 30% v/v 

glycerol, 2% w/v SDS, 5 mM Tris HCl pH 8.6 fortified with 2% w/v DTT and then for 15 minutes with the same 

buffer containing 4.5 w/v IAA instead of DTT. SDS-PAGE was performed on vertical, homogeneous, 1.0 mm thin 

11.5% T and 3.3% C acrylamide (Biorad) gels. Molecular weight markers were from GE Healthcare (LMW-SDS 

marker). The running buffer was 25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3. Running conditions were 11°C, 



600 V constant voltage, 20 mA per gel, 60 W for 15 min and 11°C, 600 V constant voltage, 40 mA per gel, 80 W for 

approximately 2 h. Gels were automatically stained with Colloidal Coomassie blue using the Processor Plus device 

(Amersham Biosciences, GE Healthcare) following the manufacturer’s instructions. 

2.6.3 Image analysis 

The stained 2-DE gels were digitized with the Personal Densitometer SI (GE Healthcare). Image analysis was 

performed using the Progenesis PG220 software (Nonlinear Dynamics): spot detection was automatically performed 

by using the algorithm named “2005 detection”. After the establishment of some user seeds, matching was 

automatically performed and manually verified.  

2.6.4 Statistical analysis 

For both the growth conditions (i.e., aerobiosis and anoxia) two biological and three analytical replicates were 

performed. Spot intensities were measured via both absolute and normalized volumes and were statistically analyzed 

by means of the t-test: means were considered significantly different when p<0.05 and the expression difference was 

higher than 1.5 fold. 

2.6.5 Protein identification 

Protein spots were excised from the dried gels and rehydrated with MilliQ water. They were destained in 50% ACN 

in 5 mM NH4CO3, dried in 100% ACN and then digested overnight with 5 μL trypsin solution (0.1 mg/mL trypsin in 

5 mM NH4CO3). A MALDI TOF (MALDI micro MX, Waters) mass spectrometer with a delayed extraction unit was 

used. Peptide spectra were obtained in reflectron mode in the range 800-3000 Da. Database searching was performed 

by using the 25 most intense measured peptide masses against the NCBI database via the free search program 

MASCOT (www.matrixscience.com). The following parameters were considered in the search: taxa Firmicutes, 

trypsin digestion, one missed cleavage, carbamidomethylation of cysteine as fixed modification, methionine 

oxidation as variable modification and maximum allowed error 100 ppm. Only protein identifications with significant 

Mascot score (p<0.05) were taken into account. 

 

3.  Results and Discussion 

3.1 Selection of LAB strains producing high amounts of optically pure L-LA 

Seven LAB present in our laboratory collection (see Table 1) were submitted to a preliminary screening to quantify 

the amount of produced LA on complex commercial media, i.e., MRS for bacilli and M17 for cocci, respectively. 

Both L- and D-LA production was evaluated at the end of the bacterial growth. As shown in table 1, L. plantarum 



31A produced the highest amount of LA (35.50±1.51 mM). However, L-LA was just the 67.92% of the whole 

produced LA, while the rest was D-LA. Since for PLA production pure L-LA enantiomer is preferable (Vink et al. 

2003), L. plantarum 31A was discarded from further investigations. Among the other strains tested, the most 

interesting was E. faecium LLAA-1 which was able to produce the highest amount of LA (28.26±0.49 mM) with the 

highest L-LA enantioselectivity (98.70%). The other strains were able to produce L-LA but at lower amount, ranging 

from 17.72±0.42 mM to 27.17±1.00 mM and with slightly lower L-LA enantioselectivity, ranging from 96.65% and 

98.45%, than E. faecium LLAA-1.  

On the basis of these results E. faecium LLAA-1 was chosen for further investigations. 

3.2 Biomass yield and L-LA production by E. faecium LLAA-1 on different soluble sugars 

Because of industrial demand of LA-producing bioprocesses converting low-cost fermentable substrates, the ability 

of E. faecium LLAA-1 to efficiently ferment sugars present in fruit and other vegetable waste biomasses (glucose, 

fructose, cellobiose and xylose), was tested. LA production by E. faecium LLAA-1 was analysed in both Chemically 

Defined Medium (CDM) and modified M17 medium supplemented with glucose, fructose, cellobiose or xylose.  

As expected, M17 medium supported higher growth rates than CDM medium: final OD600 ranged from 5.0 to 6.7 in 

M17-grown cultures while values were comprised between 2.0 and 3.0 in CDM-grown cultures (data not shown). 

Indipendently from the used culture medium, E. faecium LLAA-1 was able to ferment all the tested mono-/di-

saccharides, although resulting in different final biomass. Glucose, fructose and cellobiose were readily consumed by 

E. faecium LLAA-1 in both CDM and M17 media. On the contrary, in xylose supplemented cultures the lag phase 

was longer and the final biomass was lower than with the other sugars, suggesting the difficulty of the strain to gain 

energy just from xylose metabolism (data not shown). As expected, glucose or fructose supported the highest growth 

rates.  

Supernatants of stationary phase cultures were collected in order to quantify both L- and D-LA isomers by enzymatic 

assay. No detectable amount of D-LA was found, suggesting that under the tested growth conditions the whole LA 

produced is consistent with the L-isomer. As shown in figure 1, the highest amount of L-LA was produced by 

modified M17-grown cultures as compared to the CDM-grown cultures, for all the tested sugars. Furthermore, a 

higher production of L-LA was obtained by using glucose or fructose as the sugar substrate: the conversion yields in 

M17-grown cultures were about 90% of the maximum theoretical value for glucose and fructose, about 70% for 

cellobiose and only about 22% for xylose. 



In order to improve L-LA production further studies were performed to test the effect of sodium acetate 

supplementation and of culture oxygenation on LA production from the different sugars.  

3.3 Effect of sodium acetate supplementation on L-LA production by E. faecium LLAA-1 

Previous studies reported that addition of sodium acetate can improve both LA yield and enantioselectivity in LAB 

(Iino et al., 2001, 2002). Sodium acetate has been supposed to improve the carbon flux through either the glycolytic 

pathway or the pentose phosphate route (Iino et al., 2001, 2002) resulting in a higher production of pyruvic acid and 

hence of LA. It has also been hypothesized that sodium acetate may stimulate either L-LA dehydrogenase 

biosynthesis or its catalytic activity (Iino et al., 2001, 2002). In the present investigation, the addition of sodium 

acetate to the culture medium did not modify the growth kinetics of E. faecium LLAA-1 under any of the tested 

conditions. Furthermore, sodium acetate had no effect on L-LA production by E. faecium during growth on fructose- 

or xylose-supplemented media and even inhibited LA production in glucose- and cellobiose-fortified cultures (Fig. 

2). Therefore, sodium acetate effect on L-LA production by E. faecium LLAA-1 was not consistent with the data 

referred in the literature for other LAB strains. 

3.4 Effect of culture oxygenation on L-LA production by E. faecium LLAA-1 

To evaluate the effect of oxygen on L-LA production, different cultures were set up in fermenter in modified M17 

medium under both aerobic and anoxic conditions. Since fructose is abundant in several fruit and vegetable scraps, it 

was chosen as the sugar substrate for the experiments in fermenter. Data obtained by the present study could 

therefore be useful for future utilization of E. faecium LLAA-1 to produce L-LA by bioconversion of waste 

feedstocks containing this sugar.  

The experiments in fermenter revealed that the overall bacterial growth rate (µ) was very similar in aerobic and 

anoxic environments (a µ of about 0.98 h
-1

 and 1.01 h
-1

 were measured in aerobic and anoxic cultures, respectively); 

the same growth rate was maintained all along growth in anoxia, while a faster growth (µ = 1.39 h
-1

) occurred in the 

early exponential growth of aerobic cultures followed by a slower growth (µ = 0.20 h
-1

) between 3 h and 4.5 h after 

inoculum (Fig. 3). Actually, higher final biomass under aerobic conditions (final OD600 around 7.7) than under anoxic 

conditions (final OD600 around 7.1) was observed. This observation is partially in contrast with several literature data 

indicating that oxygen can have an inhibitory effect on the growth of microaerophylic LA bacteria. Nevertheless, in 

the literature it has been demonstrated that Lactobacillus sake NCFB 2813 was not inhibited by oxygen (Amanatidou 

et al., 2001a, 2001b). A time-course investigation on fructose consumption and L-LA production during growth 

under both aerobic and anoxic conditions was performed by HPLC. As shown in figure 3, aerobic conditions 



promoted the metabolization of a higher amount of fructose (about 132 mM as respect to about 82 mM in anoxic 

cultures) and the production of a greater total LA quantity which was almost 3 fold higher (377.90±8.32 mM) than in 

anoxia (129.99±10.12 mM). However, decay of extracellular medium pH was almost identical under the two growth 

conditions: as shown in Figure 3, pH values diminished of about 2.2 units during the whole fermentation under either 

aerobic or anoxic conditions. Since final LA concentration was much higher in aerobic cultures, we can  hypothesize 

that under the former conditions either unidentified acid molecules were consumed or alkaline molecules were 

produced concomitantly, so that the final pH was similar under both growth conditions (Figure 3). At the end of the 

anoxic fermentation, the amount of LA accumulated in the growth medium corresponded to about 79% of LA which 

could be theoretically obtained by the homolactic metabolization of 82 mM fructose (maximum theoretical yield= 2 

LA per fructose), which is lower than apparent fructose-LA conversion yields calculated for microaerophylic cultures 

(Fig. 1). On the contrary, in aerobic cultures, final concentration of accumulated LA corresponded to 143% of 

maximum LA that could be obtained by homofermentative conversion of 132 mM fructose. In more detail, about 280 

mM L-LA was produced during the early exponential phase of aerobic-grown cultures while just 50 mM fructose was 

consumed; furthermore, 100 mM L-LA was produced in the stationary phase of aerobic-grown cultures 

concomitantly with the consumption of only 20 mM fructose. These results clearly indicate that other alternative 

metabolic pathways leading to the production of L-LA, probably using alternative substrates, were activated under 

aerobic growth conditions.  

Several metabolic pathways leading to LA production exist in nature, for instance L-LA can be generated by LAB 

through malo-lactic fermentation. Intracellular malic acid decarboxylation to L-LA is part of a biochemical system 

which also includes electrogenic LA/malic acid antiporters (Pessione et al., 2010). The whole system provides both 

alkalinization of the environment (by converting a dicarboxylic acid, such as malic acid, into a monocarboxylic acid, 

LA) and metabolic energy for the cells, since malic acid (from out to in)/ LA (from in to out) exchange generates 

proton motive force across the cellular membrane (Pessione et al., 2010). However, such strategy depends on the 

availability of high amounts of malic acid in the growth medium in order to explain for the high amounts of LA 

which are accumulated in aerobic-grown cultures of E. faecium. Since M17 medium composition should not contain 

high concentration of malic acid, this hypothesis seems unlike. However, M17 is a complex medium rich in protein 

hydrolysates (see materials and methods). It is therefore possible that aerobic conditions stimulate the activation of 

routes converting the so-called “gluconeogenetic” amino acids (e.g., alanine, aspartate) into pyruvate which can then 

be readily converted by LA dehydrogenase to LA. 



In order to get a more in depth comprehension of the overall picture of E. faecium metabolism under both anoxic and 

aerobic growth conditions, and possibly explain why L-LA is produced in higher amounts in aerobiosis than in 

anoxia, comparative proteomic analyses were performed as described below.  

3.5 Comparative proteomic analysis of fructose-grown cultures of E. faecium LLAA-1 under aerobic-anoxic 

conditions. 

For both aerobic and anoxic growth conditions, cells were collected at the beginning of the stationary phase. The total 

cell proteome (“in toto” proteome) in the 4-7 pI range was analyzed (figure 4). Twenty-three spots showed 

significantly different intensities between the two tested conditions: 9 were up-regulated and 14 down-regulated 

under aerobic conditions. These spots were all identified by MALDI TOF mass spectrometry, exception made for 

spots 21, 22 and 23 which did not give a significant protein identification. Considering that some spots were different 

isoforms of the same protein, a total of 17 proteins were found to be differentially expressed between the two tested 

conditions: 6 proteins were expressed to a higher level in aerobiosis and 11 proteins were up-regulated under the 

anoxic condition. All these proteins are listed in table 2 and may be divided into two main classes according to their 

function: i. energy metabolism proteins; ii. stress response proteins. All the other proteins were grouped together as 

“iii. other proteins”.  

Among proteins involved in the energy metabolism, dihydrolipoamide dehydrogenase (PDH E3, spots 1 and 2), 

phosphate acetyltransferase (PTA, spot 3), pyruvate dehydrogenase (PDH E1, spots 4 and 5, present in aerobic-grown 

cells only), ketopantoate reductase ApbA/PanE (spot 6) and f-subunit of alkyl hydroperoxide reductase (Nox, spot 7, 

present in aerobic-grown cells only) were up-regulated in aerobiosis; on the contrary 6-phosphogluconate 

dehydrogenase (6PGODH, spot 10), glucose-1-dehydrogenase (G1DH, spot 11), 2-dehydropantoate 2-reductase (spot 

12, present in anoxic-grown cells only) and aldo/keto reductase (spot 13) were up-regulated in anoxia.  

Dihydrolipoamide dehydrogenases are homodimeric flavoproteins that catalyze the NAD
+
-dependent re-oxidation of 

dihydrolipoamide in several multienzymatic complexes such as the pyruvate dehydrogenase (PDH) complex, the 2-

oxoglutarate dehydrogenase complex and the branched-chain 2-oxo-acid dehydrogenase complex (Perham et al., 

1987; de Kok et al., 1998). These three complexes share a common architecture composed of multiple copies of three 

components: E1, a thiamine pyrophosphate-dependent 2-oxo-acid dehydrogenase, E2, a dihydrolipoamide 

acyltransferase and E3, a FAD-containing dihydrolipoamide dehydrogenase. Since in aerobiosis also two isoforms of 

the pyruvate dehydrogenase (corresponding to the E1 component, spots 4 and 5) were up-regulated (actually, spots 4 

and 5 are detectable in aerobic-grown cultures only), it is reasonable to assume that all these proteins (spots 1, 2, 4, 5) 



are part of the same PDH complex. The induction of PDH during growth in aerobiosis has already been reported for 

other enterococci and LAB (Snoep et al., 1992; Jensen et al., 2001). PDH competes with other enzymes such as 

lactate dehydrogenase (LDH) for intracellular pyruvate. It is reasonable to assume that in aerobic-grown cells 

pyruvate will be partly diverted towards acetyl-CoA biosynthesis instead of LA production. Theresfore, this result 

seems in contrast to the fact that, under this culture condition, E. faecium LLAA-1 accumulates larger amounts of LA 

than in anoxic environment (see above). Once more, this result indicates that a relevant part of LA accumulated under 

aerobic conditions was obtained by the conversion of other substrates than fructose (see below). 

It is worth noting that enterococci generally lack a complete Krebs cycle. In these microorganisms acetyl-CoA can be 

used for: i) citrate biosynthesis (the only step of Krebs cycle present in this genus); ii) acetate production via acetyl 

phosphate; iii) production of ethanol, by either direct reduction of acetyl-CoA or through the formation of acetyl 

phosphate intermediate (Fig. 5) (Hofvendahl and Hahn-Hägerdal, 2000). Acetate production pathway also involves 

ATP synthesis through substrate-level phosphorylation catalyzed by acetate kinase (AK) (Fig. 5). This route is very 

common especially in those bacteria such as LAB lacking a functional respiratory chain, whose energy metabolism is 

chiefly based upon substrate level phosphorylation. Since our proteomic analyses also detected a strong up-regulation 

of phosphate acetyltransferase (PTA, spot 3) in aerobic-grown cultures, it is likely that, under this condition, a 

significant amount of pyruvate is diverted through acetyl-CoA and acetyl phosphate. However no up-regulation of 

either AK or Aldehyde / Alcohol dehydrogenase (AlDH/ ADH, respectively) was detected in aerobic-grown cultures 

by proteomic analyses. Moreover, neither acetate nor ethanol accumulation was detected in these cultures (data not 

shown). These data suggest, that the activation of this pathway i) does not involve a massive re-routing of pyruvate 

towards acetate or ethanol; or ii) should be used for other, yet unidentified, purposes, such as the synthesis of other 

cellular intermediates or catabolites. 

A partial explanation of the fact that the amount of LA accumulated under anoxic conditions is lower than in aerobic-

grown cultures is given by the finding that glucose 1-dehydrogenase (G1DH, spot 11) and 6-phosphogluconate 

dehydrogenase (6PGODH, spot 10) are up-regulated in anoxia. These data support the hypothesis that a significant 

part of fructose is fermented through heterolactic pathways in absence of oxygen (Fig. 5). 

A recent study by Chambellon et al. (2009) brought evidences that a number of enzymes annotated as ketopantoate 

reductase on the basis of primary sequence homologies found in LAB, could belong to a new family of proteins, 

known as 2-hydroxyacid dehydrogenases, involved in amino acid catabolism. Notably, in LAB the first step of amino 

acid catabolism is generally catalyzed by aminotransferases, which generate 2-oxo acids (Chambellon et al., 2009). 2-



oxo acids can then be either oxidized by 2-oxo acid dehydrogenases, or reduced by 2-hydroxyacid dehydrogenases 

(Fig. 5) (Yvon and Rijnen, 2001). In the case of pyruvate (which can be obtained by deamination of aminoacids such 

as alanine or aspartate), LDH catalyzes such reduction, while incorrectly annotated ketopantoate reductase from 

Lactococcus lactis is involved in the catabolism of branched-chain amino acids. It is therefore possible that 

ketopantoate reductase (ApbA/PanE, spot 6) identified in the present study rather functions as a 2-hydroxyacid 

dehydrogenases. Therefore, the up-regulation of this enzyme in aerobic-grown cultures of E. faecium would be 

related to an improved amino acid catabolism. It is worth noting that spot 12 was identified as a homologue of a 2-

dehydropantoate 2-reductase, i.e., an alternative name for ketopantoate reductase (E.C. 1.1.1.169). Since protein 

corresponding to spot 12 was detectable in anoxic-grown cells only, it is likely that its function differs from that of 

the enzyme contained in spot 6 and possibly really corresponds to ketopantoate reductase. 

Among the proteins biosynthesized in detectable amounts in aerobic-grown E. faecium only, the f-subunit of alkyl 

hydroperoxide reductase (Nox, spot 7) was identified. This enzyme is a dimeric protein complex involved in the 

scavenging of radical oxygen species (Costa Seaver and Imlay, 2001). The f subunit (AhpF) is an homologous of the 

NADH oxidase (Nox-1) catalyzing the reduction of oxygen to H2O2 and the parallel re-oxidation of NADH to NAD
+
; 

the c subunit (AhpC) is involved in the following conversion of H2O2 to H2O (Poole et al., 2000; Diaz et al. 2004). 

Although a AhpC homologue was not identified as among the proteins overexpressed in aerobic-grown cultures by 

the present study, nonetheless, the over expression of AhpF indicates that E. faecium LLAA-1 is able to re-oxidize 

NADH through NADH oxidase-like reaction when O2 is present. This metabolic pathway is exploited by several 

LAB as a mean to re-oxidize excess NADH produced by catabolic reactions (Guo et al., 2012). Therefore, NADH 

oxidase activation offers the opportunity to increase oxidative catabolism, constituted mainly by glycolysis and/or 

other catabolic pathways, since a further mechanism, not available under anoxic conditions, useful to drain reducing 

equivalent excess can be exploited. Taken together, experimental findings described above strongly suggest that 

overproduction of LA detected in aerobic-grown cultures of E. faecium is partly the result of improved fructose 

catabolism through glycolysis (a higher amount of fructose is consumed in aerobic cultures, see above) and partly the 

effect of activation of amino acid catabolism (Fig. 5). It is worth reminding that amino groups transferred by 

transamines to 2-oxo acid acceptors, such as 2-oxo glutarate, are finally discarded as ammonia in oxidative reactions 

catalyzed by amino acid dehydrogenases, such as glutamate dehydrogenase, which also produce NADH (Fig. 5). 

Therefore, amino acid catabolism is only possible under conditions allowing improved NADH re-oxidation, like 

aerobic conditions, enhancing NADH oxidase activity. The activation of amino acid oxidative catabolism provides 



the cells with at least two metabolic advantages: i) new substrates for LA biosynthesis; ii) production of ammonia. In 

LAB, lactate biosynthesis is coupled to electrogenic efflux of lactate by 2 H
+
/lactate symporters (Konings, 2002), that 

is used for proton motive force generation. It was calculated that energy gain corresponds to 0.5-0.66 ATP per each 

lactate molecule. As described above, in aerobic-grown cultures of E. faecium final biomass is higher than in anoxic 

cultures, which confirms that under this condition a higher amount of energy is available for cell growth. Production 

of ammonia compensates for stronger acidification connected to such increased LA production: this would therefore 

explain why the extent of medium acidification measured in aerobic cultures is identical to those of anoxic cultures. 

Regarding the stress proteins identified in this study, the ATP-binding subunit clpL of the ATP-dependent Clp 

protease, the chaperon protein dnaK and the DNA-binding protein DPS were more expressed in anoxia. Both clpL 

and dnaK are described as heat shock proteins in Streptococcus pneumoniae (Kwon et al., 2003); their over-

expression under anoxic conditions seems to highlight aspecific stress counteracting actions in the tested E. faecium 

LLAA-1 strain. The DNA-binding protein DPS belongs to the ferritin superfamily and is involved in DNA 

protection. The first protein of this family was discovered in E. coli (Almiron et al., 1992) in which it is expressed 

during the stationary phase, when all nutrients are consumed, and it non-specifically binds the chromosome forming a 

dps-DNA co-crystal able to protect DNA from several damages (Wolf et al., 1999). The up-regulation of these three 

stress proteins under anoxic condition seems to indicate that aerobiosis represents a beneficial condition for E. 

faecium LLAA-1 since it could attenuate general metabolic stresses such as stationary phase starvation and pH stress, 

typical of the harvesting time (early stationary phase) for proteomic analyses. 

The other differentially expressed proteins that were identified are involved in protein synthesis, such as the 

translation elongation factor Tu, which was up-regulated under aerobic conditions and the arginyl-tRNA synthetase 

which was up-regulated under anoxic condition. Other three spots up-regulated in anoxia were identified as 

conserved hypothetical proteins whose metabolic function has not been determined yet. 

  

4. Conclusions 

Many lactic acid bacteria can be used for industrial LA production, nevertheless, the enantioselective reaction leading 

to the more appreciated L-LA isomer is characteristic of only few natural strains. In the present study the selected E. 

faecium LLAA-1 proved to produce high amounts of optically pure (about 99%) L-LA from a number of soluble 

sugars (e.g., fructose and cellobiose) which are important components of agro-industrial waste biomasses. Growth 

conditions possibly modulating L-LA production (i.e., addition of sodium acetate and growth under aerobic/anoxic 



conditions) were tested. In contrast to previous reports, sodium acetate supplementation did not improve LA 

production in any of the tested conditions. However, growth under aerobic conditions almost tripled LA amounts 

accumulated by E. faecium LLAA-1 during growth on fructose-supplemented M17 medium, although final biomass 

was only slightly higher than in anoxic cultures. Proteomic analyses helped to clarify the reasons of such improved 

LA production. Induction of the biosynthesis of a NADH oxidase homologue, catalyzing re-oxidation of NADH 

produced by oxidative catabolic reactions by means of O2, seems to be a key factor of the global re-arrangement of E. 

faecium LLAA-1 metabolism under aerobic conditions. Improved fructose consumption through the Embden-

Meyerhof pathway (with concomitant down-regulation of heterolactic routes) only partly explains accumulation of 

higher amounts of LA. Up-regulation of the biosynthesis of PDH, PTA and 2-oxo acid dehydrogenases suggests that 

also amino acid catabolism is improved under aerobic conditions, likely owing to the high content of protein 

hydrolysates contained in M17 medium (Fig. 5). Activation of amino acid oxidative catabolism contemporarily 

provides the cells with higher metabolic energy, since LA flux outside of the cells is used by LAB for proton motive 

force generation, and compensates improved acidification linked to the accumulation of higher amount of LA with 

production of ammonia. Although this hypothesis will be confirmed only by fermentations in chemically defined 

medium (allowing precise quantification of amino acid consumption), the findings obtained by the present study have 

highlighted the potential of E. faecium LLAA-1 to be used for the production of pure L-LA not only from 

polysaccharidic biomass, but also from other agro-industrial waste with high proteinaceous content (e.g. milk whey, 

by-products of meat, poultry and fish processing industries) (Jayathilakan et al., 2012). The combined approach of 

comparative proteomics with metabolic analyses proved to be a strategy with high potential to get key information on 

newly selected microbial strains for biotechnological applications, such as the industrial production of optically pure 

L-LA by fermentation.  
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Figures  

 

Fig1 L-LA production by Enterococcus faecium LLAA-1 grown in CDM and M17 media fortified with glucose 

(glu), fructose (fru), cellobiose (cel) and xylose (xyl) one by one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig2 Effect of sodium acetate on L-LA production by Enterococcus faecium LLAA-1 grown in M17 medium 

fortified with glucose (glu), fructose (fru), cellobiose (cel) and xylose (xyl) one by one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig3 Growth kinetics of Enterococcus faecium LLAA-1 in fructose-supplemented M17 medium under aerobic (A) 

and anoxic (B) conditions. Fructose consumption, L-LA production and pH trend are reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig4 2-DE maps of in toto proteins extracted from E. faecium LLAA-1 grown under aerobic (A) and anoxic (B) 

conditions. Differentially expressed spots are highlighted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig5 Proposed picture of E. faecium LLAA-1 central catabolic pathways during growth in fructose-supplemented 

M17 medium. Enzymes which have been identified in this study are indicated in bold and include: proteins which are 

detectable in aerobic-grown cells only (underlined), enzymes whose biosynthesis is up-regulated in aerobic-grown 

cultures (arrow up, followed by aerobiosis/anoxia expression ratio), enzymes which are down-regulated under the 

same conditions (arrow down, followed by aerobiosis/anoxia expression ratio). Solid light grey and dotted boxes 

highlight metabolic networks which are likely activated and repressed, respectively, under aerobic conditions. 

1,3BPGA, 1,3-bisphosphoglyceric acid; 2PEP, 2-phosphoenolpyruvic acid; 2PGA, 2-phosphoglyeric acid; 3PGA, 3-

phosphoglyceric acid; 6PGODH, 6-phosphogluconate dehydrogenase; AA, amino acid; ADH, alcohol 



dehydrogenase; AK, acetate kinase; AlDH, aldehyde dehydrogenase; ApbA/PanE, potential 2-hydroxyacid 

dehydrogenase (incorrectly annotated as ketopantoate reductase); DHAP, dihydroxy acetone phosphate; GAP, 

glyceraldehyde 3-phosphate; G1DH, glucose 1-dehydrogenase; GluDH, glutamate dehydrogenase; GOK, gluconate 

kinase; GPI, glucose phosphate isomerase; LA, lactic acid; LDH, lactate dehydrogenase; NOX, NADH oxidase; PA, 

pyruvic acid; PFK, phosphofructokinase; PDH, pyruvate dehydrogenase; PTA, phosphate acetyltransferase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


