ENCYCLOPEDIA OF RAPID MICROBIOLOGICAL METHODS

VOLUME 4

Michael J. Miller Editor

Encyclopedia of Rapid Microbiological Methods

Volume 4

Michael J. Miller Editor

PDA Bethesda, MD, USA DHI Publishing, LLC River Grove, IL, USA

$10 \hspace{0.1 cm} 9 \hspace{0.1 cm} 8 \hspace{0.1 cm} 7 \hspace{0.1 cm} 6 \hspace{0.1 cm} 5 \hspace{0.1 cm} 4 \hspace{0.1 cm} 3 \hspace{0.1 cm} 2 \hspace{0.1 cm} 1$

ISBN: 1-933722-66-5

Copyright © 2013 by Michael J. Miller. All rights reserved.

All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. Printed in the United States of America.

Where a product trademark, registration mark, or other protected mark is made in the text, ownership of the mark remains with the lawful owner of the mark. No claim, intentional or otherwise, is made by reference to any such marks in the book. The authors have made every effort to provide accurate citations. If there are any omissions, please contact the publisher.

While every effort has been made by the publishers, editor, and authors to ensure the accuracy of the information contained in this book, this organization accepts no responsibility for errors or omissions. The views expressed in this book are those of the editor and authors and may not represent those of either Davis Healthcare International or the PDA, its officers, or directors.

Connecting People, Science and Regulation®

This book is printed on sustainable resource paper approved by the Forest Stewardship Council. The printer, Gasch Printing, is a member of the Green Press Initiative and all paper used is from SFI (Sustainable Forest Initiative) certified mills.

PDA

4350 East West Highway Suite 150 Baltimore, MD 20814 United States www.pda.org/bookstore 001-301-986-0293

Davis Healthcare International Publishing, LLC

2636 West Street River Grove IL 60171 United States www.DHIBooks.com This volume is dedicated to the love of my life and my childhood sweetheart, Christine, whose inspiring support throughout the years has provided me with the courage and desire to follow my dreams, both professionally and personally.

FOREWORD

Bryan S. Riley, Ph.D.

New Drug Microbiology Staff Office of Pharmaceutical Science Center for Drug Evaluation and Research US Food and Drug Administration Silver Spring, MD, USA

Most of the history of microbiology as we know it has relied on the ability to visualize microorganisms following cultivation. Typically, cultivation has been done in a liquid medium such as a broth, or on a solid or semi-solid surface such as an agar plate (or in earlier times a potato slice). Although the ability to grow microorganisms is still an important aspect of microbiology, the time required for visible microbial growth (i.e., turbidity in liquid medium or a colony on solid medium) can be a hindrance in some circumstances.

The need for rapid results from microbiological tests has long been recognized by microbiologists in the clinical lab and the food industry. Rapid identification methods are now standard in the clinical microbiology lab. These methods range from automated variations on the traditional biochemical and phenotypic microbial identification tests to other rapid tests such as nucleic acid based methods (e.g., sequencing or microarrays) or Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI/TOF). Other rapid clinical tests utilize immunologic reagents to test for the presence of specific pathogenic microorganisms in patient samples. Some of these rapid tests are even used at the patient's bedside (or in the exam room), thus saving the time needed to transport the sample to the lab. The use of rapid microbiological methods has transformed clinical microbiology and improved patient care. The food industry has also had a strong incentive for rapid microbial results. Screening tests for food borne pathogens must provide rapid results to ensure the safety of perishable fresh food. Waiting for potentially pathogenic microorganisms to grow on conventional media might not provide results quick enough to be truly useful. Rapid methods similar to those used in clinical microbiology are a mainstay in food microbiology and provide valuable information to protect consumers.

The pharmaceutical industry, in general, has not been as pro-active as the clinical and food sectors when it comes to rapid microbiological methods. The microbiological testing paradigm in the pharmaceutical industry has taken two pathways. The first of these has involved the microbiological release test (e.g., sterility or microbial limits). Although sterility tests take at least two weeks for final results, for most drug products it is not considered a problem to wait this long to release a batch of a sterile drug product. However, for some drug products, waiting several weeks for a traditional sterility test may not be practical. For example, for products with very short shelf lives (e.g., blood products, cell therapy products, and radiopharmaceuticals) two weeks might be most or even all of their useful life. Additionally, for some products manufactured in high volumes, the storage of product while waiting for sterility test results can be a significant expense and shortening that storage time could be economically advantageous to their manufacturer.

The other arm of the pharmaceutical microbiology testing approach involves in-process tests. This category of samples would include drug components, bulk drug product, environmental monitoring and water. All of these types of samples are currently tested for bioburden using traditional microbiological methods (typically plate counts) but the results are not available for at least several days. Meanwhile, manufacturing has moved on (perhaps all the way to a finished product) before the results of the microbiological tests are known. If the results of these tests are acceptable, this is a tolerable situation and the process is considered to be in a state of microbiological control. However, if any of these samples return results that exceed an alert or action level, then decisions must be made regarding the significance of these results and what affect they may have on product disposition. For a component like Water for Injection (WFI), a bioburden action level may affect multiple drug products produced using that WFI.

Modern approaches to process control (including Process Analytical Technology) require the availability of results in real-time (or at least close to realtime) to enable the operator to use the test results to make process decisions and adjustments. Although real-time results are only currently available for a limited category of microbiological tests, there are many microbiological methods that are significantly more rapid than the traditional test methods. The rapid methods available today vary a great deal in their mechanisms of operation. Some of these methods still rely on a period of microbial growth using traditional media but reduce their time to result by using an alternate method of microbial detection. Other rapid methods do away with growth entirely and utilize a stain or inherent microbial auto fluorescence to detect microorganisms even down to the level of a single microbial cell. Some of the available methods are quantitative, some are qualitative, and they vary in their time to result (from real-time to several days) but all of these methods seem to have found a niche in the pharmaceutical microbiologist's arsenal. These current rapid microbiological test methods are now able to start providing some of the advantages (from a process control and economic return standpoint) long enjoyed by our colleagues in the clinical and food microbiology labs. Pharmaceutical microbiologists would be well served by considering which of their samples would provide a benefit with a more rapid result and then assessing the current alternate microbiological methods to see if any of them are a good fit for their needs. This Encyclopedia of Rapid Microbiological *Methods* will be an excellent resource to start that assessment.

CONTENTS

Fore	eword Bryan S. Riley	v
1.	The Application of Modern Microbial Methods to the Quality Control Testing of Probiotics Anthony M. Cundell	1
	Introduction	1
	Quality Control Testing of Probiotics	2
	Master and Working Cell Bank	5
	Release and Stability Testing	5
	Opportunities for the Application of Rapid Microbial Methods	5
	Viable Cell Count	6
	Identification and Strain Typing	7
	Absence of Bacterial Pathogens	10
	Antibiotic Resistance	10
	Adherence to the Intestinal Wall	11
	Acid and Bile Resistance	11
	Conclusions	12
	References	12
	About the Author	17
2.	Considerations for Choosing a Rapid Microbiological Method: Aligning Your Needs with Available Technology Julie Schwedock	19
	Introduction	19
	Drivers for Rapid Methods	20
	Will One Method Cover All Testing Needs?	20
	What is the Minimum Time Savings Needed to Create Value? Are Same Day Results Useful/Necessary?	20

ix

Is Your Sample Compatible with the Rapid Method?	21
Does the RMM Add Labor or Reduce Labor?	22
Will Automation Help Me by Reducing Human Error?	22
Does the RMM Provide a Count or a Presence/Absence	
(+/-, or Qualitative) Result?	23
If My Counts are Usually Zero, Can I Get Away with	
Using a Qualitative RMM as a Screen?	23
How Easy or Difficult is it to Validate the RMM?	24
Is the Count in Real CFU, or Estimated from Another Parameter, such as Relative Fluorescent Units?	25
Do the Microorganisms Survive the RMM, Such that They are Available for Identification?	25
Will the RMM Easily Integrate with the LIMS	
(Laboratory Information Management System) or	
Other Data Management Platform?	25
Does the RMM Provide Reporting?	200
How Much Reporting Do I Need?	26
What is the RMM's Record with False Positives? What is the Impact to Me When I Get a False Positive?	26
What is the RMM's Record with False Negatives? What is the LOD (Limit of Detection)?	27
Conclusion	27
Disclaimer	27
Acknowledgement	27
References	28
About the Author	29
Looking to the Future: Rapid and Automated Microbial	
Identification Technologies	31
Michael J. Miller, Ph.D.	
Introduction	31
A Brief History Lesson	32
Rapid and Automated Microbiological Technologies	33
Growth-Based ID and Presence/Absence Technologies	35
Utilization of Biochemical and Carbohydrate Substrates for Microbial Identification	35
Use of Selective Media for the Rapid and Automated	
Detection of Specific Microorganisms	37

3.

Cellular Component-Based ID and Presence/Absence	
Technologies	37
Fatty Acid Analysis for Microbial Identification	37
MALDI-TOF Mass Spectrometry for Microbial Identification	37
SELDI-TOF Mass Spectrometry for Microbial Identification	38
Fourier Transform-Infrared (FT-IR) Spectrometry for Microbial Identification	38
Optical Spectroscopic-Based ID and Presence/Absence Technologies	39
Elastic Scattering for the Detection of Specific Microorganisms	39
Inelastic Scattering for the Detection of Specific Microorganisms	40
Nucleic Acid Amplification-Based ID and Presence/Absence	
Technologies	41
Ribotyping for Bacterial Identification and Strain Differentiation	42
PCR for the Detection of Specific Microorganisms	42
SYBR Green and Taqman Probes	44
MALDI-TOF Mass Spectrometry of PCR Products for Microbial	
Identification	46
MEMS-Based ID and Presence/Absence Technologies	49
Microfluidics or Lab-on-a-Chip Systems for Microbial	
Identification	49
Microarrays for Microbial Identification of Mycoplasma	50
Summary	51
About the Author	52

4.	Use of MALDI-TOF Mass Spectrometry for Microbiological Identification in the Pharmaceutical Industry Lothar Bomblies	53
	Introduction	53
	Method	54
	Sample Preparation	55
	Data Evaluation	55
	Species and Strain Identification	56
	MALDI-TOF MS in GMP Environments	57
	Validation for Actual Use	57
	Operational Qualification (OQ)	58
	Performance Qualification (PQ) – Accuracy	59

Performance Qualification (PQ) – Precision	60
Performance Qualificaton (PQ) – Robustness	62
Computer Validation	63
Mixed Cultures	63
Investigation of Broth Cultures	63
Experiences from Routine Investigations	64
Summary	64
Conclusion	65
About the Author	66

5.	Implementation of a Genotypic Method for Microbial Identification	67
	Sara Gamberini and Emiliano Toso	07
	Introduction	67
	Overview of Traditional Methods	69
	Overview of Alternative Methods	70
	Advantages of Genotypic Microbiological Methods	72
	How to Choose a Method for Microorganism Identification	74
	Validation of Alternative Microbiological Methods	75
	A Case Study from a Pharmaceutical Company: Implementation of a Genotypic Method for Microbial	
	Identification	75
	Shipment of Microbial Samples and DNA Extraction	76
	Amplification of Microbial DNA	77
	Increasing Speed of Identification	78
	Automation	78
	Validation of the Method	78
	Setup and Robustness of the Method	79
	Specificity of the Method	79
	Accuracy of the Method	79
	Precision of the Method	80
	Compliance with GMP Principles	80

00
81
81
82

Microbial IdentificationUsing the bioMérieux V System – An Update	ITEK [®] 2 85
David H. Pincus	
Introduction	85
Objective	86
Principles	86
VITEK® 2 Compact	87
VITEK® 2 and VITEK® 2 XL	87
Reagent Cards	87
Workflow	87
Reagent Card Types	89
Culture Requirements	89
Suspension Preparation	89
Inoculation	89
Optical System	91
Database Development	91
Analytical Techniques	91
Results	91
Test Reactions	92
Identification Levels	92
Mixed Taxa Identifications	93
Supplemental Testing	93
Non-Reactive Biopattern	93
Applications	93
GN Card	93
GP Card	98
YST Card	102
BCL Card	107
NH Card	107
ANC Card	112
CBC Card	114
Validation Procedure	119
Conclusion	119
References	119
About the Author	121

7.	Case Study of a New Growth-Based Rapid Microbiological Method that Detects the Presence of Specific Organisms and Provides an Estimation of Viable Cell Count	123	
	Ruth Eden and Roger Brideau	125	
	Introduction	123	
	Industry Needs	123	
	Limitations of the Traditional Methods	125	
	Validation Requirements for Change	125	
	The BioLumix® System	126	
	Technology	126	
	Dilute to Spec	126	
	How Microorganism Change Optical Characteristics	127	
	Instrumentation	128	
	Software	129	
	Disposable Vials	129	
	Methods	130	
	General Sample Preparation	130	
	BioLumix Vial Assay	130	
	Objectionable Organisms (Absent in 10 Grams)	131	
	E. coli (EC) Testing	131	
	Staphylococcus aureus (SA) Testing	131	
	Pseudomonas aeruginosa (PSE) Testing	132	
	Salmonella (SAL) Testing	132	
	Plate Count Method	132	
	LOD Studies	132	
	Specificity Studies	133	
	Repeatability Studies or Precision Testing	133	
	Robustness	133	
	Ruggedness	133	
	Results	134	
	Comparison to USP < 61 >	134	
	Total Aerobic Count	134	
	Yeast and Molds	135	
	Gram-Negative Bile Tolerant (Enterobacterial Counts)	135	
	Specificity (Inclusivity and Exclusivity)	135	
	Total Aerobic Count	136	

Yeast and Molds	136
Gram-Negative Bile Tolerant (Enterobacterial Counts)	136
Detection Limit	136
Total Count	137
Yeast and Molds	139
Gram-Negative Bile Tolerant (Enterobacterial Count)	139
Precision and Repeatability of Data	140
Yeast and Molds	141
Gram-Negative Bile Tolerant	141
Robustness	142
Statistical Analysis	142
Effect of Temperature	143
Effect of Sample Size	144
Effect of Medium Volume	145
Ruggedness	146
Effect of Analyst	146
Effect of Different BioLumix Units	147
Effect of Reagent Lots (Vial Lots)	148
Objectionable Organisms	148
Summary	150
References	150
About the Authors	152

8. Evaluation of the Millipore Milliflex[®] Quantum Rapid Detection System: An Internal Study of a Novel Rapid Method for Microbial Detection in Traditional Membrane Filtration Bioburden Assays

Eric J. Ward	
Abstract	153
Introduction	154
System Overview	154
1. Filter and Incubate	155
2. Fluorescent Staining Reagent	155
3. Quantum Reader	156
4. Enumeration	156
5. Re-incubation	157

www.pda.org/bookstore

153

Evaluation Parameters	157
Time-to-Detection	157
Comparability	157
Microorganism Viability	158
Additional Benefits	158
Time-to-Detection	159
Comparability	161
Microorganism Viability	163
Microorganism Identification	164
Additional Benefits	165
Mammalian Cell Culture Samples	167
Operational Notes	167
Training	168
Low Initial Investment	168
Cost Per Test	168
Work Flow	168
Camera and Software	169
Validation Requirements	169
Potential Applications	169
Mammalian Cell Culture Samples	170
Investigational Testing	170
Conclusions	170
Acknowledgements	170
References	
About the Author	171

9. Application of USP < 1223 > and Other Guidelines to Comprehensively Assess an Environmental Monitoring RMM for Validation Scott Morris

Abstract	173
RMM Overview: The IMD-A System	174
RMM Validation: Supplier and End-User Context	176
RMM Validation: Guidance and Interpretation	179
RMM Validation: Experimental Design	181
RMM Validation: Statistical Design	186

www.pda.org/bookstore

173

RMM Validation: Test Metrics	188
Accuracy	189
Precision	191
Limit of Detection (LOD)	192
Limit of Quantification (LOQ)	193
Linearity	194
Operational Range	196
Ruggedness	197
Robustness	199
Specificity	200
RMM Validation: Data and Analysis	202
RMM Validation: Additional Efforts	
Summary of RMM Validation	205
Conclusion	206
Acknowledgements	207
References	207
About the Author	211

10.	Evaluation of the BioVigilant IMD-A [™] , A Novel Optical Spectroscopy Technology for the Continuous and Real-time Environmental Monitoring of Viable and Nonviable Particles.	
	Part 1.Review of the Technology and Comparative	
	Studies with Conventional Methods	213
	Michael J. Miller, Horatio Lindsay, Rene Valverde-Ventura, and Michael J. O'Conner	
	Abstract	213
	Introduction	214
	Opportunities for Using a Rapid Microbiological Method	
	for Environmental Monitoring	216
	Materials	218
	Methods	220
	Data Analysis for Comparative Studies	222
	Evaluation of Three Instruments Under Laboratory Conditions	223
	Results and Discussion	224
	Evaluation of Three Instruments Under Laboratory Conditions	228
	Summary	229
	References	231

11.	Evaluation of the BioVigilant IMD-A [™] , A Novel Optical Spectroscopy Technology for the Continuous and Real-time Environmental Monitoring of Viable and Nonviable Particles.	
	Part 2.Case Studies in Environmental Monitoring During Aseptic Filling, Intervention Assessments, and Glove Integrity Testing in Manufacturing Isolators	235
	Michael J. Miller, Michael R. Walsh, Jerry L. Randall E. Dukes, and Daniel B. Hill	Shrake,
	Abstract	236
	Introduction	236
	Materials and Methods	239
	Materials	239
	Methods	239
	Static Monitoring in Filling and Transfer Isolators	240
	Transfer of Sterilized Components into the Filling Isolator	241
	Dynamic Monitoring of the Filling Isolator During an Aseptic Fill	243
	Monitoring During Interventions	244
	Monitoring Isolator Exit Ports	246
	Monitoring Glove Interventions and Loss of Glove Integrity	246
	Monitoring Glove Integrity	248
	Results and Discussion	250
	Static Monitoring in Filling and Transfer Isolators	250
	Transfer of Sterilized Components into the Filling Isolator	254
	Dynamic Monitoring During an Aseptic Fill	255
	Monitoring During Interventions	256
	Monitoring Isolator Exit Ports	257
	Monitoring Glove Integrity	259
	Summary	264
	References	268

12. A Rapid Microbiological Method for the Release Testing of Sterile And Non-Sterile Products	273
Alessio Fantuzzi	
Overview	273
Introduction	274

Project Overview	
Selection of Technology – Feasibility Study	276
Selection of Key Application	276
Evaluation of Critical Issues	277
Methods Development and Validation	280
Implementation in the Laboratory	286
Conclusion	
References	
About the Author	

13.	Validation of the Bact/Alert [®] Microbial Detection System as an Alternate Rapid Sterility Test for	
	Dendreon Active Cellular Immunotherapy Products	291
	Timothy D. Wood	
	Introduction	291
	Dendreon Activated Cellular Immunotherapy (ACI) Platform	292
	Challenges with the Traditional Methods	293
	Alternate Rapid Methods	294
	BacT/Alert Detection Platform	295
	BacT/Alert Detection Principle	295
	Culture Bottles	295
	Validation Approach	296
	Feasibility Study	296
	Performance Qualification and Method Validation	299
	Regulatory Path for Commercial Approval	305
	Equivalence	306
	Approval	309
	BacT/Alert Method Transfer	310
	Transfer to U.S. Commercial Facilities	310
	Transfer to EU Contract Manufacturing	310
	Conclusions	311
	Acknowledgements	311
	References	312
	About the Author	313

uality Control
ation Approach 315
315
316
318
319
319
321
323
323
323
323
324
326
327
327

15.	Feasibility Studies on Rapid Sterility Testing Using a Bioluminescence-based Method	329
	Claudio Denoya, Jennifer Reyes, Maitry Ganatra, and Daniel Eshete	
	Introduction	329
	Selection of a Rapid Microbiological Method Suitable for Sterility Testing	331
	Detection of Microbial Contamination Using ATP Bioluminescence	332
	The Pallchek [™] Rapid Microbiology System	333
	Validation of an Alternative Microbiological Method	333
	Challenge Microorganisms, Media and Growth Conditions	334
	Components of the Pallchek Rapid Microbiology System	335
	Bioluminescence Assay Requirements of Test Environment	336
	Drug Product Sample	336
	Presence-Absence Test with Enrichment	336
	Validation Strategy of Rapid Sterility Test	337
	System Suitability Testing	337
	Establishment of Background Values	337
	Initial Validation Parameters of the Qualitative Rapid Method	338
	www.pda.org/	/bookstore

353

371

Evaluation of the Rapid Bioluminescence Test in the Presence	
of Excipients	343
Product Specific Feasibility Study	344
Summary	345
Acknowledgments	348
References	349
About the Authors	350

16. Statistics of Validating an Alternate Sterility Test: Limits of Detection and Other Problems

Julie Schwedock 353 Introduction Probabilities and Multiplicity 354 Statistically Different vs. Statistically Equivalent 355 Mulitiplicity, Validation, and Controlling Risk 359 Limit of Detection 361 Conclusions 367 Acknowledgements 368 368 References About the Author 369

17. Validation of SECOND Generation ATP Monitoring Technology for Rapid Microbiological Quantification in Fluid Applications

David R. Tracey, Patrick A. Whalen,	
and James E. Cairns	
Introduction and Purpose	371
Principle of the Method	372
Measuring ATP	373
Methods for Detection of Total Microorganisms	374
Why Measure Total Microorganisms?	374
Technology Versatility	376
Limit of Detection	377
Enzyme Activity	377
Sample Volume	378
Strategy for Determining Low Detection Limit	378
	/1 1

Method Validation Summary	
Potable and High-Purity Water	379
Biological Wastewater Treatment	381
Other Applications	384
Oil and Gas	384
Chemical Preservation	385
Conclusions	386
References	386
About the Authors	388

18.	Detection of Specified Microorganisms in Drug Formulations Using A New Quantitative Polymerase Chain Reaction (qPCR) System with Preloaded	
	Multi-well Discs	389
	Daniel Eshete, Maitry Ganatra, and Claudio Denoya	
	Introduction	389
	Basic Principles of qPCR	390
	The Cycling Process	390
	Using PCR Assays in Manufacturing Quality Control	393
	Overview of the GeneDisc System	393
	GeneDisc Ultra-Lyser	394
	GeneDisc Plates	394
	GeneDisc Cycler	395
	Data Analysis	395
	Applications	396
	GeneDisc Assay for Pharmaceutical Applications	396
	Assay Description	397
	A Preliminary Study on Validation Parameters	398
	Limit of Detection	399
	Specificity (Exclusivity and Inclusivity)	402
	Detection of Low-Level Contamination in Pharmaceutical Products	405
	Summary	408
	References	408
	About the Authors	410

19.	Mycoplasma Testing: Overview, Detection and Validation Fabrizio Lecce, Fabio La Neve, Federica Gillone, and Emiliano Toso	413
	Mycoplasma	413
	Characteristics of Mycoplasma	413
	Mycoplasma as Cell Culture Contaminants	415
	The Importance of Mycoplasma Detection in the Biopharmaceutical Industry	417
	Traditional Methods to Detect Mycoplasma Contamination	418
	Overview	418
	Alternative Methods for Rapid Mycoplasma Detection	422
	Overview	422
	Nucleic Acid Technique-based Methods (NAT)	424
	Extraction Methods	434
	Validation of NAT Methods for Mycoplasma Detection	436
	Overview	436
	LOD	436
	Specificity	438
	Robustness	439
	Accuracy	439
	Precision	440
	Comparability Study	441
	Health Authorities Requirements for NAT Methods	442
	Overview	442
	Sample Volume	442
	LOD	443
	Specificity	445
	In-process Laboratory Controls	446
	Comparability Study	446
	Conclusions	448
	References	449
	About the Authors	452

20.	A Microarray for Mycoplasma Detection and Identification: CytoInspect [™]	455
	Annett Kilic and Jörg Stappert	
	Abstract	455
	Mycoplasma	456
	Regulatory Guidelines	458
	Traditional Methods for the Detection of Mycoplasmas in Biopharmaceuticals	460
	Selected Microscopic, Immunological and Biochemical	
	Detection Methods	461
	NAT-based Detection Methods	462
	Microarrays/CytoInspect	463
	Detection Limit	468
	Specificity	468
	Robustness	468
	Conclusion	469
	References	469
	About the Authors	473

21. Rapid Viral Methods (RVM) for Biological Quality Control (BQC)

Laura Barberis and Emiliano Toso	
Viral Safety Overview	475
Prospects for Viral Safety Testing	478
Viral Safety Testing	484
Classic Method Limitations and Molecular Biology Approach	490
Public Viral Incidents and Role of PCR-based Assays	494
MVM Experience	496
Vesivirus Experience	497
Molecular Biology Approach	497
Superseding In Vivo Tests: MAP/HAP by qPCR	499
Superseding Enzymatic RT Assays: Fluorescent Product Enhanced Reverse Transcriptase (FPERT) and Quantitative Real Time Product Enhanced Reverse Transcriptase (qPERT)	500
Starting Material Quality Control: Virus Stock Qualification	502

475

504
505
505
508
512

22.	Rapid Microbiological Methods and New Pharmaceutical	
	Microbiology Curriculum	513
	Claudio D. Denoya	
	Introduction	513
	A "Rapid" History of Microbiology	514
	Today's Microbiology: the Fundamentals of Traditional Microbiology	516
	The New Microbiological Technology Wave: Alternative and Rapid Microbiological Methods (ARMM) for the QC Laboratory	518
	What are ARMM?	518
	Metabolic or Growth-based Technologies	520
	Viability-based Technologies	521
	Technologies Based on Cell Component Analysis	522
	ARMM and the Pharmaceutical Industry	523
	AMM, PAT and Regulatory Status	524
	Microbiology Curricula	525
	The Skill Sets of a Pharmaceutical OC Microbiologist	526
	Pharmaceutical Microbiologist Desirable Knowledge and Skill Sets	528
	Curricula Surveys	530
	The Disparity Between the Tertiary Microbiology Curricula and the Needs of the Pharmaceutical Industry QC Microbiologist	537
	An Interesting Step Forward: The United States Professional	
	Science Master's Programs	538
	Conclusions and Recommendations	539
	Acknowledgments	540
	References	540
	About the Author	543

23.	Application of Rapid Microbiological Methods in BioProcessing and Regulatory Considerations	545
	Anastasia G. Lolas	
	Introduction	545
	The Age of Biotechnology	546
	Manufacture of Biopharmaceuticals	548
	Biopharmaceuticals and US FDA Regulation	551
	Testing Requirements and Guidelines	552
	Traditional Microbiological Test Methods Used in Biopharmaceuticals' Manufacture	554
	Current Uses of Alternative and RMM	556
	Contamination Events and Alternative and RMM	558
	Potential Applications of Alternative and RMM	560
	Regulatory Considerations for the Application of Alternative and RMM	562
	Additional Thoughts Regarding the Use of Alternative and RMM	565
	Summary	567
	References	567
	About the Author	574