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Abstract 
 

We analyze the relative effects of national and international, intra-sectoral and inter-sectoral R&D 

spillovers on innovative activity in six large, industrialized countries over the period 1980-2000. We 

use patent applications at the European Patent Office to measure innovation and their citations to trace 

knowledge flows within and across 135 narrowly defined technological fields. Using panel 

cointegration we show that inter-sectoral spillovers have a key impact on innovation activities and that 

domestic R&D has a stronger effect than international R&D. However, within technological fields, 

estimated international R&D spillovers are 2.4 times the national R&D effects. We find significant 

differences across chemicals, electronics and machinery industries. 
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1 Introduction 

In the past two decades macroeconomic models have underlined the importance of 

knowledge spillovers and described how they increase innovative activity and productivity 

(e.g. Rivera-Batiz and Romer, 1991; Grossman and Helpman, 1991). As a consequence a 

number of empirical contributions have employed different methodologies and techniques to 

measure different types of spillovers at different aggregation levels.  

This paper adds to the exiting literature by comparing in a unified framework national 

and international, intra-sectoral and intersectoral knowledge spillovers. In addition we examine 

the sectoral heterogeneity of these spillovers. There are few works on international R&D 

spillovers that focus on spillovers across sectors (e.g. Keller, 2002; Frantzen, 2002; Park, 2004; 

Mancusi, 2008). However these studies work at a very high level of aggregation and most often 

examine the impact of spillovers on Total Factor Productivity (TFP). Our analysis is at a very 

disaggregated level, concerning clearly defined technological fields that correspond to product 

groupings. We use a multi-country panel of 135 small technological fields within three 

industries (chemicals, electronics and machinery) to measure and compare different types of 

R&D spillovers: within field vs. across fields, and national vs. international1.  

Using a knowledge production function we develop an empirical model to estimate the 

different types of spillovers in a unified framework using panel cointegration. We use patent 

applications and citations at the European Patent Office (EPO), and R&D data for six large, 

industrialized countries (Us, Japan, Germany, France, UK and Italy) over the period 1980-

2000. Patent applications serve as a measure of innovative output, while their citations are used 

to account for patent quality and to measure the direction and intensity of knowledge flows 

within and across technological fields and national boundaries.  

Our results show that sectoral R&D affects importantly innovation activities and that 

the distinction between inter-sectoral and intra-sectoral spillovers is strong and significant. In 

addition, we show that national R&D effects are stronger than international ones, but when the 

distinction between intra-sectoral and inter-sectoral spillovers is made, the estimated 

international spillovers effects within narrowly defined technological fields are more than 

twice the national ones. Thus it is possible to claim that inter-sectoral knowledge flows are 

much more constrained by geographical distance (and in particular national borders) than intra-
1 We use the word industry to refer to broad aggregates like chemicals, electronics and machinery. Our unit of 
analysis is much more detailed and very close to product groups. We refer to these groups (listed in the Appendix) 
as technological fields or technological sectors. We use the term class to refer to specific classifications (like IPC 
for patents, SITC for trade data or ISIC). 
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sectoral ones, which diffuse globally. Finally we show that there are important differences 

across industries. In chemicals inter-sectoral spillover (both national and international) effects 

have a much larger magnitude than in electronics, where only international intra-fields 

spillovers are statistically significant. 

Our analysis has major policy implications. First of all it affects the perspective on 

optimal R&D and technology policy of a country. Countries that are more open and able to 

learn can innovate substantially faster, but learning, in particular across geographical and 

technological boundaries, can be costly. It is therefore very important to understand how this 

process occurs in different industries. In addition our question has important implications for 

the effectiveness of R&D policy because the impact of R&D subsidies may follow industry-

specific trajectories that are affected by geography and by the input-output structure of the 

innovation process. 

The paper is organized as follows. Section 2 discusses the existing evidence on 

knowledge spillovers at the macro and micro level, provides the motivation for our analysis 

and sketches the main hypotheses. In Section 3 we present the empirical model that illustrates 

the relationship between innovation and the different types of spillovers. Section 4 describes 

the data and provides some descriptive evidence. In Section 5 we report and discuss the results 

from the econometric analysis. In Section 6 we draw our conclusions. 

 

2. Knowledge production and spillovers 

Theoretical work on endogenous technical change has provided a framework to 

understand knowledge spillovers. Technology is typically considered as non-rival and R&D 

investments have both private and public returns. R&D expenditures therefore create new 

knowledge and technology can be used - locally or internationally - within the same industry 

and - locally and internationally - in different industries. These external effects are not 

automatic as they require domestic investments in technology absorption (Cohen and 

Levinthal, 1989; Griffith et al. 2004). Knowledge may be codified in publicly available 

sources, such as scientific and technical literature, or may also be transferred through industrial 

espionage or reverse engineering. It may be simply absorbed and used to imitate (imitation-

enhancing spillovers) (Los and Verspagen 2003) or, most importantly, it may stimulate new 

ideas which in turn lead to innovations (idea-creating spillovers).  

Innovation activity can also benefit from these external effects via tangible and 
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intangible inputs. The literature has identified additional important channels of technology 

diffusion: international trade, foreign direct investment (FDI) and mobility of human capital. 

Importing intermediate goods and final products is an important vehicle of knowledge 

transmission together with Foreign Direct Investments (FDI) via the physical presence of 

affiliate plants and mobility of skilled human capital (Keller and Yeaple, 2009; Gorg and 

Greenaway 2001). 

 

[Table 2.1 about here] 

 

This paper estimates and compares in a unified framework four types of spillovers: 

intra-national and intra-sectoral, intra-national and inter-sectoral, inter-national and intra-

sectoral, inter-national and inter-sectoral. For simplicity we refer to these types pf spillovers as 

A, B, C and D, according to the matrix presented in Table 2.1. Despite the very large number 

of papers, theoretical and empirical studies do not identify a precise ranking between these 

different types of spillovers. Estimates vary widely and it is difficult to consistently compare 

the relative impact of these different types of spillovers. Furthermore, few empirical studies 

account for both the international and the sectoral dimension and, even if they do, they 

typically employ highly aggregated industries and therefore cannot fully account for sectoral 

specificities in knowledge transmission.  

In what follows, we shall first use the existing literature to identify some hypotheses on 

the relative importance of A, B, C and D. 

 

2.1 Does geography and national borders constrain knowledge diffusion? 

Technological diffusion is shaped by geography because there are communication and 

learning costs. These costs not only depend on geographical distance but are also affected by 

cultural barriers (like language). Barriers to the diffusion of knowledge exist because at least 

part of the knowledge is tacit and tacit knowledge is costly to codify, difficult to absorb and is 

mainly transmitted person to person (Keller 2002; 2004, 2010; Breschi and Lissoni, 2001)2. So 

we expect that 

 

a. national knowledge spillovers are, ceteris paribus, stronger than international 

2 Many papers show that knowledge spillovers tend to be geographically localized (e.g Maruseth and Verspagen 
2002; Bottazzi and Peri, 2003; Peri, 2005; Bransttetter, 2001) 
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knowledge spillovers  

 

In terms of the different types of spillovers displayed in Table 2.1, we should then 

expect A > C and B > D. In addition there is substantial evidence that knowledge flows cross 

also national borders3. There is also a great number of articles that measure the impact of trade 

related international R&D spillovers on total factor productivity (TFP)4. With few exceptions 

these papers support the idea that trade related international spillovers affect TFP. In addition 

FDI and labour mobility are other important channels that may decrease the communication 

and transport costs and favour the international dissemination of knowledge (Keller and 

Yeaple, 2009; Owen-Smith and Powell, 2004; Stephan, 1996; Montobbio and Sterzi, 2011). 

 

b. The importance of international knowledge spillovers (vis à vis national spillovers) 

depends upon the degree of tacitness and how transmission channels affect 

communication and transport costs. 

 

In particular in industries where international trade, FDI and labour mobility are 

important and demand is global, the cost of knowledge communication may be low, 

particularly so when the source and the destination of the flows share the same knowledge 

base. Hence, C would not necessarily be smaller than A, and could be even larger (also 

depending on the distance from the technological frontier). This brings us to a further relevant 

issue. 

 

2.1. Does technological distance constrains the diffusion of knowledge? 

 

Knowledge spillovers depend upon technological distance because it is less costly to 

learn from the same technology and technological opportunities develop along specific 

trajectories (Atkinson and Stiglitz,  1969; Rosenberg, 1976; Dosi, 1988). Most of the times, 

technical change takes place in the proximity of the current techniques, through learning by 

doing (Arrow, 1962) and incremental search (Malerba, 1992). So the current set of techniques 

3 See for example Bottazzi and Peri (2007) and Mancusi, (2008). Further evidence on international knowledge 
flows is in Jaffe and Trajtenberg (1999) and Bacchiocchi and Montobbio (2010). 
4 For example Coe and Helpman (1995), Eaton and Kortum (1996), Keller (1998), Frantzen (2002), Park (2004) 
and Keller (2010). Some doubts are cast by Kao et al. (1999) and Edmond (2001) that use panel cointegration 
econometrics and by Luintel and Kahn (2004) that suggest that data from different countries cannot be pooled.  
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and the knowledge at the base of new ideas bind and constrain new advancements (Sutton, 

1998) and knowledge itself is specific to the technological environment in which it is 

produced.  

At the same time technological knowledge diffuses also across industry boundaries 

because the production of new ideas, products and processes use (knowledge) inputs that come 

from other fields. Spillovers are embedded in intermediate inputs and are generated through 

trade. At the same time many authors show also that there are specific connections among 

technologies (in their use and production) that do not depend necessarily upon tradable inputs 

(Scherer, 1984; and Evenson et al. 1991; Mohnen, 1997; Verspagen, 1997; Malerba and 

Montobbio, 2003; Bernstein 1988 and Bernstein and Nadiri 1988). As a result the degree to 

which industries benefit from inter-sectoral spillovers depend upon how much their knowledge 

base depends upon knowledge from other fields.  

 

c. We should expect higher inter-industry spillovers in downstream sectors, if the 

variety of intermediate inputs is high and technological distance is low 

  

As a result the relative size of A vs. B and C vs. D is mainly an empirical question. 

Keller (2002) estimates international and inter-sectoral R&D spillovers on TFP and finds A>B. 

His comparison between C and D is less univocal and results change according to the way 

inter-sectoral spillovers are calculated. Wieser (2005) summarizes a broad set of heterogeneous 

contributions to the literature and claims that inter-sectoral spillovers seem to be more 

significant than intra-sectoral even if it is impossible to directly compare intra-sectoral with 

inter-sectoral spillovers because different studies measure spillovers in different ways and use 

different econometric strategies. 

 

2.3 Why may the geographical reach of (intra-industry and inter-industry) knowledge 

spillovers differ across industries? 

 

The geographical reach of knowledge spillovers can be affected by the technological 

distance between the sender and the receiver. Geographical distance and technological distance 

can be considered to approximate two different communication and learning costs. Inventors 

and companies are better able to recognize and absorb knowledge that is similar to their 
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knowledge base: in this case, communication costs are lower. So we expect that intra-sectoral 

knowledge flows are much less affected by distance than the inter-sectoral ones. By contrast, if 

the innovating firm needs knowledge and technological inputs that are different from (possibly 

complementary to) its knowledge base, international spillovers may be more costly to extract. 

National borders matter because within these borders it is easier for innovators to identify, 

communicate and absorb those spillovers that come from knowledge that is distant in terms of 

knowledge base.  

 

d. We expect the size of the inter-sectoral R&D spillover to be affected by 

geographical distance more than intra-sectoral spillovers. However, this effect may 

vary across-industries.  

 

Results may vary across industries because technologies vary in the extent to which 

they use knowledge coming from other fields. Tangible and intangible inputs not only come 

from different sectors but are absorbed and applied under sector-specific transfer costs.  

With reference to the three sectors examined in this paper, we claim that electronics is a 

highly globalized sector, with extensive multinational corporations and broad sectoral 

boundaries ranging from computers, to software, to telecom to consumer electronics. Therefore 

one may think that in electronics knowledge flows have a major international dimension 

through the activities of multinational corporations, offshoring and the international mobility of 

skilled personnel (Mowery, 1996). So in this case it is possible to observe C>A. The machinery 

sector, on the other hand, has major vertical links with industrial users taking place in local 

clusters: one therefore one may think that there is an intersectoral component of knowledge 

flows and that this intersectoral dimension is local and not international (Wengel and Shapira, 

2004). So in this case we expect A>C and B>D. Finally, chemicals have a less global 

dimension than electronics, and cross-country mobility of skilled personnel is less pronounced. 

For example we will show that in the chemical industry there is a greater share of knowledge 

acquired from other fields and therefore we not only expect to find stronger inter-industry 

spillovers but also a higher importance of geographical proximity (Arora et al. 2000). As a 

result in the chemical industry we might expect B>A and A>C. 

 

3 An empirical model for the patent equation 
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We build our model starting from a knowledge production function describing the 

production of technological output from R&D investment: 

hihithihithit RRfQ ννα α== ),,(        (3.1) 

where Qhit is some latent measure of technological output in technological field i (i = 1, …, 

135), country h and period t, Rhit measures the corresponding R&D investment, α represents 

the unknown technology parameter and νhi captures country and technological field specific 

effects (as, for example, the set of opportunity conditions). 

We then assume that existing ideas and knowledge spillovers are important inputs in the 

creation of new ideas. Therefore, our latent measure of technological output is a function of a 

composite measure of research effort and we re-write equation (3.1) as: 

hihithit R
~

Q να=           (3.2) 

4321
~ ααααα

hithithithithit AISNSRR ⋅⋅⋅=         (3.3) 

where hitNS  and hitIS  are measures for national and international spillovers, while Ahit is the 

stock of cumulated knowledge generated by country h in technological field i at the beginning 

of period t.  

Patents, Phit, are a noisy indicator of technological output: 

hi
t

hithit ueQP hiθ=          (3.4) 

with thieθ  accounting for possible trend in patenting (which might differ across countries and 

technological fields) and uhi for differences in country specific propensity to patent in each 

technological field. Combining (3.2) and (3.4) results in the following patent equation: 

hi
t

hithit
hieRP ξθα~=          (3.5) 

We cannot directly estimate (3.5) because we do not have the same level of sectoral 

aggregation for R&D and patent and citation data. Indeed, as we shall explain in section 4, we 

use the OECD-ANBERD R&D data of manufacturing ISIC classes, while we re-aggregate 

patents and patent citations into 135 technological fields. We account for this data limitation in 

our model and make the following assumption: 

IiRR hihIthit ∈=        whereςλ         (3.6) 

Hence, we assume that (the logarithm of) R&D expenditures within a technological 

field are a portion λ of (the logarithm of) R&D expenditures within the ISIC grouping the 

technological field belongs to. This portion is assumed to be the same for all technological 
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fields: differences across them are accounted for by a fixed effect component, ζhi. Using (3.3) 

and (3.6), equation (3.5) then becomes: 

hi
t

hithithithIthit
hieAISNSRP εθαααλα 4321 ⋅⋅⋅=       (3.7) 

We trace knowledge flows using patent citations. National spillovers are measured as:  

∏
≠

=
ij

nc
hjthit

hijSNS          (3.8) 

Shjt measures R&D stock at period t, accumulated from past R&D investments in industry j, 

country h and is calculated from own R&D investment during the previous period (Rhjt-1) using 

the perpetual inventory method (Hall and Mairesse, 1995)5. nchij is the relative number of 

citations over the whole sample period from patents classified into technological field i to 

patents classified into technological field j and held by other firms in the same country h6.  

International spillovers are measured in a similar manner as: 

∏=
fj

ic
fjthit

hifjSIS
,

         (3.9) 

where ichij is the relative number of citations, again over the whole sample period, from patents 

held by firms in country h and classified into technological field i to patents held by firms in 

country f and classified into technological field j.  

The stock of cumulated knowledge is obtained by accumulating past patented ideas 

using the perpetual inventory method: 

hithitthi APA )1(1, δ−+=+         (3.10) 

where δ is a constant depreciation rate. Similarly to Bottazzi and Peri (2007), we choose δ = 

0.1 and construct the variable Ahit by setting the initial value of the knowledge stock at the 

following level: 

( )δ+=
hi

hi
hi g

P
A 1981

1981          (3.11) 

5 This is calculated as ( ) 111 −− +−= hjthjthjt RSS δ  using a depreciation rate (δ) of 15 percent (Hall and Mairesse, 

1995). The first period stock is thus obtained as )/(11 hjhjhj gRS += δ , where ghj is the growth rate of R&D 
spending in industry j, country h. This is industry-country specific and calculated as the average growth rate over 
the available period. 
6 nchij is equal to the number of citations from patents classified into technological field i to patents classified into 
technological field j and held by to other national firms (i.e. excluding self citations) divided by the total number 
of national citations outflowing from field i. Note further that in (3.8) the product is over j ≠ i because spillovers 
within the same technological field are already included into the own R&D measure; put it differently, their effect 
cannot be distinguished from that of own R&D.  
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where hig  is the growth rate of patenting in country h technological field i in the first five years 

of our sample and δ = 0.1, as specified above. Taking logs of (3.7), our patent function then 

becomes: 

hihihithithithIthit taisnsrP ωθαλαλαλα +++++= 4321ln     (3.12) 

where hIthIt Rlnr = , hithit Aa ln=  and  

∑
≠

=
ij

hJthijhit Rncns ln         (3.13) 

∑∑
≠

=
hf

fJthf
j

hijhit Rrcicis ln         (3.14) 

where rchf is the relative number of citations flowing from country h to a foreign country, f, out 

of the total number of international citations made by patents held by firms in the home 

country over the entire sample period. 

The international spillover variable in (3.14) includes both intra-sectoral (within 

technological field7) spillovers and inter-sectoral (between technological fields) spillovers. In 

particular, the first component is equal to: 

∑
≠

=
hf

fJthfhiihit Rrcicistra ln         (3.15) 

Note that, as in Branstetter (2001) we have only current R&D in the patent equation. 

This is because distributed lags on R&D induce a multicollinearity problem in the estimation, 

as noted by Hall et al. (1986). Furthermore, our equation includes a measure of knowledge 

stock accumulated within the field-country (ahit). 

Dividing equation (3.10) by Ahit and re-arranging we obtain: 

δ+= A
hit

hit

hit g
A
P

          (3.16) 

where A
hitg  is the growth rate of the stock of knowledge in country h and technological field i in 

period t. Taking logs on both sides and substituting (3.12) into (3.16) we obtain: 

( ) ( ) hihihithithithIt
A
hit taisnsrg ωθαλαλαλαδ ++−+++=+ 1ln 4321   (3.17) 

If knowledge creation converges to a deterministic balanced growth path, then δ+A
hitg  

converges to a country-technology specific constant δ+A
hig . Alternatively, if knowledge 

creation converges to a stochastic balanced growth path, then δ+A
hitg  converges to a trend 

7 See footnote 1 for the use of the terms sectors and fields. 
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stationary stochastic process. Equation (3.17) then represents the long-run relationship between 

rhIt, nshit, ishit and ahit. Even if each of the four variables turns out to be non-stationary, equation 

(3.17) establishes that if there is convergence to a balanced growth path there must be a 

cointegration relation among those variables, i.e. a linear combination that is stationary. The 

cointegration vector, standardizing by the coefficient of ahit, would be �−1, 𝜇1 = 𝜆𝛼1
1−𝛼4

, 𝜇2 =

𝜆𝛼2
1−𝛼4

, 𝜇3 = 𝜆𝛼3
1−𝛼4

� and can be estimated using the following equation: 

hihihithithIthit ctisnsra ++++= θµµµ 321       (3.18) 

where all the deterministic stationary variables are included in hic . 

 

4 The data 

We use patent applications8 at the EPO from six large, industrialized countries (France, 

Germany, Italy, Japan, UK and US)9. These data come from the EP-KITeS database, which 

includes all patent applications at the EPO (including those going through the Patent 

Cooperation Treaty) published by 200710. However, due to a variable time lag between a patent 

application and its publication, we need to exclude the last years of the series as not all patent 

applications in those years are published by 2007 (hence included in the EP-KITeS database). 

The average time lag between application and publication is 18 months, so it is safe to exclude 

from the analysis the last three years of data. Furthermore, we shall build our knowledge stock 

variable weighting patent applications by the number of citations received within 4 years from 

application. This is a common procedure in the literature that allows accounting for patent 

quality and therefore implies that we can consider patent applications through to 2000. Finally, 

we also exclude the very first years of activity of the EPO because of the limited number of 

applications it received during those years: our available sample hence ranges from 1980 to 

2000. 

The data are classified into 135 technological fields, according to the classification 

provided by Grupp-Munt (1995). These technological fields, which represent our unit of 

analysis, are analogous to product groupings and belong to three major industries: Chemicals 

(61 technological fields), Electronics (38 technological fields) and Machinery (36 

8 In what follows, whenever we refer to patents, we mean patent applications. 
9 Each patent is assigned to the country of residence of the inventor.  
10 Individual applicants have been identified and excluded in the dataset used in the analysis.  
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technological fields)11. This classification allows us to perform the analysis at a finely defined 

level of aggregation in the countries where innovative activities are mostly performed and in 

the industries where such activities are mostly important. For this reason, our sample is well 

suited to study knowledge spillovers taking place within and across narrowly defined sectors.  

 

[Table 4.1 about here] 

 

The distribution of patent applications by country and industries in the sample is 

reported in Table 4.1. The countries included in the analysis account for over ninety percent of 

the patent applications at the EPO and each country share at the EPO is very similar to the 

share in our sample. Although limited to three industries, this sample provides a good 

representation of the innovative activities by the above mentioned countries since about 68 

percent of the patent applications from these countries belong to the chemicals, electronics and 

machinery industries. 

 

[Table 4.2 about here] 

 

The EP-KITeS database also includes the citations made by EPO patent applications to 

other EPO patents12. We use patent citations to explore the relevance of knowledge flows, as 

other authors have done (e.g. Maruseth and Verspagen, 2002; Jaffe et al. 1993, Peri, 2005; 

Mancusi, 2008). Citations are used by examiners and applicants to show the degree of novelty 

and inventive step of the claims of the patent. They are introduced in the patent document, 

usually by either the inventor's attorneys or by patent office examiners (depending upon 

national regulations) and, once published, provide a legal delimitation of the scope of the 

property right. Therefore citations identify the antecedents upon which the invention stands 

and, for this reason, they are increasingly used in economic research to gauge the intensity and 

geographical extent of knowledge spillovers (Griliches, 1990)13. 

11 The list of fields is reported in Table A.2. The distribution of the size of technological fields (i.e. the total 
number of applications over the whole sample period) is highly skewed, with the very large technological fields 
belonging to the electronics industry and to either Japan or the US. 
12 We have included in the sample also the citations to EPO patents passing through the World Intellectual 
Property Organization (WIPO). 
13 The use of patent citations as an index of knowledge flow has been validated by a survey of inventors (Jaffe et 
al. 2000, for the US Patent and Trademark Office) and by the Community Innovation Survey data for the EPO 
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We use patents and patent citations from the EPO, which are, with few exceptions, 

added by the patent office examiners (EPO, 2005; Breschi and Lissoni, 2004)14 when they draft 

their search report15. This reduces the probability to have citations that are erroneously or 

strategically included to deceive patent examiners.  

Table 4.2 shows the average number of national, international and self citations (these 

are within-firm citations i.e. citations to a patent with the same applicant) per patent in different 

industries and countries16. The table shows that the number of citations to patents held by 

foreign firms or public institutions is consistently higher than that of citations to national 

patents, the gap being particularly wide in the UK, Italy and France. The only exception is the 

US, for which the weight of national citations (excluding self citations) is higher than that of 

international citations. 

The relative importance of international citations has been increasing in time while that 

of self citations has been steadily declining, as shown in Figure 4.1. Analogous figures for the 

single countries are not reported to save space17, since they show a pattern similar to that of 

Figure 4.1. It is however interesting to notice that the gap between international citations, on 

one side, and national and self citations, on the other side, is particularly wide in Italy. This is 

partly due to a country size effect, but also suggests that Italy is technologically dependent on 

foreign technology. By contrast, the gap between international citations and national citations 

is narrowing in time in Japan, while in the US the share of national citations is higher than the 

share of international citations. This confirms the role of these two countries as technological 

leaders. 

 

(Duguet and MacGarvie 2005) and corroborates substantial evidence on the type and nature of knowledge 
spillovers (e.g. Maruseth and Verspagen, 2002; Jaffe et al. 1993, Bacchiocchi and Montobbio, 2010).  
14 There are relevant differences between citation practices at the USPTO and EPO. In the US there is the 'duty of 
candor' rule, which imposes all applicants to disclose all the prior art they are aware of. Therefore many citations 
at the USPTO come directly from inventors, applicants and attorneys and are subsequently filtered by patent 
examiners. 
15 The search report at the EPO is a document, published typically 18 months after the application date, that has 
the main objective to discover the prior art relevant for determining whether the invention meets the novelty and 
inventive step requirements. It represents what is already known in the technical field of the patent application. 
16 National citations and international citations are citations to patents held by firms resident respectively in the 
same and in a different country. Self citations are citations to previous patents held by the same applicant firm. 
Note that in tracing and counting patent applications and citations we took co-patenting into account. Note, 
however, that co-patenting is not so widespread and quite equally distributed across industries. The countries with 
the higher incidence of co-patenting are France (10 percent of patent applications are co-patents), the UK (9 
percent) and Japan (7 percent). Co-patenting is instead particularly low in the US: only 3 percent of patent 
applications are the result of joint effort by more than one firm.  
17 These are obviously available upon request. 
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[Table 4.3 about here] 

 

Table 4.3 shows the percentage distribution of national and international citations. It is 

interesting to note that self-citations account for 36 percent of overall national citations in the 

whole sample, for over 50 percent in Italy and France and 40 percent in all countries, but the 

US. This signals that innovative capacity is more diffused in the US, compared to the 

remaining countries. In both the national citations and international citations sections of the 

Table 4.3, the last two columns show that, although our technological fields might be thought 

as being narrowly defined, still over sixty percent of the citations are directed to other patents 

classified into the same technological field. The table clearly shows that this effect is quite 

important, it is invariant across countries and virtually identical for national and international 

citations. However, it appears higher in electronics and machinery, compared to chemicals.  

As already mentioned, R&D data are taken from the OECD-ANBERD database and are 

classified into 25 ISIC groupings18. This involves a relevant classification problem, since 

patents are classified according to the International Patent Classification (IPC), which is 

technology based and not easy to reconcile with product based classifications. In order to 

overcome this problem, we matched data classified according to different classifications using 

the following methodology.  

The Fraunhofer correspondence (Grupp and Munt, 1995) associates each of its 135 

fields to a set of IPC classes and also to a set of SITC rev3 classes. We therefore first use the 

correspondence between SITC Rev3 and SITC Rev2 classifications19 and then matched each 

SITC rev2 code with ISIC Rev2 classes using the OECD correspondence tables20. It has been 

employed because there is no direct correspondence between the SITC Rev 3 and ISIC Rev. 2 

classifications and because R&D data from OECD-ANBERD are classified according to the 

ISIC Rev. 2 classification up to 1997.  

With reference to the first correspondence (between SITC Rev3 and SITC Rev2 

18 These are: Food, Beverages & Tobacco (31), Textiles, Apparel & Leather (32), Wood Products & Furniture 
(33), Paper, Paper Products & Printing (34), Chemicals excl. Drugs (351+352-3522),  Drugs & Medicines (3522), 
Petroleum Refineries & Products (353+354), Rubber & Plastic Products (355+356), Non-Metallic Mineral 
Products (36), Iron & Steel (371), Non-Ferrous Metals (372), Metal Products (381), Non-Electrical Machinery 
(382-3825), Office & Computing Machinery (3825), Electric. Machin. excluding Commercial Equipment (3830-
3832), Radio, TV & Communication Equipment (3832), Shipbuilding & Repairing (3841), Motor vehicles (3843), 
Aircraft (3845), Other Transport Equipment (3842+3844+3849), Professional Goods (385), Other Manufacturing 
(39). 
19 This is available at: http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_REL  
20 This is available at: 
http://www.macalester.edu/research/economics/page/haveman/Trade.Resources/tradeconcordances.html 
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classifications), difficulties arise because the association between classes of different 

classification systems is not one to one and weights are not available. We therefore use OECD 

International Trade by Commodity Statistics (ITCS) data to obtain the relative weight of each 

SITC Rev3 class in the corresponding SITC Rev2 classes. The second correspondence 

(between SITC Rev2 and ISIC Rev2 classifications) then allows us to evaluate the weight of 

each SITC Rev.2 class into the corresponding ISIC Rev.2 classes. These weights differ across 

countries and across time. The combination of these weights finally allows us to map each of 

our 135 Fraunhofer fields into (a combination of) ISIC Rev.2 aggregate classes. 

Because R&D data in the OECD-ANBERD database are classified according to the 

ISIC Rev.2 classification up to 1997 and to the ISIC Rev.3 classification afterwards, for the 

years following 1997 we use the correspondence between ISIC Rev.2 and ISIC Rev.3 in 

OECD (2005b). Once the correspondence has been established, R&D data are then finally 

obtained from current PPP dollar ISIC2 data in the OECD ANBERD database and computing 

real 1990 values using industry-specific deflators21.  

 

5. Results 

We suspect that variables on the right-hand side of equation (3.17) are non-stationary. 

We suspect also that shocks in the stock of knowledge and R&D should have a very persistent 

effect in further generation of knowledge. Being aware that the limited number of observations 

of each single time series may generate a relevant lack of power in the tests, we provide a panel 

unit root test that exploits both the cross-section and the time series dimension of the data and 

also accounts for the short time series dimension. We then apply recent panel cointegration 

techniques to estimate equation (3.18).  

 

5.1 Test of Unit Root 

We use the test proposed by Harris and Tzavalis (1999), who derived a unit-root test 

that assumes that the time dimension, T, is fixed, which is more appropriate for our case. Their 

simulation results suggest that the test has favourable size and power properties for N greater 

than 25 (after excluding a few fields with rare patenting we end up with 768 cross-sectional 

units). 

21 Implicit deflators are calculated as value added at current prices divided by value added volumes expressed in 
dollars (OECD STAN - Database). When we could not calculate the deflators because of missing values, we used 
data at more aggregated level.   
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The HT test statistic is based on the OLS estimator, in the regression model: 

yit = yi,t−1 + zit′ γi + ϵit        (5.1) 

where the term zit′ γi allows for panel-specific means and trends. The asymptotic distribution of 

the test statistic is justified as 𝑁 → ∞.  

Table 5.1 shows the values of the z statistic and the p-values. For each test two different 

specifications are displayed with and without trend. For all the variables in equation (3.17), we 

cannot reject the null of a unit root at any significance level. Indeed, rhIt, nshit, ishit and ahit all 

appear to be I(1). Our intuition that shocks to national or international R&D and to the 

domestic stock of ideas have permanent effects is confirmed and the idea that they are I(1) 

processes is consistent with our interpretative framework.  

We also test for the presence of a unit root in the variable isterhit and istrahit, which 

account for inter-fields and intra-fields international spillovers, respectively. These represent 

the two components of the international spillover variable and will be included in the 

regressions to evaluate their relative importance. Also for these variables we cannot reject the 

null of a unit root. 

 Finally we consider the first difference of the variable ahit and test for the unit root of 
A
hitg . Differencing removes the trend and therefore the alternative hypothesis in this case is 

stationarity without a trend. Table 5.1 shows that we reject the null of unit root and A
hitg  follows 

a I(0) process. Therefore ahit converges to a balanced growth path. These results suggest that 

there is a linear combination of rhit, nshit, ishit and ahit that is stationary and, accordingly, we 

make use of cointegration analysis in order to estimate the cointegration vector. 

 

5.2  The international and the technological dimensions of spillovers 

The unit root tests reported in the previous section confirmed our prior of non 

stationarity. We now proceed to analysing the long run behaviour between the stock of 

cumulated knowledge, R&D resources, national and international pools of knowledge, in order 

to verify whether they are linked by a cointegration relation. We now show that this is indeed 

the case. We first estimate the cointegration vector of equation (3.17) and then, in the following 

section, we test that the residuals of this regression are stationary. 

We use dynamic ordinary least squares (DOLS) to estimate (3.17) on a panel of 768 
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technology-country pairs22 and 21 years (Kao and Chiang, 2000). We thus impose 

homogeneity on the cointegration vector across technological fields and countries, but allow 

for both fixed effects and time trends specific to technology-country pairs.  

The DOLS estimator is based on the following decomposition of the time varying error 

component to be added to equation (3.17): 

∑
+∞

−∞=
+ +∆=

k
hitkt,hikhit vx'γε         (5.2) 

where hitx∆  includes the first-differences of all the I(1) regressors and hitv  is orthogonal to all 

leads and lags of hitx∆ . This procedure corrects for the possible endogeneity of the non-

stationary regressors and gives estimates of the cointegration vectors, which are asymptotically 

efficient when the error terms are independent across country-technology pairs. In practice, the 

infinite sums are truncated at some small numbers of leads and lags (see Breitung and Pesaran, 

2005). The issue of how to choose different lags and leads in the panel cointegration is an 

interesting and difficult question, but it is not the focus of this paper. Furthermore, our time 

series includes only twenty-one years, that is it is fairly short and including too many leads/lags 

would significantly affect our estimates. As a consequence, we insert (5.2) with two lags and 

one lead into (3.18) and obtain the following cointegration relation: 
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where chi accounts for permanent differences in the innovation generating process of different 

country-technology pairs. Moreover we are able to split the international spillover pool into its 

intra-sectoral and inter-sectoral components. We add therefore to specification (5.3) the 

variable istrahit, which accounts for intra-field international spillovers and the variable isterhit, 

which accounts for inter-field international spillovers and obtain the following: 
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  (5.4) 

22 In order to exclude technological fields where innovation is a quite rare phenomenon, in each country, we 
exclude from the analysis those technological fields with rare patenting. Overall, we exclude 2 fields for all 
countries (chemical 33 – Trash – and Maschinery 25 - Packaging machines). We further exclude 13 fields for a 
single country (7 of these are excluded for the US). . 
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As a robustness check, we then estimate the same equation including only two lags of the 

differenced terms, as in Kao et al. (1999). The results are very similar and, therefore, not 

reported in the tables. 

The estimates of the parameters µ1, µ2, µ3, µ4 and µ5 are reported in Table 5.2, where 

we control for time trends by including heterogeneous (i.e. country-technology specific) time 

trends. 

For the whole sample, our basic specification with no restrictions on time trends 

(column (1)) confirms that the long-run elasticities of knowledge creation to own R&D, and to 

national and international R&D are precisely estimated.  

An increase by 1% in own R&D resources is associated with a 0.07% increase in the 

domestically generated stock of scientific and technological knowledge. This is much smaller 

than the point estimate of the effect of own R&D obtained in previous studies23. For instance 

Branstetter (2001) uses firm-level data and finds an elasticity of innovation to R&D equal to 

0.72. Peri (2005), using data on sub-national regions, found values between 0.6 and 0.8. 

Bottazzi and Peri (2007) find that a 1% increase of a country’s R&D employment is associated 

with a 0.79% increase in the domestically generated stock of scientific and technological 

knowledge. 

 

[Table 5.2 about here] 

 

This discrepancy with previous results depends upon two main reasons. First, because 

of the different level of aggregation of R&D compared to patent data, our estimate of the 

elasticity of new knowledge to own R&D is reduced by λ, which is smaller than 1, by 

construction. Second, other country level studies do not account for the sectoral dimension 

(see, for example, Bottazzi and Peri, 2007) and are thus unable to distinguish between within 

fields effects (𝜇1) and between fields effects (𝜇2) at the national level. Put it differently, 

previously estimated country level elasticities of knowledge production to own R&D average 

out those two effects. Our preliminary results suggest that, although technology fields are 

heterogeneous, cross-fertilizations are at work and possibly relevant. 

With reference to the elasticity of the stock of created knowledge to international 

23 See also Wieser, 2005 for a summary of the main estimates of output (sales, value added or TFP) elasticity of 
R&D at the firm level. He surveys 52 papers and shows that the median value of this elasticity is 0.13. 
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spillovers, we find that this is equal to 0.23. Also in this case our estimate is affected (and 

reduced) by the presence of λ. Although we could compare the estimated coefficients 1µ̂  and 

3µ̂ , this comparison would not be appropriate as is includes both intra- and inter-fields effects.  

In order to qualify our results, we therefore substitute the variable representing the 

international spillover pool with its two components: the variable istrahit, which accounts for 

intra-field international spillovers only and the variable isterhit, which instead accounts for 

inter-field international spillovers (column (2)). 

The elasticity of the stock of knowledge to the intra-sectoral component of international 

spillovers is positive, significant and about two times the elasticity of the stock of knowledge 

to own R&D. This implies a much larger effect of international sources of knowledge 

compared to what has been found in a similar setting by Bottazzi and Peri (2007). They find 

that the elasticity of domestically generated knowledge to international knowledge stock is 

about 55% the elasticity to own R&D. However, as explained above, such estimates are 

obtained from country-level regression that do not distinguish between different technological 

fields, thus effectively including our pool of national external resources in the own R&D 

measure. Furthermore, this difference in the impact of international spillovers may depend 

upon a fundamental difference in how the spillover effect is measured. Bottazzi and Peri’s 

measure of international knowledge stock is the simple summation of the stock of ideas 

generated in foreign countries, hence it is not weighted by the relevance and technological 

proximity of the source of knowledge to the destination. As a result we find that the spillover 

effect of cited international R&D on knowledge creation in a technological field is higher. 

Using the notation introduced in Table 2.1 our results therefore suggest that C>A. 

By contrast to the above results, it is interesting to note that  the elasticity of the stock 

of knowledge to the inter-sectoral component of international spillovers is about half of the 

elasticity of the stock of knowledge to national inter-sectoral spillovers (i.e. B>D). This 

suggests that proximity in the technology space and proximity in the geographical space are 

somewhat complementary: within field knowledge can easily be reached even if 

geographically distant, whereas absorption of relevant knowledge from different fields benefits 

from geographical proximity. 

Taken together our estimates confirm that nationally generated R&D spillover effects 

(µ1 and µ2) tend to be larger than the international ones (µ4 and µ5) and that inter-sectoral R&D 

effects are strong and significant (µ2 and µ5) underlining that the distinction between inter-
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sectoral and intra-sectoral is very important. Finally our results show that when we compare 

national and international R&D spillovers within a technological field (µ1 and µ4) the size of 

the latter is larger than the former.  

 

5.3 Variations across different industries 

As suggested by Jaffe and Trajtenberg (1996), Hall et al. (2001) and Bacchiocchi and 

Montobbio (2010) patterns of knowledge diffusion vary substantially across technological 

fields. We therefore perform separate regressions on the three industries: chemicals, electronics 

and machinery. These are also reported in Table 5.2. 

The effects of national and international spillovers are indeed found to differ across 

industries. In the chemical industry the elasticity of new knowledge to national inter-sectoral 

external resources is significant and very high compared to the elasticity to own R&D and to 

international knowledge (column (3)). The importance of inter-sectoral spillovers in the 

chemical industry is further confirmed when we split the international spillover pool into its 

components (column (4)): the intra-sectoral component is not found to be significant, while the 

elasticity of the stock of knowledge to the international inter-sectoral spillover pool is positive 

and significant, although 2.5 times smaller than the elasticity of the stock of knowledge to the 

national (inter-sectoral) spillover pool.  

By contrast, in the electronics industry inter-sectoral spillovers at both the national and 

international level are not found to significantly affect the stock of knowledge (column (6)). 

Only international intra-sectoral spillovers contribute to knowledge production and 

accumulation and its elasticity to them is six times larger than that to own R&D24 (C>A). 

Indeed, the elasticity to own R&D in the electronics industry is much smaller compared to that 

in the chemical industry.  

Finally substantial spillover effects are also present in the mechanical industry. 

However, the results for this industry tend to confirm the results for the whole sample and 

show that the spillover effect of cited international R&D on knowledge creation in a 

technological field is higher than the national one (0.7 vs 0.03). At the same time the 

international inter-sectoral spillover is much smaller than the national inter-sectoral one (1.34 

vs. 0.19). In the Machinery industry therefore our results confirm that spillovers within specific 

technological fields have an international scope while intersectoral spillovers are enhanced by 

24 This is in line with Peri (2005) that shows that in the computre industry knowledge flows substantially farther. 
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geographical proximity. 

The results reported above suggest that industries differ widely along the geographical 

reach and the sectoral specificity of spillovers. At the one extreme we find the electronics 

industry, in which knowledge flows are extremely sector-specific, but flow globally. At the 

other extreme we have the chemical industry, in which inter-sectoral flows are important, but 

occur mainly within national boundaries, implying a major role of geographical proximity for 

the diffusion of knowledge. The machinery industry falls in between: the responsiveness of 

knowledge production to inter-sectoral spillovers is geographically localized while sector 

specific knowledge flows internationally. 

 

5.4 Test for cointegration 

We need to check whether ahit, rhIt, nshit and ishit (istrahit and isterhit) are indeed 

cointegrated. A test for cointegration is a test of stationarity of the residuals from the long run 

regression. We perform different cointegration tests developed in Pedroni (1999). These tests 

are either based on pooling along the within dimension or on pooling along the between 

dimension. The within-dimension based statistics are referred to as “panel” cointegration tests, 

while between-dimension based statistics are referred to as “group” cointegration tests. In all 

cases, the null hypothesis is that the first autoregressive coefficient of the residual series is 

equal to unity (i.e. no cointegration). All tests, after the appropriate standardisation, follow a 

standard normal distribution. In particular, Pedroni (1999) shows that under the alternative 

hypothesis (cointegration) the panel-variance statistics diverges to positive infinity, hence the 

right tail of the normal distribution is used to reject the null of no cointegration. By contrast, 

the remaining statistics diverge to negative infinity under the alternative of cointegration, hence 

large negative values lead to rejection of the null of no cointegration. Four of the seven tests 

performed always reject the null of no cointegration at the 1% significance level (Tables 5.3 

and 5.4). Four tests systematically confirm the existence of a cointegration relation as the two 

statistics systematically failing to reject the null of no cointegration are only here reported for 

completeness and not appropriate for our sample. Indeed, these are the panel-rho and the 

group-rho statistics and are shown by Pedroni (2004) to be undersized and to become 

overconservative in finite samples in which the N dimension exceeds the T dimension, as in 

our case. Our only concern is for the results on the panel-v statistics, which fails to reject in 

some instances. However, here we suffer from a problem due to the absolute size of T, as once 
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again Pedroni (2004) shows that the panel-v statistics tends to be undersized for small values of 

T. 

 

[Tables 5.3 and 5.4 about here] 

 

6. Final Remarks 

Evidence that technology diffuses within and across industry and national boundaries is 

now well grounded. However despite the very large number of papers on knowledge spillovers 

and despite the relevance of the issue in terms of science and technology policy, it remains 

difficult to study and compare national, international, sectoral and inter-sectoral spillovers 

effects. Our paper builds a unified framework and tries to move one step forward in this 

direction. 

Our analysis confirms the relevance of knowledge spillovers for innovative activity. It 

also confirms that both national and international R&D spillovers are effective in fostering 

patenting and that national R&D spillovers effects tend to be stronger than international ones. 

However our results also emphasize that, when the distinction between intra-field and inter-

field spillovers is introduced, the estimated international spillovers effects within narrowly 

defined technological fields are more than twice the corresponding national ones. 

This paper provides two contributions to the literature on spillovers. The first is that the 

geographical reach of knowledge spillovers is affected by the technological distance between 

the sender and the receiver: intra-sectoral knowledge flows are much less affected by distance 

than the inter-sectoral ones. Intra-sectoral spillovers flow globally because inventors and 

companies are better able to recognize and absorb external knowledge. By contrast, if 

innovating firms are active in technological fields different from the knowledge used for the 

current innovation, international spillovers are more difficult to extract. Here national borders 

matter because within these borders it is easier for innovators to identify, communicate and 

absorb those spillover that come from knowledge that is distant in the technological space.  

The second contribution is that the type and extent of spillovers (in terms of the 

national/international and the intra-sectoral/inter-sectoral dimensions) vary across industries. 

We show that in the chemical industry inter-sectoral R&D spillovers are particularly important, 

but flow mainly nationally. On the contrary, in the electronics industry R&D spillovers mostly 

occur within the same technological fields and flow internationally. The machinery industry 
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falls in between.  

These results further emphasize the need to disentangle knowledge spillovers in terms 

of knowledge types (codified vs tacit, simple vs complex) and channels of knowledge 

transmission. The relevance of international spillovers in the electronics industry point to the 

global dimension of the electronics sector and the variety of channels used for knowledge 

transmission, such as international RD collaborations, international mobility of skilled 

personnel, location of operations of multinational companies, outsourcing. On the contrary, the 

relevance of national intersectoral spillovers for the machinery sector may be related to the 

local user-producer relationships, usually co-located in specific geographical areas. Finally, the 

relevance of intersectoral, national spillovers for the chemical sector, confirm our hypothesis 

that when a sector acquires a substantial share of knowledge from other sectors not only inter-

industry spillovers are sronger but also geographical proximity becomes very important.  

These results call for new in depth-research on the causes of the differences in the 

global reach of the intra-sectoral spillovers compared to the inter-sectoral ones, and on the 

determinants of the variety across industries in the type and reach of  spillovers.  
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7 Appendix 

Table A.1 Correlation matrix of the explanatory variables used in the regressions and descriptive statistics 

 a rd ns is istra ister  Mean Std. Min Max 

a 1.00       4.78 1.67 0 10.31 

rd 0.42 1.00      7.25 1.21 3.10 10.89 

ns 0.24 0.60 1.00     1.62 1.40 0 9.11 

is -0.06 -0.36 -0.79 1.00    7.64 1.59 0 11.24 

istra 0.15 -0.17 -0.57 0.65 1.00   4.12 2.10 0 11.24 

ister -0.25 -0.14 -0.03 0.15 -0.66 1.00  3.52 1.61 0 9.95 

 
Table A.2 List of technological fields 

Chemicals 

Technical polymers; Thermoplastics; Polyacetale; Artificial and natural caoutchouc; Natural polymers; Plastic trash; Plastic 
products; Inorganic chemical compounds; Inorganic oxygen compounds; Inorganic sulphide compounds; Other metal salts; Other 
inorganic chemical products; Radioactive substances; Synthetic textile fibres; Artificial textile fibres; Trash; Organic oils and fats; 
Wax; Artificial wax; Chemical products of wood or resins; Hydrocarbons; Alcohol; Carbon acid; Compounds with nitrogen function; 
Organic-inorganic compounds; Lactam, other heterocyclic compounds; Sulphamide; Ether, alcohol peroxide; Synthetic organic 
colours and varnishes; Tanning agents and paint extracts; Colours, varnishes, pigments; Glazes, sealing compounds; Vitamins, 
provitamins, antibiotics; Hormones and derivatives; Micro-organisms, vaccines; Reagents and diagnostics; Other special 
medicines; Other pharmaceutical products; Cosmetics (no soaps) ; Etheric oils and perfumes; Soaps; Detergents; Ski-wax, 
furniture polishes; Fertilisers; Insecticides; Starch ; Proteins; Explosives, gunpowderv Fuses, ignition chemicals; Pyrotechnic 
articles, fireworks; Matches; Additives for lubricating oil, corrosion inhibitors; Liquids for hydraulic brakes, anti-freezing 
compounds; Lubricants, emulsions for grease, artificial graphite emulsion; Gas cleansing; Catalysts; Additives for metals; Benzol, 
naphtha; Electronic and electro-technical chemical compounds; Chemical substances for constructions; Chemicals for fire 
extinguishers, liquid polychlor diphenyle; 

Electronics 

Ignition cables, electrical cars; Small electrical engines, electrodes; Portable electrical tools; Motors, electrical engines and 
electrodes; Magnetic tapes; Choke coils, converters, transformers; Traffic lights, etc.; Generators and equipment; Particles 
accelerator; Transformers; Lasers; Fridges (for home and industry), air conditioning; Washing machines, dryers, dish washers; 
Electrical shavers, hair-cutting machines, hoovers; Electric heating; Computers and equipments; Computer chips and 
equipments; Photocopying machines and equipments; Type-writers and other office devices; TV, radio, TV-cameras, video-
cameras, antennas, oscilloscopes; Microphones, loud-speakers, recorders; Telephones (no mobile phones); Radio engineering 
devices; Circuits; Resistors; Switches, fuses; Control panels; Cables (without ignition); Insulators; Capacitors; Electro-magnets; 
Electrical diagnostic devices (no X-rays); X-rays; Instruments to show ionic beams; Diodes, transistors; Integrated circuits; 
Batteries, accumulators; Portable electrical lamps 

Machinery 

Printing machines; Steam-boiler; Machines for food processing; Steam-turbines for ships; Steam-turbines for steam power plants; 
Machines to process rocks, etc.; Gas-turbines for aeroplanes; Gas-turbines for power stations; Wood processing machines; 
Plastic processing; Cutting machine tools (saws, etc.); Non cutting machine tools; Metal-working rolling mills; Soldering irons, 
blow lamps, welders; Torches, furnaces; Ovens, distilling apparatuses, gas distilling; Piston-drive engines for aeroplanes ; 
Pumps, centrifuges, filters; Engines for cars; Conveyors; Engines for ships; Anti-friction bearing; Engines for trains; Valves; 
Packaging machines; Scales; Fire extinguisher, spray guns; Other machines; Water-turbines; Nuclear power reactors; Other 
engines; Agricultural machines (without tractors); Tractors; Constructions and mining machines; Textile machines; Paper 
production machines 
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Tables and Figures 
 

Table 2.1. Typology of R&D Spillovers 

 Intra-sectoral Inter-sectoral 
Intra-national A 

 
B 
 

Inter-national C 
 

D 
 

 

Table 4.1 Number and distribution of patent applications in the sample by country and Industry 

Country of applicant Number of patents % share 

Germany 151421 22 
France 56494 8 
UK 47096 7 
Italy 25230 4 
Japan 159258 23 
US 245972 36 
Total 685471 100 

   
Industry Number of patents % share 
Chemicals 216661 32 
Electronics 296326 43 
Machinery 172484 25 
Total 685471 100 

 

Figure 4.1. The evolution of the relative share of citations by type. 
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Table 4.2 Average number of citations per patent by type 

Country(*)  Citations  
 Self  National(**) International 

Germany 0,44 0,52 0,94 
France 0,34 0,24 1,13 
UK 0,35 0,33 1,37 
Italy 0,26 0,20 1,05 
Japan 0,49 0,70 0,93 
US 0,49 1,11 0,95 
All 0,45 0,73 0,96 

Industry(*)  Citations  
 Self  National(**) International 

Chemicals 0,61 0,75 1,06 
Electronics 0,39 0,83 1,00 
Machinery 0,36 0,53 0,76 
All 0,45 0,73 0,96 

(*) Country and Industry refer to the citing patent. 
(**) National citations are citations to national firms, universities and 
public research centers and exclude self citations, which are reported in 
the first column. 

 

Table 4.3 Percentage distribution of national and international citations 

Country(*) 
National citations  International citations 

Self Others Intra-field Inter-field Self Others Intra-field Inter-field 

Germany 0,45 0,55 0,63 0,37 0,02 0,98 0,61 0,39 
France 0,57 0,43 0,66 0,34 0,02 0,98 0,63 0,37 
UK 0,47 0,53 0,61 0,39 0,04 0,96 0,59 0,41 
Italy 0,54 0,46 0,68 0,32 0,03 0,97 0,64 0,36 
Japan 0,41 0,59 0,61 0,39 0,01 0,99 0,60 0,40 
US 0,30 0,70 0,61 0,39 0,02 0,98 0,58 0,42 
All 0,37 0,63 0,61 0,39 0,02 0,98 0,60 0,40 

Industry(*) 
National citations  International citations 

Self Others Intra-field Inter-field Self Others Intra-field Inter-field 
Chemicals 0,44 0,56 0,53 0,47 0,03 0,97 0,53 0,47 
Electronics 0,31 0,69 0,66 0,34 0,01 0,99 0,64 0,36 
Machinery 0,39 0,61 0,63 0,37 0,02 0,98 0,61 0,39 

All 0,37 0,63 0,61 0,39 0,02 0,98 0,60 0,40 
Columns "Self" and "Others" give the percentage distribution of national and international patents distinguishing 
bewteen self citations and citations to patents held by other national or international firms, universities and public 
research centers. Columns "Intra-field" and "Inter-field" refer to the distribution of citations to patents held by 
other national or international firms between cited patents classified in the same technological field (intra-field) 
vs. a different technological field (inter-field).   
(*) Country and Industry refer to the citing patent. 
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Table 5.1 Test of Unit Roots 

 Variables  a r ns is istra ister ∆a 
without trend z 5.56 3.92 19.68 5.45 5.11 13.45 -1.4e+02 
 p-value 1.00 1.00 1.00 1.00 1.00 1.00 0.00 

with trend z 12.97 8.79 30.98 13.92 9.18 20.85  
 p-value 1.00  1.00 1.00 1.00 1.00 1.00  

Note. Bold characters denote rejection of the null of a unit root at the 1% level. 
 
 
 

Table 5.2. Estimates of the long-run cointegration relationship with DOLS 

 All sample  Chemical  Electronics  Machinery 

Dependent 
variable: a (1) (2)  (3) (4)  (5) (6)  (7) (8) 

R 0.069*** 0.066***  0.147*** 0.100***  0.036*** 0.033***  0.027** 0.026** 
 (8.49)  (8.20)  (8.85) (6.04)  (3.19) (2.91)  (2.21) (2.08) 
ns 1.274*** 1.127***  2.48*** 1.995***  0.076 0.096  0.950*** 1.360*** 
 (13.69) (11.97)  (17.05) (13.73)  (0.58) (0.73)  (4.04) (5.25) 
is 0.227***   0.190***   0.128***   0.675***  
 (11.11)   (5.66)   (3.45)   (22.91)  
istra  0.157***   0.040   0.184***   0.715*** 
  (6.71)   (1.07)   (3.35)   (23.13) 
ister  0.484***   0.770***   -0.023   0.190* 
  (7.78)   (8.45)   (-0.20)   (1.45) 
Observations 16128 16128  7119 7119  4704 4704  4305 4305 
Note. t statistics in parethesis. All specifications include a heterogeneous time trend. DOLS obtained including two 
lags and one lead 

 
 
 

Table 5.3 Test of cointegration – All sample 
 with is  with istra  and ister  with is  with istra  and ister  

panel v-stat 5.874 0.075  4.004  -1.034  
panel rho-stat 4.551  10.780  11.024  15.989  
panel pp-stat -9.094  -10.169  -15.935  -20.744  
panel adf-stat -12.768  -12.753  -19.905  -21.697  
group rho-stat 15.132  21.227  20.504  25.237  
group pp-stat -6.471  -9.062  -14.423  -23.975  
group adf-stat -16.425  -15.934  -23.207  -28.076  
trend NO  NO  YES  YES  
Note. All reported values are distributed N(0,1) under null of unit root or no cointegration 
Bold characters denote rejection of the null of unit root (no cointegration) at the 5% level. 
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Table 5.4 Test of cointegration – industry regressions 
Chemicals with is  with istra  and ister  with is  with istra  and ister  

panel v-stat 4.694 0.848 0.857 -2.790 
panel rho-stat 1.560 6.381 6.604 10.984 
panel pp-stat -8.939 -8.578 -12.236 -12.525 
panel adf-stat -8.827 -9.336 -13.482 -13.141 
group rho-stat 8.530 13.274 13.003 17.159 
group pp-stat -8.067 -8.349 -11.587 -14.073 
group adf-stat -11.749 -12.459 -16.380 -17.444 

Electronics with is  with istra  and ister  with is  with istra  and ister  
panel v-stat 2.614 -0.875 2.910 0.342 
panel rho-stat 2.848 6.065 6.310 8.335 
panel pp-stat -4.341 -5.055 -8.003 -11.841 
panel adf-stat -7.281 -6.034 -10.705 -11.992 
group rho-stat 8.426 11.605 11.244 13.352 
group pp-stat -2.811 -4.354 -7.270 -13.520 
group adf-stat -8.745 -6.698 -11.266 -14.514 
Machinery with is  with istra  and ister  with is  with istra  and ister  
panel v-stat 2.653 0.046 3.866 1.613 
panel rho-stat 3.734 6.276 6.350 8.050 
panel pp-stat -1.703 -3.448 -6.490 -11.905 
panel adf-stat -5.817 -6.552 -10.177 -12.989 
group rho-stat 9.511 11.885 11.212 12.824 
group pp-stat 0.789 -2.252 -5.416 -14.175 
group adf-stat -7.541 -7.818 -12.079 -16.739 
trend NO  NO  YES  YES  
Note. All reported values are distributed N(0,1) under null of unit root or no cointegration 
Bold (italic) characters denote rejection of the null of unit root (no cointegration) at the 5% (10%) level. 
 
 

 

 33 


	Table A.1 Correlation matrix of the explanatory variables used in the regressions and descriptive statistics
	Table A.2 List of technological fields

