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Transition Dynamics in Endogenous Recombinant
Growth Models by means of Projection Methods

Fabio Privileggi
July 26, 2011

Abstract

This paper provides a step further in the computation of the transition pattooti@uous time
endogenous growth model discussed by Privileggi (2010) — bas#tewsetting first introduced
by Tsur and Zemel (2007) — in which knowledge evolves according to thidzWvan (1998)
recombinant process. A projection method, based on the least sqdidhesresidual function
corresponding to the ODE defining the optimal policy of the ‘detrended’ madlews for the
numeric approximation of such policy for a positive Lebesgue measuge rafhvalues of the
efficiency parameter characterizing the probability function of the recaanbiprocess. Although
the projection method’s performance rapidly degenerates as one deparis benchmark value
for the efficiency parameter, we are able to numerically compute time-pathttrégsowhich are
sufficiently regular to allow for sensitivity analysis under changes inrpaters’ values.

JEL Classification Numbers C61, C63, 031, O41.

Key words: Knowledge Production, Endogenous Recombinant Growth, Transityoram-
ics, Projection Methods, Least Squares.

1 Introduction

The main contribution of this work is to provide a numeric@ithm capable of approximating
the complete transition path of some parametrization otwtesector continuous time endogenous
growth model introduced by Tsur and Zemel [8] in which knage evolves according to the Weitz-
man [9] recombinant process. Privileggi [7] provides fumeal forms suitable to ‘detrend’ the model
and thus obtain a closed form for the ODE defining the optinaditp which depends on a number
of parameters. The author, however, through a finite-diffee, fourth-order, Runge-Kutta method
is able to compute a numeric approximation of the policy dolyzero Lebesgue-measure sets of
parameters’ values; specifically, for a given set of paransedescribing the production process, con-
sumers’ preferences, etc., the finite-difference methoadstout to be reliable only for one single
value for the — most interesting — efficiency parameter thatacterizes the recombinant process of
knowledge generation. Here a projection method based oledlsé squares of the residual function
associated to the ODE defining the optimal policy is devedoji&ven a set of parameters’ values for
the economy, such method provides a meaningful numerimappation of the policy for a positive
Lebesgue-measure range of values of the efficiency paraahefiaing the probability of successful
knowledge production, thus providing a substantial improent upon the result obtained in [7].

*Dept. of Public Policy and Public Choié®lis, Universita del Piemonte Orientale, Via Cavour 84, 15121 Alessandria
(Italy). Phone: +39-131-283857; fax: +39-131-283704;&fnabi o. pri vi | eggi @p. uni pmm. i t



The economy is described by an endogenous growth model iohwthe stock of knowledge
evolves according to Weitzman'’s [9] recombinant expanpimtess and is used, together with phys-
ical capital, as input factor in the competitive sector iderto produce a unique physical good. A
‘regulator’ maximizes the discounted utility of a repretsg¢ive consumer over an infinite time hori-
zon and directly finances new knowledge production througixdevied on the consumers; at each
instant the public good ‘knowledge’ is produced by an inaejemt R&D sector which is controlled
by the regulator. Tsur and Zemel [8] provide conditions urmvdeich this economy exhibits sustained
balanced growth in the long-run and characterize the asytmpiptimal tax rate and the common
growth rate of all variables, thus generalizing Weitzmg8]sSolow-type model in which investment
in knowledge production was assumed to be constant and eaoge

Privileggi [7] provides a suitable (hyperbolic) form foretiprobability of success in new knowl-
edge production through the Weitzman’s recombinant psooématching existing ideas which, cou-
pled with a Cobb-Douglas production function for the physgaod and CIES preferences of the
representative consumer, allows for a closed-form ODE ohgfithe optimal policy. Such policy
defines the instantaneous optimal consumption in terms eifédded’ state-like and control-like
variables when the conditions for sustained long-run gnosawe met. Once a reliable numeric ap-
proximation of the policy is available, the optimal timetparajectories of the stock of knowledge,
capital, output and consumption, as well as their transigmwth rates, for the original model are
easily computed by means of a finite-difference, Runge-Kutthod, thus allowing for comparative
dynamics analysis along the transition path.

In this work aprojection methodsee.e.g, Chapter 11 in Judd [2], Chapter 6 in Heer & Maussner
[1], or Paragraph 5.5.2 in Novales, Familez & Riz [6]) which computes théeast squaresf the
residual functiorassociated to the ODE defining the optimal policy as obtaingd] is pursued. We
are able to approximate the solution of such ODiEes-the optimal policy — for a full range of values
for the parameter related to the efficiency of the recombipescess in the production of new useful
knowledge around the benchmark valtie- 0.0124 considered in [7].

Although, due to the analytical complexity of the ODE undeerdy, specific tests available for
projection methods show that our method’s performancelhapiegenerates as one departs from the
benchmark valugg = 0.0124, we are able to compute time-path trajectories which aricsgaritly
regular to allow for comparative dynamics analysis undanges in parameters’ values. Specifically,
even if our method exhibits an accuracy only of order aroLind, qualitative behavior of the result-
ing optimal time-paths trajectories (transition dynarpiagpears to be sufficiently neat for a direct
comparison among different trajectories, provided thay tare not too far from the benchmark one.
We thus draw the broader conclusion that projection methogl®verall superior to finite-difference
methods in numerically solving particularly awkward ODESs.

Section 2 recalls the endogenous recombinant growth mageliritroduced by Weitzman [9]
and then further developed by Tsur and Zemel [8], while $ac8 reports its parameterization as
in Privileggi [7]. Section 4 briefly describes projection tmeds, which are then applied in Section
5 to approximate the optimal policies for three parametiors of the model through a least square
algorithm. Finally, in Section 6 the optimal policies juditained are used to trace out the optimal
time-path trajectories of all relevant variables and aitatale discussion of the transition dynamics
is carried out, while Section 7 reports some concluding rémand topics for future research.

2 The Model

Weitzman'’s [9] knowledge generation device assumes thabeessedseed ideas are matched with
other ideas available in order to yield néwbrid seed ideas. As a matter of fact, not all hybrid ideas
turn out to be successful, only a fraction of them is, whicli again be recombined with other
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existent (successful) ideas to produce yet new hybrids. usedssume that: ideas are matched
together. IfA (t) is the stock of knowledge at time(measured as the total number of successful
ideas), letC,,, [A ()] denote the number of different combinationsmofelements (hybrids) ofl (¢);
e Cn [A@)] =A@/ {m![A(t) —m]!} [e.g,Cy (A) = A(A —1) /2]. Then, attime the number
of hybrid seed ideas is given by (t) = C,,, [A (t)] — Ci [A (t — 1)].

In continuous timeA (t), C,,, [A (t)] and H (t) become flows and

H(t) = Cl, [AM]A(t), (1)

defining the flow of hybrid seed ideas as a function of the ratehange of knowledge stock. Let

7w denote the probability of obtaining a successful idea fraohematching, which is assumed to
depend on the ratid (¢) /H (t), whereJ (¢) is a measure of the physical resources devoted to R&D
(matching ideas) at instant Hence, this R&D expenditure produces a flow of successfulideas
that accrue the existing stock of knowledge according to

At)y=H(t)x [J(t) /H (t)]. (@)

In our specification of the model we shall assume that onlgspaiideas can be matched and that the
probability of success is described by a hyperbolic fumctio

A.1 m = 2 and the success probability function is givert by
m(z)=fz/ Bz +1),  B>0. (3)

Parametep; provides a measure of thdéegree of efficien¢yf the Weitzman matching process:
the largers the higher probability of obtaining a new successful idetobeach (pairwise) matching
of seed ideas.

Combining (1) and (2) the law of motion for the stock of knovwded! (¢) is:

At)=J(@) /oA, (4)

wherep (A) = C/, (A) 71 [1/C! (A)] is theexpected unit cost of knowledge productioks, for
m = 2, C4(A) = (2A—1) /2, and from (3) we getr—! (z) = z/[3(1 — z)], the unit cost of
knowledge production can be written as

p(A)=(2A-1)/[B(2A-3)]=(1/8)[1+2/(2A-3)], (5)

which is defined ford > 3/2, is decreasing iti, andlim ., ¢ (A) = 1/7' (0) = 1/ > 0.

A ‘regulator’ chooses the optimal amoutto be employed in production of new knowledge in
order to maximize the discounted utility of a represengatiensumer over an infinite time horizon.
The exact amounf is levied as a tax on the representative consumer and is asgeherate new
useful knowledge according to (4), which is immediately fnegly passed to the output producing
firms operating in a competitive market.

With no loss of generality, we assume that labour is constadtnormalized to onel = 1.

A. 2 Output is produced according to a Cobb-Douglas technology:
y(&) =0k @) [AD] " =0A@) [k () /AD]",  0>0,0<a<], (6)

depending on aggregate capital and knowledge-augmentediiah (¢) L for L = 1.

!Note thatr is independent of time and satisfies Weitzman’s assump(on345 in [9]): 7/ > 0, 7" < 0, 7 (0) = 0
andr (c0) < 1; moreover’ (0) = 8 < +oo.



Each output producing firmh maximizes instantaneous profit by renting capitalind hiring
labour L; < 1 from the households, taking as given the capital rentalratiee labour wagev and
the stock of knowledgel. As all firms use the same technology and operate in a conveatiiarket,
and all households are the same, the subscdah be dropped; moreover, as firms act competitively,
in equilibrium their profit is zero, that is, households eara 6 A (k/A)® = rk + w, moreover, the
amount of capital demandekl, satisfies

o (k/A)* " =r. 7)

Given that, at each instafita fractionJ (¢) of the whole endowment of the econoniy(t) + v (¢), is
being employed to finance R&D firms, and a fractig) is being consumed, capital evolves through
time according to

k() =y(t) = J(t)—c(t), (8)

where it is assumed that capital does not depreciate. Sieagoper bound faos (¢) andc () is jointly
given by J (t) + ¢ (t) < k(t) +y (t), k (¢t) in (8) may be negative.

A. 3 All households enjoy an instantaneous CIES utility,
u(c):(clf"—l)/(l—a), o>1, 9)
and have a common discount rage;> 0.

Tsur and Zemel [8] showed that three curves on the spack) are useful for characterizing the
solutions of the social planner problem in our regulatecheauy.

1. The locuda (k/A)* " =6 (1 — a) (k/A)* /¢ (A) = 0 defines the curve on the spack, ) on
which the marginal product of capital equals that of knowgkeger unit cost. Under Assump-
tions A.1, A.2 and using (5) it can be rewritten as a functibthe only variableA:

k(A) =la/(1-a)p(A)A={a/[B(1-a)} [1 +2/ (24 -3)] A (10)
We call & (A) in (10) the(transitory) turnpike
2. The functiork (A) in (10) for largeA becomes affine, defining the curve
Foo (A) = {a/ [B(L - a)]} (A+1). (11)

Note thatk (A) lies abovek, (A) for all A < oo, approaching:., (A) asA increases. We call
ks (A) in (11) theasymptotic turnpike

3. Finally, on the locuga (k/A)*~" = p the marginal product of capital equals the individual
discount rate, which, by (7), implies= p. It can be written as a linear function df

k(A) = (0a/p)/" 7 A (12)

We callk (4) in (12) thestagnation line



Proposition 1 (Tsur and Zemel [8])

1) A necessary condition for the economy to sustain long-rowtr requires the stagnation line to lie
above the asymptotic turnpike for sufficiently largethat is, (6ar/p)"/ > o/ [3 (1 — )]
must hold, which can be written in terms of an upper bound fodikeount rate,

p < Too, (13)

wherer,, = fa [3 (1 — a) /a]'~“ defines théong-run capital rental rateConversely, ip > .,
the economy eventually reaches a steady (stagnation) poithie linek (A) in (12) correspond-
ing to zero growth.

i) Under (13), for any given initial knowledge stod there is a corresponding threshold capital
stockk** (4y) > 0 such that whenevek, > k% (4,) the economy — possibly after an ini-
tial transition outside the turnpike — first reaches the fike k (A) in a finite time, and then
continues to grow along it as time elapses until the asyriptotnpike ., (A) is reached in
the long-run. Along.. (A) the economy follows a balanced growth path characterized by a
common constant growth rate of output, knowledge, capital@m$umption given by

Y= (T — p) /0. (14)

Moreover,J (t) > 0 for all ¢, while, ast — oo, J (t) < y (t) and the income shares devoted to
investments in knowledge and capital are constant and gespectively by

S0 = (1 — @) ¥/reo and sF = ay/re. (15)

If ko < k** (A,) the economy eventually stagnates.

Proposition 1, whose proof can be found in [8], establishasif (13) holds -.e., either house-
holds are patient enough or, given the impatience of hoddsheconomies are more productive
(larger #) and/or with more efficient R&D (largef) — andk, is sufficiently high with respect to
the initial knowledge stock4,, the economy grows along a turnpike path which, in the lang-r
converges to a balanced growth path with knowledge andatapibwing at the same constant rate
and with constant saving rate. For a Cobb-Douglas economiptigerun income shares allocated
to R&D and saving turn out to be proportional to the knowledge eapital shares in the production
function.

Two optimal regimes are possible:

1. zero R&D,J = 0, which, if maintained forever, eventually leads the ecopdmsome steady
state (stagnation point) on the lig A), and

2. a path along the turnpikie(4) — maybe started after a finite period of transition outside th
turnpike — envisaging growth as time elapses and, if maiathforever, eventually leading to a
balanced growth path along the asymptotic turngike A).

Under (13) and ifk, > k** (Ap) it can be shown that the turnpike(A) is ‘trapping’, i.e., the
economy keeps growing along it after it is reached. Henc&etlare two types of transitions: one
driving the system toward the turnpike starting from owtstdand another characterizing the optimal
path alongk (A) after it has been entered. We shall focus on the latter; Spa@ty, we shall assume
that (13) holds and, for simplicity, that the economy staxactlyon the turnpike:k, = I?:(AU). In
this scenarids, > k** (Ay) is certainly satisfied, as(A) is trapping.
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3 Optimal Dynamics Along the Turnpike and ‘Detrended’ Policy

In what follows we recall without proofs the main steps imeal in the construction pursued by
Privileggi [7] in order to build the ODE that defines the opairpolicy for our economy. We refer the
reader to [7] for all details.

As, under condition (13) and assuming that=k (Ay) = {o/ [8 (1 — )]} [1 + 2/ (240 — 3)] Ay,
the relevant variables are bound to move along the turﬂb(kéé), the social planner problem can be
reduced to a infinite-horizon, continuous-time optimiaatproblem in only two variables — the stock
of knowledge A, and consumptior, which are the state and control variables respectivelyd-oae
dynamic constraint:

ooclfo_l _pt
A .
A=T[j(A) -/ k’(A)—f-SO(A)}
subject to 0<ec<k(A)+7(A)
A(O):A0>07

where the time argument has been dropped for simpligityl) = 0 A [fc (A) /Ar is the output as

a function of the sole variabld on the turnpike: (4) as defined in (10)’ (A) = 0k (A) /0A, and
¢ (A) is given by (5).

Necessary conditions on the current-value Hamiltoniarpfoblem (16) yield the following sys-
tem of ODEs defining the optimal dynamics fdrandc along the turnpike under Assumption A.3:

A= {eA [k (A) /Ar - c}/ [k: (A) + ¢ (A)

~ a—1 (17)
i=c {9a k()4 - p} /o.

As the stock of knowledgéd cannot be depleted and, by Proposition 1 (ii), the optimadstment
in R&D must be positive along the turnpikel must grow: A(t) > (O forallt > 0. It can be
shown that the graph df (4) is a U-shaped curve of8/2, +o0), reaching its unique minimum on
A = 3/2+6/2 > 3/2. This implies that capitak (t) decreases whehis small and increases
for largert, envisaging that in early times it is optimal to take away sgrhysical capital from the
output-producing sector and invest it in R&D, so that the lstafcknowledgeA can take-off.

Moreover, the denominator on the RHS of the first equation 7, (A) + ¢ (A), vanishes on
the unique point

AT =1+ (1/2) <a+\/1+4a+a2>, (18)

which is larger thars/2, andk’ (4) + ¢ (A) < 0for 3/2 < A < A%, while &’ (A) + ¢ (4) > 0 for
A > A%, As A(t) > 0forallt > 0, the whole ratio on the RHS of the first equation in (17) must

be positive for allt > 0, that is, the numeratof,A [l% (A) /A} t ¢, must have the same sign of the

denominatori’ (A) + ¢ (A), and must vanish or* as well. In other words, a&A [l% (A) /Ar =

7 (A), the optimal consumptioamust satisfyc > ¢ (A) for 3/2 < A < A%, ¢ < §(A) for A > A%,
andc = g (A) for A = A®, whereA* is defined in (18) (see Proposition 3 in [7]). We thus conclude
that in early times it is optimal to take away physical cdpitam the output-producing sector both
for investment in R&D and consumption.



Clearly, system (17) diverges in the long-run. Thus, we fans the state variablel and the
controlc in a state-like variabley, and a control-like variabley, defined respectively by

k(A) /A =Tla/(1—a)g(A) ={a/[B(1—a)]}[1+2/(24 - 3)] (19)
c/A, (20)

ol
X
where in (19) we used (10) and (5). Hengeis related tq: as follows:

A=a/[f(l—a)u—a]+3/2. (21)

Following the steps in [7], under Assumptions A.1-A.3, weait the following system of ODEs
describing the transition optimal dynamics in the detrehriables. (state) andy (control):

fo=[1-26(1~-a)u/Q ()] (Ou* —x) 22)
X = [(Bap*~t —p) Jo —2af (1 —a) (Ou* — x) /Q (1)) x

where
Q) =-38(1—a)’1® +28(1—a)(1+20a) p— o’ (23)

SinceA > 3/2, from (19) one immediately obtains the rarig¢ (5 (1 — «)) , +oo) for the state-
like variabley, with endpoints corresponding 6 — +o0o and A — 3/2 respectively. System (22)
hasthree steady statédn the (i, y) phase diagrangsee [7] for details).

1. The steady value
w=af[B(1-a) (24)
for variable corresponds téong-run capital/lknowledge ratialong the asymptotic turnpike

kso (A) [ is the slope ofk., (4) in (11)]. To this value corresponds theng-run consump-
tion/knowledge ratiaefined by

X" =0{a/[p(1 =)} (1 =1/0) +p/[fo (1 - a)], (25)

which is the asymptotic slope of the optimal policyA), when consumption steadily grows
at the constant rate defined in (14). The pointu*, x*), with coordinates defined in (24) and
(25), issaddle-path stablewith the stable arm converging to it from north-east whendke
initial values(u (to) , x (to)) are suitably chosen.

2. The point(, x), with

i=(0a/p)== and X =0(0a/p)T%, (26)

is an unstable clockwise-rotating spiral which is irrel@véor our analysis, as the optimal tra-
jectory keeps well apart from if; in (26) corresponds td = af [ﬁ (1-a) (Hoz/p)ﬁ — Oz] +
3/2, point at which the turnpiké (A) intersects the stagnation likeg 4).

3. The point(x®, x*) defined by
0= (1 +2+ V1t dat @2) /B8(1—a)] and =00,  (27)
is a ‘supersingular’ steady state whose Jacobian continseats diverging to infinity, so that

its stability/instability properties cannot be classifethlytically. It is crossed by the stable
arm of the saddle-path at low values of the stock of knowledgéhat is, in early times (in
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proximity of the very beginning of the economy’s dynamicBe coordinate:®, as defined in
(27), is larger tham* in (24) and is the largest (and only admissible) root of theefion @ (1)
defined in (23), with®) (1) > 0 for p* < p < p® and@ () < 0 for p > p®. The point(u®, x*)
corresponds to the critical poiil®, ¢ (A®)), with ¢ (A%) = g (A®), defined by (18) in the space
(A, c).

While the singular pointu®, x*) lies north-east of the long-run steady stgté, y*) for all ad-
missible parameters’ values, the position@f y) depends on the magnitude of the discount fagtor
with respect to parameterns ¢ and 5. Following [7], we shall assume that

Oo (7)™ < p < Ba ()" (28)

envisaging a phase diagram in whi¢h, x) lies north-east of .*, x*) and south-west of.*, x*)
(see Proposition 4 and Figure 1 in [7], where all loci are dramd stability/instability properties
of steady states are illustrated). Note that the RHS in (28alkscthe necessary condition (13) for
long-run growth.

We have seen in Section 2 thafA) > k., (A) for all A (and thus for alk); this is consistent
with u () > u* for all . Moreover, it can be shown that the stable ayifi), which is theoptimal
policy expressed in terms of state-like and control-likealdes approache&.*, x*) from north-east;
consequently, along the turnpike both ratidst (¢)] /A (t) [= p ()] ande (t) /A (t) [= x (t)] decline
in time when they are approaching the asymptotic turnpikéA) corresponding téu*, x*).

In order to study the policy functiog (1) — which is the conjugate af(A) in the original model
— we apply the technique developed by Mulligan and Sala+itiMd4] and tackle the unique ODE
given by the ratio between the equations in (22):

[(aBu*" = p) /o] Q (n) — 2a3 (1 — a) [Ou®* — x ()]
[Q (1) =28 (1 — ) p] [Op> — x ()]

where(@ (u) is defined in (23). We plan to applyRrojection methodo approximate (29).

X' (1) =

X (1), (29)

4 Projection Methods

Here we briefly recall the main features of Projection meshimal approximating solutions of func-
tional equations. For more details we refer the reader topgnothers, Chapter 11 in [2], [3], Chapter
6 in [1], or Paragraph 5.5.2 in [6].

Consider the following functional equation:

N(f) =0, (30)

whereN : B, — B, andB;, B, are vector spaces of functiorfis X ¢ R™ — R’
To approximate the solutiofisatisfying (30), we choose a degree of approximatio@nd make
the assumption that the approximatifis a linear combination af + 1 simple functionsy); (z):

f(x7a)zzai¢i<x>> $€XCRm,CL:(a0,a1,...,an)- (31)
=0
If B, is endowed with an inner product, then the functioRsz) , ¢ (z),..., ¥, (z), are usually

chosen to be the first + 1 elements of an infinite orthogonal family of polynomials teat they are
numerically more distinguishable from each other. The at®iof the family{v; (z)}._, and ofn
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lay down the structure and flexibility of the approximati@spectively. As the only unknown is the
vectora, the original infinite-dimensional problem has been reduoea finite-dimensional one.
Specifically, we shall look for a vector of coefficients= (ag, a1, . . ., a,,) SO that\ (f) turns out
to be as close as possible to the zero functioBdnwhere ‘closeness’ is measured in terms of a norm
in B,, itself defined through some inner prodict )., over Bs. In order to check proximity of" ( f)
to the zero function imB,, we must computé/ ( f); this often requires a numeric approximatio,
of the mapV itself, as will be the case in our simulation.
Define theresidual functionas the (approximated) functional equation (30) evaluatedeaap-
proximate solutiory defined in (31):

R(z,a) =N [f (z,a)]. (32)
For each giver = (ag, a1, . . ., a,), @ set ofweight functionq g; ()}, in B, together withR (z, a)
in (32) define an inner product inducing a normBxnthroughn + 1 projections
P, (a) = (R (x,a) , g; (), = / Rz.a) g (x)de,  i=01,. .. .n (33)
X
Given the set of weight functionfy; (z)}"_,, the goal is to choose = (ao, a1, ..., a,) so that the

projectionsP; in (33) are close to zero:
/R(x,a)gi(:c)dxzo foralli =0,1,...,n. (34)
X

Projection methods are also called “weighted residualfous’ (see [3]) as (34) get the residual
in (32) close to zero in a weighted integral sense.

Methods differ according to the form of the weight functions, the following are the three most
widely used methods.

1. Least squares methodassumes thay; (z) = R (z, a) /Ja;, which are derived by calculating
the FOC for the following minimization problem:

min/X[R(:L’,a)]zdx. (35)

a

In other words, it computes the? norm of R (x, a) and chooses that solves (35).

2. Galerkin method assumes that (x) = v; (x), thus forcingR (x, a) to be orthogonal to each of
the basis polynomials. Therefokeis chosen to solve the following systemrof- 1 equations:

<R($,a),¢i(x)>2:/XR(x,a)z/)i(x)dx:O, i=0,1,...,n. (36)

3. Orthogonal collocation methodassumes that (x) = d (x — x;), whered (+) is the Dirac delta
function andz; aren collocation pointscorresponding to the zeros of the largest-degree basis
polynomial,i, (z). Thatis,a = (ag, a4, ..., a,) is chosen to solve a systemrof- 1 equations
in which the firstn are

(R(x,a),0(x —x;))y = R(z;,a) =0, i=1,...,n, (37)

while then + 1** is usually given by some condition provided by the problerdarmstudy?
Note that, unlike the previous two, this method has the a@ggnof avoiding the call for a
numeric approximation of integrals.

2An equation independent of the projection method is requéte in most commonly used families of orthogonal
polinomials the first element ig, (z) = 1, having no zeros. For example, when (30) is an ODE, the dondihay be
the boundary value provided by the Cauchy problem assakiatié.
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Fouraccuracy testgan be performed on the approximate solutfofx, ) in (31) for the vector
of coefficientsa* obtained by solving any of the systems above. First, one calnae the residual
function R (z,a*) over a grid of pointsc € X and check whether it actually remains sufficiently
close to the zero function; this provides an estimate of thar emade when using the approximation
f (z,a*) in place of the true solution of (30). Second, if a plot of tesidual functionr (x, a*) is
available, it should be checked thafz, a*) exhibits oscillating behavior around zero, so to be sure
that all polynomials); in the basis give a fair contribution in the approximatipe, a*). Third, for
special basis of polynomialg); (z)}"_, used in (31), a good approximation requires the coefficients
a; to decrease rapidly and that is small; for example, this property must hold when Chebyshev
polynomials are used, as will be the case in our simulatiee (Bheorem 6.4.2 on p. 209 in [2]).
Finally, a qualitative analysis of the approximated solutbased on the expected behavior of the
model under scrutiny clearly provides another accurady tes

5 Simulations of the Optimal Policy

We fix the same values for parametersp, ¢ andf as assumed in [7] and are common in the
macroeconomic literature (seg, [5]):

a = 0.5, p = 0.04, oc=0=1. (38)

Note thato = 1 implies logarithmic instantaneous utility.

Our goal is to perform comparative dynamics analysis amdieyent transition trajectories char-
acterized by the same parameters’ values as in (38) anohgtlidm the same initial stock of knowl-
edge, Ay, for different values of parameter measuring the degree of efficiency of the recombinant
process of matching ideas. In other words, we aim at compadhi@ whole time-path trajectory of
economies which are equal in all respects but for the tecigidl parametef determining the speed
of knowledge evolution. The following three values will bensidered for parametér.

Br = 0.0108, By = 0.0124 and Bu = 0.0146. (39)

For the parameters’ values in (39) — all satisfying the nemgsgrowth condition (13), which for
the other parameters’ values in (38) turns out tosbe 0.0064 — we are able to produce satisfac-
tory approximations of the optimal trajectories for our eomy through the projection method. The
middle value,3,; = 0.0124, corresponding to the unique value for which Privileggi fiTdnaged to
simulate the optimal policy for the same model, will be cdesed as benchmark. Such value allows
for a comparison between the approximate solution hereatelil by a projection method and the
approximate solution produced by the finite-differencehudtused in [7] for the same policy.

The three economies characterizeddy Sy, and 5y as in (39) will be labeled., M andU
respectively; accordingly, all variables belonging toleatthe three economies will have the same
letter as subscript. Far € {L, M, U}, we shall exploit informations provided by the steady state
(ur, ;) and(us, x; ) [see (24), (25) and (27)] of the three economies in order il lioe projection
method algorithm. Table 1 reports the coordinates of suattfo

Economy| 5 Xh [ X
L 92.5926 | 7.4074 | 234.7392 | 15.3212
M 80.6452 | 6.4516 | 204.4503 | 14.2986
U 68.4932 | 5.4795 | 173.6427 | 13.1774

TABLE 1: coordinates of the relevant steady states in the three economies.

10



It is easily seen that all three paifs;, ;) in Table 1 satisfy condition (28) for the parameters’
values in (38). In order to establish the initial stock of Wiedge,A,, common to the three economies
we take gu-value larger than the largest value fgrin Table 1, corresponding to economyspecif-
ically, we setuy,.. = 7 + 30 = 264.7392. Using (21), we get the common stock of knowledge at
timet = 0 given by

Ao =a/[B(1 — @) flmax — @] + 3/2 = 2.0379, (40)

Initial stocks of capital are obtained by computing the pike value atd, = 2.0379 for each econ-
omy using (10):(ko), = kn (Ao); i.e.,

(ko), = 539.5043,  (ko),, = 469.8908  and  (ko), = 399.0853. (41)

Figure 1(a) shows the (transitory) turnpike curves in(thek) space corresponding to each econ-
omy under studylight grey, dark greyandblack curves correspond to turnpikes in the M andU
economies respectively. We shall identify with these cohit relevant curves related to each econ-
omy throughout the paper. Each curve converges to its owatliasymptotic turnpiki., (A) defined
in (11), corresponding to long-run balanced growth witm@tant) growth rates given by (14):

v =0.0120, 7y =0.0157 and vy = 0.0204. (42)

More efficient recombinant processes (largerequire less capitak;, for a given stock of knowledge
A along the turnpike; moreover, economies with largetearly grow faster in the long-run.

Figure 1(b) draws loci and steady states of all three ecoe®mithe(y, ) space; the three pairs
of steady states useful for our analysig, x;) and (u;, x;) for h € {L, M,U} — are the balls
colored light grey to black. The intersection of the founas south west ofy;;, x;;) corresponds to
the steady statgi, x) defined in (26) — irrelevant in our study — which is the sameafbeconomies.
For details on the loci’s analytic forms see [7].

X7 e
XM ’\
Xt T
k X

(ko) 11t

(ko)ar 7~ | X5 steady

(ko)y 77 XM <« states
XU / pairs

KU B L L Ko Has KL

(b)

FIGURE 1: (a) turnpikes and (b) loci and steady states of the three economies.

For each of the three economies we now apply a projection adedls described in Section 4
to the ODE defining the optimal policy according to (29). Tegximate the true policy function,
x (i), solving the functional equation (29) we build the approxienfunction in (31) as a linear
combination ofChebyshev polynomials 7; (x), which are mutually orthogonal with respect to the
weighting functionw () = 1/v/1 — 22 on the (closed) interval-1,1]. They are defined either
directly asT; (z) = cos|[iarccos ()] or recursively byT, (x) = 1, Ty (z) = z and T, (x) =
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2:T; (x) =T, (z). After several tests, we chose= 7 asdegree of approximation because larger
n would not add any improvement upon the simulation, as wiltlaeified later.

For eachh € {L, M, U}, an interval [Hh’ﬁh} containing the abscissae of the two relevant steady
statesy; andysj, is chosen as (compact) state space for the approximatience the argument of
each polynomial in the linear combination must be trandlftem [Hh’ﬂh} to [—1, 1]; accordingly,
for h € {L, M,U}, theapproximate functions (31) are

7 _

_ 20— p, — T, _

Xh (/L,CL) = E a;T; < — —t ) HE |:Hh7:uh:| y &= ((lo,(ll, s ,CL7). (43)
i=0 Hn — Ky,

Using (43) in (29), theesidual functionsn (32) turn out to be

By (1,0) = {%x (1 a>] Q) — 281 — ) 1 05 — o (1.)] (44)
B {a9ua1 —p

o

Q (1) — 208 (1 — a) 04" — i (1, a>J} T (1, )

with @ (i) defined in (23) and € {L, M,U}.

Under the assumption that all three economies start withrs#imee stock of knowledged, =
2.0379, att = 0 as computed in (40), and that the initial amounts of capralgiven by the turnpike
values on4, as in (41), the starting point of each trajectory in fpey) space, corresponding to the

the upper endpoint of the interv%ghﬂh}, is given by, = (ko), /Ao. ASt — oo, each economy’s

trajectory ends up on its own (unique) saddle-path stabledytstate(..;, x;;). As a matter of fact,
we let the lower endpoints be slightly smaller thapn® specifically, we sef, = p, —0.01 for all
h € {L, M,U}. Thus, each projection procedure is run on the followintestpaces:

[Hy 7| = [02.5826, 264.7392]

[HM,ﬁM — [80.6352, 230.5793]

[ﬁU,ﬁU_ — [68.4832, 195.8345] ,

while the whole range of the analysis will By, ftmax] = [HU’ﬁL} = [68.4832,264.7392].

After trying all three methods recalled in Section 4 (leagteges, Galerkin and orthogonal collo-
cation), we opted foleast squaresas in this case it outperforms the other two in all respdditze
precisely, for each € {L, M, U} we solve

a

main F (a) = min/[ . [Ry (11, )] dps, (45)

with respect tar = (ag, ay, . . ., a;) € R®, where the residual functioR), (i1, ) is defined in (44) and
the integral in the objective function is approximated thgl Gauss-Chebyshev quadratureover

3As the steady state valug;, x;) is explicitly used in the projection algorithm, in order teoa singularities it is
convenient to treat it as an interior point of the state space
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57 nodeé on [Hh’ﬁh} ; that is, we set (see eqn. 7.2.7 on p. 260 in [2])

2
(o) & f [ (@
(21;_57;12 i <2h h>+ﬁhaa t-ah (49

=1

Fh (CL) ~

wherexz; are the zeros of th&7-order Chebyshev polynomidl;; (), over[—1, 1].

Problem (45) is stated as unconstrained optimization problHowever, since our final goal is
to use the approximate solutions (43) of the optimal pdicig (1), in the computation of time-path
trajectories, we must handle with circumspection the stestates(y:;, x;) and(u, x;;), especially
the former, which, as discussed in Section 2, is a ‘supengangpoint. As(u;, x; ) inthe(u, x) space
corresponds t(éAS, kn (AS)> inthe (A, k) space, wherel® is defined in (18) as a point on which both
the numerator and the denominator of the law of motion of thtessariable A, vanish [see the first
equation in (17)], our approximate trajectorigs must keep as close as possible(tg, x;) so to
prevent the subsequent algorithm computing time-patkdtajies from diverging to infinity onl®.
Similarly, y, must be sufficiently close tu;, x;) so to guarantee convergence of the transitory
turnpikesky, (A) to their own asymptotic turnpikes as defined in (11) in(tHek) space. In principle,
any numeric unconstrained optimization algorithm canrsstuge that the approximate solution is
sufficiently close to some point. Therefore, we decided folyap constrained optimization routine
by adding to (45) the two equality constraints (1;,a) = x; andx (i), a) = x;. By applying
Maple 13 nonlinear programming (NLP) solverith the sequential quadratic programmin@qp)
method to the constrained version of (45) with objective approxizdaby (46), we have been able
to keep the distance between the approximated trajegtpand the two critical points less tid) >,
enough to prevent the algorithm approximating time-patjettories to break apart.

As in all optimization algorithms, thimitial guessa® from which the Maple 13 solver starts its
search is critical. Learning from the (only) approximat&uson computed in [7], we know that the
graph of the approximate solutiop, does not lie too far from the segment joining the two steady
states(y}, x;) and(w;, x;) (see Figure 3 on p. 270 in [7]). Therefore, we build the ihigigctor a”
through aChebyshev regression of ordeon such segment; to this purpose, we implement Algorithm
6.2 on p. 223 in [2] withm = n + 1 = 8 on the line crossing the two steady states.

The approximate optimal policieg, (1) obtained through our procedure for the three economies,
together with loci and steady states, are plotted in Figurel@ht grey, dark grey and black. The
complete Maple 13 code of the whole procedure is availabl@ the author upon requést.

Applying theaccuracy testslescribed at the end of Section 4 to the approximate poligiés)
obtained in the last paragraph it turns out that our resultibé a maximum error o x 10~* only
for the benchmark cask/ — corresponding t@,, = 0.0124 — already solved in [7] through finite-
difference method$. For h = L andh = U the maximum errors rapidly worsen, getting around

4To avoid collinearity with the approximate function, thenmoer of nodes must be different than the number
of elements of the basis usedyn defined by (43). Also, the larger the nodes the better thecppation in (46). We
observed no differences in the results with nodes betiw@amd100, while larger nodes start slowing down the algorithm
with no improvement. Hence, we opted for an intermediateevaroundl00/2 = 50, to which we add the degree of
approximationp = 7.

5See pp.125-126 in [2].

5\We also tried a minimization algorithm in (45) based on puiéwton iterationswith line searchand a quadratic
penalty functiorfor the two constraints [see equation (4.6.7) on p. 123 i)y (it at best we were able to exactly replicate
the solution provided by the NLP solver in the ‘Optimizatigmackage of Maple 13, adding no improvement over it.
Furthermore, Galerkin and orthogonal collocation methualge been tried through the ‘fsolve’ algorithm of Maple 13
applied to systems (36) and (37) respectively: both yieltifthitely worse results from all points of view.

’For this special case the results from finite-differencelaast squares projection methods coincide.
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3 x 10~2. These errors correspond to the maximum of the (absolute\aflthe) residual function
Ry, (11, a) — evaluated at solving (45) — over the interv{lﬂh,ﬁh , as shown in Figures 3(a) and 3(b)

[Figure 3(b) amplifies the values @t,; in Figure 3(a)], which provide a measure of the maximum

distance between the approximate(u) and the truex, (1). Moreover, it is clear from the figures
that none of them really oscillate around zero.

MO By ML 75 5% 5

FIGURE 2: approximate detrended policies in the three economieg L, M, U }.
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—0.02 Ru (1) N
0
0.03- " \J |
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FIGURE 3: (a) residual functions for the three economies; (b) magnificationsaduals for the benchmark
economyh = M.

Finally, Table 2 lists the coefficientss of the approximate policieg;, (1, a) in (43) obtained
in the last paragraph far € {L, M,U}. Itis immediately seen that when = M they exhibit a
decreasing pattern only up tg — at values aroun#il0—* — and they start to oscillate thereafter, while
whenh = L or h = U they start to oscillate already aftey — at values around x 10~2.
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Coefficients| EconomyL | EconomyM | EconomyU
ag 12.205573 11.236049 10.216761
a 4.867376 4.693670 4.435077
a9 0.038693 —0.080298 | —0.185641
as —0.025176 0.009586 0.039838
ay 0.037159 —0.001159 | —0.059263
as 0.037148 0.000507 —0.009536
ag —0.011437 | —0.000069 | —0.0075921
ar —0.016252 | —0.000168 0.020616

TABLE 2: approximate policies’ coefficients in the three economies.

6 Qualitative Analysis of the Transition Dynamics

To get the approximated time-path trajectorie&®) we substitute the approximate optimal policies
Xn () computed before into the first equation of (22), yieldingfiilowing ODE inft,

fu(t) ={1=28(1—a)u(t)/Qu@} 0[] = Xnlu(®)]},

with @ (-) defined in (23). ODE (47) can be numerically solved throughsttandardrehlberg fourth-
fifth order Runge-Kutta method with degree four interpolawethod available in Maple 13. The time-
path trajectoryy (¢) is then computed by letting (£) = x» [1 (¢)] with 1 (¢) just obtained. Figures
4(a) and 4(b) report the approximate trajectorigét) andy;, (t) for 0 <t <400andh € {L, M,U}.

(47)

250 - 16
] 14
200 - :
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M
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2(20 300 400 0 100 300 400

(@)

0 100 2(20

(b)

FIGURE 4: time-path trajectories (), (t) and (b)x, (t) for h = L (light grey),h = M (dark grey) and
h = U (black).

With 1 (t) andx (t) at hand, we can compute the time-path trajectories of thek sibknowl-
edge,A (t), and capitalk (t), again by using: (¢) in (21) and then computing (t) = k [A (¢)] from
the definition of turnpike in (10). Similarly, the time-patitajectory of output is given by (t) =

0A(t) {fc [A(t)] /A (t)}a, while the time-path trajectory of the optimal consumptign) is obtained
by using trajectorieg (t) and A (¢) in (20). Figure 5(a) draws thé,, (¢) trajectories all starting from
Ag =2.0379int = 0, where it is seen that the stock of knowledge in econéhovercome that in the
other economies after a short time. Figures 5(b) shows lleasdame occurs for the stock of capital,
ky, (t), but after a longer period of time. Similar patterns are shawrigures 5(c) and 5(d) for the

output,y, (t), and consumptiony, (t), trajectories.
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All these figures provide gualitative testfor the approximation technique developed in former
sections: they show that our approximate trajectoriesxdiquite reasonable behavior. Only Figure
6, reporting transitory growth rates for the four variablésk, y andc, all converging to the asymp-
totic constant growth rates computed in (42) for each econaotually detects some blurry behavior
of such variables in early times for the economiies L andh = U, thus emphasizing larger inaccu-

racies of the approximationg, close to the upper endpoinig of the state space[sih,ﬁh] in these
two scenarios.

7 Conclusions

In this paper a projection method based on computing thé $egsres of the residual function built
upon an approximate solution for the ODE (29) defining théagitpolicy of the detrended version of
the recombinant growth model discussed by Privileggi [frgposed. The same parameters’ values
for the discount rate, the CIES instantaneous utility andabkb-Douglas production for the output
sector as in [7] has been assumed, while we left the efficipacgimeter defining the (hyperbolic)
probability of success (3) in matching pairs of ideédsfree to change. Although our results quickly
degenerates as one departs from the benchmark yajue- 0.0124 used in [7], we succeeded in
approximating time-path trajectories — that is, transititynamics — which appear to be sufficiently
regular fors-values in a neighborhood 6f0124. This is a substantial step forward with respect to
the result obtained by Privileggi [7].

After trying finite-difference and projection methods, hemser, we must conclude that ODE (29) is
quite tough to tackle numerically. We tested our code fopadjection methods described in Section
4 — |east squares, Galerkin and Orthogonal collocation — oreratandard Ramsey-like model and
we found that it works reasonably well. Vice versa, when igjlo the recombinant growth model,
the same code does not work satisfactorily in case of Galenkd Orthogonal collocation, while in
the least square algorithm it works only up to a degree of@pprationn = 7, as larger values of
do not reduce residuals and the coefficientsf the approximate, (1, a) in (43) keep oscillating for
i > 7. Nonetheless, we believe that there is room for applyingotiogection technique to study the
transition dynamics in a similar model in which the prodactof knowledge is monopolized through
intellectual property rightswhich will be the topic of future research.
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