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Transition Dynamics in Endogenous Recombinant
Growth Models by means of Projection Methods

Fabio Privileggi∗

July 26, 2011

Abstract

This paper provides a step further in the computation of the transition path of acontinuous time
endogenous growth model discussed by Privileggi (2010) – based onthe setting first introduced
by Tsur and Zemel (2007) – in which knowledge evolves according to the Weitzman (1998)
recombinant process. A projection method, based on the least squares of the residual function
corresponding to the ODE defining the optimal policy of the ‘detrended’ model, allows for the
numeric approximation of such policy for a positive Lebesgue measure range of values of the
efficiency parameter characterizing the probability function of the recombinant process. Although
the projection method’s performance rapidly degenerates as one departsfrom a benchmark value
for the efficiency parameter, we are able to numerically compute time-path trajectories which are
sufficiently regular to allow for sensitivity analysis under changes in parameters’ values.

JEL Classification Numbers: C61, C63, O31, O41.
Key words: Knowledge Production, Endogenous Recombinant Growth, Transition Dynam-

ics, Projection Methods, Least Squares.

1 Introduction

The main contribution of this work is to provide a numeric algorithm capable of approximating
the complete transition path of some parametrization of thetwo-sector continuous time endogenous
growth model introduced by Tsur and Zemel [8] in which knowledge evolves according to the Weitz-
man [9] recombinant process. Privileggi [7] provides functional forms suitable to ‘detrend’ the model
and thus obtain a closed form for the ODE defining the optimal policy which depends on a number
of parameters. The author, however, through a finite-difference, fourth-order, Runge-Kutta method
is able to compute a numeric approximation of the policy onlyfor zero Lebesgue-measure sets of
parameters’ values; specifically, for a given set of parameters describing the production process, con-
sumers’ preferences, etc., the finite-difference method turns out to be reliable only for one single
value for the – most interesting – efficiency parameter that characterizes the recombinant process of
knowledge generation. Here a projection method based on theleast squares of the residual function
associated to the ODE defining the optimal policy is developed. Given a set of parameters’ values for
the economy, such method provides a meaningful numeric approximation of the policy for a positive
Lebesgue-measure range of values of the efficiency parameter defining the probability of successful
knowledge production, thus providing a substantial improvement upon the result obtained in [7].

∗Dept. of Public Policy and Public ChoicePolis, Universit̀a del Piemonte Orientale, Via Cavour 84, 15121 Alessandria
(Italy). Phone: +39-131-283857; fax: +39-131-283704; e-mail fabio.privileggi@sp.unipmn.it
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The economy is described by an endogenous growth model in which the stock of knowledge
evolves according to Weitzman’s [9] recombinant expansionprocess and is used, together with phys-
ical capital, as input factor in the competitive sector in order to produce a unique physical good. A
‘regulator’ maximizes the discounted utility of a representative consumer over an infinite time hori-
zon and directly finances new knowledge production through atax levied on the consumers; at each
instant the public good ‘knowledge’ is produced by an independent R&D sector which is controlled
by the regulator. Tsur and Zemel [8] provide conditions under which this economy exhibits sustained
balanced growth in the long-run and characterize the asymptotic optimal tax rate and the common
growth rate of all variables, thus generalizing Weitzman’s[9] Solow-type model in which investment
in knowledge production was assumed to be constant and exogenous.

Privileggi [7] provides a suitable (hyperbolic) form for the probability of success in new knowl-
edge production through the Weitzman’s recombinant process of matching existing ideas which, cou-
pled with a Cobb-Douglas production function for the physical good and CIES preferences of the
representative consumer, allows for a closed-form ODE defining the optimal policy. Such policy
defines the instantaneous optimal consumption in terms of ‘detrended’ state-like and control-like
variables when the conditions for sustained long-run growth are met. Once a reliable numeric ap-
proximation of the policy is available, the optimal time-path trajectories of the stock of knowledge,
capital, output and consumption, as well as their transition growth rates, for the original model are
easily computed by means of a finite-difference, Runge-Kuttamethod, thus allowing for comparative
dynamics analysis along the transition path.

In this work aprojection method(see,e.g., Chapter 11 in Judd [2], Chapter 6 in Heer & Maussner
[1], or Paragraph 5.5.2 in Novales, Fernández & Rúız [6]) which computes theleast squaresof the
residual functionassociated to the ODE defining the optimal policy as obtainedin [7] is pursued. We
are able to approximate the solution of such ODE –i.e., the optimal policy – for a full range of values
for the parameter related to the efficiency of the recombinant process in the production of new useful
knowledge around the benchmark valueβ = 0.0124 considered in [7].

Although, due to the analytical complexity of the ODE under study, specific tests available for
projection methods show that our method’s performance rapidly degenerates as one departs from the
benchmark valueβ = 0.0124, we are able to compute time-path trajectories which are sufficiently
regular to allow for comparative dynamics analysis under changes in parameters’ values. Specifically,
even if our method exhibits an accuracy only of order around10−2, qualitative behavior of the result-
ing optimal time-paths trajectories (transition dynamics) appears to be sufficiently neat for a direct
comparison among different trajectories, provided that they are not too far from the benchmark one.
We thus draw the broader conclusion that projection methodsare overall superior to finite-difference
methods in numerically solving particularly awkward ODEs.

Section 2 recalls the endogenous recombinant growth model first introduced by Weitzman [9]
and then further developed by Tsur and Zemel [8], while Section 3 reports its parameterization as
in Privileggi [7]. Section 4 briefly describes projection methods, which are then applied in Section
5 to approximate the optimal policies for three parametrizations of the model through a least square
algorithm. Finally, in Section 6 the optimal policies just obtained are used to trace out the optimal
time-path trajectories of all relevant variables and a qualitative discussion of the transition dynamics
is carried out, while Section 7 reports some concluding remarks and topics for future research.

2 The Model

Weitzman’s [9] knowledge generation device assumes that unprocessed (seed) ideas are matched with
other ideas available in order to yield newhybrid seed ideas. As a matter of fact, not all hybrid ideas
turn out to be successful, only a fraction of them is, which will again be recombined with other
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existent (successful) ideas to produce yet new hybrids. Letus assume thatm ideas are matched
together. IfA (t) is the stock of knowledge at timet (measured as the total number of successful
ideas), letCm [A (t)] denote the number of different combinations ofm elements (hybrids) ofA (t);
i.e.: Cm [A (t)] =A (t)!/ {m! [A (t)−m]!} [e.g.,C2 (A) =A (A− 1) /2]. Then, at timet the number
of hybrid seed ideas is given byH (t) = Cm [A (t)]− Cm [A (t− 1)].

In continuous timeA (t), Cm [A (t)] andH (t) become flows and

H (t) = C ′
m [A (t)] Ȧ (t) , (1)

defining the flow of hybrid seed ideas as a function of the rate of change of knowledge stock. Let
π denote the probability of obtaining a successful idea from each matching, which is assumed to
depend on the ratioJ (t) /H (t), whereJ (t) is a measure of the physical resources devoted to R&D
(matching ideas) at instantt. Hence, this R&D expenditure produces a flow of successful newideas
that accrue the existing stock of knowledge according to

Ȧ (t) = H (t) π [J (t) /H (t)] . (2)

In our specification of the model we shall assume that only pairs of ideas can be matched and that the
probability of success is described by a hyperbolic function.

A. 1 m = 2 and the success probability function is given by1

π (x) = βx/ (βx+ 1) , β > 0. (3)

Parameterβ provides a measure of the ‘degree of efficiency’ of the Weitzman matching process:
the largerβ the higher probability of obtaining a new successful idea out of each (pairwise) matching
of seed ideas.

Combining (1) and (2) the law of motion for the stock of knowledgeA (t) is:

Ȧ (t) = J (t) /ϕ [A (t)] , (4)

whereϕ (A) = C ′
m (A) π−1 [1/C ′

m (A)] is theexpected unit cost of knowledge production. As, for
m = 2, C ′

2 (A) = (2A− 1) /2, and from (3) we getπ−1 (x) = x/ [β (1− x)], the unit cost of
knowledge production can be written as

ϕ (A) = (2A− 1) / [β (2A− 3)] = (1/β) [1 + 2/ (2A− 3)] , (5)

which is defined forA > 3/2, is decreasing inA, andlimA→∞ ϕ (A) = 1/π′ (0) = 1/β > 0.
A ‘regulator’ chooses the optimal amountJ to be employed in production of new knowledge in

order to maximize the discounted utility of a representative consumer over an infinite time horizon.
The exact amountJ is levied as a tax on the representative consumer and is used to generate new
useful knowledge according to (4), which is immediately andfreely passed to the output producing
firms operating in a competitive market.

With no loss of generality, we assume that labour is constantand normalized to one:L ≡ 1.

A. 2 Output is produced according to a Cobb-Douglas technology:

y (t) = θ [k (t)]α [A (t)]1−α = θA (t) [k (t) /A (t)]α , θ > 0, 0 < α < 1, (6)

depending on aggregate capital and knowledge-augmented labour,A (t)L for L = 1.

1Note thatπ is independent of time and satisfies Weitzman’s assumptions(p. 345 in [9]):π′ > 0, π′′ < 0, π (0) = 0
andπ (∞) ≤ 1; moreover,π′ (0) = β < +∞.
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Each output producing firmi maximizes instantaneous profit by renting capitalki and hiring
labourLi ≤ 1 from the households, taking as given the capital rental rater, the labour wagew and
the stock of knowledgeA. As all firms use the same technology and operate in a competitive market,
and all households are the same, the subscripti can be dropped; moreover, as firms act competitively,
in equilibrium their profit is zero, that is, households earny = θA (k/A)α = rk + w, moreover, the
amount of capital demanded,k, satisfies

θα (k/A)α−1 = r. (7)

Given that, at each instantt, a fractionJ (t) of the whole endowment of the economy,k (t) + y (t), is
being employed to finance R&D firms, and a fractionc (t) is being consumed, capital evolves through
time according to

k̇ (t) = y (t)− J (t)− c (t) , (8)

where it is assumed that capital does not depreciate. Since the upper bound forJ (t) andc (t) is jointly
given byJ (t) + c (t) ≤ k (t) + y (t), k̇ (t) in (8) may be negative.

A. 3 All households enjoy an instantaneous CIES utility,

u (c) =
(

c1−σ − 1
)

/ (1− σ) , σ ≥ 1, (9)

and have a common discount rate,ρ > 0.

Tsur and Zemel [8] showed that three curves on the space(A, k) are useful for characterizing the
solutions of the social planner problem in our regulated economy.

1. The locusθα (k/A)α−1−θ (1− α) (k/A)α /ϕ (A) = 0 defines the curve on the space(A, k) on
which the marginal product of capital equals that of knowledge per unit cost. Under Assump-
tions A.1, A.2 and using (5) it can be rewritten as a function of the only variableA:

k̃ (A) = [α/ (1− α)]ϕ (A)A = {α/ [β (1− α)]} [1 + 2/ (2A− 3)]A. (10)

We call k̃ (A) in (10) the(transitory) turnpike.

2. The functioñk (A) in (10) for largeA becomes affine, defining the curve

k̃∞ (A) = {α/ [β (1− α)]} (A+ 1) . (11)

Note that̃k (A) lies abovẽk∞ (A) for all A < ∞, approaching̃k∞ (A) asA increases. We call
k̃∞ (A) in (11) theasymptotic turnpike.

3. Finally, on the locusθα (k/A)α−1 = ρ the marginal product of capital equals the individual
discount rate, which, by (7), impliesr = ρ. It can be written as a linear function ofA:

k̂ (A) = (θα/ρ)1/(1−α)A. (12)

We call k̂ (A) in (12) thestagnation line.
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Proposition 1 (Tsur and Zemel [8])

i) A necessary condition for the economy to sustain long-run growth requires the stagnation line to lie
above the asymptotic turnpike for sufficiently largeA, that is,(θα/ρ)1/(1−α) > α/ [β (1− α)]
must hold, which can be written in terms of an upper bound for thediscount rate,

ρ < r∞, (13)

wherer∞ = θα [β (1− α) /α]1−α defines thelong-run capital rental rate. Conversely, ifρ ≥ r∞
the economy eventually reaches a steady (stagnation) pointon the linêk (A) in (12) correspond-
ing to zero growth.

ii) Under (13), for any given initial knowledge stockA0 there is a corresponding threshold capital
stockksk (A0) ≥ 0 such that wheneverk0 ≥ ksk (A0) the economy – possibly after an ini-
tial transition outside the turnpike – first reaches the turnpike k̃ (A) in a finite time, and then
continues to grow along it as time elapses until the asymptotic turnpike k̃∞ (A) is reached in
the long-run. Along̃k∞ (A) the economy follows a balanced growth path characterized by a
common constant growth rate of output, knowledge, capital andconsumption given by

γ = (r∞ − ρ) /σ. (14)

Moreover,J (t) > 0 for all t, while, ast → ∞, J (t) < y (t) and the income shares devoted to
investments in knowledge and capital are constant and given respectively by

s∞ = (1− α) γ/r∞ and sk∞ = αγ/r∞. (15)

If k0 < ksk (A0) the economy eventually stagnates.

Proposition 1, whose proof can be found in [8], establishes that if (13) holds –i.e., either house-
holds are patient enough or, given the impatience of households, economies are more productive
(larger θ) and/or with more efficient R&D (largerβ) – andk0 is sufficiently high with respect to
the initial knowledge stock,A0, the economy grows along a turnpike path which, in the long-run,
converges to a balanced growth path with knowledge and capital growing at the same constant rate
and with constant saving rate. For a Cobb-Douglas economy thelong-run income shares allocated
to R&D and saving turn out to be proportional to the knowledge and capital shares in the production
function.

Two optimal regimes are possible:

1. zero R&D,J ≡ 0, which, if maintained forever, eventually leads the economy to some steady
state (stagnation point) on the linek̂ (A), and

2. a path along the turnpikẽk (A) – maybe started after a finite period of transition outside the
turnpike – envisaging growth as time elapses and, if maintained forever, eventually leading to a
balanced growth path along the asymptotic turnpikek̃∞ (A).

Under (13) and ifk0 ≥ ksk (A0) it can be shown that the turnpikẽk (A) is ‘trapping’, i.e., the
economy keeps growing along it after it is reached. Hence, there are two types of transitions: one
driving the system toward the turnpike starting from outside it, and another characterizing the optimal
path along̃k (A) after it has been entered. We shall focus on the latter; specifically, we shall assume
that (13) holds and, for simplicity, that the economy startsexactlyon the turnpike:k0 = k̃ (A0). In
this scenariok0 ≥ ksk (A0) is certainly satisfied, as̃k (A) is trapping.
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3 Optimal Dynamics Along the Turnpike and ‘Detrended’ Policy

In what follows we recall without proofs the main steps involved in the construction pursued by
Privileggi [7] in order to build the ODE that defines the optimal policy for our economy. We refer the
reader to [7] for all details.

As, under condition (13) and assuming thatk0 = k̃ (A0) = {α/ [β (1− α)]} [1 + 2/ (2A0 − 3)]A0,
the relevant variables are bound to move along the turnpikek̃ (A), the social planner problem can be
reduced to a infinite-horizon, continuous-time optimization problem in only two variables – the stock
of knowledge,A, and consumption,c, which are the state and control variables respectively – and one
dynamic constraint:

max
{c}

∫ ∞

0

c1−σ − 1

1− σ
e−ρtdt (16)

subject to











Ȧ = [ỹ (A)− c] /
[

k̃′ (A) + ϕ (A)
]

0 ≤ c ≤ k̃ (A) + ỹ (A)
A (0) = A0 > 0,

where the time argument has been dropped for simplicity,ỹ (A) = θA
[

k̃ (A) /A
]α

is the output as

a function of the sole variableA on the turnpikẽk (A) as defined in (10),̃k′ (A) = ∂k̃ (A) /∂A, and
ϕ (A) is given by (5).

Necessary conditions on the current-value Hamiltonian forproblem (16) yield the following sys-
tem of ODEs defining the optimal dynamics forA andc along the turnpike under Assumption A.3:











Ȧ =
{

θA
[

k̃ (A) /A
]α

− c
}

/
[

k̃′ (A) + ϕ (A)
]

ċ = c

{

θα
[

k̃ (A) /A
]α−1

− ρ

}

/σ.
(17)

As the stock of knowledgeA cannot be depleted and, by Proposition 1 (ii), the optimal investment
in R&D must be positive along the turnpike,A must grow: Ȧ (t) > 0 for all t ≥ 0. It can be
shown that the graph of̃k (A) is a U-shaped curve on(3/2,+∞), reaching its unique minimum on
A = 3/2 +

√
6/2 > 3/2. This implies that capital̃k (t) decreases whent is small and increases

for largert, envisaging that in early times it is optimal to take away some physical capital from the
output-producing sector and invest it in R&D, so that the stock of knowledgeA can take-off.

Moreover, the denominator on the RHS of the first equation in (17), k̃′ (A) + ϕ (A), vanishes on
the unique point

As = 1 + (1/2)
(

α +
√
1 + 4α + α2

)

, (18)

which is larger than3/2, andk̃′ (A) + ϕ (A) < 0 for 3/2 < A < As, while k̃′ (A) + ϕ (A) > 0 for
A > As. As Ȧ (t) > 0 for all t ≥ 0, the whole ratio on the RHS of the first equation in (17) must

be positive for allt ≥ 0, that is, the numerator,θA
[

k̃ (A) /A
]α

− c, must have the same sign of the

denominator,̃k′ (A) + ϕ (A), and must vanish onAs as well. In other words, asθA
[

k̃ (A) /A
]α

=

ỹ (A), the optimal consumptionc must satisfyc > ỹ (A) for 3/2 < A < As, c < ỹ (A) for A > As,
andc = ỹ (A) for A = As, whereAs is defined in (18) (see Proposition 3 in [7]). We thus conclude
that in early times it is optimal to take away physical capital from the output-producing sector both
for investment in R&D and consumption.
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Clearly, system (17) diverges in the long-run. Thus, we transform the state variableA and the
controlc in a state-like variable,µ, and a control-like variable,χ, defined respectively by

µ = k̃ (A) /A = [α/ (1− α)]ϕ (A) = {α/ [β (1− α)]} [1 + 2/ (2A− 3)] (19)

χ = c/A, (20)

where in (19) we used (10) and (5). Hence,A is related toµ as follows:

A = α/ [β (1− α)µ− α] + 3/2. (21)

Following the steps in [7], under Assumptions A.1-A.3, we obtain the following system of ODEs
describing the transition optimal dynamics in the detrended variablesµ (state) andχ (control):

{

µ̇ = [1− 2β (1− α)µ/Q (µ)] (θµα − χ)

χ̇ = [(θαµα−1 − ρ) /σ − 2αβ (1− α) (θµα − χ) /Q (µ)]χ,
(22)

where
Q (µ) = −3β2 (1− α)2 µ2 + 2β (1− α) (1 + 2α)µ− α2. (23)

SinceA > 3/2, from (19) one immediately obtains the range[α/ (β (1− α)) ,+∞) for the state-
like variableµ, with endpoints corresponding toA → +∞ andA → 3/2 respectively. System (22)
hasthree steady statesin the(µ, χ) phase diagram(see [7] for details).

1. The steady value
µ∗ = α/ [β (1− α)] (24)

for variableµ corresponds tolong-run capital/knowledge ratioalong the asymptotic turnpike
k̃∞ (A) [µ∗ is the slope of̃k∞ (A) in (11)]. To this value corresponds thelong-run consump-
tion/knowledge ratiodefined by

χ∗ = θ {α/ [β (1− α)]}α (1− 1/σ) + ρ/ [βσ (1− α)] , (25)

which is the asymptotic slope of the optimal policyc (A), when consumption steadily grows
at the constant rateγ defined in (14). The point(µ∗, χ∗), with coordinates defined in (24) and
(25), issaddle-path stable, with the stable arm converging to it from north-east whenever the
initial values(µ (t0) , χ (t0)) are suitably chosen.

2. The point(µ̂, χ̂), with

µ̂ = (θα/ρ)
1

1−α and χ̂ = θ (θα/ρ)
α

1−α , (26)

is an unstable clockwise-rotating spiral which is irrelevant for our analysis, as the optimal tra-

jectory keeps well apart from it;̂µ in (26) corresponds tôA = α/
[

β (1− α) (θα/ρ)
1

1−α − α
]

+

3/2, point at which the turnpikẽk (A) intersects the stagnation linêk (A).

3. The point(µs, χs) defined by

µs =
(

1 + 2α +
√
1 + 4α + α2

)

/ [3β (1− α)] and χs = θ (µs)α , (27)

is a ‘supersingular’ steady state whose Jacobian contains elements diverging to infinity, so that
its stability/instability properties cannot be classifiedanalytically. It is crossed by the stable
arm of the saddle-path at low values of the stock of knowledgeA, that is, in early times (in
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proximity of the very beginning of the economy’s dynamics).The coordinateµs, as defined in
(27), is larger thanµ∗ in (24) and is the largest (and only admissible) root of the functionQ (µ)
defined in (23), withQ (µ) > 0 for µ∗ ≤ µ < µs andQ (µ) < 0 for µ > µs. The point(µs, χs)
corresponds to the critical point(As, c (As)), with c (As) = ỹ (As), defined by (18) in the space
(A, c).

While the singular point(µs, χs) lies north-east of the long-run steady state(µ∗, χ∗) for all ad-
missible parameters’ values, the position of(µ̂, χ̂) depends on the magnitude of the discount factorρ
with respect to parametersα, θ andβ. Following [7], we shall assume that

θα (µs)α−1 < ρ < θα (µ∗)α−1 , (28)

envisaging a phase diagram in which(µ̂, χ̂) lies north-east of(µ∗, χ∗) and south-west of(µs, χs)
(see Proposition 4 and Figure 1 in [7], where all loci are drawn and stability/instability properties
of steady states are illustrated). Note that the RHS in (28) equals the necessary condition (13) for
long-run growth.

We have seen in Section 2 thatk̃ (A) > k̃∞ (A) for all A (and thus for allt); this is consistent
with µ (t) > µ∗ for all t. Moreover, it can be shown that the stable armχ (µ), which is theoptimal
policy expressed in terms of state-like and control-like variables, approaches(µ∗, χ∗) from north-east;
consequently, along the turnpike both ratiosk̃ [A (t)] /A (t) [= µ (t)] andc (t) /A (t) [= χ (t)] decline
in time when they are approaching the asymptotic turnpikek̃∞ (A) corresponding to(µ∗, χ∗).

In order to study the policy functionχ (µ) – which is the conjugate ofc (A) in the original model
– we apply the technique developed by Mulligan and Sala-i-Martin [4] and tackle the unique ODE
given by the ratio between the equations in (22):

χ′ (µ) =
[(αθµα−1 − ρ) /σ]Q (µ)− 2αβ (1− α) [θµα − χ (µ)]

[Q (µ)− 2β (1− α)µ] [θµα − χ (µ)]
χ (µ) , (29)

whereQ (µ) is defined in (23). We plan to apply aProjection methodto approximate (29).

4 Projection Methods

Here we briefly recall the main features of Projection methods for approximating solutions of func-
tional equations. For more details we refer the reader to, among others, Chapter 11 in [2], [3], Chapter
6 in [1], or Paragraph 5.5.2 in [6].

Consider the following functional equation:

N (f) = 0, (30)

whereN : B1 → B2 andB1,B2 are vector spaces of functionsf : X ⊂ R
m → R

l.
To approximate the solutionf satisfying (30), we choose a degree of approximation,n, and make

the assumption that the approximationf̄ is a linear combination ofn+ 1 simple functions,ψi (x):

f̄ (x, a) =
n
∑

i=0

aiψi (x) , x ∈ X ⊂ R
m, a = (a0, a1, . . . , an) . (31)

If B1 is endowed with an inner product, then the functionsψ0 (x) , ψ1 (x) , . . . , ψn (x), are usually
chosen to be the firstn+ 1 elements of an infinite orthogonal family of polynomials, sothat they are
numerically more distinguishable from each other. The choices of the family{ψi (x)}ni=0 and ofn
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lay down the structure and flexibility of the approximation respectively. As the only unknown is the
vectora, the original infinite-dimensional problem has been reduced to a finite-dimensional one.

Specifically, we shall look for a vector of coefficientsa = (a0, a1, . . . , an) so thatN
(

f̄
)

turns out
to be as close as possible to the zero function inB2, where ‘closeness’ is measured in terms of a norm
in B2, itself defined through some inner product〈·, ·〉2 overB2. In order to check proximity ofN

(

f̄
)

to the zero function inB2, we must computeN
(

f̄
)

; this often requires a numeric approximation,N̄ ,
of the mapN itself, as will be the case in our simulation.

Define theresidual functionas the (approximated) functional equation (30) evaluated at the ap-
proximate solution̄f defined in (31):

R (x, a) = N̄
[

f̄ (x, a)
]

. (32)

For each givena = (a0, a1, . . . , an), a set ofweight functions{gi (x)}ni=0 in B2 together withR (x, a)
in (32) define an inner product inducing a norm onB2 throughn+ 1 projections:

Pi (a) = 〈R (x, a) , gi (x)〉2 =
∫

X

R (x, a) gi (x) dx, i = 0, 1, . . . , n. (33)

Given the set of weight functions{gi (x)}ni=0, the goal is to choosea = (a0, a1, . . . , an) so that the
projectionsPi in (33) are close to zero:

∫

X

R (x, a) gi (x) dx = 0 for all i = 0, 1, . . . , n. (34)

Projection methods are also called “weighted residuals methods” (see [3]) as (34) get the residualR
in (32) close to zero in a weighted integral sense.

Methods differ according to the form of the weight functionsgis; the following are the three most
widely used methods.

1. Least squares methodassumes thatgi (x) = ∂R (x, a) /∂ai, which are derived by calculating
the FOC for the following minimization problem:

min
a

∫

X

[R (x, a)]2 dx. (35)

In other words, it computes theL2 norm ofR (x, a) and choosesa that solves (35).

2. Galerkin method assumes thatgi (x) = ψi (x), thus forcingR (x, a) to be orthogonal to each of
the basis polynomials. Therefore,a is chosen to solve the following system ofn+1 equations:

〈R (x, a) , ψi (x)〉2 =
∫

X

R (x, a)ψi (x) dx = 0, i = 0, 1, . . . , n. (36)

3. Orthogonal collocation methodassumes thatgi (x) = δ (x− xi), whereδ (·) is the Dirac delta
function andxi aren collocation pointscorresponding to the zeros of the largest-degree basis
polynomial,ψn (x). That is,a = (a0, a1, . . . , an) is chosen to solve a system ofn+1 equations
in which the firstn are

〈R (x, a) , δ (x− xi)〉2 = R (xi, a) = 0, i = 1, . . . , n, (37)

while then + 1th is usually given by some condition provided by the problem under study.2

Note that, unlike the previous two, this method has the advantage of avoiding the call for a
numeric approximation of integrals.

2An equation independent of the projection method is required as in most commonly used families of orthogonal
polinomials the first element isψ0 (x) ≡ 1, having no zeros. For example, when (30) is an ODE, the condition may be
the boundary value provided by the Cauchy problem associated to it.
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Fouraccuracy testscan be performed on the approximate solutionf̄ (x, a) in (31) for the vector
of coefficientsa∗ obtained by solving any of the systems above. First, one can evaluate the residual
functionR (x, a∗) over a grid of pointsx ∈ X and check whether it actually remains sufficiently
close to the zero function; this provides an estimate of the error made when using the approximation
f̄ (x, a∗) in place of the true solution of (30). Second, if a plot of the residual functionR (x, a∗) is
available, it should be checked thatR (x, a∗) exhibits oscillating behavior around zero, so to be sure
that all polynomialsψi in the basis give a fair contribution in the approximationf̄ (x, a∗). Third, for
special basis of polynomials{ψi (x)}ni=0 used in (31), a good approximation requires the coefficients
ai to decrease rapidly and thatan is small; for example, this property must hold when Chebyshev
polynomials are used, as will be the case in our simulation (see Theorem 6.4.2 on p. 209 in [2]).
Finally, a qualitative analysis of the approximated solution based on the expected behavior of the
model under scrutiny clearly provides another accuracy test.

5 Simulations of the Optimal Policy

We fix the same values for parametersα, ρ, σ and θ as assumed in [7] and are common in the
macroeconomic literature (see,e.g., [5]):

α = 0.5, ρ = 0.04, σ = θ = 1. (38)

Note thatσ = 1 implies logarithmic instantaneous utility.
Our goal is to perform comparative dynamics analysis among different transition trajectories char-

acterized by the same parameters’ values as in (38) and starting from the same initial stock of knowl-
edge,A0, for different values of parameterβ measuring the degree of efficiency of the recombinant
process of matching ideas. In other words, we aim at comparing the whole time-path trajectory of
economies which are equal in all respects but for the technological parameterβ determining the speed
of knowledge evolution. The following three values will be considered for parameterβ:

βL = 0.0108, βM = 0.0124 and βU = 0.0146. (39)

For the parameters’ values in (39) – all satisfying the necessary growth condition (13), which for
the other parameters’ values in (38) turns out to beβ > 0.0064 – we are able to produce satisfac-
tory approximations of the optimal trajectories for our economy through the projection method. The
middle value,βM = 0.0124, corresponding to the unique value for which Privileggi [7]managed to
simulate the optimal policy for the same model, will be considered as benchmark. Such value allows
for a comparison between the approximate solution here delivered by a projection method and the
approximate solution produced by the finite-difference method used in [7] for the same policy.

The three economies characterized byβL, βM andβU as in (39) will be labeledL, M andU
respectively; accordingly, all variables belonging to each of the three economies will have the same
letter as subscript. Forh ∈ {L,M,U}, we shall exploit informations provided by the steady states
(µ∗

h, χ
∗
h) and(µs

h, χ
s
h) [see (24), (25) and (27)] of the three economies in order to build the projection

method algorithm. Table 1 reports the coordinates of such points.

Economy µ∗
h χ∗

h µs
h χs

h

L 92.5926 7.4074 234.7392 15.3212
M 80.6452 6.4516 204.4503 14.2986
U 68.4932 5.4795 173.6427 13.1774

TABLE 1: coordinates of the relevant steady states in the three economies.
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It is easily seen that all three pairs(µ∗
h, µ

s
h) in Table 1 satisfy condition (28) for the parameters’

values in (38). In order to establish the initial stock of knowledge,A0, common to the three economies
we take aµ-value larger than the largest value forµs

h in Table 1, corresponding to economyL; specif-
ically, we setµmax = µs

L + 30 = 264.7392. Using (21), we get the common stock of knowledge at
time t = 0 given by

A0 = α/ [β (1− α)µmax − α] + 3/2 = 2.0379. (40)

Initial stocks of capital are obtained by computing the turnpike value atA0 = 2.0379 for each econ-
omy using (10):(k0)h = k̃h (A0); i.e.,

(k0)L = 539.5043, (k0)M = 469.8908 and (k0)U = 399.0853. (41)

Figure 1(a) shows the (transitory) turnpike curves in the(A, k) space corresponding to each econ-
omy under study:light grey, dark greyandblackcurves correspond to turnpikes in theL, M andU
economies respectively. We shall identify with these colors all relevant curves related to each econ-
omy throughout the paper. Each curve converges to its own linear asymptotic turnpikẽk∞ (A) defined
in (11), corresponding to long-run balanced growth with (constant) growth rates given by (14):

γL = 0.0120, γM = 0.0157 and γU = 0.0204. (42)

More efficient recombinant processes (largerβ) require less capital,k, for a given stock of knowledge
A along the turnpike; moreover, economies with largerβ clearly grow faster in the long-run.

Figure 1(b) draws loci and steady states of all three economies in the(µ, χ) space; the three pairs
of steady states useful for our analysis –(µ∗

h, χ
∗
h) and (µs

h, χ
s
h) for h ∈ {L,M,U} – are the balls

colored light grey to black. The intersection of the four curves south west of(µs
U , χ

s
U) corresponds to

the steady state(µ̂, χ̂) defined in (26) – irrelevant in our study – which is the same forall economies.
For details on the loci’s analytic forms see [7].

A

k

A0

(k0)L

(k0)M

(k0)U

k̃L (A)

k̃M (A)

k̃U (A)

(a)

steady
states
pairs

µ

χ

µ∗

U µ∗

M µ∗

L µs
U µs

M µs
L

χ∗

U

χ∗

M

χ∗

L

χs
U

χs
M

χs
L

(b)

FIGURE 1: (a) turnpikes and (b) loci and steady states of the three economies.

For each of the three economies we now apply a projection method as described in Section 4
to the ODE defining the optimal policy according to (29). To approximate the true policy function,
χ (µ), solving the functional equation (29) we build the approximate function in (31) as a linear
combination ofChebyshev polynomials, Ti (x), which are mutually orthogonal with respect to the
weighting functionw (x) = 1/

√
1− x2 on the (closed) interval[−1, 1]. They are defined either

directly asTi (x) = cos [i arccos (x)] or recursively byT0 (x) ≡ 1, T1 (x) = x andTi+1 (x) =
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2xTi (x)−Ti−1 (x). After several tests, we chosen = 7 asdegree of approximation, because larger
n would not add any improvement upon the simulation, as will beclarified later.

For eachh ∈ {L,M,U}, an interval
[

µ
h
, µh

]

containing the abscissae of the two relevant steady

states,µ∗
h andµs

h, is chosen as (compact) state space for the approximation. Hence, the argument of

each polynomial in the linear combination must be translated from
[

µ
h
, µh

]

to [−1, 1]; accordingly,

for h ∈ {L,M,U}, theapproximate functionsin (31) are

χ̄h (µ, a) =
7
∑

i=0

aiTi

(

2µ− µ
h
− µh

µh − µ
h

)

, µ ∈
[

µ
h
, µh

]

, a = (a0, a1, . . . , a7) . (43)

Using (43) in (29), theresidual functionsin (32) turn out to be

Rh (µ, a) =

[

∂

∂µ
χ̄h (µ, a)

]

[Q (µ)− 2β (1− α)µ] [θµα − χ̄h (µ, a)] (44)

−
{

αθµα−1 − ρ

σ
Q (µ)− 2αβ (1− α) [θµα − χ̄h (µ, a)]

}

χ̄h (µ, a) ,

with Q (µ) defined in (23) andh ∈ {L,M,U}.
Under the assumption that all three economies start with thesame stock of knowledge,A0 =

2.0379, at t = 0 as computed in (40), and that the initial amounts of capital are given by the turnpike
values onA0 as in (41), the starting point of each trajectory in the(µ, χ) space, corresponding to the

the upper endpoint of the interval
[

µ
h
, µh

]

, is given byµh = (k0)h /A0. As t → ∞, each economy’s

trajectory ends up on its own (unique) saddle-path stable steady state,(µ∗
h, χ

∗
h). As a matter of fact,

we let the lower endpoints be slightly smaller thanµ∗
h;3 specifically, we setµ

h
= µ∗

h − 0.01 for all
h ∈ {L,M,U}. Thus, each projection procedure is run on the following state spaces:

[

µ
L
, µL

]

= [92.5826, 264.7392]
[

µ
M
, µM

]

= [80.6352, 230.5793]
[

µ
U
, µU

]

= [68.4832, 195.8345] ,

while the whole range of the analysis will be[µmin, µmax] =
[

µ
U
, µL

]

= [68.4832, 264.7392].

After trying all three methods recalled in Section 4 (least squares, Galerkin and orthogonal collo-
cation), we opted forleast squares, as in this case it outperforms the other two in all respects.More
precisely, for eachh ∈ {L,M,U} we solve

min
a
Fh (a) = min

a

∫

[µ
h
,µh]

[Rh (µ, a)]
2 dµ, (45)

with respect toa = (a0, a1, . . . , a7) ∈ R
8, where the residual functionRh (µ, a) is defined in (44) and

the integral in the objective function is approximated through Gauss-Chebyshev quadratureover

3As the steady state value(µ∗

h
, χ∗

h
) is explicitly used in the projection algorithm, in order to avoid singularities it is

convenient to treat it as an interior point of the state space.
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57 nodes4 on
[

µ
h
, µh

]

; that is, we set (see eqn. 7.2.7 on p. 260 in [2])

Fh (a) ≈
π
(

µh − µ
h

)

2× 57

57
∑

i=1







Rh





(xi + 1)
(

µh − µ
h

)

2
+ µ

h
, a











2
√

1− x2i , (46)

wherexi are the zeros of the57-order Chebyshev polynomial,T57 (x), over[−1, 1].
Problem (45) is stated as unconstrained optimization problem. However, since our final goal is

to use the approximate solutions (43) of the optimal policies,χh (µ), in the computation of time-path
trajectories, we must handle with circumspection the steady states(µs

h, χ
s
h) and(µ∗

h, χ
∗
h), especially

the former, which, as discussed in Section 2, is a ‘supersingular’ point. As(µs
h, χ

s
h) in the(µ, χ) space

corresponds to
(

As, k̃h (A
s)
)

in the(A, k) space, whereAs is defined in (18) as a point on which both

the numerator and the denominator of the law of motion of the state variable,A, vanish [see the first
equation in (17)], our approximate trajectoriesχ̄h must keep as close as possible to(µs

h, χ
s
h) so to

prevent the subsequent algorithm computing time-path trajectories from diverging to infinity onAs.
Similarly, χ̄h must be sufficiently close to(µ∗

h, χ
∗
h) so to guarantee convergence of the transitory

turnpikes̃kh (A) to their own asymptotic turnpikes as defined in (11) in the(A, k) space. In principle,
any numeric unconstrained optimization algorithm cannot assure that the approximate solution is
sufficiently close to some point. Therefore, we decided to apply a constrained optimization routine
by adding to (45) the two equality constraintsχ̄h (µ

s
h, a) = χs

h and χ̄h (µ
∗
h, a) = χ∗

h. By applying
Maple 13 nonlinear programming (NLP) solverwith the sequential quadratic programming(sqp)
method5 to the constrained version of (45) with objective approximated by (46), we have been able
to keep the distance between the approximated trajectoryχ̄h and the two critical points less to10−5,
enough to prevent the algorithm approximating time-path trajectories to break apart.

As in all optimization algorithms, theinitial guessa0 from which the Maple 13 solver starts its
search is critical. Learning from the (only) approximate solution computed in [7], we know that the
graph of the approximate solution̄χh does not lie too far from the segment joining the two steady
states(µ∗

h, χ
∗
h) and(µs

h, χ
s
h) (see Figure 3 on p. 270 in [7]). Therefore, we build the initial vectora0

through aChebyshev regression of order7 on such segment; to this purpose, we implement Algorithm
6.2 on p. 223 in [2] withm = n+ 1 = 8 on the line crossing the two steady states.

The approximate optimal policies̄χh (µ) obtained through our procedure for the three economies,
together with loci and steady states, are plotted in Figure 2in light grey, dark grey and black. The
complete Maple 13 code of the whole procedure is available from the author upon request.6

Applying theaccuracy testsdescribed at the end of Section 4 to the approximate policiesχ̄h (µ)
obtained in the last paragraph it turns out that our results exhibit a maximum error of3 × 10−4 only
for the benchmark caseM – corresponding toβM = 0.0124 – already solved in [7] through finite-
difference methods.7 For h = L andh = U the maximum errors rapidly worsen, getting around

4To avoid collinearity with the approximate function, the number of nodes must be different thann, the number
of elements of the basis used in̄χh defined by (43). Also, the larger the nodes the better the approximation in (46). We
observed no differences in the results with nodes between10 and100, while larger nodes start slowing down the algorithm
with no improvement. Hence, we opted for an intermediate value around100/2 = 50, to which we add the degree of
approximation,n = 7.

5See pp.125-126 in [2].
6We also tried a minimization algorithm in (45) based on purely Newton iterationswith line searchand a quadratic

penalty functionfor the two constraints [see equation (4.6.7) on p. 123 in [2]], but at best we were able to exactly replicate
the solution provided by the NLP solver in the ‘Optimization’ package of Maple 13, adding no improvement over it.
Furthermore, Galerkin and orthogonal collocation methodshave been tried through the ‘fsolve’ algorithm of Maple 13
applied to systems (36) and (37) respectively: both yieldeddefinitely worse results from all points of view.

7For this special case the results from finite-difference andleast squares projection methods coincide.
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3 × 10−2. These errors correspond to the maximum of the (absolute value of the) residual function

Rh (µ, a) – evaluated ata solving (45) – over the interval
[

µ
h
, µh

]

, as shown in Figures 3(a) and 3(b)

[Figure 3(b) amplifies the values ofRM in Figure 3(a)], which provide a measure of the maximum
distance between the approximateχ̄h (µ) and the trueχh (µ). Moreover, it is clear from the figures
that none of them really oscillate around zero.

µ

χ

µ∗

U µ∗

M µ∗

L µs
U µs

M µs
L

χ∗

U

χ∗

M

χ∗

L

χs
U

χs
M

χs
L

χ̄L (µ)

χ̄M (µ)

χ̄U (µ)

FIGURE 2: approximate detrended policies in the three economiesh ∈ {L,M,U}.

µ

Rh

RU (µ)

RM (µ)

RL (µ)

0

−0.03

−0.02

−0.01

0.01

0.02

0.03

(a)

µ
0
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0.0001

0.0002

0.0003
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FIGURE 3: (a) residual functions for the three economies; (b) magnification of residuals for the benchmark
economyh =M .

Finally, Table 2 lists the coefficientsais of the approximate policies̄χh (µ, a) in (43) obtained
in the last paragraph forh ∈ {L,M,U}. It is immediately seen that whenh = M they exhibit a
decreasing pattern only up toa6 – at values around10−4 – and they start to oscillate thereafter, while
whenh = L or h = U they start to oscillate already aftera3 – at values around3× 10−2.
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Coefficients EconomyL EconomyM EconomyU
a0 12.205573 11.236049 10.216761
a1 4.867376 4.693670 4.435077
a2 0.038693 −0.080298 −0.185641
a3 −0.025176 0.009586 0.039838
a4 0.037159 −0.001159 −0.059263
a5 0.037148 0.000507 −0.009536
a6 −0.011437 −0.000069 −0.0075921
a7 −0.016252 −0.000168 0.020616

TABLE 2: approximate policies’ coefficients in the three economies.

6 Qualitative Analysis of the Transition Dynamics

To get the approximated time-path trajectoriesµ (t) we substitute the approximate optimal policies
χ̄h (µ) computed before into the first equation of (22), yielding thefollowing ODE in t,

µ̇ (t) = {1− 2β (1− α)µ (t) /Q [µ (t)]} {θ [µ (t)]α − χ̄h [µ (t)]} , (47)

withQ (·) defined in (23). ODE (47) can be numerically solved through the standardFehlberg fourth-
fifth order Runge-Kutta method with degree four interpolantmethod available in Maple 13. The time-
path trajectoryχ (t) is then computed by lettingχ (t) = χ̄h [µ (t)] with µ (t) just obtained. Figures
4(a) and 4(b) report the approximate trajectoriesµh (t) andχh (t) for 0 ≤ t ≤ 400 andh ∈ {L,M,U}.
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14

16

(b)

FIGURE 4: time-path trajectories (a)µh (t) and (b)χh (t) for h = L (light grey),h =M (dark grey) and
h = U (black).

With µ (t) andχ (t) at hand, we can compute the time-path trajectories of the stock of knowl-
edge,A (t), and capital,k (t), again by usingµ (t) in (21) and then computingk (t) = k̃ [A (t)] from
the definition of turnpike in (10). Similarly, the time-pathtrajectory of output is given byy (t) =

θA (t)
{

k̃ [A (t)] /A (t)
}α

, while the time-path trajectory of the optimal consumptionc (t) is obtained

by using trajectoriesχ (t) andA (t) in (20). Figure 5(a) draws theAh (t) trajectories all starting from
A0 = 2.0379 in t = 0, where it is seen that the stock of knowledge in economyU overcome that in the
other economies after a short time. Figures 5(b) shows that the same occurs for the stock of capital,
kh (t), but after a longer period of time. Similar patterns are shown in Figures 5(c) and 5(d) for the
output,yh (t), and consumption,ch (t), trajectories.
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FIGURE 5: time-path trajectories (a)Ah (t), (b) kh (t), (c) yh (t) and (d)ch (t) for h = L (light grey),h =M
(dark grey) andh = U (black).

t
0 100 200 300 400

γA

0.005

0.01

0.015

0.02

(a)

t
0 100 200 300 400

0.005

0.01

0.015

0.02

γk

−0.01

−0.005

(b)

t
0 100 200 300 400

0.005

0.01

0.015

0.02

γy

(c)

t
0 100 200 300 400

0.005

0.01

0.015

0.02

−0.005

γc

(d)

FIGURE 6: growth rate time-path trajectories of (a)Ah (t), (b) kh (t), (c) yh (t) and (d)ch (t) for h = L (light
grey),h =M (dark grey) andh = U (black).
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All these figures provide aqualitative testfor the approximation technique developed in former
sections: they show that our approximate trajectories exhibit a quite reasonable behavior. Only Figure
6, reporting transitory growth rates for the four variables, A, k, y andc, all converging to the asymp-
totic constant growth rates computed in (42) for each economy, actually detects some blurry behavior
of such variables in early times for the economiesh = L andh = U , thus emphasizing larger inaccu-

racies of the approximations̄χh close to the upper endpointsµh of the state spaces
[

µ
h
, µh

]

in these

two scenarios.

7 Conclusions

In this paper a projection method based on computing the least squares of the residual function built
upon an approximate solution for the ODE (29) defining the optimal policy of the detrended version of
the recombinant growth model discussed by Privileggi [7] isproposed. The same parameters’ values
for the discount rate, the CIES instantaneous utility and theCobb-Douglas production for the output
sector as in [7] has been assumed, while we left the efficiencyparameter defining the (hyperbolic)
probability of success (3) in matching pairs of ideas,β, free to change. Although our results quickly
degenerates as one departs from the benchmark valueβM = 0.0124 used in [7], we succeeded in
approximating time-path trajectories – that is, transition dynamics – which appear to be sufficiently
regular forβ-values in a neighborhood of0.0124. This is a substantial step forward with respect to
the result obtained by Privileggi [7].

After trying finite-difference and projection methods, however, we must conclude that ODE (29) is
quite tough to tackle numerically. We tested our code for allprojection methods described in Section
4 – least squares, Galerkin and Orthogonal collocation – on more standard Ramsey-like model and
we found that it works reasonably well. Vice versa, when applied to the recombinant growth model,
the same code does not work satisfactorily in case of Galerkin and Orthogonal collocation, while in
the least square algorithm it works only up to a degree of approximationn = 7, as larger values ofn
do not reduce residuals and the coefficientsai of the approximatēχh (µ, a) in (43) keep oscillating for
i > 7. Nonetheless, we believe that there is room for applying theprojection technique to study the
transition dynamics in a similar model in which the production of knowledge is monopolized through
intellectual property rights, which will be the topic of future research.
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