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Summary. We study a one-sector stochastic optimal growth model with a representative
agent. Utility is logarithmic and the production function is of the Cobb-Douglas form with
capital exponent α. Production is affected by a multiplicative shock taking one of two values
with positive probabilities p and 1 − p. It is well known that for this economy, optimal paths
converge to a unique steady state, which is an invariant distribution. We are concerned with
properties of this distribution. By using the theory of Iterated Function Systems, we are able to
characterize such a distribution in terms of singularity versus absolute continuity as parameters α
and p change. We establish mutual singularity of the invariant distributions as p varies between 0
and 1 whenever α < 1/2. More delicate is the case α > 1/2. Singularity with respect to Lebesgue
measure also appears for values α, p such that α < pp (1− p)(1−p). For α > pp (1− p)(1−p) and
1/3 ≤ p ≤ 2/3, Peres and Solomyak (1998) have shown that the distribution is a.e. absolutely
continuous. Characterization of the invariant distribution in the remaining cases is still an open
question. The entire analysis is summarized through a bifurcation diagram, drawn in terms of
pairs (α, p).

Key words Stochastic optimal growth, Iterated Function System, singular and absolutely
continuous invariant distributions

JEL Classification Numbers C61, O41

1 Introduction

In deterministic optimal growth models, it is customary to characterize a (stable) steady state,
and also to examine how the steady state changes as parameters of the model change.

? This research was partially supported by CNR (Italy) under the “Short-term mobility”program and
by M.U.R.S.T. (Italy) National Group on “Nonlinear Dynamics and Stochastic Models in Economics and
Finance”. We are indebted to Rabi Bhattacharya for providing us with the reference to Solomyak’s (1995)
paper. The present version has benefitted from comments by Mukul Majumdar and two anonymous
referees.
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In contrast to this, relatively little is known about the nature of the steady state of stochastic
optimal growth models. A stochastic steady state is identified as an invariant distribution, and,
since the seminal papers by Lucas-Prescott [41] and Brock-Mirman [11], a large part of the
literature on the subject has focused on the existence, uniqueness and global stability of this
invariant distribution. See, for example, [44], [45], [10], [16], [28] and, more recently, [34], [6] and
[57].
However, the problem of characterizing such a distribution appears to have received far

less attention even for the simplest examples arising in such models. Consequently, our state
of knowledge, regarding how the stochastic steady state changes with the parameters of the
model, is extremely limited. An exception is the paper by Mirman and Zilcha [46] where, for
some examples with specific parameter values, the limiting distribution function can be directly
computed.
The aim of the present work is to examine one example of an optimal growth model under

uncertainty, in as much detail as possible, and address specifically two questions regarding the
stochastic steady state of the model:

1. What is the nature of the invariant distribution representing the stochastic steady-state?
Specifically, is it absolutely continuous, so that it can be represented by a density, which could
possibly be estimated in terms of a few parameters? Or, is it singular, so that, essentially, we
do not have a convenient way of representing the function without actually stating the value
of the function for every point in its domain?

2. How does the nature of the invariant distribution (specifically, its absolute continuity or
singularity) change with parameters of the optimal growth model generating it? Specifically,
is it possible to represent this information in the form of a convenient “bifurcation diagram”
involving the key parameters of the optimal growth model?

These questions appear to be quite basic. Yet, as we will see, answering them, even in the
context of a simple example of an optimal growth model, is surprisingly diffi cult, and the whole
family of invariant measures obtained for a large set of parameters values exhibits an extremely
rich and complicated structure.
The particular example of optimal growth under uncertainty that we discuss is a familiar one

in which the utility function is logarithmic and the production function is of the Cobb-Douglas
form with capital exponent α. Uncertainty is captured in terms of a multiplicative shock to the
production function taking one of two values, with positive probabilities p and 1 − p, which
are fixed over time. [That is, the process of exogenous shocks is independent and identically
distributed with marginal probability distribution given by these specified probabilities].
It is known that this optimal growth problem can be solved, using dynamic programming

methods, to obtain an optimal policy function. This, in turn, yields a non-linear stochastic
process, governing the evolution of the state variable (the capital stock of the economy). Using
the specific structure of the example, it is possible, through an appropriate log-transformation,
to convert this into an iterated function system (IFS) involving affi ne functions (or similarities).
A straightforward application of the theory of iterated function systems leads to the functional
equation governing the invariant distribution1 of the (transformed) random dynamical system.
We note that since our random dynamical system is generated by a finite number of affi ne

maps which are contractions, the existence, uniqueness and global stability of the invariant
distribution (starting from an arbitrary initial distribution), which the literature is principally
concerned with, are guaranteed by a straightforward application of the standard theory of iterated
function systems, developed by Karlin [38], Norman [48], Hutchinson [35], Barnsley and Demko

1 Whenever the IFS involves similarities, its invariant distribution is also called a self-similar measure.
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[4], and others. [For ease of exposition, a brief review of the theory of IFS is presented in Section
2].
Our objective is to be able to say something useful about the stochastic steady state beyond

the above mentioned properties2 . To this end, we provide a heuristic discussion in Section 3
regarding the features of the stochastic steady state that one may expect to obtain. In particular,
we observe that the support of the invariant measure should be “full” or “thin”depending on
whether or not the images of the maps of our dynamical system “overlap”. In addition, we relate
the invariant measure of our IFS to the distribution of a random variable, defined in terms of an
infinite series, and known as an Erdös series.
This link allows us to exploit the mathematical literature on the distribution of the Erdös

series. The literature on this topic has developed over about sixty years (see Peres, Schlag and
Solomyak [50]), and much of it is inaccessible to the non-specialist. The principal task of this
paper is to provide a systematic review of the part of this literature that is directly relevant for
the economic problem that we are studying. All the mathematical results that we review are
known, except for the result on mutual singularity in Section 4. To make our review useful to a
wider audience, we have tried to provide (especially in Sections 4 and 5) elementary treatments
of the relevant results (on singular distributions), and self-contained expositions of the techniques
involved.
We start our formal analysis of the nature of the stochastic steady state in Section 4. In the

first subsection we confine our attention to “low”values of our technological parameter, α, which
in our case turns out to be the range α ∈ (0, 1/2). For α ∈ (0, 1/2), the images of the maps of our
IFS do not overlap, so that the support of the invariant distribution is seen to be a Cantor-like
set of Lebesgue measure zero. The invariant distribution is clearly singular in this case, and its
graph is the well-known “Devil’s Staircase”. It is worthwhile to note that the actual magnitude
of the probability of picking each map of the IFS plays no role in obtaining this conclusion.
In contrast, for the borderline case of α = 1/2, the magnitude of the probability of picking

each map of the IFS plays a crucial role in determining the nature of the stochastic steady state.
Thus, in the equal probability case, it is easy to see that the invariant distribution is uniform
and so absolutely continuous. On the other hand, for the unequal probability case, the invariant
distribution is always singular, leading to a continuous, strictly increasing distribution function
on the unit interval, whose derivative is zero (Lebesgue) almost everywhere. [Construction of a
function with these features figures prominently in Lebesgue’s theory of integration].
To conclude Section 4, we are able to establish an even stronger property of the invariant

distributions for α ∈ (0, 1/2]. We prove that they are all mutually singular; that is, they con-
centrate over subsets of Cantor-like sets that have empty intersection. This result is in line with
the work started by Montrucchio and Privileggi [47], where they found that the support of the
invariant distribution is a fractal set (for α ∈ (0, 1/2)). Thus rather strange dynamics can be
optimal in standard neo-classical stochastic growth models. The “mutual singularity”property
shows that the “thin support” of the invariant distribution is itself highly sensitive to small
changes in probabilities.
Section 5 provides a further refinement of the singularity result by showing that for the

combination of parameter values (α, p) for which

1/2 < α < pp(1− p)(1−p)

2 The idea of characterizing complexity of measures, usually, but not necessarily, defined over fractal
supports, is due to Mandelbrot [42], who called this approach multifractal analysis. Far from pursuing
a completely exhaustive multifractal study, here we confine our research on singularity versus absolute
continuity properties of the invariant distribution.
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the invariant distribution is singular with respect to Lebesgue measure. This means that the
limiting distribution can be singular for (a set of positive Lebesgue measure of) values α > 1/2
as well, provided that probabilities p and 1−p are asymmetric enough. Coupled with singularity
for α ∈ (0, 1/2), all p, and for α = 1/2, p 6= 1/2, this is a well known result in the mathematical
literature (see the discussion in Section 5). We provide a simplified proof based on the concept
of Hausdorff dimension, which we discuss briefly to keep our exposition self-contained.
In Section 6, we turn our attention to the remaining cases in which the technological para-

meter, α, is relatively “high”and probabilities p and 1− p are not too asymmetric, that is, pairs
of parameters (α, p) such that

pp(1− p)(1−p) < α < 1. (1)

This turns out to be the most diffi cult situation to analyze. Our investigation of this case is
incomplete; we report an important result, recently established by Peres and Solomyak [52],
which establishes almost everywhere absolute continuity of the invariant distribution for values
of the probability p in the interval [1/3, 2/3] and pairs (α, p) satisfying (1).
It is interesting to find that the function pp(1−p)(1−p), at least for 1/3 ≤ p ≤ 2/3, turns out to

be the borderline between singularity and (generic) absolute continuity of the invariant distribu-
tion. In particular, for a given p in [1/3, 2/3], as α increases from 1/2 to 1 (which means that the
degree of “overlap”of the images of the maps of the IFS increases), the distribution turns from
a singular one to an absolutely continuous one around the value α = pp(1− p)(1−p). That is, the
turning point from singularity to absolute continuity of the invariant distribution is determined
precisely by the entropy, [−p ln p − (1− p) ln (1− p)], of the Bernoulli process underlying the
exogenous shocks in our growth model. Furthermore, invariant distributions exhibit increasing
“smoothness”above the entropy curve: for almost every pp(1− p)(1−p) < α ≤ p2 + (1− p)2 , the
distributions have densities in Lγ , where 1 < γ ≤ 2, and γ increases as α increases.
The whole discussion leads to Section 7, where a partial “bifurcation diagram” in terms of

the parameters (α, p) on the unit square, indicates how the nature of the stochastic steady state
varies with changes in these parameters (see Figure 5). By analyzing another result by Peres and
Solomyak [52], which establishes a necessary smoothness condition for the invariant probability,
we discuss further developments, and we sketch a conjectured “complete” bifurcation diagram
(see Figure 6).

2 The Framework

In this section, we will describe the framework for our subsequent analysis. The concepts and
basic results of iterated function systems (IFS) are essential to this study, and we provide a
simplified exposition in Section 2.1. This exposition is based on Stark and Bressloff [58], and
Lasota and Mackey [39]. In Section 2.2, we introduce the familiar model of optimal growth
under uncertainty, and show, in the context of a particular example, how the analysis of optimal
dynamics in this model reduces to the study of an IFS.

2.1 Iterated Function Systems

2.1.1 Definitions Let (X, d) be a complete metric space. An IFS (f, p) consists of a finite number
of mappings {f0, . . . , fm−1} from X to X, and a set of associated probabilities {p0, . . . , pm−1} (so
that pz > 0 for z = 0, . . . ,m−1 and p0+· · ·+pm−1 = 1). Such an IFS gives a (random) dynamical
system by defining a (random) orbit of f to be a sequence {xt}∞t=0 such that xt+1 = fzt (xt) where
{zt}∞t=0 are i.i.d. over {0, . . . ,m− 1} with distribution {p0, . . . , pm−1}.
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We are interested in IFS with contracting maps. Hence, the fzs will be assumed to be con-
tractions; that is, for each z ∈ {0, . . . ,m− 1} there is a γz such that 0 ≤ γz < 1 and for all
x, y ∈ X

d(fz(x), fz(y)) ≤ γzd(x, y). (2)

We shall denote by γ the maximum of the γz. Clearly γ < 1.
The maps {f0, . . . , fm−1} induce an operator T on X, called the Barnsley operator, defined

by:
T (A) = f0(A) ∪ · · · ∪ fm−1(A), A ⊂ X, (3)

where fz(A) denotes the image of the set A through fz. Operator T allows for a definition of an
invariant set of an IFS. A set Af ⊂ X is said to be an invariant set of f if it is compact and
satisfies

T (Af ) = Af . (4)

One can also define aMarkov operator M which describes the evolution of probabilities under
the process xt+1 = fzt (xt). Thus let B(X) be the σ-algebra of Borel measurable subsets of X
and P(X) the space of probability measures on B(X). Then if µ ∈ P(X) is an initial probability
distribution we want M(µ) to be the distribution after one iteration of f . M is then given by

Mµ (B) =
m−1∑
z=0

pzµ
(
f−1z (B)

)
, for all B ∈ B(X)

where f−1z (B) denotes the set {x ∈ X : fz(x) ∈ B}. Note that M is a linear operator from P(X)
to itself.

2.1.2 The Invariant Measure of an IFS We shall be interested in the asymptotic behavior of
measures under repeated application of M ; in other words, in the long run behavior of distribu-
tions as they evolve under f . Since the maps fz of the IFS we are focusing on are contractions,
it turns out that there is a unique invariant distribution µf , that is

µf =M
(
µf
)

(5)

and the iterates M t (µ)s converge weakly to µf as t→∞ for all initial distributions µ ∈ P(X).
The simplest proof of the existence and uniqueness of µf uses the Hutchinson [35] metric L

defined over a subset L(X) of P(X). For all pairs µ, υ ∈ P(X), define a pseudo-metric3 by

L(µ, υ) = sup

{∣∣∣∣∫
X

φdµ−
∫
X

φdυ

∣∣∣∣ : Lip (φ) ≤ 1} (6)

where the supremum is taken over all functions φ : X → R that are bounded and with Lipschitz
constant not larger than 1. Fix any a ∈ X, and define4

L(X) =
{
µ ∈ P(X) :

∫
d (x, a) dµ <∞

}
.

L defined in (6) satisfies the triangle inequality, thus L(X) does not depend on a.
3 This is not a metric: L is clearly non-negative, symmetric and satisfies the triangle inequality, but
it could be plus infinity for some pair µ, υ ∈ P(X); also L (µ, υ) = 0 does not necessarily imply µ = υ.
Therefore, we need to restrict our probability space to a subset L(X).
4 Note that the space L(X) is more general than the space of probability measures with bounded
support actually used by Hutchinson [35].
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When f satisfies (2), the operator M : L(X) → L(X) turns out to be a contraction with
respect to L. In fact we have L (M(µ),M(υ)) ≤ γL (µ, υ). Then through a contraction mapping
argument it can be shown that µf is the unique attracting fixed point of M . Since the L-metric
convergence implies weak convergence over L(X) (see, Proposition 5 in the Appendix), it follows
that M t (µ) converges weakly5 to µf .
Since the measure µf is the unique invariant measure for M , it must be ergodic. However a

much stronger property holds: µf is in fact a Sinai-Ruelle-Bowen (SRB) measure. This means
that for all x0 ∈ X and almost every sequence {fzt} of maps the visiting frequency of the orbit
{xt} to a set B ∈ B(X) is simply µf (B), that is

lim
n→∞

# {xt ∈ B : 1 ≤ t ≤ n}
n

= µf (B) (7)

This was first proved by Norman [48] and later independently by Elton [21].
Equation (7) provides the simplest method of estimating µf .

2.1.3 The Attractor of an IFS The existence of a (unique) invariant set, Af , of f can be seen
as follows. Consider the space K (X), the set of all non-empty compact sets in X. This is itself
a complete metric space when endowed with the Hausdorff metric dH , which is defined (see
Falconer [25]) as follows. Let

Aδ = {x ∈ X : d (x− a) < δ for some a ∈ A} (8)

denote the δ-parallel body of A ∈ K (X), i.e., the set of points within distance δ of A. Then the
Hausdorff metric is defined for A,B ∈ K (X) as

dH(A,B) = inf {δ > 0 : A ⊂ Bδ and B ⊂ Aδ} .

It is easily seen that dH (T (A), T (B)) ≤ γdH(A,B) (see, for example [25] or [39]), so that T
is a contraction on K (X). Thus, T has a unique fixed point, call it Af . Then Af is the unique
invariant set of f . Further, we have T t(A0) → Af as t → ∞ for any initial A0 ∈ K (X); and,
given any A0 ∈ K(X) such that T (A0) ⊂ A0, we have Af ⊂ T t+1(A0) ⊂ T t(A0) for t = 0, 1, 2, . . .
(see Proposition 12.8.3, p. 439, of Lasota and Mackey [39]).
The support of the invariant distribution, µf , is called the attractor of f . It is useful to note

that this attractor is the same as the unique invariant set, Af , obtained (above) by purely non-
probabilistic methods. This can be seen as follows: given any µ ∈ P(X), define µt = M t(µ) for
t = 0, 1, 2, . . .. Then, if the support of µ is a compact set, we have (by Proposition 12.8.2, p.
435 of Lasota and Mackey [39]) (support of µt) = T t (support of µ). Applying this result to µf ,
we have

(
support of µf

)
= T

(
support of µf

)
, so that (since Af is the unique fixed point of T ),(

support of µf
)
= Af .

5 Hutchinson’s [35] construction works for the special case of an IFS with contracting maps. However,
refinements of the theory are possible for more general classes of IFS. For instance, Karlin [38] proves
existence of the invariant measure for the category of affi ne maps, while allowing the probabilities to
depend on the state and be Markovian. For Lipschitz maps, which are not necessarily contractive, but
are “contracting on average”, the existence and uniqueness of an invariant distribution µf to which the
iterates M t (µ) converge weakly, can be established. For a recent survey of results along these lines see,
for example, Diaconis and Freedman [15].
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2.2 One Sector Log-Cobb-Douglas Optimal Growth

Let us recall the formulation of the one-sector growth model with a Cobb-Douglas production
function G(x) = xα, 0 < α < 1, with a representative decision maker’s utility given by u(c) = ln c.
Suppose that an exogenous perturbation may reduce6 production by some parameter 0 < k < 1
with probability p > 0 (the same for all t = 0, 1, . . .). This independent and identically distributed
random shock enters multiplicatively into the production process so that output is given by
Gr(x) = rxα where r ∈ {k, 1}. The dynamic optimization problem can be explicitly written as
follows:

maxE0
∞∑
t=0

βt ln ct

where 0 < β < 1 is the discount factor, and the maximization is over all consumption plans
c = c0, c1, . . . such that for t = 0, 1, 2, . . .

ct = rtx
α
t − xt+1, ct ≥ 0, xt ≥ 0

and x0, r0 are given.
It is well known that the optimal policy for the concave problem just described is g(x, z) =

αβrxα (see [59]); i.e. the plan xt generated recursively by

xt+1 = g(xt, rt) = αβrtx
α
t

is optimal.
Consider now the random dynamical system obtained by the following logarithmic transfor-

mation of xt:

yt = −
1− α
ln k

lnxt + 1 +
lnα+ lnβ

ln k
.

The new variable yt, associated with xt, evolves according to a linear policy, so that

yt+1 = αyt + (1− α)
(
1− ln rt

ln k

)
,

which can be rewritten as{
yt+1 = αyt with probability p
yt+1 = αyt + (1− α) with probability 1− p

Define the maps f0, f1 from [0, 1] to [0, 1] by:{
f0(y) = αy
f1(y) = αy + (1− α). (9)

It is useful to note here that the map f0 corresponds to the case where the shock, r, takes the
value k; and the map f1 corresponds to the case where the shock, r, takes the value 1. Denote
(p, 1− p) by (p0, p1). Then (f0, f1), together with (p0, p1) is an iterated function system over the
interval [0, 1]. The maps fz, for z ∈ {0, 1}, are clearly affi ne (or similarities, as they are one-
dimensional) and since 0 < α < 1, they are contractions on [0, 1]. Thus, we can apply the methods
of Section 2.1 directly to our IFS, and obtain the following proposition, which summarizes for
future reference the main results regarding the invariant distribution associated with our IFS.

Proposition 1 Consider the IFS described by [0, 1], (f0, f1) , (p0, p1).

6 The same framework works for a perturbation that “increases”production: k > 1.
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i) There is a unique compact set Af ⊂ [0, 1], such that f0(Af ) ∪ f1(Af ) = Af .
ii) For any compact set A, denoting At = T t(A) for t = 0, 1, 2, . . ., we have A0 ⊃ A1 ⊃ A2 ⊃

. . . ⊃ Af whenever T (A) ⊂ A.
iii) There is a unique probability distribution µf on ([0, 1],B ([0, 1])) satisfying the functional
equation (5), that is,

µf (A) = p0µf
(
f−10 (A)

)
+ p1µf

(
f−11 (A)

)
for all A ∈ B ([0, 1]) .

Further, Af is the support of µf .
iv) For µ ∈ L ([0, 1]), denoting µt = M t(µ) for t = 0, 1, 2, . . ., L(µt, µf ) → 0 as t → ∞, and
further µt converges weakly to µf .

3 Nature of the Stochastic Steady State: Discussion

In this section, we provide a preliminary discussion on the nature of the stochastic steady state
(invariant distribution) obtained in Section 2. This heuristic material helps us to proceed with
the formal presentation of the main results of the paper in the next three sections.
Our discussion pertains to three sub-topics. First, we comment on the support of the invariant

distribution, and how this is related to “overlaps”, or lack of it, of the IFS. Second, we relate the
study of our iterated function system to the analysis of a certain infinite series, which we refer to
as the Erdös series. Third, we summarize what is known in the mathematics literature regarding
the behavior of the Erdös series (equivalently the iterated function system).

3.1 The Support of the Invariant Distribution

The graphs of the functions given by (9), show that for 0 < α < 1/2, the image sets of the two
functions f0 and f1 are disjoint, a situation which can be described as the “non-overlapping”case
(see Figure 1(a)). In this case, the “gap”between the two image sets (in the unit interval) will
“spread”through the unit interval by successive applications of the maps (9). Thus, one would
expect the support of the invariant distribution to be “thin”(with zero Lebesgue measure) and
have features of the usual Cantor ternary set; in fact, for α = 1/3, the support is precisely the
Cantor ternary set.
On the other hand, for 1/2 ≤ α < 1, the image sets of the functions f0 and f1 have a non-

empty intersection. We can refer to this as the “overlapping”case (see Figure 1(b)). Here, the
successive iterations of the overlap can be expected to “fill up”the unit interval, so the invariant
distribution should have full support.
The above heuristics are actually seen to be valid as we demonstrate in the following sections.
It is important to remark that this construction does not depend on the magnitude of the

discount factor β nor on the amplitude of the shock k, but only on the technological parameter α.
The discount factor β only shifts the support of the invariant distribution of the original model
over the real line, while the exogenous shock k affects its amplitude.

3.2 Erdös Series

Let Ω be the space of all infinite sequences of zeros and ones; that is, an element of Ω is
ω = (ω0, ω1, ω2, . . .) where ωt∈ {0, 1} for t = 0, 1, . . .. Let F be the smallest σ-algebra containing
all the finite n-cylinders (ω0, ω1, . . . , ωn−1)× {0, 1}× {0, 1} × · · · and P the product measure
over F generated by the probability over {0, 1} such that Pr (0) = p and Pr (1) = 1−p. Then we
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have a probability space (Ω,F , P ) which we refer to as a Bernoulli space. Define the projection
εt (ω) = ωt. Then {ωt} is a sequence of independent and identically distributed random variables
on (Ω,F , P ).
Using the sequence {ωt}, we can write our iterated function system as:

yt+1(ω) = αyt(ω) + (1− α)ωt. (10)

By Proposition 1, there is a unique limiting distribution µf to which the random variable yt(ω)
converges weakly, starting from any initial probability over y0(ω). For simplicity, consider the
Dirac measure that concentrates the whole probability over y0(ω) = 0. Iteration of (10) leads to

yt(ω) = (1− α)
t−1∑
s=0

ωsα
t−s−1.

Since ωs are independent random variables, the probability distribution of yt(ω) is the same as
that of the random variable

(1− α)
t−1∑
s=0

ωsα
s,

which converges almost everywhere to the series

Πα(ω) = (1− α)
∞∑
s=0

ωsα
s (11)

which is called Erdös series. Since almost everywhere convergence implies weak convergence (see,
e.g., Theorem 25.2, p. 284 in [9]), the distribution of (11) is the same as the invariant distribution,
µf , of the system (10).
Note that this construction allows us to interpret µf as the image probability of P through

the map Πα : Ω → [0, 1].
The Erdös series (11) is usually written in a slightly different format:

∞∑
s=0

±αs, (12)

it being understood that the minus sign is taken with probability p and the plus sign with
probability (1− p). Note that (12) is the same as (11) where random variables ω′t ∈ {−1, 1} are
used in place of ωt ∈ {0, 1} and the image set of the corresponding IFS is the translation of
interval [0, 1] to the interval [−1/(1− α), 1/(1− α)]. Thus, the nature of the distribution µf of
(11) can be studied by analyzing the distribution of the random variable (12).

3.3 Brief Review of the Mathematical Literature

Until a few years ago, the mathematical literature focused on the problem of analyzing the
nature of the distribution of the random variable given in (12) exclusively in the special case
where p = 1/2. The topic is known as the study of “symmetric infinite Bernoulli convolutions”.
Only very recently some important results have been extended to the asymmetric case p 6= 1/2.
All this stream of research has been striving around the fundamental question on deciding for
what values of α, µf is absolutely continuous, and for what values of α, µf is singular. For an
exhaustive mathematical survey on the whole history of Bernoulli convolutions, see [50].
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It is known, in the symmetric case, that the distribution function is “pure”; that is, it is either
absolutely continuous or it is singular (Jessen and Wintner [36]). Further, Kershner and Wintner
[37] have shown that if 0 < α < 1/2, the support of the distribution function is a Cantor set of
Lebesgue measure zero, and therefore the distribution function is singular. For α = 1/2, one gets
the uniform distribution, which is not singular.
For the symmetric case p = 1/2, denote by S⊥ the set of α ∈ (1/2, 1) such that µf is singular.

It was often conjectured that the distribution function should be absolutely continuous with
respect to Lebesgue measure when 1/2 < α < 1. Wintner [62] showed that if α is of the form
(1/2)1/k where k ∈ {1, 2, 3, . . .}, then the distribution function is absolutely continuous. However,
in the other direction, Erdös [22] showed that when α is the positive solution of the equation
α2 + α − 1 = 0, so that α = (

√
5− 1)/2, then α ∈ S⊥. More generally, the results of Erdös [22]

may be described as follows. Recall that an algebraic number is the solution of a polynomial, all
of whose coeffi cients are integers, and whose leading coeffi cient is either 1 or −1. An algebraic
number is called a Pisot-Vijayaraghavan number when all its Galois conjugates are less than one
in absolute value. Erdös [22] showed that when α is the reciprocal of a Pisot-Vijayaraghavan
number, then α ∈ S⊥. It is an open question whether these numbers, which form a closed
countable set, constitute all of S⊥.
Erdös [23] also showed that S⊥ ∩ (ξ, 1) has zero Lebesgue measure for some ξ < 1, so that

absolute continuity of the invariant distribution obtains for (almost every) α suffi ciently close to
1. A conjecture that emerged from these findings is that the set S⊥ itself should have Lebesgue
measure zero.
Since the contributions of Erdös, there were a few additional results for the case 1/2 < α < 1,

which are surveyed in Garsia [29]. In their brief discussion of this problem, Dubins and Freedman
[17] state that deciding whether the distribution is singular or absolutely continuous for α > 1/2
is a “famous open question”. And Edgar [19], briefly surveying this topic, refers to it as an “Erdös
problem”.
Solomyak [56] made a real breakthrough when he showed that S⊥ has zero Lebesgue measure.

More precisely, he established that for almost every α ∈ (1/2, 1), the distribution has density in
L2 (R) and for almost every α ∈

(
2−1/2, 1

)
the density is bounded and continuous. A simpler proof

of the same result was subsequently found by Peres and Solomyak [51]. A stronger result has been
very lately achieved by Peres and Schlag [49], where they prove that the Hausdorff dimension
(see Section 5.1 in the sequel) of the set S⊥ ∩ (α, 1) is less than one for all 1/2 < α < 1. Note,
however, that this still does not settle Garsia’s [29] conjecture that the distribution is absolutely
continuous for all but a countable number of values of α in (1/2, 1).
Very recent contributions to this literature deal with the asymmetric case p 6= 1/2. Mauldin

and Simon [43] extended Jessen andWintner’s [36] finding on “purity”of the distribution function
also for p 6= 1/2. Peres, Schlag and Solomyak [50] further pushed the argument to finite families
of contracting similitudes (namely, IFS with m ≥ 2 affi ne maps) by showing that if the limiting
distribution ν is not singular, then it is absolutely continuous with respect to Lebesgue measure
and the restriction of Lebesgue measure to the support of ν is absolutely continuous with respect
to ν.
Especially useful for our purposes, is the contribution by Peres and Solomyak [52], established

for a generic family of contracting similitudes. We restate here their result in terms of our IFS
given by (9). First, they found that µf is singular below the “entropy”curve, that is for values of
parameters (α, p) such that 0 < α < pp(1− p)(1−p), while it is absolutely continuous for almost
every pp(1 − p)(1−p) < α < 1 whenever 1/3 ≤ p ≤ 2/3. Moreover, for 1/3 ≤ p ≤ 2/3, letting
1 < γ ≤ 2, for almost every [pγ + (1− p)γ ]1/(γ−1) ≤ α < 1, µf has density in L

γ . Finally, this
property is further refined by the following necessary smoothness condition: for all p and all
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γ > 1, if µf is absolutely continuous with density in L
γ , then α ≥ [pγ + (1− p)γ ]1/(γ−1). We

shall discuss in more detail these last findings in Section 6.

4 Singular Invariant Distributions

In this section, we provide an analysis of the invariant distributions when the technological
parameter, α, is “low”, which in our case translates to α ∈ (0, 1/2]. Thus, our results may be
viewed as extensions of the mathematical literature reviewed in Section 3.3 to the case where p
is not necessarily equal to 1/2.
In Section 4.1, we briefly review the case where α ∈ (0, 1/2). Here, the theory for p 6= 1/2 is

entirely analogous to the theory for p = 1/2, since, as we have noted before, the support of the
invariant distribution is a Cantor set of Lebesgue measure zero, and this support is independent
of the magnitude of p.
In Section 4.2, we consider the “borderline” case where α = 1/2. Here the theory for p 6=

1/2 is entirely unlike the theory for p = 1/2. While p = 1/2 generates the uniform invariant
distribution (which is, of course, absolutely continuous), p 6= 1/2 always generates a singular
invariant distribution. However, unlike in Section 4.1, this singular distribution has full support.
Section 4.3 is devoted to an improvement of the existing theory. By using the relationship

with Erdös series discussed in Section 3.2, we show that, for the whole range α ∈ (0, 1/2], not
only are the invariant measures singular with respect to Lebesgue measure, but they are also
mutually singular. This, of course, indicates a high sensitivity of the limiting distribution with
respect to changes in the parameter p. When α ∈ (0, 1/2), not only does the support (attractor)
exhibit fractal features, but also measures with the same support concentrate over sets with
empty intersection for different probabilities p and p′.

4.1 Singular Distributions of the Cantor Type

Consider the case where the parameter, α, has a value in (0, 1/2). Recall the Barnsley operator
(3) and define

A0 = [0, 1] , and An+1 = T (An) for n = 0, 1, . . .

Then, we have

A1 = T (A0) = [0, α] ∪ [1− α, 1],
A2 = T (A1) = [0, α

2] ∪ [(1− α), (1− α) + α2]
∪[α(1− α), α] ∪ [(1− α) + α(1− α), (1− α) + α].

Note that the Lebesgue measure of A0 is 1, that of A1 is 2α, and that of A2 is 22α2. By induction,
one can verify that An = Tn([0, 1]) consists of 2n intervals, each of Lebesgue measure αn, so
that λ(An) = 2nαn → 0 as n → ∞. Since, by Proposition 1 (ii), A0 ⊃ A1 ⊃ · · · ⊃ Af , where
Af is the attractor of the IFS, we have λ(Af ) = 0. Since Af is also the support of the invariant
distribution, µf , we clearly have µf (Af ) = 1. Thus, µf is singular with respect to Lebesgue
measure.
The distribution function corresponding to µf , when α = 1/3, is usually called a Cantor

function (since its support is precisely the Cantor ternary set) or a Lebesgue function (since it was
used by Lebesgue to demonstrate the need for absolute continuity in the fundamental theorem of
calculus). The graph of the distribution function, corresponding to µf , for α ∈ (0, 1/2) is referred
to as the “Devil’s Staircase”(see Figure 2).
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4.2 Singular Invariant Distributions of the Hellinger Type

Consider now the case where the technological parameter α = 1/2. In this case, the invariant
distribution function, F , is the unique7 distribution function over [0, 1] satisfying the functional
equation:

F (x) =

{
pF (2x) for x ∈ [0, 1/2)
p+ (1− p)F (2x− 1)for x ∈ [1/2, 1] (13)

If p = 1/2, then it is easy to see that F (x) = x for all x ∈ [0, 1] satisfies (13), and so the invariant
distribution function, F , must be the uniform distribution. In the optimal growth literature, this
particular case is discussed in [46].
For p 6= 1/2, the function, F , that is generated by (13) has been extensively discussed in the

mathematics literature as an example of a continuous, strictly increasing function, for which the
derivative (which exists Lebesgue almost everywhere) vanishes almost everywhere. This neces-
sarily means that F represents a measure that is singular with respect to the Lebesgue measure.
As Brown [12] points out, this type of function is properly attributed to Hellinger [32] in

whose thesis it first appears. The function, F , is obtained as the limit of a sequence of piecewise
linear functions, and the relevant properties of F are then verified from the properties of the
converging sequence of functions. Hellinger’s construction, which was subsequently generalized
by Salem [55], is discussed in detail in Riesz and Sz-Nagy [53], Hewitt and Stromberg [33] and
Asplund and Bungart [2]. It is also discussed, from the probabilistic viewpoint, in Billingsley [9].
De Rham [14] deduced the properties of F directly from the functional equation (13) governing

F , but his presentation is quite terse, as is quite clear from the more comprehensive account of
it in Yamaguti, Hata and Kigami [63].
Takacs [60] developed a method consisting in writing down a function, F , in explicit form, as

an infinite series, and verifying that it is continuous, strictly increasing and singular with respect
to Lebesgue measure. Given this result, one can show that the solution of (13) is singular by
simply verifying that his F satisfies (13).
Given any x ∈ [0, 1], we can write it uniquely as

x =

∞∑
r=0

2−ar (14)

where a0 < a1 < · · · < ar < · · · are positive integers8 . Define δ = (1/p) − 1, so that δ > 0, and
δ 6= 1 (since p 6= 1/2). Now define for x given by (14),

F (x) =

∞∑
r=0

δr(1 + δ)−ar (15)

and F (0) = 0. Then, by the theorem of Takacs [60], F is strictly increasing, continuous, and its
derivative is zero Lebesgue almost everywhere in the interval [0, 1]. It remains to verify that F
satisfies (13).
For x = 0, we have F (x) = pF (2x), as required in (13). Next, pick any x ∈ (0, 1/2]. Then,

a0 ≥ 2 in (14), and

2x =
∞∑
r=0

2−(ar−1) (16)

7 Uniqueness can be shown through the standard IFS argument. As a matter of fact, the graph of F
is the invariant set of two linear contraction maps from [0, 1]2 to itself, defined by (x, y) 7−→ [(1/2)x, py]
and (x, y) 7−→ [(1/2)x+ 1/2, (1− p)y + p].
8 Note that (14) corresponds to the dyadic expansion of x, i.e., the representation in base-2 of x, where
all multiple representations (such that they are all zero after a certain point) are eliminated.
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with a0 − 1 < a1 − 1 < · · · < ar − 1 < · · · positive integers. Thus, by definition (15), we have
F (2x) =

∞∑
r=0

δr(1 + δ)−(ar−1) = (1 + δ)F (x) = (1/p)F (x) which verifies (13). Finally, pick any

x ∈ (1/2, 1]. Then a0 = 1, a1 ≥ 2 in (14), and so by (16),

(2x− 1) =
∞∑
r=0

2−(ar+1−1)

with a1 − 1 < a2 − 1 < · · · < ar − 1 < · · · positive integers. Thus, by definition (15), we have

p+ (1− p)F (2x− 1) = 1

1 + δ
+
∞∑
r=0

δr+1(1 + δ)−ar+1 =
∞∑
r=0

δr(1 + δ)−ar = F (x)

which verifies (13).
A graph of F is indicated in Figure 3.

4.3 Mutually Singular Distributions

In Section 3.2 we have seen that the invariant probability measure of our IFS can be constructed
as the image probability of the Bernoulli space (Ω,F , P ) through the mapΠα : Ω → [0, 1] defined
in (11) as Πα(ω) = (1−α)

∑∞
t=0 ωtα

t. We now use this fact to prove that for all α ∈ (0, 1/2], two
invariant measures are mutually singular whenever different probabilities p and p′ are adopted
in the IFS. (For the standard definition of mutual singularity, see [7], p. 374). The idea is to
“transfer”this property from the space (Ω,F , P ) (on which it is well-known to be true) to the
image measure of Πα.
For each ω ∈ Ω and each n ∈ N, define

N (ω, n) = # {0 ≤ t ≤ n− 1 : ωt = 1} .

Let q = (1− p) and consider the set S (q) ⊂ Ω of sequences such that the frequency of 1’s is q:

S (q) =

{
ω ∈ Ω : lim

n→∞

N (ω, n)

n
= q

}
. (17)

Of course, S (q) ∩ S (q′) = ∅ for q 6= q′. By the strong law of large numbers (see [9], p.70), it
follows that for each p ∈ (0, 1), P (S (1− p)) = 1. As a consequence, each pair of Bernoulli prob-
abilities P and P ′ over (Ω,F) generated by marginal probabilities (Pr (0) = p,Pr (1) = 1− p)
and (Pr (0) = p′,Pr (1) = 1− p′) respectively, with p 6= p′, are mutually singular.
To stress dependence of the invariant measure on parameter p, let us denote the image measure

of Πα (our invariant distribution) by µ
p
f .

For each α ∈ (0, 1), we can introduce a metric, ρα, on the space Ω, given by

ρα (ω, ω
′) = α|ω∧ω

′| (18)

where |ω ∧ ω′| = min {t : ωt 6= ω′t}.
Since, for all α ∈ (0, 1) and all pairs ω, ω′ ∈ Ω,

|Πα(ω)−Πα(ω
′)| ≤ (1− α)α|ω∧ω

′|
∞∑
t=0

αt = ρα (ω, ω
′) ,
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we note that Πα is a Lipschitz continuous map from the metric space (Ω, ρα) to the metric
space([0, 1] , |·|), with Lipschitz constant 1. Moreover, if we restrict our attention only to α ∈
(0, 1/2), a stronger property holds:

|Πα(ω)−Πα(ω
′)| ≥ (1− α)α|ω∧ω

′|
(
1−

∞∑
t=1

αt

)
= (1− 2α) ρα (ω, ω′) ,

that is, Πα is bi-Lipschitz for α < 1/2. This implies that Πα is one-to-one, and thus invertible,
for α ∈ (0, 1/2).
A special situation occurs when α = 1/2: in this case Πα is “almost”one-to-one. To see this,

note that when α = 1/2, Πα is the base-2 representation of some real number x ∈ [0, 1]:

x =
∞∑
r=0

2−ar ≈ 0.ω0ω1ω2 . . .

where a0 < a1 < · · · < ar < · · · are positive integers [corresponding to values of ωt in (11)
equal to one]. By dropping double representations, we get a (restricted) one-to-one map. For our
purposes, it is useful to note that the inverse is not continuous but certainly measurable.
The discussion above is enough to prove the main result of this section.

Proposition 2 For each α ∈ (0, 1/2], the invariant distributions
{
µpf : p ∈ (0, 1)

}
are mutually

singular.

Proof We have seen that for α ∈ (0, 1/2], the map Πα is invertible. If α < 1/2, it is a consequence
of bi-Lipschitz property. If α = 1/2, we can suitably restrict the domain by dropping a countable
set of P -measure zero. The inverse map Π−1α is measurable. Take two Bernoulli probabilities over
Ω, P and P ′ generated by p and p′, with p 6= p′. By the discussion at the beginning of this section,
P and P ′ are mutually singular; that is, two sets Ω1, Ω2 exist so that Ω = Ω1∪Ω2, Ω1∩Ω2 = ∅
and P (Ω1) = P ′ (Ω2) = 0. Consider the images of these two sets through Πα: clearly, Πα (Ω1)
and Πα (Ω2) are measurable, disjoint and cover Πα (Ω). Since µ

p
f (Πα (Ω1)) = P (Ω1) = 0 and

µp
′

f (Πα (Ω2)) = 0, the two image measures are mutually singular.

Note that, through a different argument, for α = 1/2 we have established singularity of the
Hellinger distribution functions discussed in Section 4.2. As a matter of fact, since for p = 1/2
the (uniform) invariant distribution is itself the Lebesgue measure on [0, 1], by Proposition 2, for
all p 6= 1/2 the invariant distribution must be singular with respect to Lebesgue measure.

5 A Class of Singular Distributions for High Values of α

We now carry on our analysis by investigating the behavior of the invariant distribution for
values α > 1/2. From Figure 1(b), it is clear that, due to the overlapping of images of the IFS,
the study of the invariant distribution becomes more diffi cult.
This section is confined to a partial extension of the results on singularity developed before.

It turns out that for the combination of parameter values (α, p) satisfying

1/2 < α < pp(1− p)(1−p) (19)
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the invariant distribution is necessarily singular. Coupled with singularity results already ob-
tained in the previous sections for 0 < α < 1/2 (plus case α = 1/2 and p 6= 1/2), we can thus
assert that for all pairs (α, p) such that

0 < α < pp(1− p)(1−p)

the invariant distribution is singular with respect to Lebesgue measure.
This result leads to a general observation on existence of singular invariant distributions in

our context. When the entropy of the Bernoulli process, − (p ln p+ (1− p) ln(1− p)) (see [8]), is
relatively “low”, which in our context occurs when it is less than ln(1/α), then the invariant dis-
tribution is singular. Since the highest value of the entropy is ln 2, this condition is automatically
satisfied when α < 1/2. In the special case α = 1/2, the entropy is smaller than ln(1/α) for all
p except p = 1/2, and so the condition is satisfied for all p 6= 1/2. Thus, the results of Sections
4.1 and 4.2 can be viewed as particular cases of this general observation.
It is important to remark that singularity below the entropy curve is a well known property

in the mathematical literature, linking entropy and dimension theory. For our case of two possi-
bilities, with probabilities p and (1− p), it follows from the analysis of Besicovitch [5]. Eggleston
[20] generalized the result of Besicovitch to the case of any finite number of possibilities. A gen-
eral version of the statement above can be established, using the Shannon-McMillan-Breiman
Theorem. This approach is followed in Billingsley [7].
Here we provide a simplified proof without resorting directly to properties of the entropy.

We make use of only the notion of Hausdorff dimension, which we briefly review in Section 5.1.
In Section 5.2, we return to the sequence space introduced in Section 3.2, and show how the
Hausdorff dimension of a “probability 1 set”can be computed to be less than one. This, in turn,
means that the Lebesgue measure of this set is zero, and leads to the singularity of the invariant
distribution.

5.1 Hausdorff Dimension

Let (X, d) be a metric space. For F ⊂ X, and s ∈ R+, the s-dimensional Hausdorff outer
measure is denoted by Hs(F ; d) and is defined as follows. A collection A of subsets of X is called
a countable cover of F if

F ⊂
⋃
A∈A

A

and A is a countable family of sets. Given any δ > 0, a countable cover A of F is a δ-cover if
|A|d ≤ δ for all A ∈ A, where |A|d denotes the diameter of A:

|A|d = sup
x,y∈A

d(x, y)

We define
Hsδ(F ; d) = inf

∑
A∈A

(|A|d)
s

where the infimum is taken over all countable δ-covers A of the set F . Hsδ(F ; d) is non-increasing
in δ, and one can define:

Hs(F ; d) = lim
δ→0
Hsδ(F ; d)

as the s-dimensional Hausdorff outer measure of F (given the metric d).
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A useful result on Hausdorff outer measures is that for R (with the usual distance), the one-
dimensional Hausdorff outer measure of any set coincides with the Lebesgue outer measure of
that set (see, for example, [9], p. 208, or [18], p. 148-149).
Suppose δ < 1, then, given any δ-cover A, for any pair s < t,∑

A∈A
(|A|d)

t
=
∑
A∈A

(|A|d)
s
(|A|d)

t−s ≤ δt−s
∑
A∈A

(|A|d)
s ,

and so Ht(F ; d) ≤ δt−sHs(F ; d). Hence, Ht(F ; d) > 0 implies Hs(F ; d) =∞ and Hs(F ; d) <∞
implies Ht(F ; d) = 0. This means that Hs(F ; d) is decreasing in s and is everywhere +∞ or 0
but, at most, at a single point s0 ≥ 0, where it may satisfy 0 < Hs0(F ; d)<∞. This argument
leads to a useful definition of dimension. The Hausdorff-Besicovitch dimension of F is given by

dim(F ; d) = inf {s : Hs(F ; d) = 0} = sup {s : Hs(F ; d) =∞}

Clearly, if s0 ≡ dim(F ; d) < ∞, then for all s > s0, Hs (F ; d) = 0; and if s0 ≡ dim(F ; d) > 0,
then for all 0 ≤ s < s0, Hs (F ; d) =∞.
The relationship between s-dimensional Hausdorff outer measure and Hausdorff dimension of

a set can be depicted as in Figure 4.
A useful result (see [25] or [18]) on Hausdorff dimension is the following. Let (X, d) and (Y, d′)

be metric spaces, and f a Lipschitz continuous map from X to Y . Then, for every F ⊂ X,

dim (f (F ) ; d′) ≤ dim(F ; d).

5.2 Singularity for Low Entropy

Recall the probability space (Ω,F , P ) discussed in Section 3.2, the metric ρα defined in (18) and
the map Πα defined in (11). We will be concerned, in particular, with ρα for α ∈ (1/2, 1), and
with ρ1/2, which (for convenience) we will denote by ρ.
We have (deliberately) included the metric being used in our definition (and notation) of the

Hausdorff dimension, since this dimension clearly varies with the metric. From this perspective,
our choice of metric ρα for the space Ω is not accidental. Since ρα depends on α [that is, on
the “degree of overlapping” of the images of the maps f0 and f1 in (9)], it turns out that the
dimension of subsets of Ω depends on the contraction ratio of our IFS. This will play a crucial
role in the main result of this section. The following relation indicates how the dimension varies
as we employ different metrics ρα, that is, different contraction coeffi cients α.
Let F ⊂ Ω, and 0 < α < 1 be given. Then we have the relation

dim(F ; ρα) =

[
ln (1/2)

lnα

]
dim(F ; ρ). (20)

To see this, denote [ln (1/2) / lnα] by b, and note that for s ∈ R+, and A a δ-cover of F ,

Hsbδ (F ; ρα) = inf
∑
A∈A

(
|A|ρα

)sb
= inf

∑
A∈A

(
|A|ρ

)s
= Hsδ(F ; ρ)

Thus, letting δ → 0, we get
Hsb(F ; ρα) = Hs(F ; ρ)

and (20) follows consequently.
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Recall from Section 4.3 that Πα is Lipschitz with Lipschitz constant 1. Thus, we have for
every F ⊂ Ω,

dim(Πα(F ); |·|) ≤ dim(F ; ρα). (21)

We will now use again the set S(q) ⊂ Ω defined in (17). We will show that (by the law of
large numbers) S(q) is a set of P -measure 1 and of Hausdorff dimension less than 1 whenever
condition (19) holds.
If we consider the set S(q) in the metric space (Ω, ρ) [recall that ρ1/2 is denoted by ρ], then

we have the Besicovitch-Eggleston-Good result9 that

dim(S(q); ρ) =
(p ln p+ q ln q)

ln(1/2)
(22)

Using (20) and (22) we have

dim(S(q); ρα) =
(p ln p+ q ln q)

ln(α)
.

It follows that, under (19),

dim(S(q); ρα) < 1. (23)

Using (21) and (23), we obtain

dim(Πα(S(q)), |·|) < 1. (24)

By definition of Hausdorff dimension, (24) implies that

H1(Πα(S(q)), |·|) = 0

and since H1 coincides with Lebesgue outer measure, λ∗, we have

λ∗ (Πα(S(q))) = 0.

In particular then Πα(S(q)) is a Lebesgue measurable set (in the sense of Caratheodory); see
[54], p. 58. There is then a Borel set, B ⊂ [0, 1], such that Πα(S(q)) ⊂ B, and λ∗(B) = 0; see
Proposition 5, p. 58 in [54]. Thus λ(B) = 0, where λ is Lebesgue measure on R.
Now, we will show that the Borel set B obtained above has µf (B) = 1, where µf is the

invariant distribution of our IFS. To see this, note that, by the strong law of large numbers,
P (S(q)) = 1. By continuity of Πα on (Ω, ρα), Π

−1
α (B) is a Borel set of Ω, and Π−1α (B) ⊃ S(q).

Thus,

µf (B) = P (Π−1α (B)) ≥ P (S(q)) = 1

Since B is a Borel set in [0, 1] with λ(B) = 0 and µf (B) = 1, µf is singular with respect to
Lebesgue measure. We have thus demonstrated the following.

Proposition 3 For 1/2 < α < pp (1− p)1−p, µf is singular with respect to Lebesgue measure.

9 This important result was established for the case of two possibilities by Besicovitch [5]. For an
arbitrary finite number of possibilities, it was conjectured by Good [30], and proved by Eggleston [20].
For alternative approaches, see Billingsley ([7], [8]), and Edgar [18]. Note that (p ln p+ q ln q) measures
the negative of the metric entropy of a Bernoulli process with probabilities p and q. Therefore, the ratio
on the right side of (22) is the metric entropy relative to its maximum value ln 2.
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6 Absolutely Continuous Invariant Distributions

It remains to examine properties of the invariant distribution for pairs (α, p) satisfying (1):

pp (1− p)1−p < α < 1.

As we have already indicated in Section 3.3, for p = 1/2 and for Lebesgue almost every
α ∈ (1/2, 1), Solomyak [56] showed that the distribution has density in L2. His original proof
was based on Fourier transforms and the problem of estimating multiple zeros of certain power
series. The method of Fourier transform applies naturally to the symmetric case p = 1/2 and
proves useful in developing a theory in L2.
Subsequently, Peres and Solomyak [51] developed an alternative method, based on differenti-

ation of measures instead of Fourier transforms, to prove the same theorem as in [56]. The latter
approach (by-passing L2 theory) actually opened a way for some extensions to the asymmetric
case p 6= 1/2, where L2 theory fails to capture the main features of the invariant distribution in
some circumstances.
The main results along this direction are worked out by Peres and Solomyak [52] and may

be summarized as follows. By confining the range of values for the probability p to the interval
[1/3, 2/3], the authors established that the invariant distribution µf is generically absolutely

continuous above the entropy curve, namely for almost every pp (1− p)1−p < α < 1. Further-
more, again for 1/3 ≤ p ≤ 2/3, µf turns out to exhibit gradually increasing smoothness as the
technological parameter α rises above the entropy curve, more specifically, for 1 < γ ≤ 2 and for
almost every [pγ + (1− p)γ ]1/(γ−1) ≤ α < 1, µf has density in Lγ . Note that a theory only in L2
would be far too stringent to investigate this last behavior.
This seems to be the present state of art, at least pertaining to a characterization in terms

of (generic) absolute continuity above the entropy curve. More work is needed to extend the
above statements to values of p outside the interval [1/3, 2/3]; perhaps, as indicated by Peres
and Solomyak, a new approach may be needed.
However, another result in [52], stated in terms of necessary smoothness condition, sheds

some more light on this “gradually increasing smoothness” of µf for higher values of α. The
authors, indeed, state that for all p and all γ > 1, if µf is absolutely continuous with density in

Lγ , then necessarily α ≥ [pγ + (1− p)γ ]1/(γ−1).
In this section, we confine ourselves to a brief description of the basic ingredients necessary

to deal with our specific problem. We provide some material on Fourier Transforms in Section
6.1, while Section 6.2 shows how this material works in Solomyak’s [56] construction for the
symmetric case and how some method of estimating multiple zeros of power series can be used.
Finally, Section 6.3 discusses the extensions to the case p 6= 1/2 obtained in [52].

6.1 Fourier Transforms of the Erdös Series

Instead of looking at the invariant distribution µf , of our IFS, or equivalently the invariant
distribution of the Erdös series (11) discussed in Section 3.2, we find it convenient to work with
a class of series that includes (12). We describe this (class of) Erdös series as follows.
Let J ⊂ Z+ and εj (for j ∈ J) are independent and identically distributed random variables

taking values on the set D = {−1,+1}, with P (εj = −1) = p and P (εj = +1) = q. Suppose n
is a positive integer such that j ∈ J if and only if j + n ∈ J . Define ` = #(J ∩ [0, n − 1]); then
J is a union of ` arithmetic progressions with difference equal to n. For example, with J = Z+,
we have n = 1 and ` = 1; with J = {0, 1, 3, 4, 6, 7, 9, . . .}, every third integer is omitted, so n = 3
and ` = 2.
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We define the random variable
Y Jα =

∑
j∈J

εjα
j (25)

Note that this is the same as the random variable defined in (12), when J = Z+. However, we
need also to consider “rarefied”versions of the Erdös series here, which is the reason for defining
the class of Erdös series given by (25). For J = Z+, we denote Y Jα by Yα.
Given J and α, let us denote the distribution of Y Jα by η. Its Fourier transform is given (as

the function of the real variable, s) by:

φη (s) =

∫
eisxη (dx) = E

[
eisY

J
α

]
= E

∏
j∈J

eisεjα
j


By independence of εj , it is easy to obtain

φη (s) =
∏
j∈J

E
[
eisεjα

j
]
=
∏
j∈J

[
pe−iα

js + qeiα
js
]
. (26)

Working with the Fourier transform of η rather than η itself is primarily motivated, in the
current context, by the “inversion formula”. In particular, if∫ ∞

−∞

∣∣φη(s)∣∣ ds <∞ (27)

then the distribution η has a continuous density, given by

f(x) = (1/2π)

∫ ∞
−∞

e−isxφη(s)ds.

See Billingsley [9], p. 296-304, for the basic properties of Fourier transforms of probability mea-
sures (known as characteristic functions) on the real line.
Since

∣∣φη(s)∣∣ ≤ 1 for all s ∈ R, if (27) holds (φη ∈ L1), we also have∫ ∞
−∞

∣∣φη(s)∣∣2 ds <∞ (28)

so that φη ∈ L2. Thus, a natural question is whether (28) itself can ensure the absolute continuity
of η. This is indeed possible, as shown by the “L2-theory”of Fourier transforms. [See, for example,
Chung [13], p. 159]. Briefly, if φη satisfies (28), then by Plancherel’s theorem (see, for example,
Feller [27], p. 599-601), there exists f ∈ L2 such that:∫ x

0

f(u)du =
1√
2π

∫ ∞
0

(
eisx − 1
−is

)
φη(s)ds

Now, one can use the inversion formula to show that

F (x)− F (0) = 1√
2π

∫ x

0

f(u)du

where F is the distribution function, corresponding to the distribution η.
In view of this, if one can show that for every ε > 0∫ b−ε

a+ε

[∫ ∞
−∞

∣∣φη(s)∣∣2 ds] dα <∞ (29)

where a < b, then it would follow that for Lebesgue almost every α ∈ (a, b), (28) holds, and so
the distribution η is absolutely continuous, with L2 density.
The results of Solomyak [56], which we discuss in Section 6.2, provides suffi cient conditions

under which (29) is satisfied, for certain specifications of a and b.
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6.2 The Result of Solomyak in the Symmetric case p = 1/2

The result of Solomyak [56] that solves the Erdös problem in the symmetric case is the following.

Theorem 1 (Solomyak) For p = 1/2, the distribution of Yα has a density in L2 (R) for
Lebesgue almost every α ∈ (1/2, 1).

The proof of this theorem rests upon a more general result, which establishes a suffi cient
condition for (L2) absolute continuity based on the existence of a certain type of power series.

Proposition 4 For p = 1/2, the distribution of Y Jα has L2 (R) density for a.e. α ∈
(
(1/2)`/n, τ

)
provided

(1/2)`/n < τ

where τ ∈ (0, 1) is the smallest number for which there exists a power series g(x) 6≡ 0,

g(x) =
∑
j∈J

gjx
j , where gj ∈ {−1, 0, 1},

with g(τ) = g′(τ) = 0.

The specifications required at the end of the last section in order to apply Fourier transforms
theory as in (29), are indeed a = (1/2)`/n and b = τ . To be more precise, existence of such power
series is a suffi cient condition for the following transversality condition to hold on the interval
(a, b) ⊂ (0, 1). Say that the transversality condition holds on (a, b) for a given pair ω, ω′ ∈ Ω if

α 7−→ Πα (ω)−Πα (ω
′) has no double zero on (a, b) for ω 6= ω′.

Here a “double zero” for the difference f (α) = Πα (ω) −Πα (ω
′) means α0 such that f (α0) =

f ′ (α0) = 0. The graphic interpretation is that the graphs of functions α 7−→ Πα (ω) and α 7−→
Πα (ω

′) restricted to the interval (a, b), intersect transversally (if at all).
In order to apply Proposition 4 to obtain Theorem 1, one has to have an effi cient method

of isolating “multiple zeros”of power series. Solomyak himself calculates some lower bounds for
such zeros that we shall now exploit to see how Proposition 4 and the use of Fourier transforms
yield Theorem 1.
The first step in proving Theorem 1 is to find an interval (a, b) ⊂ (0, 1) such that the transver-

sality condition holds. We shall see that such an interval is (a, b) =
(
(1/2)`/n, τ

)
=
(
1/2, 2−1/2

)
;

then Proposition 4 states that for a.e. α ∈
(
1/2, 2−1/2

)
, the distribution µf is absolutely contin-

uous with L2 density. In order to fill the whole interval (1/2, 1), one must rely on convolutions
through Fourier transform as in (26). Let us see this procedure in some detail.
Take J = Z+, so that ` = n = 1 and (`/n) = 1 in Proposition 4. Thus, the first step tackles

directly our Erdös series. Solomyak finds a lower estimation τ > 0.649 for this case. Hence, in view
of Proposition 4, the distribution µf of Yα has density in L

2 (R) for almost every α ∈ (1/2, 0.649).
Next, consider the “rarefied” Erdös series so that every third integer from Z+ is omitted,

namely, let J = {0, 1, 3, 4, 6, 7, 9, . . .}, so that n = 3 and ` = 2. By Solomyak’s calculations, the
number τ for this rarefied series satisfies τ > 0.713. Since 2−2/3 ≈ 0.630 < 0.713, Proposition
4 (for `/n = 2/3) is nonempty and thus for a.e. α ∈

(
2−2/3, 0.713

)
the distribution η of Y Jα

has L2 density. In this case, its Fourier transform φη ∈ L2 and since
∣∣∣φµf ∣∣∣ ≤ ∣∣φη∣∣, we also

have φµf ∈ L2. That is, we have found that for a.e. α ∈ (1/2, 0.649) ∪
(
2−2/3, 0.713

)
, µf has

L2 density. Note, however, that these two open intervals overlap, as 2−2/3 ≈ 0.630 < 0.649.
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Moreover, 2−1/2 ≈ 0.707 < 0.713. Therefore, we conclude that for a.e. α ∈
(
1/2, 2−1/2

)
, µf has

L2 density.
The second step consists in extending this finding to a.e. α ∈

(
2−1/k, 2−1/2k

)
for k = 2, 3, . . ..

Then, since 2−1/k → 1 as k → ∞, it follows that µf has L2 density for a.e. α ∈ (1/2, 1). We
demonstrate this for k = 2, the rest following by induction. For a.e. α ∈ (2−1/2, 2−1/4), we have
the Fourier transform of η given by (26), which yields

φαη (s) = φα
2

η (s)φα
2

η (αs). (30)

Since α ∈ (2−1/2, 2−1/4) implies α2∈ (1/2, 2−1/2), we have each of the two Fourier transforms on
the right hand side of (30) in L2, and so by Hölder’s inequality φαη is in L

1. Since φαη is also in
L∞, we have φαη ∈ L1(R) ∩ L∞ (R) ⊂ L2 (R).
Finally, by induction, one can check that for a.e. α ∈

⋃∞
k=0

(
2−1/k, 2−1/2k

)
, φαη ∈ L2 (R), and

so η has L2 density. Thus, µf is absolutely continuous with L
2 density for a.e. α ∈ (1/2, 1).

6.3 An Extension of Solomyak Theorem to the Asymmetric Case p 6= 1/2

The main findings in [52] for the asymmetric case pertaining to our IFS are the following.

Theorem 2 (Peres - Solomyak)

i) If 1/3 ≤ p ≤ 2/3, then for almost every pp (1− p)1−p < α < 1 µf is absolutely continuous;

ii) If 1/3 ≤ p ≤ 2/3 and 1 < γ ≤ 2, then for almost every [pγ + (1− p)γ ]1/(γ−1) ≤ α < 1 µf has
density in Lγ ;

iii) for all 0 < p < 1 and all γ > 1, if µf is absolutely continuous with density in Lγ , then

α ≥ [pγ + (1− p)γ ]1/(γ−1).

The meaningful innovation in the proof of both parts (i) and (ii) with respect to the technique
adopted in the proof of Theorem 1, is the use of the Radon-Nykodym derivative of the invariant
measure, ∂µf/∂x, which actually is its density and exists whenever µf is absolutely continuous.
The importance of this method lies in by-passing L2 theory10 which relies on (29). As a matter
of fact, in place of (29) the authors show that∫ b

a

[∫ ∞
−∞

(
D
(
µf , x

))γ−1
dµf (x)

]
dα <∞,

where
D
(
µf , x

)
= lim inf

r→0+
(2r)

−1
µf [Br (x)]

and Br (x) denotes the ball of center x and radius r, holds for any interval (a, b) ⊂ (0, 1) such that
a > [pγ + (1− p)γ ]1/(γ−1) and the transversality condition holds. As for the upper extremum of
interval (a, b), they use the same estimation as in [56]: b = 0.649 < τ , which clearly works since,
for 1/3 ≤ p ≤ 2/3 and γ ≤ 2,

[pγ + (1− p)γ ]1/(γ−1) ≤ p2 + (1− p)2 ≤ (1/3)2 + (2/3)2 = 5/9 < 0.649.
10 Note that this approach includes the L2 case for γ ≥ 2, since [pγ + (1− p)γ ]1/(γ−1) = p2 + (1− p)2
for γ = 2. However, a theory purely in L2, like the one pursued in [56], would have missed absolute
continuity of µf (with density in L

γ for 1 < γ < 2) between pp (1− p)1−p and p2 + (1− p)2.
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Hence, part (i) of Theorem 2 is true for pp (1− p)1−p < α < 0.649, and the extension to

the whole interval
(
pp (1− p)1−p , 1

)
[and to interval

[
[pγ + (1− p)γ ]1/(γ−1) , 1

)
in part (ii)] is

established through convolution techniques similar to that discussed in Section 6.2.
Actually slightly more can be said: since the transversality condition holds for all pairs (α, p)

such that α ≤ 0.649, part (i) of Theorem 2 it is immediately extended for values of p in the larger
interval (0.156, 0.844) [where the extrema are the solutions of the equation pp (1− p)1−p = 0.649]
and for pp (1− p)1−p < α < 0.649. A similar argument also applies to part (ii) of Theorem 2,
therefore yielding the following corollary.

Corollary 1

i) If 0.156 < p < 0.844, then for almost every pp (1− p)1−p < α < 0.649 µf is absolutely
continuous;

ii) If 0.156 < p < 0.844 and 1 < γ ≤ 2 is such that [pγ + (1− p)γ ]1/(γ−1) < 0.649, then for

almost every [pγ + (1− p)γ ]1/(γ−1) ≤ α < 0.649 µf has density in Lγ .

The diffi culty in extending the last result for values of p ∈ (0.156, 0.844) outside the interval
[1/3, 2/3] and for values of α larger than 0.649 lies in the use of convolutions techniques, which
do not work in this case.
Necessary smoothness condition (iii) in Theorem 2 is derived from a theorem of Hardy-

Littlewood [31].

7 A Bifurcation Diagram

It is clear that in the equal probability case, we are able to describe the nature of the stochastic
steady-state for (Lebesgue) almost every value of the technological parameter, α. However, in
the asymmetric case (p 6= 1/2), the results of Sections 4, 5 and 6 are unable to completely
characterize the invariant distribution, especially for values of technological parameter α above
the entropy curve and values of probability p outside the interval [1/3, 2/3].
In view of all known results reviewed in the previous sections, we are able to sketch only a

partial “bifurcation diagram”that includes the combinations of parameter values covered by our
analysis. It appears as in figure 5.
In view of necessary smoothness condition expressed in part (iii) of Theorem 2, it is nat-

ural to formulate a conjecture for the missing values of α above the entropy curve and p out-
side interval [1/3, 2/3]. In (iii) is excluded the possibility that µf is too smooth below curve

[pγ + (1− p)γ ]1/(γ−1), namely, given that µf has density in Lγ , then α ≥ [pγ + (1− p)
γ
]
1/(γ−1),

for any γ > 1. Note that limγ→1+ [pγ + (1− p)γ ]
1/(γ−1)

= pp(1−p)(1−p) and the graph of function
[pγ + (1− p)γ ]1/(γ−1) moves upward away from the graph of the entropy curve pp (1− p)1−p for
increasing values of γ, until converging to the graph of function max (p, 1− p), that is, limγ→+∞
[pγ + (1− p)γ ]1/(γ−1) = max (p, 1− p).
The conjecture, thus, is that for all 0 < p < 1, as one moves upward above the entropy

curve, µf is generically absolutely continuous with density becoming gradually better shaped,
starting from having density in L1 (close to the entropy curve), then having density in L2 for
γ ≥ 2 [this is already known to be true by part (ii) of Theorem 2 at least for p ∈ [1/3, 2/3]]
and eventually having an essentially bounded density for γ → +∞, that is, for almost every
max (p, 1− p) ≤ α < 1. This situation is depicted in figure 6.
However, since very few cases of singular measures above the entropy curve are known (actu-

ally the only known examples are those given by Erdös for p = 1/2, see [22]), even if the portrait
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in figure 6 were true, there is still room for investigating Garsia’s [29] much stronger conjecture
that the invariant measure is absolutely continuous for all pp(1−p)(1−p) < α < 1 but a countable
set of points.

8 Appendix

In this final section we present a result connecting L-metric convergence to weak convergence of
measures, which we used in our exposition in Section 2.1.2.

Proposition 5 Convergence in the L-metric defined in (6) implies weak convergence over L(X);
that is, given any sequence µt in L(X) and a measure µf in L(X), L

(
µt, µf

)
→ 0 implies

µt =⇒ µf .

To prove this result we need the following lemma which is a variant of Uryshon Lemma.

Lemma 1 Let (X, d) be a metric space and A,B ⊂ X non-empty closed disjoint sets. If d (A,B) >
0, then there exists a Lipschitz function g : X → R such that g(a) = 0 for all a ∈ A, g(b) = 1
for all b ∈ B and 0 < g (x) < 1 for all x /∈ A ∪B.
Proof Consider

g (x) =
d (x,A)

d (x,A) + d (x,B)

Since d (A,B) > 0, there is δ such that d (x,A) + d (x,B) > δ > 0. Hence, g satisfies all
requirements but Lipschitz property. To see that g is Lipschitz, for any x, y ∈ X and ε > 0, find
a ∈ A so that d (a, y) ≤ d (y,A) + ε. Then

d (x,A) ≤ d (x, a) ≤ d (x, y) + d (y, a) ≤ d (x, y) + d (y,A) + ε
and

d (x,A)− d (y,A) ≤ d (x, y) + ε
Since ε is arbitrary, and by exchanging x with y, we get

|d (x,A)− d (y,A)| ≤ d (x, y)
from which follows

|g (x)− g (y)| ≤ δ−1d (x, y)
Proof (Proposition 5) It suffi ces to show that

lim sup
t→∞

µt (C) ≤ µf (C) (31)

for all closed sets C ⊂ X.
Note that

L
(
µt, µf

)
→ 0 =⇒

∫
gdµt →

∫
gdµf

for any Lipschitz function g. Take any closed (proper) subset C ⊂ X and consider the sequence
of open sets

{
C1/n

}
, where Cδ denotes the δ-parallel body of C defined in (8). Clearly C ⊂ C1/n

for all n and the complement Cc1/n is non-empty for n large enough. By Lemma 1 there exists a
Lipschitz function gn such that gn(x) = 1 for x ∈ C and gn(x) = 0 for x ∈ Cc1/n. Therefore

µt (C) ≤
∫
gndµt ≤ µt

(
C1/n

)
and

lim sup
t→∞

µt (C) ≤
∫
gndµf ≤ µf

(
C1/n

)
,

which, for n→∞, gives (31).
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Fig. 1 Plot of yt+1 = fz (yt), z ∈ {0, 1}: a) α = 1/3, non overlapping images; b) α = 2/3, overlapping
images.
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Fig. 2 Devil’s Staircase: a) α = 1/3 and p = 1/3; b) α = 1/3 and p = 2/3.
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Fig. 3 Hellinger distributions: a) α = 1/2 and p = 1/6; b) α = 1/2 and p = 3/4.
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Fig. 4 Plot of Hs (F ; d) where s0 ≡ dim (F ; d).
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Fig. 5 M: mutually singular measures over Cantor sets; S: measures singular with respect to Lebesgue
measure; H: a.e. absolutely continuous measures with density in L2; G: a.e. absolutely continuous
measures with density in Lγ , with 1 < γ ≤ 2 [recall that [pγ + (1− p)γ ]1/(γ−1) = p2 + (1− p)2 when
γ = 2]; U: unknown area.
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Fig. 6 M: mutually singular measures over Cantor sets; S: measures singular with respect to Lebesgue
measure; H: a.e. absolutely continuous measures with bounded density. In the area between S and H,
the invariant measure has density in Lγ , γ > 1, depending on [pγ + (1− p)γ ]1/(γ−1). Three increasingly
smooth cases are plotted between the entropy curve and max (p, 1− p): γ1 = 11/8, γ2 = 2 and γ3 = 4.


