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Abstract: 1-Indanones have been successfully prepared by means of three different  

non-conventional techniques, namely microwaves, high-intensity ultrasound and a  

Q-tube™ reactor. A library of differently substituted 1-indanones has been prepared via 

one-pot intramolecular Friedel-Crafts acylation and their efficiency and “greenness” have 

been compared. 
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1. Introduction 

In the last two decades, environmental issues linked to the chemical and associated industries, such 

as the pharmaceutical industry, have become increasingly pertinent. Many classical synthetic 

methodologies require large amounts of natural resources and generate copious amounts of waste [1]. 
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Thus, the need to incorporate green chemistry into the synthesis of active pharmaceutical ingredients 

and intermediates is of primary importance for the pharmaceutical industry [2]. 

Indanones and related compounds are important bioactive molecules. These compounds have 

exhibited biological activity against cancer cells and Alzheimer’s disease; moreover they can be used 

as synthetic intermediates for several drugs and as precursors to natural products [3–10]. Other 

applications include their use as ligands in olefinic polymerization catalysts [11–20] and as discotic 

liquid crystals [21]. The most famous drug which bears an indanone moiety is probably donepezil 

hydrochloride, which has been approved by the United States Food and Drug Administration (US-

FDA) for the treatment of mild-moderate Alzheimer’s disease [22]. The intramolecular Friedel-Crafts 

cyclization reaction of 3-arylpropionic acids or chlorides is one of the most common methods for the 

preparation of 1-indanones [23–29]. Although the direct dehydrative cyclization of 3-arylpropionic 

acids is more difficult than cyclization via acid chlorides, it is preferable because of the environmental 

benefits it provides. In fact, the “one-step reaction” produces water as the only by-product while the 

“two-step reaction” generates a large amount of toxic and corrosive compounds. Nevertheless, direct 

cyclization usually requires an excess of protic acids (even as solvents) such as sulfuric acid, hydrogen  

fluoride [30], polyphosphoric acid [31], methanesulfonic acid (MSA) [32], a mixture of MSA and  

P2O5 [33], or Lewis acids such as AlCl3 and SnCl4 [30]. Some lanthanide triflates, in particular 

Tb(OTf)3, were reported to be useful catalysts for the dehydrative cyclization of 3-arylpropionic acids 

to form 1-indanones [34] in o-chlorobenzene at very high temperatures. We report herein an improved 

method for the synthesis of 1-indanone derivatives which proceeds via the superacid-catalyzed 

intramolecular Friedel-Crafts acylation of 3-arylpropionic acids. 

As mentioned above, the examples of direct intramolecular Friedel-Crafts acylation of 3-arylpropionic 

acids to produce 1-indanone derivatives are very far from satisfying many green chemistry principles 

since they are performed under extremely drastic experimental conditions, such as elevated reaction 

temperatures (250 °C in chlorobenzene) and require very long reaction times [23–34]. In light of the 

enormous diffusion and application of non-conventional techniques in the implementation of synthetic 

green processes [35–38], and our own experience in this field [39–44], we decided to explore the use 

of microwave irradiation (MW), high-intensity ultrasound (US) and high-pressure conditions to 

develop a greener synthesis of 1-indanone derivatives via the intramolecular Friedel-Crafts acylation of 3-

arylpropionic acids. 

2. Results and Discussion 

To start our investigation, it was decided to study the cyclization of 3-(4-methoxyphenyl)propionic 

acid (1) in different solvents and experimental conditions using Tb(OTf)3 as the Lewis acid, the best 

reported in the literature [34], and triflic acid [27] (Scheme 1). All attempts to perform the  

MW-assisted Tb(OTf)3 catalyzed reaction in environmentally benign solvents such as PEG, n-butanol, 

ethyl lactate or water, or even in slightly activated aromatic solvents failed (Table 1, entries 1–6). 

A negative result was also observed when the reaction was performed in inert high boiling solvents 

such as isooctane (Table 1, entry 7) and only in chlorobenzene a good conversion of substrate was 

observed after only 60 min, albeit affording a low yield of product 1a (Table 1, entry 8). 
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Scheme 1. Synthesis of 1-indanone 1a via the cyclization of 3-(4-methoxyphenyl) 

propionic acid 1 under US or MW irradiation. 

 

Table 1. MW vs. US in the intramolecular Friedel-Craft acylation of 3-(4-methoxyphenyl) 

propionic acid (1). 

Entry Catalyst (%mol) Solvent T (°C) Method Time (min) Conv. (%) Yield (%)

1 Tb(OTf)3 (20) PEG a 180 MW 30 - - 
2 Tb(OTf)3 (20) n-BuOH a 180 MW 30 - - 
3 Tb(OTf)3 (20) Ethyl lactate a 180 MW 30 - - 
4 Tb(OTf)3 (20) H2O 180 MW 30 - - 
5 Tb(OTf)3 (20) Toluene b 180 MW c 30 10 10 
6 Tb(OTf)3 (20) Xylene b 180 MW c 30 - - 
7 Tb(OTf)3 (20) Isooctane c 250 MW c 10 - - 
8 Tb(OTf)3 (20) Cl-benzene 250 MW 60 85 33 d 
9 TfOH (10 eq.) CH2Cl2 (dry) 25 r.t. 1440 85 61 d 
10 TfOH (3 eq.) CH2Cl2 (dry) 80 MW 60 100 100 
11 TfOH (1 eq.) CH2Cl2 (dry) 80 MW 120 50 20 d 
12 TfOH (2 eq.) CH2Cl2 (dry) 80 MW 60 75 53 d 
13 TfOH (3 eq.) CH2Cl2 (dry) 110 MW 30 100 100 
14 TfOH (3 eq.) CH2Cl2 (dry) 40 US 120 - - 
15 TfOH (5 eq.) CH2Cl2 (dry) 40 US 1260 80 80 
16 TfOH (10 eq.) CH2Cl2 (dry) 40 US 150 100 100 
17 TfOH-SiO2 (30) CH2Cl2 (dry) 110 MW 60 - - 
18 TfOH-SiO2 (30) CH2Cl2 (dry) 40 US 60 - - 

a Formation of side-esterification or trans-esterification by-products; b Formation of intermolecular Friedel-Craft 

acylation by-products; c Reaction conducted in the presence of a SiC tablet used as a MW inert absorbent;  
d Formation of by-products. 

Clearly improved results were obtained when the reaction was catalyzed by a large excess of triflic 

acid (TfOH) in CH2Cl2. As previously reported in the literature [27], a 61% yield of 1a was observed 

at room temperature, but only after a very long reaction time (Table 1, entry 9), whereas complete 

conversion of substrate 1 to indanone 1a was observed after only 60 min when the reaction was 

performed under MW at 80 °C using three equivalents of TfOH (Table 1, entry 10). 

Lower amounts of catalyst gave poorer yields due to the considerable number of by-products 

formed (Table 1, entries 11 and 12). The same positive result was registered in only 30 min when the 

reaction temperature was raised to 110 °C (Table 1, entry 13). Comparable results were registered 

when the same reaction was accomplished under US, however, the complete conversion of the 

substrate 1 to indanone 1a was observed in an acceptable reaction time only when a large excess of 

triflic acid was used in CH2Cl2 at 40 °C (Table 1, entries 14–16). Triflic acid is a highly corrosive and 

1a

OH

O

H3CO

catal/solvent

MW or US

O
H3CO
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fuming liquid. It is the strongest Brønsted acid, having a Ho value of 14.1. Unmodified 

chromatographic silica gel-supported triflic acid has very recently been proposed as an efficient and 

recyclable catalyst under solvent free conditions [45]. Thus, in an attempt to add this more 

environmentally friendly way to use this superacid to our synthetic protocol, the test reaction reported 

in Scheme 1 was also performed using silica gel supported triflic acid (TfOH-SiO2). Unfortunately, no 

conversion (of substrate 1) was observed after 60 min under MW or US (Table 1, entries 17 and 18). In 

a last test, the MW- and US-assisted reactions were performed in significantly lower reaction times in 

dry CH2Cl2, to give quantitative yields of product 1a and avoiding the formation of by-products. All 

the attempts to use more environmentally acceptable solvents gave scarce results, leaving dry CH2Cl2 

as the best choice for performing the reaction reported in Scheme 1. 

Performing the reaction in dry CH2Cl2 permitted the total conversion of the substrate 1 into 1a in 60 min 

at 80 °C using only 3 equivalents of TfOH (Table 1 entry 10). On the other hand, in the US-assisted 

protocol, the same reaction was performed at lower temperature with a cleaner reaction profile and 

simplified work-up, despite the significantly higher amount of catalyst necessary to obtain the 

quantitative conversion of 1 into 1a. 

In the attempt to unify the advantages of both assisted methods, the reaction pictured in Scheme 1 

was performed in the Q-tube™ which is a safe pressure reactor which features a patent pending 

pressure-release and reseal system that prevents accidental explosions due to over–pressurization.  

Q-tube™ is an affordable alternative to expensive and cumbersome MW synthesizers; this system 

enables a reaction to be carried out at higher temperature than the boiling point of solvents and 

reagents, which will increase the reaction rate. 

The results reported in Table 2, clearly confirm the efficiency of Q-tube™ as a valid alternative 

technique (Table 2, entry 1), which provides a cleaner reaction profile very similar to what is observed 

in the US-assisted protocol. Longer reaction times did not improve the reaction performance and only 

traces of product 1a were obtained at 150 °C (Table 2, entries 2 and 3). It is of interest to know if 

Tb(OTf)3, the most active Lewis acid reported in literature for this process, can be used as catalyst in 

the Q-tube experiments. A poor result was registered when the reaction was carried out in 

chlorobenzene as reported [34] (Table 2, entry 4), whereas a good yield of product 1a was obtained 

when the reaction was performed in toluene (Table 2, entry 5). 

Very poor results were obtained when the reaction was performed in high-boiling point 

hydrocarbon solvents and at very high reaction temperatures (Table 2, entries 7 and 8). Finally, the 

endeavor to carry out the reaction again using silica gel-supported triflic acid in CH2Cl2 gave a 

negative result (Table 2, entries 9 and 10) leaving the following three experimental procedures as the 

best choices for the reaction depicted in Scheme 1; triflic acid is added at 0 °C to a solution of  

0.5 mmol of substrate in dry CH2Cl2, then the solution is heated to room temperature and the reaction 

is conducted under MW- or US-assistance or in the Q-tube™ (Table 1 entries 10, 16 and Table 2 entry 

1 respectively). The best experimental conditions obtained with MW, US- and Q-tubeTM protocols 

were applied to several substrates (Scheme 2) with the aim of testing the applicability of the methods 

and comparing their efficiency and versatility (Table 3). 
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Table 2. Q-Tube method in the intramolecular Friedel-Craft acylation of 3-(4-methoxyphenyl) 

propionic acid 1. 

Entry Catalyst (%mol) Solvent T (°C) Time (min) Conv. (%) Yield (%) a

1 TfOH (3 eq.) CH2Cl2 (dry) 80 60 100 100 
2 TfOH (3 eq.) CH2Cl2(dry) 110 30 100 96 
3 TfOH (3 eq.) CH2Cl2(dry) 150 10 100 trace b 
4 Tb(OTf)3 (10) C6H5Cl 180 180 100 40 
5 Tb(OTf)3 (10) toluene 150 180 100 86 c 
6 Tb(OTf)3 (10) n-C7H14 180 240 - - 
7 Tb(OTf)3 (20) n-C7H14 250 120 18 45 
8 Tb(OTf)3 (10) isooctane 250 240 32 20 
9 TfOH-SiO2(30 ) CH2Cl2 (dry) 25 120 - - 
10 TfOH-SiO2 (30) CH2Cl2 (dry) 180 180 - - 

a Isolated yields; b The high temperature broke the Teflon septum; c Formation of intermolecular Friedel-craft 

acylation by-products. 

Scheme 2. MW-, US-assisted and Q-tube™ protocols for 1-indanone synthesis applied to 

several aryl-3-propionic acids. 

 

In the case of 3-(2-methoxyphenyl)propionic acid (3), the only available cyclization site is the  

non-activated 6-position on the aromatic ring, so that no product formation was observed and only 

polymerized products were detected (Table 3, entry 3). Moreover, an unfavorable electronic effect can 

be invoked to explain the failure of the intramolecular cyclization in substrate 3. As depicted in Figure 1, 

an H-bond can constrain the acidic OH to form a transient stable ring and keep the carboxylic moiety 

distant from the aromatic ring. This hypothesis is confirmed by the results observed for 3-(2-

methylphenyl)propionic acid where the absence of the ether oxygen prevents the formation of the 

transient ring through the O-H interaction leaving the carboxylic group free to attack the non-activated 

6-position on the aromatic ring and furnishing a quantitative yield of the 1-indanone derivative 4a 

(Table 3, entry 4).  

OH

O
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Tf OH 10 eq, dry CH2Cl2

US, 40 °C

Tf OH 3 eq, dry CH2Cl2
MW, 80 °C

Tf OH 3 eq, dry CH2Cl2
Q-tube, 80 °C
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Table 3. MW vs. US method in the intramolecular Friedel-Craft acylation of phenyl 

propionic acids 1–7. 

Entry Product 

US-Assisted Reaction a MW-Assisted Reaction a Q-Tube-Assisted Reaction a 

Time 

(min) 

Conv 

(%) 

Yield  

(%) 

Time 

(min) 

Conv 

(%) 

Yield 

(%) 

Time 

(min) 

Conv 

(%) 

Yield 

(%) 

1 
 

150 

210 b 

100 

100 

100 

100 

60 

90 b 

100 

100 

100 

100 

60 

90 b 

100 

100 

100 

100 

2 
 

60 100 
88/12 

(2b)/(2a) 
60 100 

90/10 

(2b)/(2a) 
60 100 

90/10  

(2b/2a) 

3 

 

120 100 - c 180 100 - c 180 100 - c 

4 

 

60 100 100 60 100 100 60 100 100 

5 
 

60 100 100 60 100 100 60 100 100 

6 

 

360 - - 180 - - 180 - - 

7 
 

360 100 100 
180 d 

60 e 

42 

100 

33 

100 

180 d 

60 e 

54 

100 

36 

100 

8 

 

1200 90 90 
180 d 

60 e 

58 

100 

48 

100 

180 d 

60 e 

44 

100 

43 

100 

9 
 

60 100 100 180 100 100 180 100 100 

10 
 

60 100 100 60 100 100 60 100 100 

11 
 

60 100 
85/15 

(11b)/(11a) 
60 100 

88/12 

(11b)/(11a)
60 100 

88/12 

(11b)/(11a) 

12 
 

400 100 100 
180 d 

60 e 

38 

100 

30 

100 

180 d 

60 e 

45 

100 

33 

100 

13 

 

460 100 100 
180 d 

120 e 

32 

100 

28 

100 

180 d 

120 e 

40 

100 

36 

100 

14 
 

1200 d - - 360 e - - 360 e - - 

a All new products were characterized by GC/MS and 1H-NMR spectroscopy; all the known products were 
characterized by comparison with the spectral data in the literature; b Reaction conducted with 5.0 mmol of 
reactant; c Formation of poli-ketones by polymerization; d Reaction conducted in presence of 5 eq. of TfOH;  
e Reaction conducted in presence of 10 equivalents of TfOH. 

MeO
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OMe O 2a O

MeO
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O
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MeO
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Br
O7a
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Figure 1. Proposed unfavourable electronic effect involved in the failure of the  

3-(2-methylphenyl)propionic acid 3 intramolecular cyclization. 

 

Similarly, the unfavourable electronic effect associated with greater steric hindrance can explain the 

extremely poor reactivity in the case of 3-(2,4-dimethoxyphenyl) propionic acid (6) where only the 

starting material was recovered in all three reaction systems, even after prolonged reaction times 

(Table 3, entry 6). In all the other reported examples quantitative product yields were observed for all 

three activation methodologies in very short reaction times and without significant by-product 

formation (Table 3, entries 1, 2, 5, 8–13). It is worth noting that the dis-activated halo-substituted 

phenylpropionic acids 7, 8, 12 and 13 gave quantitative yields for the direct intramolecular cyclization 

which, to the best of our knowledge, has never reported before. However, no conversion was observed 

in the case of the highly deactivated 3-(4-nitrophenyl)propionic acid (14) under all the experimental 

conditions adopted (Table 3, entry 14), even after very prolonged reaction times and using higher 

amounts of catalyst. 

Finally, in order to test the scalability of the protocol, a scaled-up reaction was realized on  

5.0 mmol of 3-(4-methoxyphenyl)propionic acid (1) (Table 3, entry 1, line 2), giving rise to the same 

results in terms of conversion, yield and reaction profile, but after a slightly longer reaction time. All 

the synthetic methodologies tested in this work enable much shorter reaction times and use of an 

acceptable amount of triflic acid [27]. o-Chlorobenzene was replaced by CH2Cl2 [34]. The comparison 

of the three techniques reported in Table 3 shows that MW-assisted reactions could be performed using 

only 3 equivalents of triflic acid in shorter reaction times than the other protocols. On the other hand,  

US-assistance allows the reaction to be conducted at lower temperature and with a significantly cleaner 

profile, simplifying the reaction work-up despite the higher amount of triflic acid required. The  

Q-tube™ technology gave the same results as the MW-assisted protocol but with cleaner reaction 

profiles, offering a good alternative to MW or US technologies in terms of yield, safety and efficiency. 

3. Experimental 

3.1. General Information 

All chemicals were obtained from Sigma-Aldrich or Acros Organics (Geel, Belgium) and used as 

received. All solvents were distilled using standard methods before use. All reactions were carried out 

in flame-dried glassware, under a dry nitrogen atmosphere. MW-assisted reactions were performed on 

a Synthos 3000 instrument from Anton Paar (Torino, Italy), equipped with a 64MG5 Rotor and an IR 

probe used for external temperature control. US-assisted reactions were performed in a high-power 

US-bath (19.6 kHz) made by Danacamerini (Torino, Italy). Q-Tube assisted reactions were performed 

in a Q-tube™ safe pressure reactor from Q Labtech (distributed by Sigma-Aldrich), equipped with a 

cap/sleeve, a pressure adapter (120 psi), a needle adapter/needle, a borosilicate glass tube, a Teflon 

septum and a catch bottle. Reactions were monitored using a GC–MS Thermo Fisher Scientific 

O H
O

O
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workstation, composed of a Focus GC (Thermo TR, Waltham, MA, USA- 5 ms SQC 15 m × 0.25 mm 

ID × 0.25 µm, working on split mode, 1.2 mL/min using He as the carrier gas) and a DSQ II mass 

detector. TLC were performed using Kielsegel 60-F264 on aluminium plates, commercially available 

from Merck (Darmstadt, Germany). Liquid flash chromatography was performed on a Supelco 

VERSA FLASH HTFP station (distributed by Sigma-Aldrich) using silica cartridges commercially 

available from Supelco. 1H-NMR spectra were recorded on a Bruker WM 300 instrument (Milano, 

Italy) on samples dissolved in CDCl3. Chemical shifts are given in parts per million (ppm) from 

tetramethylsilane as the internal standard (0.0 ppm). All products in this report are known and were 

characterized by standard techniques (1H- and 13C-NMR, GC/MS) and the data were compared with 

those reported in the literature [33,46–48] for identification. 

3.2. General US-Assisted Procedure  

Trifluoromethane sulfonic acid (10 eq.) was gently added to a cooled (0 °C) solution of a 3-phenyl 

propionic acid (0.5 mmol) in dry CH2Cl2 (0.5 mL) in a two-necked round bottom flask. The temperature 

was raised to room temperature. The mixture was reacted in a high-power US-bath (19.6 kHz)  

at 40 °C. The reaction was monitored by TLC and GC/MS until the reactant disappeared. The mixture 

was poured into ice and extracted three times with CH2Cl2. The organic phase collected was dried over 

Na2SO4, filtered and concentrated under vacuum. The desired pure product was separated from the 

crude by flash chromatography. 

3.3. General MW-Assisted Procedure  

Trifluoromethanesulfonic acid (3 eq.) was gently added to a cooled (0 °C) solution of a 3-phenyl 

propionic acid (0.5 mmol) in dry CH2Cl2 (1.0 mL) in 3 mL glass vial using a Synthos 3000 microwave 

oven (Anton-Paar). The temperature was raised to room temperature. Appropriate Teflon and screw 

caps were placed on the top of the vial. The mixture was heated in the MW reactor at 80 °C in  

“power-controlled mode” for the appropriate time. The reaction was monitored by TLC and GC/MS 

until the reactant disappeared. The mixture was poured onto ice and extracted three times with CH2Cl2. 

The collected organic phase was dried on Na2SO4, filtered and concentrated under vacuum. The 

desired pure product was separated from the crude by flash chromatography. 

3.4. General Q-tubetm-Assisted Procedure  

Trifluoromethane sulfonic acid (3 eq.) was gently added to a cooled (0 °C) solution of a 3-Phenyl 

propionic acid (0.5 mmol) in dry CH2Cl2 (1.0 mL) in a 12 mL Q-tube™ pressure tube, furnished by Q 

Labtech. The temperature was raised to room temperature. A Teflon septum was placed on the top of 

the tube and the appropriate cap and pressure adapter were used. The mixture was heated in an oil bath 

at 80 °C. The reaction was monitored by TLC and GC/MS until the reactant disappeared. The mixture 

was poured into ice and extracted three times with CH2Cl2. The organic phase collected was dried on 

Na2SO4, filtered and concentrated under vacuum. The desired pure product was separated from the 

crude by flash chromatography. 
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4. Conclusions 

We have reported the application of three different non-conventional techniques to the synthesis of 

a library of substituted 1-indanones, via the direct Friedel-Crafts intramolecular cyclization of 

arylpropionic acids. The comparison between three alternative reaction methodologies, namely MW, 

US and Q-Tube™ assisted reactions, showed that Q-tube™ equipment can be proposed as a valid 

alternative to monomode MW and US technologies in term of efficiency, safety (virtually eliminating 

the risk of pressure explosions) and a cleaner reaction profile. 
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