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1 Introduction

In a recently published paper [1], the ZEUS collaboration presented cross sections for events

containing an isolated high-energy photon, with and without a jet, produced in photopro-

duction at the HERA collider using the full HERA II data set. Such events can provide a

direct probe of the underlying partonic process in high-energy collisions involving photons,

since the emission of a high-energy photon is largely unaffected by parton hadronisation.

In photoproduction processes in ep collisions at HERA, the exchanged virtual photon is

quasi-real, with small virtuality, Q2, conventionally required to be less than 1 GeV2. These

measurements follow earlier analyses of isolated photons in photoproduction by the ZEUS

and H1 collaborations [2–7], as well as in deep inelastic scattering (DIS) [8–11]. In the anal-

ysis presented here, the most recent ZEUS photoproduction measurements are extended,

using the same data as used previously.

In “direct” production processes, the entire incoming photon is absorbed by an outgo-

ing quark from the incoming proton, while in “resolved” processes, the photon’s hadronic

structure provides a quark or gluon that interacts with a parton from the proton. Fig-

ure 1 gives examples of the lowest-order (LO) direct and resolved diagrams for high-energy

photoproduction of photons in quantum chromodynamics (QCD).1 Higher-order processes

1Photons that are radiated in the hard scattering process, rather than resulting from meson decay, are

commonly called “prompt”. An alternative nomenclature is to refer to such photons as “direct”; thus

figures 1(a) and 1(b) would be called “direct-direct” and “resolved-direct” diagrams, respectively.
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Figure 1. Examples of (a) direct-prompt and (b) resolved-prompt processes at leading order in

QCD, and the related (c) direct and (d) resolved fragmentation processes.

also include “fragmentation processes” in which a photon is radiated within a jet, also il-

lustrated in figure 1. Such processes are suppressed by requiring that the outgoing photon

must be isolated.

Resolved and direct processes may be partially distinguished in events containing a

high-ET photon and a jet by means of the quantity

xmeas
γ =

Eγ + Ejet − pγZ − pjetZ

Eall − pallZ

, (1.1)

which measures the fraction of the incoming photon energy that is given to the photon

and the jet. The quantities Eγ and Ejet denote the energies of the photon and the jet,

respectively, pZ denotes the corresponding longitudinal momenta,2 and the suffix “all”

2The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

nominal proton beam direction, referred to as the “forward direction”, and the X axis pointing towards the

centre of HERA. The coordinate origin is at the centre of the central tracking detector. The pseudorapidity

is defined as η = − ln
(

tan θ
2

)

, where the polar angle, θ, is measured with respect to the Z axis.

– 2 –



J
H
E
P
0
8
(
2
0
1
4
)
0
2
3

refers to all the measured final-state particles of an event. At LO, xmeas
γ = 1 for direct

events, while any value in the range (0,1) may be taken for resolved events. At higher

order, the first statement no longer precisely holds, but the presence of direct processes

generates a prominent peak in the cross section at high xmeas
γ . Here, measurements in

a direct-dominated region are presented by selecting events with xmeas
γ > 0.8, and in a

resolved-dominated region by selecting events with xmeas
γ < 0.8. This enables the behaviour

of the photoproduction process to be explored in more detail.

Several kinematic quantities are also measured beyond those presented previously. The

quantity

xobsp = (Eγ
T exp ηγ + Ejet

T exp ηjet)/2Ep

estimates the fraction of proton energy taken by the parton that interacts with the photon;

its distribution is sensitive to the proton’s partonic structure. Here, ET denotes transverse

energy, η denotes pseudorapidity, and Ep is the energy of the proton beam. The difference

in pseudorapidities, ηγ − ηjet, is sensitive to the dynamical details of the hard scattering

process, in particular to the spin of the exchanged quantum [12]. The quantity ∆φ, defined

as the absolute difference between the azimuths of the photon and the high-ET jet, is

sensitive to the presence of higher-order gluon radiation in the event, especially relative

to the outgoing quark, which can generate non-collinearity between the photon and the

leading jet. All three of these quantities are insensitive to Lorentz boosts along the Z axis.

Predictions from QCD-based models are compared to the measurements. The cross

sections for isolated-photon production in photoproduction have been calculated to next-

to-leading order (NLO) by Fontannaz, Guillet and Heinrich (FGH) [13–15]. Calculations

based on the kT -factorisation approach have been made by Lipatov, Malyshev and Zotov

(LMZ) [16–19].

2 Experimental set-up

The measurements are based on a data sample corresponding to an integrated luminosity

of 374 ± 7 pb−1, taken during the years 2004 to 2007 with the ZEUS detector at HERA.

During this period, HERA ran with an electron or positron beam energy of 27.5 GeV and

a proton beam energy of Ep = 920 GeV. The sample is a sum of e+p and e−p data.3

A detailed description of the ZEUS detector can be found elsewhere [20]. Charged

particles were measured in the central tracking detector (CTD) [21–23] and a silicon mi-

cro vertex detector (MVD) [24] which operated in a magnetic field of 1.43 T provided

by a thin superconducting solenoid. The high-resolution uranium-scintillator calorimeter

(CAL) [25–28] consisted of three parts: the forward (FCAL), the barrel (BCAL) and the

rear (RCAL) calorimeters. The BCAL covered the pseudorapidity range −0.74 to 1.01 as

seen from the nominal interaction point, and the FCAL and RCAL extended the coverage

to the range −3.5 to 4.0. Each part of the CAL was subdivided into elements referred to as

cells. The barrel electromagnetic calorimeter (BEMC) cells had a pointing geometry aimed

3Hereafter “electron” refers to both electrons and positrons unless otherwise stated.
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at the nominal interaction point, with a cross section approximately 5 × 20 cm2, with the

finer granularity in the Z direction and the coarser in the (X,Y ) plane. This fine gran-

ularity allows the use of shower-shape distributions to distinguish isolated photons from

the products of neutral meson decays such as π0 → γγ. The CAL energy resolution, as

measured under test-beam conditions, was σ(E)/E = 0.18/
√
E for electrons and 0.35/

√
E

for hadrons, where E is in GeV.

The luminosity was measured [29] using the Bethe-Heitler reaction ep → eγp by a lu-

minosity detector which consisted of two independent systems: a lead-scintillator calorime-

ter [30–32] and a magnetic spectrometer [33].

3 Theoretical models

Two theoretical models are considered. In the approach of FGH [13, 14], the LO and NLO

diagrams and the box-diagram term are calculated explicitly. Fragmentation processes are

calculated in terms of a fragmentation function in which a quark or gluon gives rise to a

photon; an experimentally determined non-perturbative parameterisation is used as input

to the theoretical calculation [34]. Fragmentation and box terms each contribute about

10% to the total cross section. The CTEQ6 [35] and AFG04 [36] parton densities are

used for the proton and photon, respectively. Theoretical uncertainties arise due to the

choice of renormalisation, factorisation and fragmentation scales. They were estimated,

using a more conservative approach [15] than in the original published paper [13], by

varying the renormalisation scale by factors of 0.5 and 2.0, since this gave the largest effect

on the cross sections.

The kT -factorisation method used by LMZ [16–18] makes use of unintegrated parton

densities in the proton, using the KMR formalism [37, 38] based on the MSTW08 proton

parton densities [39]. In addition to the hard QCD subprocess, the model incorporates a

parton evolution cascade, one jet from which can be taken as the leading jet in the analysis.

Fragmentation terms and the quark content of the resolved photon are not included, but

the box diagram is included together with 2 → 3 subprocesses to represent the LO direct

and resolved photon contributions. The calculation used in the previous ZEUS analysis [1]

has been augmented by a term that takes account of the gluon content of the resolved

photon, and further technical changes have been implemented [19]. Uncertainties associated

with the hard scale were provided by the authors. There is a further overall statistical

uncertainty on the set of results for each variable, of the order of 10% for the results

presented here.

All results are presented at the hadron level; to make use of the theoretical predictions,

cuts equivalent to the experimental kinematic selections including the photon isolation

(see section 5) were applied at the parton level. Hadronisation corrections were then

evaluated (section 4) and applied to the theoretical calculations to enable a comparison to

the experimental data.
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4 Monte Carlo event simulation

Monte Carlo (MC) event samples were employed to evaluate the detector acceptance and

event-reconstruction efficiency, and to provide signal and background distributions. The

program Pythia 6.416 [40] was used to generate the direct and resolved prompt-photon

processes at LO, and also 2 → 2 parton-parton scattering processes not involving photons

(“dijet events”), making use of the CTEQ4 [41] and GRV [42, 43] proton and photon parton

densities. The program was run using the default parameters with minor modifications.4

The isolated photons measured in the experiment are accompanied by backgrounds from

neutral mesons in hadronic jets, in particular π0 and η, where the meson decay products

create an energy cluster in the BCAL that passes the selection criteria for a photon. The

dijet event samples included background events of this kind which were extracted for use

in the analysis. The Pythia dijet events in which a high-energy photon was radiated from

a quark or lepton (“radiative events”) were not used in the background samples but were

defined, in accordance with theory, as a component of the signal.

Event samples were also generated using the Herwig 6.510 program [44], again with

minor modifications to the default parameters. The Pythia and Herwig programs dif-

fer significantly in their treatment of parton showers, and in the use of a string-based

hadronisation scheme in Pythia but a cluster-based scheme in Herwig.

The generated MC events were passed through the ZEUS detector and trigger simula-

tion programs based on Geant 3.21 [45]. They were then reconstructed and analysed using

the same programs as used for the data. The hadronisation corrections to the theory cal-

culations were evaluated using Pythia and Herwig, the two programs being in agreement

to a few percent; Pythia was used to provide the values for the present analysis. No un-

certainties were applied to these corrections. They were calculated by running the same jet

algorithm and event selections, including the isolation criterion, on the generated partons

and on the hadronised final state in the direct and resolved prompt-photon MC events.

5 Event selection and reconstruction

The basic event selection and reconstruction was performed as previously. A three-level

trigger system was used to select events online [20, 46, 47]:

• the first-level trigger required a loosely measured track in the CTD and a minimum

energy deposited in the CAL;

• at the second level, the event conditions were tightened;

• at the third level, the event was reconstructed and a high-energy photon candidate

was required. Most deep inelastic scattering events were rejected.

4In particular, the Pythia parameter parp(67) was set to 4.0 and multiple parton interactions were

turned off. In Herwig the parameters ispac, qspac, and ptrms were set to 2, 4.0, and 0.44.
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In the offline event analysis, some general conditions were applied as follows:

• to reduce background from non-ep collisions, events were required to have a recon-

structed vertex position, Zvtx, within the range |Zvtx| < 40 cm;

• to remove any DIS contamination, no scattered beam electron was permitted in the

ZEUS detector;

• a range of incoming virtual photon energies was selected by the requirement 0.2 <

yJB < 0.7, where yJB =
∑

i

Ei(1 − cos θi)/2Ee and Ee is the energy of the electron

beam. Here, Ei is the energy of the i-th CAL cell, θi is its polar angle and the sum

runs over all cells [48]. The lower cut strengthened the trigger requirements and the

upper cut further suppressed remaining deep inelastic scattering events.

The subsequent event analysis made use of energy-flow objects (EFOs) [49, 50], which

were constructed from clusters of calorimeter cells, associated with tracks when appropriate.

Tracks not associated with calorimeter clusters were also used. Photon candidates were

EFOs with no associated track and with at least 90% of the reconstructed energy measured

in the BEMC. Candidate EFOs with wider electromagnetic showers than are typical for a

single photon were accepted, in order to evaluate the backgrounds.

Jet reconstruction was performed, making use of all the EFOs in the event including

photon candidates, by means of the kT clustering algorithm [51] in the E-scheme in the

longitudinally invariant inclusive mode [52] with the radius parameter set to 1.0. By

construction, one of the jets found by this procedure corresponds to or includes the photon

candidate. An additional accompanying jet was required; if more than one was found in

the designated angular range, that with the highest transverse energy, Ejet
T , was used. In

the kinematic region used, the resolution of the jet transverse energy was about 15–20%,

estimated using MC simulations.

To reduce the fragmentation contribution and the background from the decay of neutral

mesons within jets, the photon candidate was required to be isolated from other hadronic

activity. This was imposed by requiring that the photon-candidate EFO had at least 90%

of the total energy of the reconstructed jet of which it formed a part. High-ET photons

radiated from scattered leptons were further suppressed by rejecting photons with a near-

by track. This was achieved by demanding ∆R > 0.2, where ∆R =
√

(∆φ)2 + (∆η)2 is

the distance to the nearest reconstructed track with momentum greater than 250 MeV in

the η − φ plane, where φ is the azimuthal angle. This latter condition was applied only at

the detector level, and not in the hadron- or parton-level calculations.

Events were finally selected with the following kinematic conditions:

• each event was required to contain an isolated photon candidate with a reconstructed

transverse energy, Eγ
T , in the range 6 < Eγ

T < 15 GeV and with pseudorapidity, ηγ ,

in the range −0.7 < ηγ < 0.9;

• a hadronic jet was required with Ejet
T between 4 and 35 GeV and lying within the

pseudorapidity, ηjet, range −1.5 < ηjet < 1.8;
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• selections were made for all xmeas
γ , giving a total of 12450 events, and for xmeas

γ > 0.8

and xmeas
γ < 0.8. The latter two conditions selected events in direct-enhanced and

resolved-enhanced regions, respectively. An additional selection was made with events

having xmeas
γ < 0.7.

6 Extraction of the photon signal

The selected samples contain a large admixture of background events in which one or

more neutral mesons, such as π0 and η, have decayed to photons, thereby producing a

photon candidate in the BEMC. The photon signal was extracted statistically following the

approach used in previous ZEUS analyses [1, 8–11]. The method made use of the energy-

weighted width, measured in the Z direction, of the BEMC energy-cluster comprising the

photon candidate. This width was calculated as

〈δZ〉 =
∑

i

Ei|Zi − Zcluster|/
(

wcell

∑

i

Ei

)

,

where Zi is the Z position of the centre of the i-th cell, Zcluster is the energy-weighted

centroid of the EFO cluster, wcell is the width of the cell in the Z direction, and Ei is the

energy recorded in the cell. The sum runs over all BEMC cells in the EFO.

The number of isolated-photon events in the data was determined by a χ2 fit to the

〈δZ〉 distribution in the range 0.05 < 〈δZ〉 < 0.8, varying the relative fractions of the

signal and background components as represented by histogram templates obtained from

the MC. The fit was performed for each measured cross-section bin, with χ2 values of

typically 1.1 per degree of freedom (e.g. 31/28), verifying that the signal and background

were well understood. The extracted signals corresponded overall to 6262±132 events with

a photon and an accompanying jet. A set of typical fits for different ranges of the photon

transverse energy is shown in figure 2 and illustrates how the signal-to-background ratio

improves with increasing Eγ
T .

A bin-by-bin correction method was used to determine the production cross section in

a given variable, by means of the relationship

dσ

dY
=

AN(γ)

L∆Y
, (6.1)

where N(γ) is the number of photons in a bin as extracted from the fit, ∆Y is the bin width,

L is the total integrated luminosity, and A is the acceptance correction. The acceptance

correction was calculated, using MC samples, as the ratio of the number of events that

were generated in the given bin to the number of events obtained in the bin after event

reconstruction. Its value was typically 1.2.

Allowance must be made for the different acceptances for the direct and the resolved

processes, as modelled by Pythia. Over the entire xmeas
γ range, a reasonable phenomeno-

logical description of the data can be obtained using a MC sample consisting of a 50:40

mixture of Pythia-simulated direct and resolved events, normalised to the data, with a

10% admixture of radiative events divided equally between direct and resolved. The ac-

ceptance factors were calculated using this model, applying selections for the chosen xmeas
γ
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Figure 2. Examples of fits to 〈δZ〉 for different ranges of the photon transverse energy, showing

the signal and background contributions and the fitted total.

regions. Small corrections were applied for the trigger efficiency modelling and a residual

contamination by DIS events [1].

The photon energy scale was calibrated by means of an analysis of deeply virtual

Compton scattering events recorded by ZEUS, in which the detected final-state particles

comprised a scattered electron, whose energy measurement is well understood, and a bal-

ancing outgoing photon.

7 Systematic uncertainties

The most significant sources of systematic uncertainty were evaluated as follows:

• to allow for uncertainties in the simulation of the hadronic final state, the cross

sections were recalculated using Herwig to model the signal and background events.

The ensuing changes in the results correspond to an uncertainty of typically up to

8%, but rising to 18% in the highest bin of xmeas
γ ;

• the energy of the photon candidate was varied by ±2% in the MC at the detector

level. Independently, the energy of the accompanying jet was varied by an amount

decreasing from ±4.5% to ±2.5% as Ejet
T increases from 4 GeV to above 10 GeV. Each

of these gave variations in the measured cross sections of typically 5%.
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Further systematic uncertainties were evaluated as follows:

• the uncertainty in the acceptance due to the estimation of the relative fractions of

direct and resolved events and radiative events in the MC sample was estimated by

varying these fractions by ±15% and ±5% respectively in absolute terms; the changes

in the cross sections were typically ±2% in each case;

• the dependence of the result on the modelling of the hadronic background by the MC

was investigated by varying the upper limit for the 〈δZ〉 fit in the range [0.6, 1.0];

this gave a ±2% variation;

• the Eγ
T , ηjet and ∆φ distributions in the MC were reweighted simultaneously to

provide a closer agreement with the data, and the cross sections were re-evaluated.

This generated changes of typically ±2%.

Other sources of systematic uncertainty were found to be negligible. These included

the modelling of the track-isolation cut and the track-momentum cut, and also the cuts on

photon isolation, the electromagnetic fraction of the photon shower, yJB and Zvtx. Except

for the uncertainty on the modelling of the hadronic final state, the major uncertainties

were treated as symmetric, and all the uncertainties were combined in quadrature. The

uncertainties of 2.0% on the trigger efficiency and 1.9% on the luminosity measurement

were not included in the tables and figures.

8 Results

Differential cross sections were calculated for the production of an isolated photon with at

least one accompanying jet, in the kinematic region defined by Q2 < 1 GeV2, 0.2 < y < 0.7,

−0.7 < ηγ < 0.9, 6 < Eγ
T < 15 GeV, 4 < Ejet

T < 35 GeV and −1.5 < ηjet < 1.8. All

quantities were evaluated at the hadron level in the laboratory frame, and y is defined as

the fraction of the incoming lepton energy that is given to the virtual photon. The jets

were formed according to the kT clustering algorithm with the radius parameter set to 1.0.

Photon isolation was imposed such that at least 90% of the energy of the jet-like object

containing the photon originated from the photon. If more than one accompanying jet was

found within the designated ηjet range in an event, that with highest Ejet
T was taken. Cross

sections in Ejet
T above 15 GeV are omitted from the tables and figure 4 owing to limited

statistics, but this kinematic region is included in the other cross-section measurements.

Complementing the previously published cross sections [1] for the entire xmeas
γ range,

differential cross sections as functions of Eγ
T , ηγ , Ejet

T and ηjet are shown in figures 3–4.

Here the selections of xmeas
γ > 0.8 and xmeas

γ < 0.8 have been applied to define ranges

that enhance the direct and resolved processes. In the Pythia model that was used, the

upper and lower xmeas
γ ranges contain direct and resolved events in the ratios 86:14 and

22:78, respectively.

To within the theoretical uncertainties, the cross section predicted by FGH is in quan-

titative agreement with the data; the LMZ predicted cross section also agrees well for

the photon and Ejet
T variables, but it is in disagreement with the ηjet distribution for
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Figure 3. Differential cross sections as functions of (a, c) Eγ
T and (b, d) ηγ in different ranges of

xmeas
γ , for events containing an isolated photon accompanied by a jet, compared to predictions from

FGH and LMZ. The kinematic region of the measurement is described in the text. The inner and

outer error bars respectively denote statistical uncertainties and statistical uncertainties combined

with systematic uncertainties in quadrature. The theoretical uncertainties are shown as hatched

and dotted bands.

xmeas
γ < 0.8. This disagreement may be due to the modelling of the jet from the parton

cascade in the present version of the LMZ model.

The variables xobsp and ηγ − ηjet, presented in figures 5 and 6, also include results

evaluated for the entire xmeas
γ range. They are well described by FGH but slightly less so

by LMZ.

Differential cross sections as functions of ∆φ are shown in figure 7. The data are

compared to FGH and LMZ, with similar conclusions as before, and are also compared

to the versions of Pythia and Herwig described in section 4. The MC programs both

give a reasonable description of the data. These results demonstrate that parton showers

used in conjunction with LO MC programs can give a good description of higher-order

contributions, as also observed in other reactions [53–55].

Tables 1 to 6 give the numerical values of the above results, together with the hadro-

nisation factors that were applied to the theory. For further information, cross sections

calculated in the range xmeas
γ < 0.7 are also listed. These have a direct:resolved ratio of

15:85 as modelled by Pythia and show features that are similar to the plotted results.
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Figure 4. Differential cross sections as functions of (a, c) Ejet
T and (b, d) ηjet, for events containing

an isolated photon accompanied by a jet, compared to predictions from FGH and LMZ. The first

two FGH points in (a, c) have been averaged into a single bin for calculational reasons. Other

details as for figure 3.

9 Conclusions

The production of isolated photons with an accompanying jet has been measured in

photoproduction with the ZEUS detector at HERA using an integrated luminosity of

374 ± 7 pb−1. The present measurements extend earlier ZEUS results. Differential cross

sections are presented in a kinematic region defined in the laboratory frame by: Q2 < 1

GeV2, 0.2 < y < 0.7, −0.7 < ηγ < 0.9, 6 < Eγ
T < 15 GeV, 4 < Ejet

T < 35 GeV and

−1.5 < ηjet < 1.8. Photon isolation was imposed such that at least 90% of the energy of

the jet-like object containing the photon originated from the photon.

Differential cross sections are given in terms of the transverse energy and pseudorapid-

ity of the photon and the jet, and in terms of xobsp , ηγ−ηjet and ∆φ in high and low regions

of xmeas
γ . The latter three variables are also presented for the entire observed xmeas

γ range.

The NLO-based predictions of Fontannaz, Guillet and Heinrich reproduce all the measured

experimental distributions well. The kT -factorisation approach of Lipatov, Malyshev and

Zotov describes most of the distributions well, with the exception of the jet pseudorapidity

at low xmeas
γ .
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2
0
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0
2
3

Eγ
T range

(GeV)
dσ
dE

γ
T

(pb GeV−1) had. corr.

xmeas
γ > 0.8

6.0 – 7.0 3.79 ± 0.26 (stat.) +0.37
−0.16 (syst.) 0.84

7.0 – 8.5 2.60 ± 0.17 (stat.) +0.23
−0.14 (syst.) 0.90

8.5 – 10.0 1.55 ± 0.13 (stat.) +0.21
−0.13 (syst.) 0.96

10.0 – 15.0 0.63 ± 0.04 (stat.) +0.04
−0.04 (syst.) 0.98

xmeas
γ < 0.8

6.0 – 7.0 3.22 ± 0.24 (stat.) +0.34
−0.28 (syst.) 0.79

7.0 – 8.5 2.07 ± 0.14 (stat.) +0.15
−0.16 (syst.) 0.80

8.5 – 10.0 1.06 ± 0.10 (stat.) +0.07
−0.15 (syst.) 0.81

10.0 – 15.0 0.27 ± 0.03 (stat.) +0.02
−0.03 (syst.) 0.83

xmeas
γ < 0.7

6.0 – 7.0 2.37 ± 0.21 (stat.) +0.29
−0.21 (syst.) 0.72

7.0 – 8.5 1.32 ± 0.12 (stat.) +0.10
−0.09 (syst.) 0.75

8.5 – 10.0 0.66 ± 0.09 (stat.) +0.07
−0.08 (syst.) 0.77

10.0 – 15.0 0.18 ± 0.03 (stat.) +0.02
−0.03 (syst.) 0.80

Table 1. Differential cross-section dσ
dE

γ

T

for photons accompanied by a jet, and hadronisation

correction.

ηγ range dσ
dηγ

(pb) had. corr.

xmeas
γ > 0.8

– 0.7 – – 0.3 10.69 ± 0.62 (stat.) +1.20
−0.71 (syst.) 0.93

– 0.3 – 0.1 10.07 ± 0.59 (stat.) +0.66
−0.63 (syst.) 0.93

0.1 – 0.5 7.06 ± 0.56 (stat.) +0.51
−0.36 (syst.) 0.90

0.5 – 0.9 4.00 ± 0.50 (stat.) +0.36
−0.20 (syst.) 0.87

xmeas
γ < 0.8

– 0.7 – – 0.3 4.54 ± 0.40 (stat.) +0.41
−0.42 (syst.) 0.84

– 0.3 – 0.1 6.83 ± 0.44 (stat.) +0.46
−0.49 (syst.) 0.80

0.1 – 0.5 7.20 ± 0.48 (stat.) +0.47
−0.68 (syst.) 0.80

0.5 – 0.9 4.08 ± 0.51 (stat.) +0.43
−0.21 (syst.) 0.79

xmeas
γ < 0.7

– 0.7 – – 0.3 2.79 ± 0.31 (stat.) +0.26
−0.27 (syst.) 0.78

– 0.3 – 0.1 4.56 ± 0.38 (stat.) +0.31
−0.31 (syst.) 0.74

0.1 – 0.5 5.12 ± 0.44 (stat.) +0.32
−0.52 (syst.) 0.74

0.5 – 0.9 3.15 ± 0.49 (stat.) +0.43
−0.26 (syst.) 0.74

Table 2. Differential cross-section dσ
dηγ for photons accompanied by a jet, and hadronisation cor-

rection.
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Ejet
T range

(GeV)
dσ

dE
jet

T

(pb GeV−1) had. corr.

xmeas
γ > 0.8

4.0 – 6.0 1.29 ± 0.10 (stat.) +0.21
−0.16 (syst.) 0.81

6.0 – 8.0 2.13 ± 0.14 (stat.) +0.21
−0.15 (syst.) 0.83

8.0 – 10.0 1.56 ± 0.12 (stat.) +0.12
−0.14 (syst.) 0.96

10.0 – 15.0 0.59 ± 0.04 (stat.) +0.07
−0.05 (syst.) 1.05

xmeas
γ < 0.8

4.0 – 6.0 1.43 ± 0.10 (stat.) +0.17
−0.10 (syst.) 0.84

6.0 – 8.0 1.29 ± 0.10 (stat.) +0.08
−0.07 (syst.) 0.73

8.0 – 10.0 1.06 ± 0.09 (stat.) +0.10
−0.17 (syst.) 0.80

10.0 – 15.0 0.28 ± 0.03 (stat.) +0.02
−0.04 (syst.) 0.87

xmeas
γ < 0.7

4.0 – 6.0 1.07 ± 0.09 (stat.) +0.15
−0.08 (syst.) 0.76

6.0 – 8.0 0.82 ± 0.09 (stat.) +0.05
−0.05 (syst.) 0.68

8.0 – 10.0 0.73 ± 0.08 (stat.) +0.07
−0.14 (syst.) 0.77

10.0 – 15.0 0.20 ± 0.03 (stat.) +0.02
−0.03 (syst.) 0.83

Table 3. Differential cross-section dσ

dE
jet

T

for photons accompanied by a jet, and hadronisation

correction.

ηjet range dσ
dηjet

(pb) had. corr.

xmeas
γ > 0.8

–1.5 – – 0.7 2.04 ± 0.22 (stat.) +0.18
−0.18 (syst.) 0.68

– 0.7 – 0.1 5.60 ± 0.35 (stat.) +0.31
−0.18 (syst.) 0.83

0.1 – 0.9 5.32 ± 0.32 (stat.) +0.45
−0.32 (syst.) 1.09

0.9 – 1.8 2.87 ± 0.21 (stat.) +0.38
−0.23 (syst.) 1.33

xmeas
γ < 0.8

–1.5 – – 0.7 0.43 ± 0.10 (stat.) +0.07
−0.09 (syst.) 1.15

– 0.7 – 0.1 2.22 ± 0.21 (stat.) +0.25
−0.19 (syst.) 0.79

0.1 – 0.9 4.29 ± 0.26 (stat.) +0.31
−0.35 (syst.) 0.73

0.9 – 1.8 3.94 ± 0.27 (stat.) +0.24
−0.30 (syst.) 0.85

xmeas
γ < 0.7

–1.5 – – 0.7 0.08 ± 0.08 (stat.) +0.08
−0.05 (syst.) 0.83

– 0.7 – 0.1 1.18 ± 0.17 (stat.) +0.14
−0.08 (syst.) 0.69

0.1 – 0.9 3.11 ± 0.23 (stat.) +0.22
−0.26 (syst.) 0.69

0.9 – 1.8 3.05 ± 0.25 (stat.) +0.22
−0.24 (syst.) 0.82

Table 4. Differential cross-section dσ
dηjet for photons accompanied by a jet, and hadronisation

correction.
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0
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xobsp range dσ
dxobs

p
(pb) had. corr.

All xmeas
γ

0.0 – 0.005 297.6 ± 30.4 (stat.) +46.0
−51.3 (syst.) 0.76

0.005 – 0.010 1471.5 ± 63.2 (stat.) +135.3
−124.3 (syst.) 0.80

0.010 – 0.015 1160.0 ± 57.5 (stat.) +56.9
−57.2 (syst.) 0.90

0.015 – 0.025 514.5 ± 27.8 (stat.) +20.5
−29.4 (syst.) 0.94

0.025 – 0.040 130.1 ± 11.7 (stat.) +6.6
−17.1 (syst.) 0.99

0.040 – 0.070 12.6 ± 2.6 (stat.) +1.0
−3.8 (syst.) 1.00

xmeas
γ > 0.8

0.0 – 0.005 199.5 ± 27.3 (stat.) +23.2
−15.3 (syst.) 0.72

0.005 – 0.010 975.3 ± 54.4 (stat.) +81.8
−68.1 (syst.) 0.82

0.010 – 0.015 662.8 ± 46.7 (stat.) +68.4
−28.8 (syst.) 1.00

0.015 – 0.025 276.9 ± 21.3 (stat.) +21.4
−15.3 (syst.) 1.12

0.025 – 0.040 61.9 ± 8.0 (stat.) +3.6
−4.3 (syst.) 1.26

0.040 – 0.070 0.9 ± 0.9 (stat.) +1.5
−0.6 (syst.) 1.29

xmeas
γ < 0.8

0.0 – 0.005 79.6 ± 14.8 (stat.) +20.7
−31.4 (syst.) 0.95

0.005 – 0.010 492.3 ± 37.0 (stat.) +52.3
−53.5 (syst.) 0.77

0.010 – 0.015 515.2 ± 38.1 (stat.) +24.7
−28.0 (syst.) 0.78

0.015 – 0.025 249.9 ± 20.6 (stat.) +14.0
−21.9 (syst.) 0.81

0.025 – 0.040 70.9 ± 9.4 (stat.) +3.7
−6.1 (syst.) 0.85

0.040 – 0.070 5.3 ± 2.2 (stat.) +0.9
−1.0 (syst.) 0.86

xmeas
γ < 0.7

0.0 – 0.005 35.5 ± 11.4 (stat.) +9.4
−10.4 (syst.) 0.69

0.005 – 0.010 298.3 ± 30.4 (stat.) +34.9
−39.5 (syst.) 0.68

0.010 – 0.015 366.1 ± 33.5 (stat.) +21.0
−21.6 (syst.) 0.73

0.015 – 0.025 193.6 ± 18.8 (stat.) +12.6
−21.6 (syst.) 0.78

0.025 – 0.040 51.4 ± 9.0 (stat.) +2.1
−4.8 (syst.) 0.83

0.040 – 0.070 3.8 ± 2.1 (stat.) +1.1
−0.9 (syst.) 0.82

Table 5. Differential cross-section dσ
dxobs

p
for photons accompanied by a jet, and hadronisation

correction.
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(ηγ − ηjet) range dσ
d(ηγ−ηjet)

(pb) had. corr.

All xmeas
γ

–2.2 – –1.5 3.17 ± 0.24 (stat.) +0.14
−0.18 (syst.) 1.04

–1.5 – – 0.8 6.56 ± 0.35 (stat.) +0.31
−0.48 (syst.) 0.96

– 0.8 – – 0.1 8.57 ± 0.40 (stat.) +0.58
−0.59 (syst.) 0.89

– 0.1 – 0.6 7.42 ± 0.38 (stat.) +0.52
−0.31 (syst.) 0.84

0.6 – 1.3 3.99 ± 0.32 (stat.) +0.23
−0.22 (syst.) 0.77

1.3 – 2.0 0.98 ± 0.19 (stat.) +0.14
−0.07 (syst.) 0.73

xmeas
γ > 0.8

–2.2 – –1.5 1.81 ± 0.19 (stat.) +0.35
−0.15 (syst.) 1.32

–1.5 – – 0.8 3.41 ± 0.26 (stat.) +0.33
−0.23 (syst.) 1.18

– 0.8 – – 0.1 4.44 ± 0.31 (stat.) +0.53
−0.27 (syst.) 1.04

– 0.1 – 0.6 4.88 ± 0.34 (stat.) +0.37
−0.21 (syst.) 0.88

0.6 – 1.3 2.77 ± 0.29 (stat.) +0.18
−0.18 (syst.) 0.74

1.3 – 2.0 0.74 ± 0.18 (stat.) +0.09
−0.09 (syst.) 0.65

xmeas
γ < 0.8

–2.2 – –1.5 1.49 ± 0.17 (stat.) +0.08
−0.12 (syst.) 0.89

–1.5 – – 0.8 3.34 ± 0.27 (stat.) +0.23
−0.29 (syst.) 0.83

– 0.8 – – 0.1 4.23 ± 0.29 (stat.) +0.34
−0.36 (syst.) 0.75

– 0.1 – 0.6 2.63 ± 0.24 (stat.) +0.24
−0.23 (syst.) 0.76

0.6 – 1.3 1.24 ± 0.18 (stat.) +0.10
−0.13 (syst.) 0.88

1.3 – 2.0 0.19 ± 0.09 (stat.) +0.07
−0.05 (syst.) 1.15

xmeas
γ < 0.7

–2.2 – –1.5 1.02 ± 0.15 (stat.) +0.08
−0.08 (syst.) 0.85

–1.5 – – 0.8 2.56 ± 0.25 (stat.) +0.18
−0.25 (syst.) 0.81

– 0.8 – – 0.1 3.19 ± 0.27 (stat.) +0.24
−0.27 (syst.) 0.72

– 0.1 – 0.6 1.69 ± 0.21 (stat.) +0.24
−0.11 (syst.) 0.68

0.6 – 1.3 0.61 ± 0.15 (stat.) +0.08
−0.10 (syst.) 0.71

1.3 – 2.0 0.00 ± 0.48 (stat.) +0.13
−0.00 (syst.) 0.87

Table 6. Differential cross-section dσ
d(ηγ−ηjet) for photons accompanied by a jet, and hadronisation

correction.
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∆φ range

(deg.)
dσ
d∆φ

(pb deg.−1) had. corr.

All xmeas
γ

0.0 – 90.0 0.0048 ± 0.0010 (stat.) +0.0032
−0.0013 (syst.) 0.78

90.0 – 130.0 0.033 ± 0.004 (stat.) +0.005
−0.002 (syst.) 0.81

130.0 – 140.0 0.100 ± 0.012 (stat.) +0.013
−0.009 (syst.) 0.82

140.0 – 150.0 0.164 ± 0.016 (stat.) +0.018
−0.014 (syst.) 0.85

150.0 – 160.0 0.296 ± 0.019 (stat.) +0.027
−0.016 (syst.) 0.86

160.0 – 170.0 0.473 ± 0.026 (stat.) +0.019
−0.026 (syst.) 0.89

170.0 – 180.0 0.951 ± 0.036 (stat.) +0.030
−0.066 (syst.) 0.86

xmeas
γ > 0.8

0.0 – 90.0 0.002 ± 0.001 (stat.) +0.010
−0.002 (syst.) 0.57

90.0 – 130.0 0.012 ± 0.003 (stat.) +0.001
−0.001 (syst.) 0.76

130.0 – 140.0 0.026 ± 0.008 (stat.) +0.005
−0.009 (syst.) 0.77

140.0 – 150.0 0.051 ± 0.010 (stat.) +0.015
−0.006 (syst.) 0.85

150.0 – 160.0 0.140 ± 0.014 (stat.) +0.037
−0.006 (syst.) 0.89

160.0 – 170.0 0.295 ± 0.022 (stat.) +0.014
−0.033 (syst.) 0.93

170.0 – 180.0 0.720 ± 0.034 (stat.) +0.045
−0.055 (syst.) 0.91

xmeas
γ < 0.8

0.0 – 90.0 0.0034 ± 0.0008 (stat.) +0.0013
−0.0007 (syst.) 0.79

90.0 – 130.0 0.0230 ± 0.0030 (stat.) +0.0045
−0.0014 (syst.) 0.82

130.0 – 140.0 0.070 ± 0.010 (stat.) +0.011
−0.007 (syst.) 0.84

140.0 – 150.0 0.110 ± 0.014 (stat.) +0.009
−0.008 (syst.) 0.86

150.0 – 160.0 0.162 ± 0.015 (stat.) +0.018
−0.009 (syst.) 0.84

160.0 – 170.0 0.187 ± 0.017 (stat.) +0.011
−0.017 (syst.) 0.82

170.0 – 180.0 0.247 ± 0.020 (stat.) +0.016
−0.035 (syst.) 0.76

xmeas
γ < 0.7

0.0 – 90.0 0.0023 ± 0.0006 (stat.) +0.0010
−0.0005 (syst.) 0.75

90.0 – 130.0 0.0168 ± 0.0027 (stat.) +0.0051
−0.0015 (syst.) 0.78

130.0 – 140.0 0.046 ± 0.008 (stat.) +0.006
−0.004 (syst.) 0.80

140.0 – 150.0 0.063 ± 0.012 (stat.) +0.016
−0.005 (syst.) 0.79

150.0 – 160.0 0.104 ± 0.013 (stat.) +0.007
−0.007 (syst.) 0.77

160.0 – 170.0 0.133 ± 0.015 (stat.) +0.008
−0.012 (syst.) 0.76

170.0 – 180.0 0.172 ± 0.017 (stat.) +0.010
−0.026 (syst.) 0.70

Table 7. Differential cross-section dσ
d∆φ

for photons accompanied by a jet, and hadronisation

correction.
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