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Abstract:
In this work we present an ontology-based system equipped with a hybrid architecture for the
representation of conceptual information. The proposed system aims at extending the represen-
tational and reasoning capabilities of classical ontology-based systems towards more realistic and
cognitively grounded scenarios, such as those envisioned by the prototype theory. The resulting
system attempts to reconcile the heterogeneous approach to the concepts in Cognitive Science and
the dual process theories of reasoning and rationality. The system has been experimentally assessed
in a conceptual categorization task where common sense linguistic descriptions were given in input,
and the corresponding target concepts had to be identified. The results show that the proposed
solution substantially improves on the representational and reasoning “conceptual” capabilities of
standard ontology-based systems.

1 INTRODUCTION

One of the main open problems in the field
of ontology engineering is that formal ontolo-
gies do not allow –for technical convenience– nei-
ther the representation of concepts in prototyp-
ical terms nor forms of approximate, non mono-
tonic, conceptual reasoning. Conversely, in Cog-
nitive Science evidences exist in favor of pro-
totypical concepts, and typicality-based concep-
tual reasoning has been widely investigated in the
fields of the studies regarding the human cogni-
tion. In this field the early work of Rosch (Rosch,
1975) showed that ordinary concepts do not obey
the classical theory (stating that concepts can be
defined in terms of sets of necessary and suffi-
cient conditions). Rather, they exhibit prototyp-
ical traits: e.g., some members of a category are
considered better instances than other ones; more
central instances share certain typical features –
such as the ability of flying for birds– that, in
general, cannot be thought of as necessary nor

sufficient conditions. These results influenced pi-
oneering KR research, where some efforts were in-
vested in trying to take into account the sugges-
tions coming from Cognitive Psychology: artifi-
cial systems were designed –e.g., frames (Minsky,
1975) and semantic networks– to represent and to
conduct reasoning on concepts in “non classical”,
prototypical terms.

However, these systems were later sacrificed in
favor of a class of formalisms stemmed from struc-
tured inheritance semantic networks and based in
a more rigorous semantics: the first system in this
line of research was the KL-ONE system (Brach-
mann and Schmolze, 1985). These formalisms are
known today as description logics (DLs) (Nardi
and Brachman, 2003). In this setting, the repre-
sentation of prototypical information (and there-
fore the possibility of performing non monotonic
reasoning) is not allowed,1 since the formalisms
in this class are primarily intended for deduc-

1This is the case, for example, of exceptions to the
inheritance mechanism.



tive, logical inference. However, under a histor-
ical perspective, the choice of preferring classi-
cal systems based on a well defined –Tarskian-
like– semantics left unsolved the problem of repre-
senting concepts in prototypical terms. Although
in the field of logic oriented KR various fuzzy
and non-monotonic extensions of DL formalisms
have been designed to deal with some aspects
of “non-classical” concepts (Straccia, 2011; Gior-
dano et al., 2013), nonetheless various theoretical
and practical problems remain unsolved (Frixione
and Lieto, 2010).

In this paper a conceptual architecture is pre-
sented that, embedded in a larger knowledge-
based system, aims at extending the representa-
tional and reasoning capabilities available to tra-
ditional ontology-based frameworks.

The paper is structured as follows: in Sec-
tion 2 we illustrate the general architecture and
the main features of the knowledge-based system.
In Section 3 we provide the results of a twofold
experimentation to assess the accuracy of the sys-
tem in a categorization task. Finally, we conclude
by presenting the related work (Section 4) and
outlining future work (Section 5).

2 THE SYSTEM

Two cornerstones inspiring the current pro-
posal are the dual process theory and the hetero-
geneous approach to concepts in Cognitive Sci-
ence. The theoretical framework known as dual
process theory postulates the co-existence of two
different types of cognitive systems (Evans and
Frankish, 2009; Kahneman, 2011). The systems
of the first type (type 1 ) are phylogenetically
older, unconscious, automatic, associative, par-
allel and fast. The systems of the second type
(type 2 ) are more recent, conscious, sequential
and slow, and featured by explicit rule following.

We assume that each system type can be com-
posed by many sub-systems and processes; ac-
cording to the hypotheses in (Frixione and Lieto,
2012; Frixione and Lieto, 2014), the conceptual
representation of our system includes two main
sorts of components, based on two sorts of pro-
cesses. Type 1 processes are used to perform fast
and approximate categorization, and benefit from
prototypical information associated to concepts.
Type 2 processes, used in classical inference tasks,
and not considering the contribution of prototyp-
ical knowledge. The two sorts of system processes
are assumed to interact, since type 1 processes are

executed first and their results are then refined by
type 2 processes. We also based our work on the
heterogeneous approach to the concepts in Cog-
nitive Science (Machery, 2009). According to this
perspective, concepts do not constitute a unitary
element; rather, artificial concepts can be com-
posed by several bodies of knowledge, each one
conveying a specific type of information.

The whole system embedding the proposed
conceptual architecture works as follows. The in-
put to the system is a simple description, like ‘The
animal that eats bananas’: and the expected out-
put is the category monkey. We devised an In-
formation Extraction (IE) step in order to map
the linguistic input to an internal representation.
In turn, the internal representation is fed into the
proposed architecture, which is concerned with
the categorization task. Due to space restrictions,
we are presently concerned with the architecture,
deferring the details about the IE task to future
contributions.

2.1 Knowledge Base Architecture

We designed a hybrid conceptual architecture
that builds on a classical ontological component,
and on a typical one. Each component represents
a specific conceptual body of knowledge together
with the related reasoning procedures as in the
dual process perspective. A classical represen-
tation grounded on a DL formalism is the base
of the ontological component. It permits listing
necessary and/or sufficient conditions to define
concepts. For example, if we consider the con-
cept water, the classical representation contains
the information that water is a natural substance,
whose chemical formula is H2O. On the other
hand, the prototypical traits include information
about the fact that water usually occurs in liquid
state, and it is mostly a tasteless, odorless and
colorless fluid.

According to the “dual process” approach, in
the implemented system the representational and
reasoning functions are assigned to the system 1
(hereafter S1), that executes processes of type
1, and are associated to the Conceptual Spaces
framework (Gärdenfors, 2000). On the other
hand, the reasoning and representational func-
tions are assigned to the system 2 (hereafter S2),
to execute processes of type 2, and are associ-
ated to a classical DL-based ontological represen-
tation.



2.1.1 The S1 and S2 components

Conceptual spaces (CS) are a geometrical repre-
sentational framework where knowledge is rep-
resented in terms of as a set of quality dimen-
sions (Gärdenfors, 2000). A geometrical struc-
ture is associated to each quality dimension.
In this framework instances are represented as
points in a multidimensional space, and their sim-
ilarity can be computed as the intervening dis-
tance, based on some suitable distance metrics.
In this setting, concepts correspond to regions
and regions with different geometrical properties
correspond to different sorts of concepts.

Conceptual spaces are suitable to represent
concepts in “typical” terms, since the regions rep-
resenting concepts can have soft boundaries. Pro-
totypes have a natural geometrical interpretation,
in that they correspond to the geometrical centre
of the convex region; conversely, given a convex
region we can provide each point with a certain
centrality degree, that can be interpreted as a
measure of its typicality.

The conceptual space defines a metric space
that can be used to compute the proximity be-
tween any two entities, and between entities and
prototypes. To compute the distance between two
points p1, p2 we apply a distance metrics based
on the combination of the Euclidean distance
and the angular distance intervening between the
points. Namely, we use Euclidean metrics to com-
pute within-domain distance, while for dimen-
sions from different domains we use the Manhat-
tan distance metrics, as suggested in (Gärdenfors,
2000; Adams and Raubal, 2009). Weights as-
signed to domain dimensions are affected by the
context, too, so the resulting weighted Euclidean
distance distE is computed as follows

distE(p1, p2, k) =

√√√√ n∑
i=1

wi(p1,i − p2,i)2 ,

where i varies over the n domain dimensions, k
is the context that indicates the set of weights
associated to each domain, and wi are dimension
weights.

We represent points as vectors (with as many
dimensions as required by the considered do-
main), whose components correspond to the point
coordinates, so that a natural metrics to compute
the similarity between them is cosine similarity.
In the metric space being defined, the distance be-
tween an individual and prototypes is computed
with the Manhattan distance, enriched with in-
formation about context k. Also, the distance

between any two concepts can be computed as the
distance between two regions in a given domain
Also, we can compute the distance between any
two region prototypes, or the minimal distance
between their individuals, or we can apply more
sophisticated algorithms. Further details about
technical issues can be found in (Ghignone et al.,
2013).

Inference in conceptual spaces is mostly per-
formed on incomplete and/or noisy information:
that is, it is frequent the case that only partial in-
formation is available to categorize a given input
individual, and some points are not defined for
one or more dimensions. Conceptual spaces are
robust to this sort of lack of information, which
is conversely a decisive factor in the context of
formal ontologies. In these cases we restrict to
considering domains that contain points in the
input individual: if the description for a given in-
dividual does not contain points of some domains,
the distance for those domains is set to a default
value.

The basic representational structure processed
by the system is named genericDescription; it en-
codes the salient aspects of the entities being con-
sidered. A genericDescription is a super-domain
that hosts information about physical and non
physical features arranged into nine domains:
size, shape, color, location, feeding, locomotion,
hasPart, partOf, manRelationship. The size of en-
tities is expressed through the three Euclidean
dimensions; the shape allows expressing that an
object has circular, square, spherical, cubic, etc.,
shape. The color space maps object’s features
onto the L?a?b? color space. L? (0 ≤ L ≤ 100) is
the correlate of lightness, a? (−128 ≤ a ≤ 127) is
the chromaticity axis ranging from green to red,
and b? (−128 ≤ b ≤ 127) is the chromaticity axis
ranging from blue to yellow.

The location space indicates the place where
the object being modeled can be typically found.
It actually results from the combination of five
dimensions, and namely: humidity, indicated as a
percentage; temperature, ranging in [−40◦, 50◦];
altitude, ranging in [−11000, 8848]; vegetation,
ranging in [0, 100]; time. In turn, time contains
a partitioning of the hours of the day into sunrise
(4–6 AM), morning (6–12 AM), afternoon (12–
5 PM), evening (5–10 PM) and night (10 PM–4
AM).

The domain feeding is currently specific to an-
imals, and it allows mapping an element over two
dimensions, typeOfFood and amountOfFood. The
typeOfFood is associated to an integer indicat-



ing 1: herbivore, 2: lectivore, 3: detritivore, 4:
necrophage, 5: carnivore. The underlying ra-
tionale is that close elements (e.g., necrophage
and carnivore, that are one step apart in the pro-
posed scale) are represented as close in this space
due to their proximity under an ethological view-
point, whilst different categories (e.g., herbivore
and carnivore) are featured by larger distances in
the considered scale (Getz, 2011).

Similar to the previous one, also the locomo-
tion domain combines two dimensions: the for-
mer dimension is used to account for the type of
movement (1: swim, 2: dig, 3: crawl, 4: walk,
5: run, 6: roll, 7: jump, 8: fly), and the latter
one is used to account for the speed, expressed
in km/h (Bejan and Marden, 2006). Finally, the
manRelationship space is used to grasp entities as
related to man by function (both a train and a
horse can be used as ‘transport’), product (chicken
produce ‘eggs’, and ‘chicken’ per se are a food
product), symbol (‘lion’ can be used as a symbol
for ‘strength’ and ‘royalty’). A simplified exam-
ple of the lion prototype information is reported
below.

<object name="lion">
<genericPhysicalDescription>

<feeding>
<foodType>5</foodType>
<foodQuantity>100</foodQuantity>

</feeding>
</genericPhysicalDescription>
<manRelationship>

<symbol id="08153437">royalty</symbol>
<symbol id="05036872">strength</symbol>

</manRelationship>
</object>

On the other hand, the representation of the
classical component S2 is implemented through
a formal ontology. As already pointed out, the
standard ontological formalisms leave unsolved
the problem of representing prototypical informa-
tion. Furthermore, it is not possible to execute
non monotonic inference, since classical ontology-
based reasoning mechanisms contemplate deduc-
tive processes.

In this setting we cannot represent even sim-
ple prototypical information, such as ‘A typical
rose is red’. This is due to the fact that being red
is neither a necessary nor a sufficient condition
for being a rose, and therefore it is not possible
neither to represent and to automatically identify
a prototypical rose (let us assume #roseP ) nor to
describe (and to learn from new cases) the typical
features of the class of prototypical roses. Such
aspect has, on the other hand, a natural interpre-

tation by using the conceptual spaces framework.

2.2 Inference in the hybrid system

Categorization (i.e., to classify a given data in-
stance into a predefined set of categories) is one
of the classical processes automatically performed
both by symbolic and sub-symbolic artificial sys-
tems. In our system categorization is based on a
two-step process involving both the typical and
the classical component of the conceptual repre-
sentation. These components account for differ-
ent types of categorization: approximate or non
monotonic (performed on the conceptual spaces),
and classical or monotonic (performed on the on-
tology). Different from classical ontological infer-
ence, in fact, categorization in conceptual spaces
proceeds from prototypical values. In turn, pro-
totypical values need not be specified for all class
individuals, that vice versa can overwrite them:
one typical example is the case of birds that (by
default) fly, except for special birds, like penguins,
that do not fly.

The whole categorization process can be sum-
marized as follows. The system takes in input a
textual description d and produces in output a
pair of categories 〈c0, cc〉, the output of S1 and
S2, respectively (see Algorithm 1). If the S2 sys-
tem classifies it as consistent with the ontology,
then the classification succeeded and the category
provided by S2 (cc) is returned along with c0,
the top scoring class returned by S1 (Algorithm
1: line 8). If cc –the class computed by S2– is
a subclass of one of those identified by S1 (ci),
both cc and c0 are returned (Algorithm 1: line
11). Thus, if S2 provides more specific output,
we follow a specificity heuristics; otherwise, the
output of S2 is returned, following the rationale
that it is safer.2 A pair of results is always re-
turned, including both the output of S1 and the
output of S2, thereby providing typically valid
answers (through S1) that are checked against a
logically valid reasoning conducted on the onto-
logical knowledge base (through S2). In so doing,
we follow the rationale that despite the S1 output
can contain errors, it furnishes approximate an-
swers that cannot be obtained by resorting only

2The output of S2 cannot be wrong on a purely
logical perspective, in that it is the result of a de-
ductive process. The control strategy implements a
tradeoff between ontological inference and the output
of S1, which is more informative but also less reliable
from a formal point of view. However, in next future
we plan to explore different conciliation mechanisms
to ground the overall control strategy.



Algorithm 1 Inference in the hybrid system.

input : textual description d
output : a class assignment, as computed by S1

and S2
1: C ← S1(d) /* conceptual spaces output

*/
2: for each ci ∈ C do
3: cc ← S2(〈d, ci〉) /* ontology based

output */
4: if cc == NULL then
5: continue /* inconsistency detected

*/
6: end if
7: if cc equals ci then
8: return 〈c0, cc〉
9: else

10: if cc is subclass of ci then
11: return 〈c0, cc〉
12: end if
13: end if
14: end for
15: cc← S2(〈d,Thing〉)
16: return 〈c0, cc〉

to classical ontological inference.

If all results in C are inconsistent with those
computed by S2, a pair of classes is returned in-
cluding c0 and the output of S2 having for actual
parameters d and Thing, the meta-class of all the
classes in the ontological formalism.

An important function provided by S2 regards
the explanation of the detected inconsistencies.
This function is obtained by recurring to standard
DL reasoners.3 One main problem encountered
in the explanation of inconsistencies regards the
fact that reasoners’ output is usually quite ver-
bose, since it provides the whole chain of all the
possible reasons explaining why a given model is
not consistent w.r.t. the represented assertions.
For example, let us suppose that the ontological
KB is provided with an assertion about the fact
that whale isA fish. Whales are not fishes: they
are in the order of cetacea. If an inconsistency is
detected, the initial results obtained by the rea-
soner report the following clauses: since whale
isA mammal, and since mammal is disjoint with
other animal classes, it must also be disjoint with
the classes fish, reptile, bird and so on, as well
as with all respective subclasses of fish, reptile,
bird. Although factually correct and complete,

3To actually access the KBs we used the Jena
framework, https://jena.apache.org.

this explanation is quite long (in an ontological
KB with good coverage each class contains many
subclasses) and it thus provides information not
very informative for the punctual explanation of
the raised inconsistency. The only relevant in-
formation, in this case, regards the fact that the
tested class whale cannot be classified as a fish
because mammal and fish are mutually disjoint
classes. The disjointness of the superclass mam-
mal with the other classes in the ontology is not
contextually relevant in this phase. Therefore we
designed and implemented a software layer that
runs on top of Jena explanation utilities to extract
a laconic explanation from the longer one: main
focus of the laconic explanation is to make appar-
ent the cause of the inconsistency. In so doing, we
adopted a simple heuristic according to which the
only motivation reported is that focused on the
tuples of classes which are under investigation.

3 EXPERIMENTATION

We have designed a twofold experimentation
on a categorization task. In the first experiment
we tested the system over a restricted domain (the
animal kingdom domain) to compare it with the
results obtained in a previous experimentation
with S2 using a handcrafted ontology. In the sec-
ond experiment we tested the system in a broader
context, and we were interested in assessing its
robustness and the discriminative features of the
S1 component in a multi-domain setting. Two
datasets, one composed of 39 “common-sense”
linguistic descriptions, and one composed of 40
linguistic descriptions were used.4 Each stimulus
st = 〈d, T 〉 is a pair of description and target,
such as 〈‘The big carnivore with yellow and black
stripes’, ‘tiger’〉. The target T is the “prototyp-
ically correct” category, and in the following it
is referred to as the expected result. The set of
stimuli was devised by a team of neuropsycholo-
gists and philosophers in the frame of a broader
project aimed at investigating the role of visual
load in concepts involved in inferential and ref-
erential tasks. The expected prototypical target
category represents a gold standard, since it cor-
responds to the results provided within a psycho-
logical experimentation. In this experimentation
30 subjects were requested to provide the cor-
responding target concept for each description.

4The full list of the stimuli is available
at the URL: http://www.di.unito.it/~radicion/
datasets/keod_2014/stimuli.txt.



Such input was then used for querying our system
as in a typicality based question-answering task.
In Information Retrieval such queries (which is by
far the most common and complex to interpret)
are known to belong to the class of “informational
queries”, i.e., queries where the user intends to
obtain information regarding a specific informa-
tion need (Jansen et al., 2008).

Experiment 1

The first experiment was made to compare the
results obtained in the previous study (Ghignone
et al., 2013) –where S2 made use of a hand-
crafted ontological knowledge base– to those ob-
tained with S2 using publicly available common
sense domain ontologies. With respect to the pre-
vious experiment a larger number of new descrip-
tions were considered, all in the animal domain.
Two ontologies have been selected for the com-
parison: the Animal in Context Ontology (ACO),
developed by the Veterinary Medical Informat-
ics Laboratory at the Virginia-Maryland Regional
College and the BBC WildLife Ontology.5 They
were both retrieved by using a mixed search over
Sindice and Swoogle, and they were selected as
guaranteeing a granularity of information similar
to that of the handcrafted ontology of our previ-
ous study.

The results concerning both experimental se-
tups (ACO and BBC ontologies within S2 KB)
are reported in Table 1.

By considering the ACO ontology, in most
cases (37/39) S1 and S2 return the same cate-
gory. Differently from the previous experiment,
however, this is given by the fact that such on-
tology, in certain cases, is not precise enough to
provide a different correct/better specified cate-
gory w.r.t. S1. In particular, in the case of the
description “The big fish eating plankton”, the
result whale obtained by S1 is not detected as
inconsistent in such ontology, since the concept
representation along with its restrictions are not
present in the ontology itself. Therefore, checking
the consistency of the class (which was added to
the ontology without the conceptual constraints
associated to the concept) does not reveal incon-
sistencies with the original model of the ontology.
The only differences w.r.t. the S1 and S2 output
is obtained by considering the two descriptions:
“A honey producing insect. (Bee)” and “A bird

5Available at the URLs: http://vtsl.vetmed.
vt.edu/aco/Ontology/aco.zip and http://www.
bbc.co.uk/ontologies/wo.

kept on a farm for its meat and eggs. (Chicken)”.
In both cases, more specific and detailed results
are provided by S2 w.r.t. the already correct cat-
egorization of S1.

Analogous results, in terms of accuracy, have
been obtained by plugging the BBC Wildlife on-
tology into S2. The testing of such ontology has
been possible thanks to a manual import of the
missing classes/instances through the browsing of
the BBC directory containing the full classifica-
tion considered by the BBC archives.6 Despite
the two experiments produced similar figures,
they also revealed some differences between the
two ontologies. The answer whale for the above
mentioned description is correctly detected as in-
consistent with the BBC ontology, and the onto-
logically correct result whale-shark is returned.

Summing up: the results of this experiment
show that the conceptual categorization obtained
by S2 using external ontological knowledge bases
are directly comparable to those obtained in a
previous study where a handcrafted domain on-
tology was considered. A major problem encoun-
tered in using external knowledge bases stems
from axiomatization, that is not always sufficient
to solve the task of detecting and correcting er-
rors produced by S1. In particular, in the case
of ACO, a finer-grained result is obtained in two
cases after a correct categorization already pro-
vided by S1. This finer-grained result is not ob-
tained by considering the BBC Wildlife ontology
that, however, is able to detect the expected in-
consistencies.

Experiment 2

In order to assess the accuracy of the system in
a more demanding experimental setting, we de-
vised a second experimental task, where S2 used
the knowledge base OpenCyc.7 OpenCyc is one
of the largest ontologies publicly available, in that
it is an enormous attempt at integrating many di-
verse semantic resources (such as, e.g., WordNet,
DBpedia, Wikicompany, etc.). Its coverage and
depth was therefore its most attractive feature
(it contains about 230, 000 concepts, 2, 090, 000
triples and 22, 000 predicates). Additionally, we
adopted OpenCyc to use a knowledge base in-
dependent of our own representational commit-
ments in order to more effectively assess the flex-
ibility of the proposed system when using general-
purpose, well known, existing resources.

6http://www.bbc.co.uk/nature/wildlife.
7http://www.cyc.com/platform/opencyc.



Table 1: The results of the first experiment, with S2 using external ontologies.

ACO BBC

Cases where S1 and S2 returned the same category 94.8% (37/39) 92.3% (36/39)
Cases where S1 returned the expected category 94.8% (37/39) 94.8% (37/39)
Cases where S2 returned the expected category 94.8% (37/39) 92.3% (36/39)

Table 2: The results of the second experiment.

Test cases categorized 40 100.0%

S1-S2 31 77.5%
Google 26 65.0%
Bing 23 57.5%

A second dataset of 40 “common-sense” lin-
guistic descriptions was collected with the same
rationale considered for the first experiment.8

The obtained results are reported in Table 2.
Despite being less accurate with respect to the

previous experiment, the hybrid knowledge based
S1-S2 system was able to categorize and retrieve
most of the new typicality-based stimuli provided
as input and still showed a better performance
w.r.t. the general purpose search engines Google
and Bing used in question-answering mode.

The major problems encountered in this ex-
periment derived from the difficulty of mapping
the linguistic structure of stimuli containing very
abstract meaning in the representational frame-
work of S1 as they are actually encoded accord-
ing to the conceptual space. For example, it was
impossible to map the information contained in
the description “the place where kings, princes
and princesses live in fairy tales” onto the fea-
tures used to characterize the prototypical repre-
sentation of the concept Castle. Similarly, the in-
formation extracted from the description “Giving
something away for free to someone” could not be
mapped onto the features associated to the con-
cept Gift. On the other hand, the system shows
good performances when dealing with less ab-
stract descriptions based on perceptual features
such as shape, color, size, and with some typical
information such as function, symbol, product.

In this experiment, differently from the previ-
ous one (e.g., that one in the case of whale for
the BBC ontology), S2 did not reveal any incon-
sistency, in that S1 mostly provided an output
coherent with the model in OpenCyc. However,
by analyzing in detail the different answers, we

8An extended version of the present experiment is
illustrated in (Lieto et al., 2014).

notice that at least one inconsistency should have
been detected by S2. This is the case of the de-
scription “An intelligent grey fish” associated to
the target concept Dolphin. In this case, the S1
system returned the expected target, but S2 did
not raise the inconsistency since OpenCyc erro-
neously represents Dolphin as a subclass of Fish,
rather than a subclass of Mammal.

4 RELATED WORK

In the context of a different field of appli-
cation, a solution similar to the one adopted
here has been proposed in (Chella et al., 1997).
The main difference with their proposal concerns
the underlying assumption on which the integra-
tion between symbolic and sub-symbolic system
is based. In our system the conceptual spaces and
the classical component are integrated at the level
of the representation of concepts, and such com-
ponents are assumed to convey different –though
complementary– conceptual information. On the
other hand, the previous proposal is mainly used
to interpret and ground raw data coming from
sensors in a high level symbolic system through
the mediation of conceptual spaces.

In other respects, our system is also akin to
that ones developed in the field of the computa-
tional approach to the above mentioned dual pro-
cess theories. A first example of such “dual based
systems” is the mReasoner model (Khemlani and
Johnson-Laird, 2013), developed with the aim of
providing a computational architecture of reason-
ing based on the mental models theory proposed
by Philip Johnson-Laird (Johnson-Laird, 1980).
The mReasoner architecture is based on three
components: a system 0, a system 1 and a system
2. The last two systems correspond to those hy-
pothesized by the dual process approach. System
0 operates at the level of linguistic pre-processing.
System 1 uses this intensional representation to
build an extensional model, and uses heuristics to
provide rapid reasoning conclusions; finally, sys-
tem 2 carries out more demanding processes to
search for alternative models, if the initial con-



clusion does not hold or if it is not satisfactory.
A second system that is close to our present

work has been proposed by (Pilato et al., 2012).
The authors do not explicitly mention the dual
process approach; however, they build a sys-
tem for conversational agents (chatbots) where
agents’ background knowledge is represented us-
ing both a symbolic and a sub-symbolic approach.
They also associate different sorts of represen-
tation to different types of reasoning. Namely,
deterministic reasoning is associated to symbolic
(system 2) representations, and associative rea-
soning is accounted for by the sub-symbolic (sys-
tem 1) component. Differently from our sys-
tem, however, the authors do not make any claim
about the sequence of activation and the concilia-
tion strategy of the two representational and rea-
soning processes. It is worth noting that other
examples of this type of systems can be con-
sidered that are in some sense analogous to the
dual process proposal: for example, many hybrid,
symbolic-connectionist systems –including cogni-
tive architectures such as, for example, CLAR-
ION9–, in which the connectionist component is
used to model fast, associative processes, while
the symbolic component is responsible for ex-
plicit, declarative computations. However, at the
best of our knowledge, our system is the only one
that considers this hybridization with a granular-
ity at the level of individual conceptual represen-
tations.

5 CONCLUSIONS

In this work we have presented a knowledge-
based system relying upon a cognitively inspired
architecture for the representation of conceptual
knowledge. The system is grounded on a hy-
brid framework coupling classical and prototyp-
ical representation and reasoning, and it aims
at extending the representational and reasoning
capabilities of classical ontological-based systems
towards more realistic and cognitively grounded
scenarios, such as those envisioned by the proto-
type theory. The results obtained in a twofold
experimentation show that in the restricted do-
main of the animal kingdom the proposed archi-
tecture is comparable with the results obtained
with a handcrafted domain ontology. The overall
results corroborate the hypothesis that matching
in conceptual spaces can be fruitfully coupled to

9http://www.cogsci.rpi.edu/~rsun/clarion.
html

ontological inference. However, the ontological
inference would not suffice to categorize the pre-
sented common sense stimuli presented in both
experiments, with only one exception.

In next future we plan to test the proposed
approach in the area of biomedical domain to as-
sess disease diagnosis tasks by grounding S2 on
SNOWMED,10 and S1 on conceptual spaces rep-
resenting the typical symptoms of a given disease.
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