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This paper deals with moment matching of matrix exponential (ME) distributions used to approximate general probability density
functions (pdf). A simple and elegant approach to this problem is applying Padé approximation to themoment generating function
of the ME distribution. This approach may, however, fail if the resulting ME function is not a proper probability density function;
that is, it assumes negative values. As there is no known, numerically stable method to check the nonnegativity of general ME
functions, the applicability of Padé approximation is limited to low-order ME distributions or special cases. In this paper, we show
that the Padé approximation can be extended to capture the behavior of the original pdf around zero and this can help to avoid
representations with negative values and to have a better approximation of the shape of the original pdf. We show that there exist
cases when this extension leads toME functionwhose nonnegativity can be verified, while the classical approach results in improper
pdf. We apply the ME distributions resulting from the proposed approach in stochastic models and show that they can yield more
accurate results.

1. Introduction

Probability distributions that can be expressed as the com-
position of exponential stages have gained widespread accep-
tance in recent years, specifically as ways of modeling non-
exponential durations maintaining the Markov property of
the underlying stochastic process. Distributions with these
characteristics are represented by the family of phase type
(PH) distributions which are given by the distribution of time
to absorption in Markov chains (see, e.g., Chapter 2 in [1]).
In the literature, mainly continuous-time PH distributions
have been studied, but more recently some works that deal
with the discrete-time version have also been proposed
[2]. Phase type distributions are practically interesting since
they allow studying with Markov models problems that are
characterized by distributions with coefficient of variation
either smaller or larger than one.

Matrix exponential (ME) distributions [3] are an exten-
sion of the PH class.They can provide more compact approx-
imation than the PH class [4] and can capture cases in which

the density functions that we want to represent may be zero
on positive real numbers (i.e., they may exhibit multimodal
shapes). ME distributions have the same algebraic form as
PH distributions, but they do not enjoy a simple stochastic
interpretation (a stochastic interpretation ofMEdistributions
is given in [5], but this is much more complicated and less
practical than that possessed by PH distributions).

The main reason to apply PH and ME distributions in
stochastic modeling is that these distributions can be easily
used as building blocks of more complex models. This fact is
well-known for PH distributions because it is straightforward
that if we are given a system in which all sojourn times are
according to PH distributions and the next state distribution
is Markov then the overall system behavior can be described
by a Markov chain. Starting from [6], the construction of
the Markov chain, often referred to as the expanded Markov
chain, was proposed in the literature for several modeling
formalisms, such as stochastic Petri nets (SPN), stochastic
process algebras, or stochastic automata networks [7–9].
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The downside of dealing with the expanded chain is that if
the model has many states and/or it describes many activities
performed in parallel, then the chain can have a huge number
of states. To alleviate this problem several authors proposed
techniques for the compact representation of the expanded
chain. Such techniques are based on either Kronecker algebra
(among the first works see, e.g., [10]) or, more recently,
decision diagrams techniques (e.g., [11]).

Thenecessary theoretical background to useMEdistribu-
tions as building blocks was developed instead only recently.
In this case the overall model is not a Markov chain, but the
transient system behavior can still be described by a set of
ordinary differential equations. In the context of SPN, this
was shown for a subclass of ME distributions in [12], while
in [4] the result was extended to the whole family. In the
context of quasi-birth-and-death processes the possibility of
using ME distributions was investigated in [13].

In order to apply PH or ME distributions in stochastic
modeling one needs methods to create distributions that
capture real measured durations. Most of the existing tech-
niques fall into two categories: those that are based on the
maximum likelihood (ML) principle and those that aim to
match moments.

One of the first works on ML estimation considered
acyclic PH distributions [14] (i.e., PH distributions whose
underlying Markov chain is acyclic), while an approach for
the whole family, based on the expectation-maximization
method, is proposed in [15]. Since these early papers, many
new methods and improvements have been suggested for
the whole PH family and for its subclasses (see, e.g., [16,
17]). Much less research tackled ML based fitting of ME
distributions because of the lack of a practical stochastic
interpretation. One suchmethod, based on semi-infinite pro-
gramming, is described however in Chapter 9 of [18] where
the computational complexity of the problem is discussed and
an algorithm is devised.

For what concerns moment matching methods the fol-
lowing results are available. For low-order (≤3) PH and
ME distributions (the order of PH and ME distributions is
the size of their generator matrices) either moment bounds
and moment matching formulas are known in an explicit
manner or there exist iterative numerical methods to check
if given moments are possible to capture [19–21]. For higher
orders there exist matching algorithms, but these often result
in improper density functions (by proper pdf we mean a
pdf which is nonnegative and normalized) and the validity
check is a nontrivial problem [18, 22]. In [23] a simple
method is provided that constructs a minimal order acyclic
PH distribution given three moments. Characterization of
moments of PH and ME distributions is discussed in [24].
Moreover, tool support is available for the construction of
PH and ME distributions. Specifically, ML based fitting is
implemented in PhFit [25] and a set of moment matching
functions is provided in BuTools [26].

In this paper we considermomentmatching ofME distri-
butions by Padé approximation [18].Thismethod provides an
order-𝑛ME distribution given 2𝑛 − 1moments. The problem
is that the probability density function (pdf) associated with
the distribution can be improper (i.e., it may assume negative

values). We show that Padé approximation can be extended
in such a way that it considers not only moments, but also
the behavior of the original pdf around zero (called also
zero-behavior in the sequel). We present examples where
this extension leads to ME distributions with proper pdf for
cases where the original approach results in improper pdf.
Moreover, it can give a better approximation of the shape of
the original pdf.

The paper is organized as follows. In Section 2, we
provide the necessary theoretical background. The extended
Padé approximation is introduced in Section 3. The rela-
tion between the zero-behavior of ME distribution and its
moments is discussed in Section 4. Numerical illustration of
the proposed approach is provided in Section 5. Application
ofMEdistributions resulting from the extended Padé approx-
imation in stochastic models is discussed in Section 6. The
paper is concluded then in Section 7.

2. Background

The cumulative distribution function of a matrix exponential
random variable,𝑋, is of the form

𝐹 (𝑡) = 𝑃𝑟 {𝑋 < 𝑡} = 1 − V𝑒𝐴𝑡1, (1)

where V is a row vector, referred to as the initial vector, 𝐴
is a square matrix, referred to as the generator, and 1 is a
column vector of ones. When the cardinality of the vector V
is 𝑛, then the distribution is called order-𝑛matrix exponential
distribution (ME(𝑛)). The vector-matrix pair (V, 𝐴) is called
the representation of the distribution. Throughout the paper
we assume that the distribution is without mass at time zero,
that is, V1 = 1, but the extension to the case with mass at
zero is straightforward. Note that the entries of V may be
negative; that is, it is not necessarily a probability vector. If
V is a probability vector and 𝐴 is the infinitesimal generator
of a transient Markov chain, then the distribution belongs to
the class of PH distributions.

The pdf of ME distribution can be computed as

𝑓 (𝑡) = V𝑒𝐴𝑡 (−𝐴) 1, (2)

and the moment generator function can be expressed as

𝑓
∗
(𝑠) = M {𝑓 (𝑡)} = 𝐸 [𝑒

𝑠𝑋
]

= ∫

∞

0

𝑒
𝑠𝑥
𝑓 (𝑥) 𝑑𝑥 = V (𝑠𝐼 + 𝐴)

−1
𝐴1,

(3)

where 𝐼 is the identity matrix. The last expression results in a
rational function of the form

𝑓
∗
(𝑠) =

𝑎
0
+ 𝑎
1
𝑠 + ⋅ ⋅ ⋅ + 𝑎

𝑛−1
𝑠
𝑛−1

𝑏
0
+ 𝑏
1
𝑠 + ⋅ ⋅ ⋅ 𝑏

𝑛−1
𝑠
𝑛−1

+ 𝑠
𝑛
, (4)

where 𝑎
0

= 𝑏
0
if there is no probability mass at zero (i.e.,

if V1 = 1 as we have assumed before). If the ME distri-
bution is nonredundant, then the number of poles of (4) is
equal to the order of the matrix representation of theME dis-
tribution [27]. In this paper, we consider only nonredundant
distributions.
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Themoments can be obtained from the moment generat-
ing function and the 𝑖th moment is

𝑚
𝑖
= 𝐸 [𝑋

𝑖
] = 𝑖!V (−𝐴)

−𝑖
1. (5)

It can be seen from (4) that ME(𝑛) distribution without
probability mass at zero is determined by 2𝑛 − 1 parameters
and, consequently, 2𝑛−1moments can bematched byME(𝑛)
if the moments are inside the moment bounds of the ME(𝑛)
family (i.e., if the 2𝑛 − 1 moments are such that they can be
realized by ME(𝑛) distribution).

There exist methods to construct ME distributions given
moments.The applicability of these methods is limited by the
facts that

(i) explicit moment bounds of the ME family are known
only for low-order (𝑛 ≤ 2) ME distributions,

(ii) the validity check of the pdf for higher order (𝑛 > 3)
ME distribution is an open research problem.

In the following we report those results that are relevant to
our paper.

For order-2 distributions the PH and the ME families are
equivalent and the moment bounds are provided in [19] in
terms of the squared coefficient of variation defined as 𝑐2 =
(𝑚
2
− 𝑚
2

1
)/𝑚
2

1
= 𝑚
2
/𝑚
2

1
− 1. The bounds are

0 < 𝑚
1
< ∞,

1

2
≤ 𝑐
2
< ∞,

3𝑚
3

1
(3𝑐
2
− 1 + √2 (1 − 𝑐

2
)
3/2

) ≤ 𝑚
3
≤ 6𝑚
3

1
𝑐
2

if 1

2
≤ 𝑐
2
≤ 1,

3

2
𝑚
3

1
(1 + 𝑐

2
)
2

< 𝑚
3
< ∞ if 1 < 𝑐

2
,

(6)

meaning that if three moments satisfy the above conditions,
then there exists a properME(2) distribution that realizes the
moments.

For order-3ME distributions themoment bounds are not
known explicitly. In [21] an algorithm is proposed which,
given ME(3) density, checks if it is proper. In some cases the
algorithm requires the numerical solution of a transcendent
equation. This means that, given 5 moments, one can create
ME(3) distribution and then check its validity by the method
provided in [21]. This check is implemented in the BuTools
package [26].

3. Padé Approximation

Padé approximation for ME distributions exploits the fact
that for any distribution the following relation holds between
the moment generating function and the moments of the
distribution:

𝑔
∗
(𝑠) =

∞

∑

𝑖=0

𝑚
𝑖

𝑖!
𝑠
𝑖
, (7)

where we assume having 𝑚
0
= 1 which implies that the pdf

is normalized. Accordingly, one may consider approximating
the moment generating function by a rational function as

𝑓
∗
(𝑠) =

𝑎
0
+ 𝑎
1
𝑠 + ⋅ ⋅ ⋅ + 𝑎

𝑛−1
𝑠
𝑛−1

𝑎
0
+ 𝑏
1
𝑠 + ⋅ ⋅ ⋅ 𝑏

𝑛−1
𝑠
𝑛−1

+ 𝑠
𝑛

≈

2𝑛−1

∑

𝑖=0

𝑚
𝑖

𝑖!
𝑠
𝑖
+

∞

∑

𝑖=2𝑛

𝑚
𝑖

𝑖!
𝑠
𝑖
= 𝑔
∗
(𝑠) ,

(8)

where the 2𝑛 − 1 parameters of the moment generating
function of the ME distribution, that is, 𝑎

𝑖
, 0 ≤ 𝑖 ≤ 𝑛 − 1

and 𝑏
𝑖
, 1 ≤ 𝑖 ≤ 𝑛 − 1, can be determined based on the first

2𝑛 − 1 moments of the distribution whose moments we aim
to match. More precisely, we look for such parameters with
which the first 2𝑛 coefficients of the polynomial

𝑎
0
+ 𝑎
1
𝑠 + ⋅ ⋅ ⋅ + 𝑎

𝑛−1
𝑠
𝑛−1 (9)

are equal to the first 2𝑛 coefficients of the polynomial

(𝑎
0
+ 𝑏
1
𝑠 + ⋅ ⋅ ⋅ 𝑏

𝑛−1
𝑠
𝑛−1

+ 𝑠
𝑛
)

2𝑛−1

∑

𝑖=0

𝑚
𝑖

𝑖!
𝑠
𝑖
. (10)

The above corresponds to solving a linear system of 2𝑛

equations given as

𝑎
𝑖
=

𝑖

∑

𝑗=0

𝑏
𝑖−𝑗

𝑚
𝑗

𝑗!
, (11)

with 𝑎
𝑖
= 0 if 𝑖 > 𝑛 − 1, 𝑏

0
= 𝑎
0
, 𝑏
𝑛
= 1, and 𝑏

𝑖
= 0 if 𝑖 > 𝑛.

The above-described procedure results in a moment gen-
erating function that exactly matches the first 2𝑛−1moments
of the original distribution. It may, however, fail as there is no
guarantee for the nonnegativity of the corresponding pdf.

The procedure can be extended to capture the behavior
of the original pdf around zero. This is done by adding
new equations to those provided by (11) and removing those
referring to the highest order moments. For example, the pdf
of ME(𝑛) at zero assumes simply the value

𝑓 (0) = lim
𝑠→−∞

− 𝑠𝑓
∗
(𝑠) = −𝑎

𝑛−1
, (12)

while the derivative at zero can be obtained as

𝑓
󸀠
(0) = lim

𝑠→−∞
(𝑠
2
𝑓
∗
(𝑠) + 𝑠𝑓 (0)) = 𝑎

𝑛−2
− 𝑎
𝑛−1

𝑏
𝑛−1

. (13)

Matching 𝑓(0) means that the number of moments that can
be captured is decreased to 2𝑛 − 2, while matching both 𝑓(0)

and 𝑓
󸀠
(0)means that we can capture 2𝑛 − 3moments.

In general, the value of the 𝑘th derivative of the pdf at zero
can be obtained by applying two properties of the moment
generating functions. First, the moment generating function
of the 𝑘th derivative of 𝑓(𝑡) is given by

M {𝑓
(𝑘)

(𝑡)} = 𝑓
(𝑘)∗

(𝑠) = (−𝑠)
𝑘
𝑓
∗
(𝑠) −

𝑘

∑

𝑙=1

(−𝑠)
𝑘−𝑙

𝑓
(𝑙−1)

(0) .

(14)
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Second, the value at zero can be obtained as

𝑓
(𝑘)

(0) = lim
𝑠→−∞

− 𝑠𝑓
(𝑘)∗

(𝑠) . (15)

Equations (14) and (15) provide a recursive calculation proce-
dure to calculate 𝑓(𝑘)(0) as function of the parameters of the
generating function. For example, in case of 𝑛 ≥ 5, we have

𝑓
(2)

(0) = −𝑎
𝑛−3

+ 𝑎
𝑛−2

𝑏
𝑛−1

+ 𝑎
𝑛−1

(𝑏
𝑛−2

− 𝑏
2

𝑛−1
) ,

𝑓
(3)

(0) = 𝑎
𝑛−4

− 𝑎
𝑛−3

𝑏
𝑛−1

+ 𝑎
𝑛−2

(𝑏
2

𝑛−1
− 𝑏
𝑛−2

)

− 𝑎
𝑛−1

(𝑏
3

𝑛−1
− 2𝑏
𝑛−2

𝑏
𝑛−1

+ 𝑏
𝑛−3

) ,

𝑓
(4)

(0) = −𝑎
𝑛−5

+ 𝑎
𝑛−4

𝑏
𝑛−1

+ 𝑎
𝑛−3

(𝑏
𝑛−2

− 𝑏
2

𝑛−1
)

+ 𝑎
𝑛−2

(𝑏
3

𝑛−1
− 2𝑏
𝑛−2

𝑏
𝑛−1

+ 𝑏
𝑛−3

)

+ 𝑎
𝑛−1

(−𝑏
4

𝑛−1
+ 3𝑏
𝑛−2

𝑏
2

𝑛−1
− 2𝑏
𝑛−3

𝑏
𝑛−1

− 𝑏
2

𝑛−2
+ 𝑏
𝑛−4

) .

(16)

It can be seen from (12) that matching𝑓(0) directly deter-
mines 𝑎

𝑛−1
. Having determined 𝑎

𝑛−1
, (13) provides a linear

equation thatmust be satisfied if one aims to capture𝑓󸀠(0). In
general, capturing 𝑓

(𝑘)
(0) for 0 ≤ 𝑘 ≤ 𝑚 adds simple linear

equations to those that are used to match the moments.

4. Relation of Derivatives at Zero and
Moments by Hankel Matrices

In this section, we discuss the relation between the zero-
behavior ofME distribution and its moments. Let us consider
an order 𝑛 ME distribution with representation (V, 𝐴) and
introduce the 𝑘 × 𝑘Hankel matrix

𝐻
𝑖,𝑘

= (

𝑟
𝑖

𝑟
𝑖+1

⋅ ⋅ ⋅ 𝑟
𝑖+𝑘−1

𝑟
𝑖+1

𝑟
𝑖+2

⋅ ⋅ ⋅ 𝑟
𝑖+𝑘

.

.

.

.

.

.

.

.

.

𝑟
𝑖+𝑘−1

𝑟
𝑖+𝑘

⋅ ⋅ ⋅ 𝑟
𝑖+2(𝑘−1)

), (17)

where 𝑟
𝑖
= V(−𝐴)

−𝑖
1. The entries of 𝐻

𝑖,𝑘
have the following

interpretation:

(i) for 𝑖 > 0 we have that 𝑟
𝑖
is related to the 𝑖th moment

of the distribution through 𝑟
𝑖
= 𝑚
𝑖
/𝑖!,

(ii) 𝑟
0
= 1,

(iii) for 𝑖 < 0 we have that 𝑟
𝑖
is related to the derivative at

zero of the cdf of the ME distribution because

𝑑
𝑖
𝐹(𝑡)

𝑑𝑡
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= −V𝐴𝑖1 = (−1)
𝑖+1 V (−𝐴)

𝑖
1 = (−1)

𝑖+1
𝑟
−𝑖
. (18)

The rank of the 𝐻
𝑖,𝑘

equals min(𝑛, 𝑘) [27] which implies
that det(𝐻

𝑖,𝑘
) is nonzero for 𝑘 ≤ 𝑛 and zero for 𝑘 > 𝑛. As a

consequence, given the quantities 𝑟
𝑖
, 𝑟
𝑖+1

, . . . , 𝑟
𝑖+2𝑛−1

, one can
determine 𝑟

𝑖+2𝑛
based on the equation

det (𝐻
𝑖,𝑛+1

) = 0. (19)

For example, given 3 moments of ME(2) distribution, the
fourth moment can be calculated by considering

det (𝐻
0,3

) = det(

1 𝑚
1

𝑚
2

2

𝑚
1

𝑚
2

2

𝑚
3

6

𝑚
2

2

𝑚
3

6

𝑚
4

24

) = 0, (20)

or, given 𝑓(0) and 2 moments, the third moment can be
determined based on

det (𝐻
−1,3

) = det(

𝑓(0) 1 𝑚
1

1 𝑚
1

𝑚
2

2

𝑚
1

𝑚
2

2

𝑚
3

6

) = 0. (21)

The above relation of the derivatives and the moments
can be exploited to transform moment matching procedures
into zero-behavior matching procedures or into procedures
matching part of the zero-behavior and some moments.
Moreover, existing moment bounds can be transformed into
bounds regarding zero-behavior.

For example, the set of inequalities provided in (6) can be
transformed into inequalities regarding 𝑓(0), 𝑚

1
, and 𝑚

2
by

solving (21) for𝑚
3
and using the result in (6). This leads to

0 < 𝑚
1
< ∞,

1

2
≤ 𝑐
2
< ∞,

3𝑚
3

1
(3𝑐
2
− 1 + √2 (1 − 𝑐

2
)
3/2

)

≤

3 (4𝑚
3

1
− 4𝑚
1
𝑚
2
+ 𝑓 (0)𝑚

2

2
)

2𝑓 (0)𝑚1 − 2
≤ 6𝑚
3

1
𝑐
2

if 1

2
≤ 𝑐
2
≤ 1,

3

2
𝑚
3

1
(1 + 𝑐

2
)
2

<

3 (4𝑚
3

1
− 4𝑚
1
𝑚
2
+ 𝑓 (0)𝑚

2

2
)

2𝑓 (0)𝑚1 − 2
< ∞

if 1 < 𝑐
2
,

(22)

meaning that if𝑓(0), 𝑚
1
, and𝑚

2
satisfy the above conditions,

then there exists a proper ME(2) distribution that realizes
them.

5. Numerical Examples

In this section we provide numerical examples of consider-
ing the zero-behavior in constructing ME distributions. In
Section 5.1, we show that there are cases in which considering
the moments of the distribution leads to ME distribution
with improper pdf, while considering also the behavior
around zero results in a proper distribution. In Section 5.2,
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we provide an example for which moment matching gives
a proper pdf, but the shape of the pdf can be improved by
considering the value of the original pdf at zero instead of
considering the highest order moment. In Section 5.3, we
show that even if the original characteristics around zero are
not possible to capture, it is possible to set the characteristics
of the ME distribution around zero in such a way that the
fitting of the shape of the pdf improves considerably.

5.1. Proper Distribution by Behavior around Zero. Consider
the lognormal distribution whose pdf is given by

𝑓ln (𝑡) =
𝑒
−(log(𝑡)−𝛼)2/2𝛽2

√2𝜋𝑡𝛽

, (23)

with parameters

𝛼 = 0, 𝛽 =
1

2
. (24)

Using our proposed approach, we derived two order-3
ME distributions to match the characteristics of the above
pdf. The first one matches 5 moments and has an improper
pdf as it assumes negative values around 0. Its representation
is given by the vector-matrix pair

(
1

3
,
1

3
,
1

3
) ,

(

−2.67775 20.4761 −14.6936

−0.351307 −1.18954 0.753936

−0.237024 0.601207 −1.34227

) .

(25)

The second one matches three moments and also 𝑓ln(0) and
𝑓
󸀠

ln(0) and results in a proper distribution. Its representation
is

(
1

3
,
1

3
,
1

3
) ,

(

−1.87683 21.0592 −17.4174

−0.395566 −1.22176 0.90445

−0.192765 0.633427 −1.49278

) .

(26)

The validity of the second ME distribution was checked by
using BuTools [26]. In Figure 1, we depicted the original
pdf and the two matching ME(3) distributions. In Table 1,
we provide the first five moments of the original and the
second matching distribution (the moments of the first one
are identical to those of the original distribution). For the
second ME distribution, even if the 4th and 5th moments
are not matched, they are close to those of the lognormal
distribution and also the shape of the pdf is similar to that
of the lognormal distribution.

5.2. Improving the Shape of theMEPdf byMatching Exactly the
Behavior around Zero. We consider now the three-parameter
Weibull distribution commonly used tomodel time to failure.
The pdf is of the form

𝑓
3𝑤 (𝑡) = 𝑒

−((𝑥+𝛼)/𝛽)
𝛾

(𝑥 + 𝛼)
𝛾−1

𝛽
−𝛾
𝛾, (27)

Table 1: Moments of the lognormal distribution and moments of
the second matching ME distribution.

1st 2nd 3rd 4th 5th
Lognormal 1.13315 1.64872 3.08022 7.38906 22.7599
Order-3 ME 1.13315 1.64872 3.08022 7.58974 24.5879

1 2 3 4
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0.6

0.8

−0.2

−0.4

Figure 1: Pdf of the lognormal distribution with 𝛼 = 0 and 𝛽 =

1/2 (dashed line); moment matching based on 5 moments (solid
line curve with negative values around zero); moment matching
based on 3 moments and the value of the original pdf at zero and
the derivative of the original pdf at zero (solid line curve with no
negative values around zero).

where 𝛾 is the so-called shape parameter, 𝛽 is the scale
parameter, and 𝛼 determines the shiftwith respect to the two-
parameter Weibull distribution. We assume that the param-
eters are

𝛾 =
1

2
, 𝛽 = 2, 𝛼 =

1

2
. (28)

We constructed two order-2 ME distributions to match
the three-parameter Weibull distribution. The first one
matches the first three moments of the distribution and has
a proper pdf, but the shape of the pdf is rather different from
that of the original one.The secondME distribution matches
instead two moments and the value of the original pdf at
zero 𝑓

3𝑤
(0). The validity of the matching ME distributions

is guaranteed by the fact that the moments are in the area
defined by (6). In Figure 2, we show the original pdf and the
pdf of the two matching distributions.The representations of
the two ME(2) distributions are

(
1

2
,
1

2
) , (

−0.228593 −0.0909786

−0.0833333 −0.0833333
) ,

(
1

2
,
1

2
) , (

−0.716667 −0.116667

−0.0833333 −0.0833333
) .

(29)

In Figure 3, we show instead two order-3 ME distribu-
tions.The first one captures 5 moments of the shiftedWeibull
distribution, while the second one captures 3 moments as
well as the value of the pdf and of the first derivative of
the pdf at zero. It can be seen that not even 5 moments are
enough to haveMEdistributionwhose shape is similar to that
of the original distribution. Instead, taking into account the
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Figure 2: Pdf of a three-parameter Weibull distribution (dashed
line); moment matching based on 3 moments (solid line curve far
from the dashed line); moment matching based on 2 moments and
the value of the original pdf at zero (solid line curve closer to the
dashed line).
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Figure 3: Pdf of a three-parameter Weibull distribution (dashed
line); moment matching based on 5 moments (solid line curve far
from the dashed line); moment matching based on 3 moments and
the value and the first derivative of the original pdf at zero (solid line
curve closer to the dashed line).

behavior around zero improves substantially the fitting of the
shape.The representations of the twoME(3) distributions are

(
1

3
,
1

3
,
1

3
) ,

(

−0.289888 −0.0963572 −0.15042

0.0163624 −0.0565627 −0.0129118

−0.127473 −0.0545485 −0.0981994

) ,

(
1

3
,
1

3
,
1

3
) ,

(

−0.688889 0.725397 −1.20317

0.338519 −0.720053 0.83709

−0.44963 0.608942 −0.948201

) .

(30)

In Table 2, we provide the first five moments of the
original shifted Weibull distribution and those of the ME
distributions depicted in Figures 2 and 3. The second ME(2)
distribution gives a bad fit already of the third moment. It is
interesting to note that the second ME(3) distribution gives
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Figure 4: Pdf of the lognormal distribution with 𝛼 = 1 and 𝛽 =

1.8 (dashed line); moment matching based on 5 moments (solid
line curve far from the dashed line); moment matching based on
3 moments and the shape of the original pdf around zero (solid line
curve closer to the dashed line).

a slightly better fit of the fourth and fifth moments than the
first ME(2) distribution and this is thanks to the better fitting
of the shape of the distribution.

5.3. Improving the Shape of the ME Pdf by Approximating
the Behavior around Zero. We consider again a lognormal
distribution, now with parameters

𝛼 = 1, 𝛽 = 1.8. (31)

In this case, matching 5 moments results in ME(3) with pdf
which is considerably far from the original one. Its represen-
tation is

(
1

3
,
1

3
,
1

3
) ,

(

−0.0286601 −0.028144 −0.0281441

−0.00912991 −0.0109089 −0.010908

−0.0394053 −0.0376263 −0.0376272

) .

(32)

Matching𝑓(0) and fourmoments or𝑓󸀠(0) and𝑓(0) and three
moments results in ME(3)s that are not proper distributions.
By observing the original pdf (Figure 4), one can see that it
starts from 0, but then it immediately has a steep peak with
a gradual monotonic decrease. Setting the characteristics of
the ME(3) distribution around 0 as

𝑓 (0) = 0.45, 𝑓
󸀠
(0) = −0.32 (33)

and matching 3 moments result in a much more satisfactory
fit of the original one (see Figure 4).The representation of this
ME(3) is

(
1

3
,
1

3
,
1

3
) ,

(

−0.433521 −0.383529 −0.387345

29.9426 26.2806 26.5629

−29.9911 −26.3291 −26.6114

) .

(34)
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Table 2: Moments of the three-parameter Weibull distribution and moments of the matching ME distributions.

1st 2nd 3rd 4th 5th
3-parameter Weibull 6 152 9264 1.044 × 10

6
1.888 × 10

8

1st ME(2) (Figure 2) 6 152 9264 848870 9.929 × 10
7

2nd ME(2) (Figure 2) 6 152 6576 384384 2.81203 × 10
7

1st ME(3) (Figure 3) 6 152 9264 1.044 × 10
6

1.888 × 10
8

2nd ME(3) (Figure 3) 6 152 9264 878976 1.079 × 10
8

Table 3: Moments of the lognormal distribution with 𝛼 = 1 and
𝛽 = 1.8 and moments of the second matching ME(3) distribution.

1st 2nd 3rd 4th 5th
Lognormal 13.73 4817 4.314 × 10

7
9.882 × 10

12
5.745 × 10

19

ME(3) 13.73 4817 4.314 × 10
7

6.095 × 10
11

1.078 × 10
16

The choice given in (33) is motivated by the fact that the
line −0.32𝑥 + 0.45 approximates well the initial decay of the
lognormal pdf right after the peak. In general, numerical
values for𝑓(0) and𝑓

󸀠
(0) can be obtained by applying a linear

fit to the original pdf.
In Table 3, we report the first five moments of the lognor-

mal distribution and those of the second ME(3) distribution.
The price we pay for fitting better the shape of the distribution
is the distance of the 4th and 5thmoments of theME(3) from
the original moments.

6. Application of ME Distributions in
Stochastic Models

In this section, we show the impact of applying the ME
distributions reported in Section 5 in stochastic modeling. In
the following three subsections we illustrate three cases:

(i) the case when capturing the moments is more impor-
tant than having a proper distribution or a good fit of
the shape of the pdf,

(ii) the case when the use of an improperME distribution
leads to state probabilities that are either negative or
larger than 1,

(iii) the case when capturing well the shape of distribution
is more important than capturing the moments and
leads to better approximations of the state probabili-
ties.

6.1. M/G/1 Queue. In this section, we illustrate the goodness
of the approximation applying the ME distributions in an
M/G/1 queue and assuming that the steady state queue length
distribution is the measure of interest.

As a first example we apply the two ME distributions
presented in Section 5.1. We assume hence that the service
time distribution of the queue follows a lognormal distri-
bution with parameters 𝛼 = 0 and 𝛽 = 1/2. The arrival
intensity is such that the probability of the empty queue is
1/4. In Figure 5, we depicted the relative error in the steady
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Figure 5: Relative error in the steady state queue length distribution
of anM/G/1 queue applying the twoME distributions of Section 5.1;
solid line: ME distribution with improper pdf capturing 5 moments;
dashed line: ME distribution with proper pdf capturing 3 moments.

state distribution applying the two ME distributions. Both
ME distributions capture exactly the probability of the empty
queue since it depends only on the mean service time. The
other localminima appear in the relative error when the exact
and the approximate queue length distributions cross each
other. Furthermore, in an M/G/1 queue the first 𝑚 moments
of the steady state queue length distribution are determined
by the first 𝑚 + 1 moments of the service time distribution.
Accordingly, the ME distribution with improper pdf, but
capturing 5 moments, leads the queue length distribution
in which 4 moments are exact. The ME distribution with
proper pdf captures instead only 2 moments of the queue
length exactly. As the stationary queue length distribution
is of a regular shape, it is likely that the more moments are
captured the better the approximation is. In Figure 5, it can
be observed that indeed the ME distribution with improper
pdf, but capturingmoremoments, outperforms the otherME
distribution.

In our second example, we use as service time distribution
the three-parameter Weibull distribution of Section 5.2 and
apply as approximations the two ME distributions given in
Figure 3. The relative error in the stationary queue length
distribution is depicted in Figure 6. The same reasoning
applies as in the preceding paragraph: both ME distributions
capture the empty queue probability and one of themcaptures
4 moments of the queue length while the other one matches
only 2. In this case as well, the ME distribution that captures
more moments gives more precise steady state probabilities.



8 Mathematical Problems in Engineering

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

Figure 6: Relative error in the steady state queue length distribution
of an M/G/1 queue applying the two ME distributions of Figure 3;
solid line: ME distribution capturing 5 moments; dashed line: ME
distribution capturing 3 moments and the shape.

6.2. Improper State Probabilities. We use in this section an
extremely simple model to show that the negativity of the
pdf of ME distribution, when applied in a stochastic model,
can lead to negative or larger-than-one state probabilities.
The model is depicted in Figure 7(a) and formulated as a
stochastic Petri net [7]. It contains two concurrent activities
modeled by transitions 𝑡

1
and 𝑡

2
. There are four possible

states, as the tokens can be distributed in the following four
ways: 𝑃

1
𝑃
3
, 𝑃
2
𝑃
3
, 𝑃
1
𝑃
4
, and 𝑃

2
𝑃
4
. The state transition diagram

is depicted in Figure 7(b). At the beginning firing times are
chosen for both 𝑡

1
and 𝑡

2
according to their firing time

distributions. Let us denote these firing times by 𝐹
1
and 𝐹
2
. If

𝐹
1
< 𝐹
2
, then after 𝐹

1
time units 𝑡

1
fires and the state becomes

𝑃
2
𝑃
3
. Subsequently, after 𝐹

2
− 𝐹
1
time units, 𝑡

2
fires and the

model arrives to its final state, that is, to state 𝑃
2
𝑃
4
. If 𝐹
2
< 𝐹
1
,

then 𝑡
2
fires first, leading to state 𝑃

1
𝑃
4
, and afterwards the

firing of 𝑡
1
takes the model to state 𝑃

2
𝑃
4
.

We assume that the firing time of transition 𝑡
1
is according

to the ME(3) distribution with improper pdf reported in
Section 5.1, and the firing time of 𝑡

2
is exponential with

parameter 𝜆. As described in [4], the overall behavior of the
model can be described by a blockmatrix which algebraically
plays the same role as the infinitesimal generator of a Markov
chain (if the firing time distributions of 𝑡

1
and 𝑡
2
were of PH,

then𝑄would be a proper infinitesimal generator).This block
matrix is of the form

𝑄 = (

𝐴 − 𝜆𝐼 − (𝐴1) 𝜆𝐼 0

0 −𝜆 0 𝜆

0 0 𝐴 − (𝐴1)
0 0 0 0

) , (35)

where𝐴 is the generator of theME(3) distribution and the 0s
represent zero matrices of appropriate sizes. The block rows
of the matrix correspond to the states in the order 𝑃

1
𝑃
3
, 𝑃
2
𝑃
3
,

𝑃
1
𝑃
4
, and 𝑃

2
𝑃
4
. For a detailed description of the construction

of 𝑄 the reader is referred to [4]. Here we mention only that
(i) the matrix 𝐴 − 𝜆𝐼 describes the parallel evolution of

transitions 𝑡
1
and 𝑡
2
,

(ii) the column vector −(𝐴1) describes the firing of
transition 𝑡

1
,

P1 P2

P3 P4

t1

t2

(a)

t1

t1
t2

t2

P1P3

P2P3

P1P4

P2P4

(b)

Figure 7: A simple Petri net with two concurrent activities (a) and
the associated state transition diagram (b).

(iii) the matrix −𝜆𝐼 describes the firing of 𝑡
2
maintaining

the current state of 𝑡
1
.

We assume that the initial state is 𝑃
1
𝑃
3
and, accord-

ingly, the initial situation is described by the vector 𝜋
0

=

|V, 0, . . . , 0|, where V is the initial vector of the ME(3) distri-
bution. State probabilities at time 𝑡 then can be obtained as 𝜋

0

and𝑄were the descriptors of aMarkov chain; that is, we need
to calculate the vector𝜋

0
𝑒
𝑥𝑄 and sumup the entries according

to the block structure [4]. As𝑄 is small, namely, it is an 8 times
8 matrix, the calculation of 𝜋

0
𝑒
𝑥𝑄 can be done easily in many

numerical computing environments.
In Figures 8 and 9 we depicted the transient state prob-

abilities of the model for two different values of 𝜆. In the
first case, two states have negative probabilities in the time
interval [0, 0.3], while in the second case we find one state
with larger-than-one probabilities in [0, 0.2] and another state
with negative probabilities in [0, 0.3]. This means that the
negativity of the pdf of the applied ME(3) distribution can
easily lead to negative and larger-than-one state probabilities
in the overall distribution of the model. Moreover, the way
this phenomenon presents itself depends on the remaining
parameters of the model.

6.3. Importance of the Shape of the Pdf. In this section we
evaluate a system composed of twomachines and an interme-
diate finite buffer (depicted in Figure 10). This small system
is often used as a building block in the approximate analysis
of long production lines [28]. The first machine puts parts
into the buffer and the time needed to produce a part follows
the lognormal distribution considered in Section 5.2. The
production of the current part is subject to a forced restart
mechanism (the use of thismechanism in computing systems
is studied in detail in [29]); that is, after a given amount of
time the part under operation is discarded and the machine
starts the production of a new one from scratch. Forced
restart happens after an exponentially distributed amount of
timewith parameter 𝜆. Since the lognormal distribution has a
heavy tail, the forced restart mechanism decreases the mean
production time of the machine. The second machine takes
parts from the buffer and the time needed to treat a part
follows a two-stage Erlang distribution with mean equal to
4. The first (second) machine is blocked when the buffer is
full (empty). The buffer can accommodate at most 5 parts at
a time.

We will evaluate the system both by simulation and by
applying the two approximatingME distributions introduced
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Figure 8: State probabilities in case of 𝜆 = 5 (a) and zoom on the negative probabilities (b).
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Figure 9: State probabilities in case of 𝜆 = 0.1 (a) and zoom on the larger-than-one and on the negative probabilities (b).

Machine 1 Machine 2Buffer

Figure 10: Machine-buffer-machine model.

in Section 5.2. Denoting by (V
1
, 𝐴
1
) the representation of the

approximating ME distribution and by (V
2
, 𝐴
2
) the represen-

tation of the two-stage Erlang distribution, the behavior of the
model is captured by the matrix

𝑄 = (

(

𝐴
1
− 𝜆𝐼 + 𝜆1V

1
−𝐴
1
1 (V
1
⊗ V
2
) 0 0 ⋅ ⋅ ⋅

𝐼 ⊗ (−𝐴
2
1) ∙ (−𝐴

1
1V
1
) ⊗ 𝐼 0 ⋅ ⋅ ⋅

0 𝐼 ⊗ (−𝐴
2
1V
2
) ∙ (−𝐴

1
1V
1
) ⊗ 𝐼 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ d d d ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 𝐼 ⊗ (−𝐴
2
1V
2
) ∙ (−𝐴

1
1) ⊗ 𝐼

⋅ ⋅ ⋅ 0 −𝐴
2
1 (V
1
⊗ V
2
) 𝐴

2

)

)

, (36)

where the blocks in the diagonal represented by ∙ are equal to

(𝐴
1
⊕ 𝐴
2
) − 𝜆𝐼 + (𝜆1V

1
⊗ 𝐼) (37)

and ⊗ and ⊕ denote the Kronecker product and sum oper-
ators, respectively. The first block row corresponds to empty
buffer (only the first machine works), while the last one refers
to the full buffer (only the secondmachine works). As before,
we do not detail the construction of 𝑄 but mention that

(i) thematrix𝐴
1
−𝜆𝐼+𝜆1V

1
describes the evolution of the

first machine together with possible forced restarts
that reinitialize the corresponding ME distribution,

(ii) the term 𝐴
1
⊕ 𝐴
2
captures the parallel execution of

the twomachines which is then corrected by the term
−𝜆𝐼 + (𝜆1V

1
⊗ 𝐼) in order to include the forced restart

mechanism,

(iii) the matrix (−𝐴
1
1V
1
) ⊗ 𝐼 describes the completion of

a part as well as the restart of the first machine and
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Figure 11: Transient probabilities of all possible buffer levels (from empty to full) with 𝜆 = 0; line with zigzag: simulation; dashed line: ME
distribution matching 5 moments; solid line: ME distribution matching 3 moments and shape.

maintains the state of the second one (the term 𝐼 ⊗

(−𝐴
2
1V
2
) does the opposite),

(iv) the term V
1
⊗V
2
describes the start of a new job for both

machines (this term is used when the system leaves
either the empty or the full states).

The matrix 𝑄 is 42 times 42. The first (last) three rows cor-
respond to the empty (full) buffer situation and the remaining
4 × 9 rows describe the intermediate buffer levels. The tran-
sient analysis can be performed easily using a numerical com-
puting environment.

We evaluated themodel with𝜆 = 0, 0.01 and 0.1. Forwhat
concerns simulation, the presented results are based on 50000
runs which are enough to obtain a satisfactory indication
of the target distribution used to check the goodness of
the approximation provided by the two approximating ME
distributions. The analysis based on the ME distributions

requires a few seconds on an ordinary laptop, while 50000
simulation runs require about one minute.

The results in case of 𝜆 = 0, that is, without forced restart
mechanism, are depicted in Figure 11. It can be seen that the
second ME distribution, which captures only three moments
while taking into greater account the shape of the original
pdf, outperforms the first ME distribution that captures 5
moments. It gives a more precise view on both the transient
period and the long run probabilities.

In Figure 12 we provide the results for 𝜆 = 0.01. The state
probabilities are less precise than in the previous case. This
is due to the fact that the forced restart mechanism alters the
moments of the time needed by the first machine to produce
a part. This change in the moments is not captured well in
the approximating model. For instance, in the original model
the forced restart mechanism decreases the mean time to
produce a part in the first machine from 13.7 to 9.6. In the
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Figure 12: Transient probabilities of all possible buffer levels (from empty to full) with 𝜆 = 0.01; line with zigzag: simulation; dashed line:
ME distribution matching 5 moments; solid line: ME distribution matching 3 moments and shape.

approximating model with the first ME distribution the same
mean is about 13 and with the second ME distribution it is
11.4. In this case, the second ME distribution yields a better
approximation of the state probabilities as well.

At last, we evaluated the model with 𝜆 = 0.1 (Figure 13).
In this case the forced restart is more frequent and in the
original model the mean time to produce a part for the first
machine is 5.6. The same mean in the approximating model
is about 13 with the first ME distribution and about 6 with
the second ME distribution. The second ME distribution
captures better the real mean because its pdf follows much
more precisely the original lognormal distribution in the
interval [0, 10]. Accordingly, the second ME distribution
gives much better approximation of the state probabilities as
well.

6.4. Discussion. There exist models, like the M/G/1 queue,
in which the moments of the involved random variables

determine directly moments of the measure of interest. In
case of these models, if the pdf of the measure of interest
is likely to have a regular shape, then it can be more con-
venient to capture more moments even if the shape of the
approximating is a poor representation of the original one.
We have seen (Section 6.1) that even a pdf with negative
values can give more accurate results if it matches more
moments than a proper pdf. There is no guarantee however
that the negativity of the pdf does not appear in the distri-
bution of the measure of interest, thus providing undesirable
effects. Indeed, it is easy to encounter models (like the one in
Section 6.2) in which the negativity of the pdf translates into
negative transient probabilities. Hence it is always advisable
to avoid the use of improper distribution functions.

When distributions are placed into a more complex con-
text then the goodness of fitting the shape of the pdf can have
a strong impact on the adequacy of the approximation of the
overall system behavior. We have shown in Section 6.3 that
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Figure 13: Transient probabilities of all possible buffer levels (from empty to full) with 𝜆 = 0.1; line with zigzag: simulation; dashed line: ME
distribution matching 5 moments; solid line: ME distribution matching 3 moments and shape.

this happens when two or more activities are performed in
parallel and it is important to capture precisely the probability
that one is completed before the others.

7. Conclusions

In this paper, we proposed using the behavior of the pdf
around zero in constructingmatrix exponential distributions.
We have shown that matching these characteristics can be
incorporated easily into the well-known Padé approximation.
We illustrated by numerical examples that matching the
behavior around zero can be beneficial when matching only
the moments results in improper density functions or in a
density functionwhose behavior differs a lot from the original
one when evaluated at points close to zero.
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[2] A. Bobbio, A. Horváth, M. Scarpa, and M. Telek, “Acyclic dis-
crete phase type distributions: properties and a parameter
estimation algorithm,”Performance Evaluation, vol. 54, no. 1, pp.
1–32, 2003.

[3] S. Asmussen andM. Bladt, “Renewal theory and queueing algo-
rithms for matrix-exponential distributions,” in Matrix-
Analytic Methods in Stochastic Models, vol. 183 of Lecture Notes
in Pure and Applied Mathematics, pp. 313–341, Dekker, New
York, NY, USA, 1996.
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