
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

NESCOND: an Implementation of Nested Sequent Calculi for Conditional Logics

Publisher:

Published version:

DOI:10.1007/978-3-319-08587-6-39

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Demri Stéphane, Kapur Deepak, Weidenbach Christoph

This is the author's manuscript

This version is available http://hdl.handle.net/2318/152376 since 2016-06-28T15:44:56Z

NESCOND: An Implementation of Nested Sequent
Calculi for Conditional Logics

Nicola Olivetti1 and Gian Luca Pozzato2

1 Aix-Marseille Université, CNRS, LSIS UMR 7296 - France
nicola.olivetti@univ-amu.fr

2 Dipartimento di Informatica - Universitá di Torino - Italy
gianluca.pozzato@unito.it

Abstract. We present NESCOND, a theorem prover for normal conditional log-
ics. NESCOND implements some recently introduced NESted sequent calculi for
propositional CONDitional logics CK and some of its significant extensions with
axioms ID, MP and CEM. It also deals with the flat fragment of CK+CSO+ID,
which corresponds to the logic C introduced by Kraus, Lehmann and Magidor.
NESCOND is inspired by the methodology of leanTAP and it is implemented
in Prolog. The paper shows some experimental results, witnessing that the per-
formances of NESCOND are promising. The program NESCOND, as well as
all the Prolog source files, are available at http://www.di.unito.it/
%7Epozzato/nescond/.

1 Introduction

Conditional logics are extensions of classical logic by a conditional operator ⇒. They
have a long history [10, 11], and recently they have found an interest in several fields
of AI and knowledge representation. Just to mention a few (see [2] for a complete
bibliography), they have been used to reason about prototypical properties, to model
belief change, to reason about access control policies, to formalize epistemic change in
a multi-agent setting. Conditional logics can also provide an axiomatic foundation of
nonmonotonic reasoning [9]: here a conditional A ⇒ B is read “normally, if A then
B”.

In previous works [1, 2] we have introduced nested sequent calculi, called NS, for
propositional conditional logics. Nested sequent calculi [4–6, 8] are a natural general-
ization of ordinary sequent calculi where sequents are allowed to occur within sequents.
However, a nested sequent always corresponds to a formula of the language, so that we
can think of the rules as operating “inside a formula”, combining subformulas rather
than just combining outer occurrences of formulas as in ordinary sequent calculi. The
basic normal conditional logic CK and its extensions with ID, MP and CEM are con-
sidered, as well as the cumulative logic C introduced in [9] which corresponds to the
flat fragment (i.e., without nested conditionals) of the conditional logic CK+CSO+ID.

Here we describe an implementation of NS in Prolog. The program, called
NESCOND, gives a PSPACE decision procedure for the respective logics, and it is
inspired by the methodology of leanTAP [3]. The idea is that each axiom or rule of

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 511–518, 2014.
c© Springer International Publishing Switzerland 2014

http://www.di.unito.it/%7Epozzato/nescond/
http://www.di.unito.it/%7Epozzato/nescond/

512 N. Olivetti and G.L. Pozzato

the nested sequent calculi is implemented by a Prolog clause of the program. The re-
sulting code is therefore simple and compact: the implementation of NESCOND for
CK consists of only 6 predicates, 24 clauses and 34 lines of code. We provide experi-
mental results by comparing NESCOND with CondLean [12] and GOALDUCK [13].
Performances of NESCOND are promising, and show that nested sequent calculi are
not only a proof theoretical tool, but they can be the basis of efficient theorem proving
for conditional logics.

2 Conditional Logics and Their Nested Sequent Calculi

We consider a propositional conditional language L over a set ATM of propositional
variables. Formulas of L are built as usual: ⊥, � and the propositional variables of
ATM are atomic formulas; if A and B are formulas, then ¬A and A ◦ B are complex
formulas, where ◦ ∈ {∧,∨,→,⇒}. We adopt the selection function semantics. We
consider a non-empty set of possible worlds W . Intuitively, the selection function f
selects, for a world w and a formula A, the set of worlds of W which are closest to
w given the information A. A conditional formula A ⇒ B holds in a world w if the
formula B holds in all the worlds selected by f for w and A.

Definition 1 (Selection function semantics). A model is a triple M = 〈W , f, []〉
where W is a non empty set of worlds, f : W × 2W �−→ 2W is the selection function,
and [] is the evaluation function, which assigns to an atom P ∈ ATM the set of worlds
where P is true, and is extended to boolean formulas as follows: [�] = W; [⊥] = ∅;
[¬A] = W−[A]; [A∧B] = [A]∩[B]; [A∨B] = [A]∪[B]; [A → B] = [B]∪(W−[A]);
[A ⇒ B] = {w ∈ W | f(w, [A]) ⊆ [B]}. A formula F ∈ L is valid in a model
M = 〈W , f, []〉, and we write M |= F , if [F] = W . A formula F ∈ L is valid, and
we write |= F , if it is valid in every model, that is to say M |= F for every M.

The semantics above characterizes the basic conditional system, called CK, where no
specific properties of the selection function are assumed. An axiomatization of CK is
given by (� denotes provability in the axiom system):

– any axiomatization of the classical propositional calculus (prop)
– If � A and � A → B, then � B (Modus Ponens)
– If � A ↔ B then � (A ⇒ C) ↔ (B ⇒ C) (RCEA)
– If � (A1 ∧ · · · ∧An) → B then � (C ⇒ A1 ∧ · · · ∧ C ⇒ An) → (C ⇒ B) (RCK)

Moreover, we consider the following standard extensions of the basic system CK:

AXIOM
A ⇒ A

(A ⇒ B) ∨ (A ⇒ ¬B)

(A ⇒ B) → (A → B)

(A ⇒ B) ∧ (B ⇒ A) → ((A ⇒ C) → (B ⇒ C))

f(w, [A]) ⊆ [A]

| f(w, [A]) | ≤ 1

w ∈ [A] implies w ∈ f(w, [A])

f(w, [A]) � [B] f(w, [B]) � [A] f(w, [A]) = f(w, [B])and implies

MODEL CONDITIONSYSTEM
ID
CEM
MP
CSO

In Figure 1 we present nested sequent calculi NS, where S is an abbreviation for
CK{+X}, and X={CEM, ID, MP, ID+MP, CEM+ID}. A nested sequent Γ is defined
inductively as follows: a formula of L is a nested sequent; if A is a formula and Γ is a
nested sequent, then [A : Γ] is a nested sequent; a finite multiset of nested sequents is a
nested sequent. A nested sequent can be displayed as

NESCOND 513

Γ(P,¬P) (AX) (AX�)Γ(�)

Γ(A ∧ B) Γ(¬(A ∧ B)) Γ(A ∨ B) Γ(¬(A ∨ B))

Γ(A) Γ(¬A) Γ(¬B)Γ(B) Γ(A,B)Γ(¬A,¬B)

Γ(A ⇒ B)

Γ(¬(A ⇒ B), [A′ : Δ])

Γ([A : B])

Γ([A : Δ])

Γ([A : Δ,¬A])

Γ([A : Δ], [B : Σ])

Γ([A : Δ, Σ], [B : Σ]) A,¬B B,¬A

(∧+) (∧−) (∨−)(∨+)

(⇒+)

(⇒−)

(ID)

(CEM)

Γ(A → B) Γ(¬(A → B))

Γ(¬A,B) Γ(A)
(→+) (→−)

(¬)
P ∈ ATM

Γ(¬(A ⇒ B))

Γ(¬(A ⇒ B), A) Γ(¬(A ⇒ B),¬B)
(MP)

Γ(A)
Γ(¬¬A)

Γ(¬B)

Γ(¬⊥) (AX⊥)

Γ,¬(A ⇒ B), [A′ : Δ]

Γ,¬(A ⇒ B), [A′ : Δ,¬B] Γ,¬(A ⇒ B), [A : A′]
(CSO)

Γ,¬(A ⇒ B), [A′ : A]

Γ(¬(A ⇒ B), [C : Δ,¬B]) A,¬C C,¬A

Fig. 1. The nested sequent calculi NS.

A1, . . . , Am, [B1 : Γ1], . . . , [Bn : Γn],

where n,m ≥ 0, A1, . . . , Am, B1, . . . , Bn are formulas and Γ1, . . . , Γn are nested
sequents. A nested sequent can be directly interpreted as a formula by replacing “,”
by ∨ and “:” by ⇒, i.e. the interpretation of A1, . . . , Am, [B1 : Γ1], . . . , [Bn : Γn] is
inductively defined by the formula F(Γ) = A1∨ . . .∨Am∨(B1 ⇒ F(Γ1))∨ . . .∨(Bn ⇒
F(Γn)).

We have also provided nested sequent calculi for the flat fragment, i.e. without nested
conditionals, of CK+CSO+ID, corresponding to KLM logic C [9]. The rules of the
calculus, called NCKLM, are those ones of NCK+ID (restricted to the flat fragment)
where the rule (⇒−) is replaced by the rule (CSO).

In order to present the rules of the calculus, we need the notion of context. Intuitively
a context denotes a “hole”, a unique empty position, within a sequent that can be filled
by a sequent. We use the symbol () to denote the empty context. A context is defined
inductively as follows: Γ () = Δ, () is a context; if Σ() is a context Γ () = Δ, [A :
Σ()] is a context. Finally, we define the result of filling “the hole” of a context by
a sequent. Let Γ () be a context and Δ be a sequent, then the sequent obtained by
filling the context by Δ, denoted by Γ (Δ) is defined as follows: if Γ () = Λ, () then
Γ (Δ) = Λ,Δ; if Γ () = Λ, [A : Σ()] then Γ (Δ) = Λ, [A : Σ(Δ)]. The notions of
derivation and of derivable sequent are defined as usual. In [1] we have shown that:

Theorem 1. The nested sequent calculi NS are sound and complete for the respective
logics, i.e. a formula F of L is valid in CK+X if and only if it is derivable in NS.

As usual, in order to obtain a decision procedure for the conditional logics under consid-
eration, we have to control the application of the rules (⇒−)/(CSO), (MP), (CEM),
and (ID) that otherwise may be applied infinitely often in a backward proof search,
since their principal formula is copied into the respective premise(s). We obtain a sound,
complete and terminating calculus if we restrict the applications of these rules as fol-
lows [1, 2]: (⇒−) can be applied only once to each formula ¬(A ⇒ B) with a context
[C : Δ] in each branch - the same for (CSO) in the system CK+CSO+ID; (ID) can be
applied only once to each context [A : Δ] in each branch; (MP) can be applied only
once to each formula ¬(A ⇒ B) in each branch. For systems with (CEM), we need

514 N. Olivetti and G.L. Pozzato

a more complicated mechanism: due to space limitations, we refer to [1] for this case.
These results give a PSPACE decision procedure for their respective logics.

3 Design of NESCOND

In this section we present a Prolog implementation of the nested sequent calculi NS.
The program, called NESCOND (NESted sequent calculi for CONDitional logics), is
inspired by the “lean” methodology of leanTAP, even if it does not follow its style in a
rigorous manner. The program comprises a set of clauses, each one of them implements
a sequent rule or axiom of NS. The proof search is provided for free by the mere depth-
first search mechanism of Prolog, without any additional ad hoc mechanism.

NESCOND represents a nested sequent with a Prolog list, whose elements can be
either formulas F or pairs [Context,AppliedConditionals]where:

- Context is also a pair of the form [F,Gamma], where F is a formula of L and
Gamma is a Prolog list representing a nested sequent;
- AppliedConditionals is a Prolog list [A 1=>B 1,A 2=>B 2,...,A k=>
B k], keeping track of the negated conditionals to which the rule (⇒−) has been al-
ready applied by using Context in the current branch. This is used in order to imple-
ment the restriction on the application of the rule (⇒−) in order to ensure termination.

Symbols� and⊥ are represented by constantstrue and false, respectively, whereas
connectives ¬, ∧, ∨, →, and ⇒ are represented by !, ˆ, v, ->, and =>.

As an example, the Prolog list [p, q, !(p => q), [[p, [q v !p, [[p,[p => r]],[]],

!r]],[p => q]], [[q, [p, !p]],[]]] represents the nested sequent P,Q,¬(P ⇒ Q),
[P : Q ∨ ¬P, [P : P ⇒ R],¬R], [Q : P,¬P]. Furthermore, the list [p => q] in the
leftmost context is used to represent the fact that, in a backward proof search, the rule
(⇒−) has already been applied to ¬(P ⇒ Q) by using [P : Q∨¬P, [P : P ⇒ R],¬R].

Auxiliary Predicates. In order to manipulate formulas “inside” a sequent, NESCOND
makes use of the three following auxiliary predicates:

- deepMember(+Formulas,+NS) succeeds if and only if either (i) the nested se-
quentNS representing a nested sequentΓ contains all the fomulas in the list Formulas
or (ii) there exists a context [[A,Delta],AppliedConditionals] in NS such
that deepMember(Formulas,Delta) succeeds, that is to say there is a nested
sequent occurring in NS containing all the formulas of Formulas.
- deepSelect(+Formulas,+NS,-NewNS) operates exactly as deepMember,

however it removes the formulas of the list Formulas by replacing them with a place-
holder hole; the output term NewNS matches the resulting sequent.
- fillTheHole(+NewNS,+Formulas,-DefNS) replaces hole in NewNSwith

the formulas in the list Formulas. DefNS is the output term matching the result.

NESCOND for CK. The calculi NS are implemented by the predicate prove(+NS,
-ProofTree). This predicate succeeds if and only if the nested sequent represented
by the list NS is derivable. When it succeeds, the output term ProofTreematches with
a representation of the derivation found by the prover. For instance, in order to prove
that the formula (A ⇒ (B ∧ C)) → (A ⇒ B) is valid in CK, one queries NESCOND

NESCOND 515

with the goal: prove([(a => b ˆ c) -> (a => b)],ProofTree). Each
clause of prove implements an axiom or rule of NS. To search a derivation of a nested
sequent Γ , NESCOND proceeds as follows. First of all, if Γ is an axiom, the goal will
succeed immediately by using one of the following clauses for the axioms:

prove(NS,tree(ax)):-deepMember([P,!P],NS),!.
prove(NS,tree(axt)):-deepMember([top],NS),!.
prove(NS,tree(axb)):-deepMember([!bot],NS),!.

implementing (AX), (AX�) and (AX⊥), respectively. If Γ is not an instance of the
axioms, then the first applicable rule will be chosen, e.g. if a nested sequent in Γ con-
tains a formula A v B, then the clause implementing the (∨+) rule will be chosen, and
NESCOND will be recursively invoked on the unique premise of (∨+). NESCOND
proceeds in a similar way for the other rules. The ordering of the clauses is such that
the application of the branching rules is postponed as much as possible.

As an example, the clause implementing (⇒−) is as follows:

1. prove(NS,tree(condn,A,B,Sub1,Sub2,Sub3)):-
2. deepSelect([!(A => B),[[C,Delta],AppliedConditionals]],

NS,NewNS),
3. \+member(!(A => B),AppliedConditionals),!,
4. prove([A,!C],Sub2),
5. prove([C,!A],Sub3),
6. fillTheHole(NewNS,[!(A => B),[[C,[!B|Delta]]

,[!(A => B)|AppliedConditionals]]],DefNS),
7. prove(DefNS,Sub1).

In line 2, the auxiliary predicate deepSelect is invoked in order to find both a
negated conditional ¬(A ⇒ B) and a context [C : Δ] in the sequent (even in a
nested subsequent). In this case, such formulas are replaced by the placeholder hole.
Line 3 implements the restriction on the application of (⇒−) in order to guaran-
tee termination: the rule is applied only if ¬(A ⇒ B) does not belong to the list
AppliedConditionals of the selected context. In lines 4, 5 and 7, NESCOND is
recursively invoked on the three premises of the rule. In line 7, NESCOND is invoked
on the premise in which the context [C : Δ] is replaced by [C : Δ,¬B]. To this aim, in
line 6 the auxiliary predicate fillTheHole(+NewNS,+Formulas,-DefNS) is
invoked to replace the hole in NewNS, introduced by deepSelect, with the negated
conditional ¬(A ⇒ B), which is copied into the premise, and the context [C : Δ,¬B],
whose list of AppliedConditionals is updated by adding the formula ¬(A ⇒ B)
itself.

NESCOND for Extensions of CK. The implementation of the calculi for extensions
of CK with axioms ID and MP are very similar. For systems allowing ID, contexts
are triples [Context, AppliedConditionals, AllowID]. The third ele-
ment AllowID is a flag used in order to implement the restriction on the application
of the rule (ID), namely the rule is applied to a context only if AllowID=true, as
follows:

516 N. Olivetti and G.L. Pozzato

prove(NS,tree(id,A,SubTree)):-
deepSelect([[[A,Delta],AppliedConditionals,true]]],

NS,NewNS),!,
fillTheHole(NewNS,[[[A,[!A|Delta]],AppliedConditionals,

false]]],DefNS),
prove(DefNS,SubTree).

When (ID) is applied to [Context, AppliedConditionals, true], then
the predicate prove is invoked on the unique premise of the rule DefNS, and the flag
is set to false in order to avoid multiple applications in a backward proof search.

The restriction on the application of the rule (MP) is implemented by equipping
the predicate prove by a third argument, AppliedMP, keeping track of the negated
conditionals to which the rule has already been applied in the current branch. The clause
of prove implementing (MP) is:

1. prove(NS,AppliedMP,tree(mp,A,B,Sub1,Sub2)):-
2. deepSelect([!(A => B)],NS,NewNS),
3. \+member(A => B,AppliedMP),!,
4. fillTheHole(NewNS,[A,!(A => B)],NS1),
5. fillTheHole(NewNS,[!B,!(A => B)],NS2),
6. prove(NS1,[A => B|AppliedMP],Sub1),
7. prove(NS2,[A => B|AppliedMP],Sub2).

The rule is applicable to a formula ¬(A ⇒ B) only if [A => B] does not be-
long to AppliedMP (line 3). When (MP) is applied, then [A => B] is added to
AppliedMP in the recursive calls of prove on the premises of the rule (lines 6
and 7).

The implementation of the calculus for the flat fragment of CK+CSO+ID, corre-
sponding to KLM cumulative logic C, is similar to that for CK+ID; the only differ-
ence is that (⇒−) is replaced by (CSO). This does not make use of the predicate
deepSelect to “look inside” a sequent to find the principal formulas ¬(A ⇒ B) and
[C : Δ]: since the calculus only deals with the flat fragment of the logic under consid-
eration, such principal formulas are directly selected from the current sequent by easy
membership tests (standard Prolog predicates member and select), without search-
ing inside other contexts. Due tu space limitations, we omit details for extensions with
CEM.

4 Performance of NESCOND

The performances of NESCOND are promising. We have tested it by running SICStus
Prolog 4.0.2 on an Apple MacBook Pro, 2.7 GHz Intel Core i7, 8GB RAM machine.
We have compared the performances of NESCOND with the ones of two other provers
for conditional logics: CondLean 3.2, implementing labelled sequent calculi [12], and
the goal-directed procedure GOALDUCK [13]. We have tested the three provers (i) on
randomly generated sequents, obtaining the results shown in Figure 2 and (ii) over a set
of valid formulas. Concerning CK, we have considered 88 valid formulas obtained by
translating K valid formulas (�A is replaced by � ⇒ A, whereas �A is replaced by
¬(� ⇒ ¬A)) provided by Heuerding, obtaining the results in Figure 3.

NESCOND 517

Concerning (i), we have tested the three provers over 2000 random sequents, whose
formulas are built from 15 different atomic variables and have a high level of nesting
(10): NESCOND is not able to answer only in 0.05% of cases (1 sequent over 2000)
within 10 seconds, whereas both GOALDUCK and CondLean are not able to conclude
anything in more than 3% of cases (60 tests over 2000). If the time limit is extended
to 2 minutes, NESCOND answers in 100% of cases, whereas its two competitors have
still more than 1.30% of timeouts. The difference is much more significant when con-
sidering sequents with a lower level of nesting (3) and whose formulas contain only 3
different atomic variables: with a time limit of 10 seconds, NESCOND is not able to
answer only in 9.09% of cases, whereas both CondLean and GOALDUCK are not able
to conclude in 16.55% and in 51.15% of cases, respectively: this is explained by the fact
that NESCOND is faster than the other provers to find 355 not valid sequents (against
17 of CondLean and 34 of GOALDUCK) within the fixed time limit.

Concerning (ii) the performances of NESCOND are also encouraging. Considering
CK, NESCOND is not able to give an answer in less than 10 seconds only in 5 cases
over 88, against the 8 of CondLean and the 12 of GOALDUCK; the number of timeouts
drops to 4 if we extend the time limit to 1 minute, whereas this extension has no effect
on the competitors (still 8 and 12 timeouts). We have similar results also for extensions
of CK as shown in Figure 3: here we have not included GOALDUCK since the most
formulas adopted do not belong to the fragments admitting goal-directed proofs [13].

These results show that the performances of NESCOND are encouraging, probably
better than the ones of the other existing provers for conditional logics (notice that there

Fig. 2. NESCOND vs CondLean vs GOALDUCK over 2000 random sequents

Timeouts for systems without CEM

1ms 1s 10s

CondLean 19,23% 15,38% 13,46%

NESCOND 5,77% 0,00% 0,00%

Timeouts for systems CEM and CEM+ID

1ms 1s 10s

CondLean 51,72% 37,93% 27,59%

NESCOND 58,62% 51,72% 48,28%

Timeouts for extensions of CK

1ms 1s 10s

CondLean 48,08% 36,54% 28,85%

NESCOND 38,46% 28,85% 26,92%

100ms 1s 10s 1m

CondLean 12,50% 12,50% 9,09% 9,09%

GoalDUCK 21,71% 18,26% 13,88% 13,88%

NESCOND 12,50% 10,23% 5,68% 4,55%

Timeouts for CK

Fig. 3. NESCOND vs CondLean vs GOALDUCK: timeouts over valid formulas

518 N. Olivetti and G.L. Pozzato

is no set of acknowledged benchmarks for them). Figure 3 shows that this also holds for
extensions of CK: for systems not allowing CEM, NESCOND gives an answer in 95%
of the tests (all of them are valid formulas) in less than 1ms. The performances worsen
in systems with CEM because of the overhead of the termination mechanism.

5 Conclusions and Future Issues

We have presented NESCOND, a theorem prover for conditional logics implementing
nested sequent calculi introduced in [1]. Statistics in section 4 show that nested sequent
calculi do not only provide elegant and natural calculi for conditional logics, but they
are also significant for developing efficient theorem provers for them. In future research
we aim to extend NESCOND to other systems of conditional logics. To this regard, we
strongly conjecture that adding a rule for the axiom (CS) (A ∧ B) → (A ⇒ B) will
be enough to cover the whole cube of the extensions of CK generated by axioms (ID),
(MP), (CEM) and (CS). This will be object of subsequent research. We also aim at com-
paring the performances of NESCOND with those of CoLoSS [7], a generic-purpose
theorem prover for coalgebraic modal logics which can handle also basic conditional
logics.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested Sequent Calculi for Conditional Logics. In:
del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 14–27.
Springer, Heidelberg (2012)

2. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested Sequents Calculi for Normal Conditional
Logics. Journal of Logic and Computation (to appear)

3. Beckert, B., Posegga, J.: leantap: Lean tableau-based deduction. JAR 15(3), 339–358 (1995)
4. Brünnler, K., Studer, T.: Syntactic cut-elimination for common knowledge. Annals of Pure

and Applied Logic 160(1), 82–95 (2009)
5. Fitting, M.: Prefixed tableaus and nested sequents. A. Pure App. Log. 163(3), 291–313

(2012)
6. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-intuitionistic logic

using nested sequents. In: Advances in Modal Logic, vol. 7, pp. 43–66 (2008)
7. Hausmann, D., Schröder, L.: Optimizing Conditional Logic Reasoning within CoLoSS. Elec-

tronic Notes in Theoretical Computer Science 262, 157–171 (2010)
8. Kashima, R.: Cut-free sequent calculi for some tense logics. St. Logica 53(1), 119–136

(1994)
9. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and

cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)
10. Lewis, D.: Counterfactuals. Basil Blackwell Ltd. (1973)
11. Nute, D.: Topics in conditional logic. Reidel, Dordrecht (1980)
12. Olivetti, N., Pozzato, G.L.: CondLean 3.0: Improving Condlean for Stronger Conditional

Logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 328–332.
Springer, Heidelberg (2005)

13. Olivetti, N., Pozzato, G.L.: Theorem Proving for Conditional Logics: CondLean and Goal-
Duck. Journal of Applied Non-Classical Logics (JANCL) 18(4), 427–473 (2008)

	NESCOND: An Implementation of Nested Sequent Calculi for Conditional Logics
	Introduction
	Conditional Logics and Their Nested Sequent Calculi
	Design of NESCOND
	Performance of NESCOND
	Conclusions and Future Issues

