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Abstract
The derivative is one of the crucial notions related to functions in secondary teaching.
Some rooted algebraic practices intervene in the development of practices that are proper
to Calculus, such as the use of limit. Hence, the introduction of the derivative is a deli-
cate moment for both students and teachers.
In this thesis, the problematics of the transition from Algebra to Calculus is approached
through an historical and epistemological analysis. In entering the Calculus domain, the
work on functions becomes increasingly grounded on local properties, which are valid in
the neighbourhood of a point. This is the case of the derivative introduction that requires
the activation of a local perspective on functions and poses an additional di�culty, since
from a global perspective the derivative of a function is a function itself.
This thesis investigates the intervention of the local perspective in the secondary teaching
of the derivative, within the Italian context. Framing our research in the Anthropologi-
cal Theory of the Didactic (ATD), we study the didactic transposition of the derivative
notion, when it is considered both as a tool for studying a function and as a function
itself. In our analysis, we network three di�erent theoretical elements: we focus on two
types of task and the related mathematical and didactic praxeologies; we identify the
perspectives activated on the involved functions (i.e., pointwise, global and local); we
analyse the employed semiotic resources (e.g., speech, gestures, symbols, drawings) to
convey these perspectives and to construct such praxeologies. The didactic transposition
of the derivative concept is presented through the analysis of the intended curriculum and
the implemented curriculum, with insights into the attained curriculum. At each stage,
we speci�cally concentrate on the presence and the role given to the local perspective.
In particular, the core of the thesis is the analysis of three case studies involving three
teachers who introduce the derivative to their grade 13 students of scienti�c high school.
After an interview, we have observed each teacher in her classroom and �nally we have
proposed two activities to the students.
One of the main results is the identi�cation of two di�erent derivative-related praxeolo-
gies. They are based on di�erent concept images of the tangent line: on the one hand, the
limit of secant lines, and on the other hand, the best linear approximation. We discuss
them by distinguishing the di�erent levels of intervention of the local perspective in the
work on functions.
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Introduction

Problematics

In the Italian school, Algebra and Calculus are introduced in two successive moments.
Algebra is presented as literal calculus at the end of lower secondary school and it ac-
quires a great importance in the �rst two years of upper secondary school, when it is
identi�ed with the study of number systems and of their properties, with the resolution
of equations, inequalities and systems. Calculus dominates the �nal year of secondary
school with a systematic study of the functions of a real variable, limits, di�erential and
integral calculus. Between these two stages, there is some preliminary work on elemen-
tary functions, which is essentially algebraic and graphical. The Calculus studied in the
secondary school is strongly based on an algebraic work. Is this enough to make students
suitably master the fundamental concepts of Calculus? Is a student well prepared to deal
with the Analysis he/she will study at university?
This dissertation is not a study of the so-called "secondary-tertiary transition" (from
secondary school to university), to which many researches in Mathematics Education
are devoted (e.g., Robert, 1998; Bloch & Ghedamsi, 2005; Artigue, Batanero & Kent,
2007; Gueudet, 2008; Vandebrouck, 2011b). However, the same concern has fostered us
to investigate further the connection of Algebra and Calculus domains.

From an historical point of view, Calculus was introduced in mathematics as in�nites-
imal calculus, that is algebraic calculus on in�nitesimal quantities. Leibniz, Newton, and
the contemporary mathematicians began to �nd anomalies in algebraic procedures when
they involved in�nitely small quantities. These anomalies could not be explained by the
universally accepted paradigm (Kuhn, 1970). It seems to us that the introduction of
the "in�nitely small" has represented a paradigm shift in mathematics. It led to the
adoption of a local perspective - or way to regard - on curves and to the idea of best
approximation which replaced somehow the concept of equality. An historical and epis-
temological analysis leads us to recognize that the transition from Algebra to Calculus
is signi�cantly marked by the introduction of a local perspective on functions.

Research problem, focus and aim

We intend, therefore, to study the didactic transposition (Chevallard, 1985) of this com-
plex transition from Algebra to Calculus in the context of secondary school. In partic-
ular, we consider the derivative notion. Indeed, this is one of the �rst concepts that

v
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make the local perspective intervene in the study of a function. Within this landscape,
our research problem consists in investigating the didactic transposition of the derivative
concept in the secondary school context. The �rst phase of the transposition moves from
the "scholar" knowledge to the knowledge to be taught: curricula, textbooks, and types
of task that the students are expected to be able to solve at the end of their school-
ing. The second transposition phase, which is the core of this dissertation, transforms
the knowledge to be taught into the taught knowledge. The main focus are thus the
teachers' practices in classroom and their e�ects (even though partial) on students. At
each stage of the derivative concept transposition, we are mainly concerned in identify-
ing the intervention of the local perspective on the involved functions and in analysing
how it intervenes. For instance, we wonder if it is implicitly or explicitly present, spon-
taneously introduced or forced, which are the triggering practices or ideas and what is
their implementation.

Theoretical framework

By adopting the research practice of networking theories (Bikner-Ahsbahs & Prediger,
2014), we coordinate three elements coming from three di�erent theoretical approaches in
Mathematics Education. The �rst theoretical tool is the praxeology (Chevallard, 1999),
which is a fundamental notion of Chevallard's Anthropological Theory of the Didactic
(ATD). This lens allows us to identify the types of task involved, the techniques to solve
them and the related justi�cations, along with the theoretical elements that support the
justifying arguments. However, it provides us with a quite static and general picture of
the derivative-related practices. In other words, it does not help us to account for the
deep di�erences that may characterize the underlying dynamics of praxeologies. Which
perspectives on functions (i.e., pointwise, global or local) are activated (Vandebrouck,
2011)? What and how are the semiotic resources (e.g., speech, gestures, symbols, draw-
ing) employed (Arzarello, 2006)? We introduce and coordinate in the analysis these two
further tools: indeed, it is important not only that a certain pointwise, global or local
property is identi�ed on a function, but also the way in which such a property is claimed.

Research questions

Within our theoretical framework, we pose the following research question:

(RQ) How does the local perspective intervene in the development of the derivative-related
praxeologies in the secondary school?

In particular, we focus on two types of task, with their related praxeologies. Speci�cally,
they consist of determining the equation of the tangent to a generic function at a point,
and representing the derivative function. The indications for teaching the derivative and
especially the approach to these two types of task are analysed at di�erent levels: within
the intended curriculum (national guidelines, textbooks and �nal examination); within
the implemented curriculum (teachers' praxeologies in classroom) with possible e�ects
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on the attained curriculum (students' praxeologies). RQ is articulated in the following
sub-questions, which guide the analysis:

(RQ.1) What role is given to the local perspective on functions in the secondary teaching
of the derivative?

(RQ.2) How do teachers construct the derivative-related praxeologies with and for their
students?

(RQ.1+2) What role is given by the teachers to the local perspective on functions in the
construction of such praxeologies?

(RQ.3) In which ways di�erent praxeologies developed in classroom can a�ect the stu-
dents' praxeologies, in terms of local perspective?

We try to answer such research questions, also considering some possible implications on
teaching.

Methodology and data collection

We enter the study of the derivative concept transposition at di�erent levels. We adopt
at each stage the methodology we consider the most appropriate one.
As far as the intended curriculum is concerned, we adopt a global view on the Italian
National guidelines for high schools (Indicazioni Nazionali per i Licei). In particular,
we consider the indications involving the derivative devoted to scienti�c high schools.
Afterwards, we opt for a more restricted point of view on the Italian textbooks. More
precisely, we examine the approach to the two selected types of task within both the
theory and the exercises of only two textbooks. However, they are among the most
widespread ones in scienti�c high schools in Piedmont. Finally, we analyse the tasks
that make the derivative intervene in the mathematics �nal examination proposed to
experimental courses in scienti�c high schools in 2013.
With regard to the implemented curriculum, we rely upon a methodology based on case
studies. The three teachers joining the project follow the analysed textbooks and their
prexeologies are rather di�erent on both didactic and mathematical side. In particular,
our data consist of audio-recorded preliminary interviews and videotaped lessons for each
teacher.
As a small insight also into the attained curriculum, we consider the results of two
activities properly designed on the derivative. We propose them to the students working
in small homogeneous groups, in each of the three observed classrooms. In this phase,
the collected data encompass the written productions of all the groups and the videos of
some of them.
Therefore, the data we dispose of do not form a statistic sample from which deducing
quantitative evidences. On the contrary, our analysis, results, discussion and conclusions
will be of qualitative kind.
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Overview of the dissertation

The dissertation is subdivided into two parts. Part I is devoted to the problematics and
the theoretical framework, whereas Part II involves data analysis.

In Part I, Chapter 1 presents the problematics from which the study originates: the
transition from Algebra to Calculus. Firstly, this transition is examined from an historical
and epistemological point of view. In particular, the perspectives on functions are intro-
duced as an important epistemological component of the work on functions. Secondly,
it is justi�ed the choice of the derivative concept as an signi�cant notion to investigate
the transition. The de�nitions of di�erentiable function and derivative are given and
discussed within the "scholarly" mathematics. Thirdly, it is provided an overview of the
literature in Mathematics Education about the derivative and the related concepts. The
chapter is closed by a �rst outline of the research problem, set in the secondary school
context.

Chapter 2, then, introduces the theoretical framework of the research. It frames our
study in the Anthropological Theory of the Didactic (ATD), with particular regard to
the notion of didactic transposition. Further, the theoretical tools coordinated in the
analysis are presented. It is stressed that the focus is especially on teachers, and the the-
ory of the meta-didactic transposition is considered, as a natural extension of the ATD
to teachers' practices in a research context. Finally, our research questions take shape.

In Part II, Chapter 3 is devoted to the analysis of the intended curriculum involving
the derivative. In particular, the analysis concerns part of the Italian National guidelines,
two textbooks and two problems given in one recent �nal examination.

Chapter 4 presents the case-study analysis of three teachers, while introducing the
derivative concept and the derivative function in their classrooms.

Chapter 5 provides a brief analysis of the students working in small groups on two
activities involving the derivative. The description, and the a priori and a posteriori
analysis are given for both the activities proposed.

Finally, Chapter 6 draws the conclusions, starting from a discussion of the results
obtained through the analysis. The analysis tool is evaluated as well. Some implications
on teaching are detected, and possible further developments of the research are identi�ed.
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framework
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Chapter 1

The problematics

This chapter aims to introduce the problematics from which the study originates: the
transition from Algebra to Calculus1. An historical and epistemological analysis of the
articulation of these two mathematical domains will support us in explaining why it
reveals "a problematic meeting". We have chosen the derivative concept as a signi�cant
notion which lives between Algebra and Calculus. The di�erent ways to de�ne the
derivative in mathematics are presented and discussed in detail, in order to have insight
into the fundamental mathematical objects, conceptions and de�nitions involved. Then,
we will move on to an overlook of the existing literature in Mathematics Education
about the derivative notion and the elements it involves. With the contextualization of
our study in the secondary school, and in particular by focusing on the teaching of the
derivative concept, we will �nally come to outline the research problem from which this
thesis arises.

1.1 The transition from Algebra to Calculus

"And whatever the common Analysis [that is, algebra] performs by Means
of Equations of a �nite number of Terms (provided that can be done) this
new method can always perform the same by Means of in�nite Equations.
So that I have not made any Question of giving this the Name of Analysis
likewise. For the Reasonings in this are no less certain than in the other;
nor the Equations less exact; albeit we Mortals whose reasoning Powers are
con�ned within narrow Limits, can neither express, nor so conceive all the
Terms of these Equations as to know exactly from thence the Quantities we
want. To conclude, we may justly reckon that to belong to the Analytic Art,
by the help of which the Areas and Lengths, etc. of Curves may be exactly
and geometrically determined." (Newton, De Analysi, in Boyer & Merzbach,
2011, p.362)

1In several European countries Calculus is called Elementary Analysis. It can be considered as the
study of functions, of their properties and of the operations on them. Sometimes, we will use the term
"Analysis" to intend the broader mathematical domain studied at university courses.

3
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With these words, Newton opens one of his greatest masterpieces, De Analysi per
aequationes numero terminorum in�nitas. This sentence re�ects the sensation of the
time with respect to the mathematical practices related to Algebra, when they were
applied to a more general set of objects. In the case of mathematical equations involving
an in�nite number of terms, the common practices perform in the same way. As we
will outline in the next paragraph, many other mathematicians also before Newton tried
to apply the current rules of Algebra to in�nite or in�nitesimal entities or quantities.
In the history of mathematics, a sort of transition between Algebra and Calculus can
be perceived. Obviously it is something we can say in retrospect because we have a
global view of the historical development of concepts which were just rising and were so
ine�able at the time. Perhaps this sensation was not made explicit but it was inherently
present in how mathematicians employed algebraic rules, trying them beyond the known
mathematical boundaries.

1.1.1 From an historical viewpoint

We have not the pretension of giving a complete history of the in�nitesimal calculus
and its origins. Our intention is to �nd some clues of the transition between Algebra
and Calculus in the history of mathematics, taking into particular account the 16th-17th
centuries, when the in�nitesimal calculus arose.
Calculus indeed has been introduced in mathematics as in�nitesimal calculus. And the
mathematics of the time was mainly based on arithmetical, algebraic and geometrical
works. Therefore, it is natural that the mathematicians, who started working with em-
bryonic forms of those that later would be the fundamental concepts of Calculus, handled
the material at their disposal. In particular, we search for evidences of algebraic practices
employed in a non-standard or extended way. Perhaps they were non-rigorous modes of
application for the time but we �nd them interesting examples of how Algebra intervened
in the construction of the practices of Calculus.

In his history of Calculus, Boyer (1949) points out that in the development of the
algorithm of Calculus an essential role was played, in 16th century, by the systematic in-
troduction of symbols for the quantities involved in algebraic relations. The introduction
in algebra of this literal symbolism, largely due to the French mathematician François
Viète, allowed the rapid progress of analytic geometry and permitted the concepts of
variability and functionality to enter into algebraic thought. Thanks to the improved
notation, in the century preceding Newton's and Leibniz's works, new methods were de-
veloped. They were modi�cations of the ancient geometrical procedures known at the
time (such as the exhaustion method largely used by Euclid) but easier to apply. It was a
real cognitive jump that allowed these methods to arise and they were �nally recognized
as forming a "new Analysis": the Calculus.
In particular, we search for evidences of this evolution in some examples taken from the
work of Stevin, Kepler, Cavalieri, Fermat, Wallis and, obviously, Newton and Leibniz.

The Dutch Stevin (1548-1620) in some of the propositions on �uid pressure, accom-
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panied the geometric proof with a "demonstration by numbers" in which a sequence of
numbers tended to a limiting value. In his Hypomnemata Mathematica, he supplemented
the proof that the average pressure on a vertical square wall of a vessel full of water
corresponds to the pressure at its mid-point with a numerical example. Subdividing the
square into four horizontal strips he remarked that the force on each strip is grater than

0,
1

16
,

2

16
,

3

16
units and smaller than

1

16
,

2

16
,

3

16
,

4

16
units respectively. Thus, the result-

ing force is included between
6

16
and

10

16
. If the wall were subdivided into ten strips, the

total force would be included between
45

100
and

55

100
units. If the wall were subdivided

into one thousand strips, it would be included between
499500

100000
and

500500

100000
units. He

concluded that by increasing the number of the strips it is possible to approach the ratio
1

2
as closely as desired. Boyer remarks that "the procedures substituted by Stevin for

the method of exhaustion constituted a marked step towards the limit concept" (Boyer,
1949, p.104). This example is based more on arithmetic rather than on algebra. How-
ever, Stevin must have based his reasoning on the algebraic relation between the number
of strips n and the bounds a and b. Indeed, we can not think that he has arithmeti-

cally counted till
499500

1000000
and

500500

1000000
. It is more plausible that he has exploited the

algebraic rules for �nding a =
(n− 1)n/2

n2
and b =

n(n+ 1)/2

n2
. In this sense, Stevin's

demonstration can be considered as an example of using algebraic formulas to develop
new in�nitesimal methods.

This was the nature of the proofs of another great mathematician and astronomer of
the time, the German Kepler (1571-1630). His �rst two laws of astronomy announced
in Astronomia nova in 1609 are universally known: (1) the planets move about the sun
in elliptical orbits with the sun at one focus, and (2) the radius vector joining a planet
to the sun sweeps out equal areas in equal times.
In working on problems of that kind, Kepler thought of the area as made up of in�nitely
small triangles with one vertex at the sun and the other two vertices at points in�nitely
close together along the orbit. This idea is illustrated by Kepler in Nova stereometria of
1615 to determine the area of a circle. He considered the circle as a regular polygon with
an in�nite number of sides. He noticed that the heights of the in�nitely thin triangles are
equal to the radius. The area of each triangle is given by the semi-product of the in�nitely
small base, lying along the circumference, and the height, that is r. The total area of
the circle, that corresponds to the sum of all these areas, is thus half the product of the

apothem and the perimeter (see Kepler's �gure 1.1.1). It gives
1

2
rC. This in�nitesimal

procedure hides an algebraic sum of an in�nite sequence: C = b1 + b2 + b3 + ...+ bn + ....
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Figure 1.1.1 - Kepler's figure to illustrate the
problem of determining the area of the circle (on
www.matematicasvisuales.com).

In 1635, the Keplerian ideas were systematically expanded in the work of Cavalieri
(1598-1647), disciple of Galileo, in his Geometria Indivisibilibus. In particular, we con-
sider here the proposition known as "Cavalieri's Theorem" and the algebraic idea that
is at its core. Proposition 24 of Book II states as follows: "Given any parallelogram and
drawn one of its diagonals, all the squares of the parallelogram will be the triple of all the
squares of either of the triangles formed by the diagonal, set as common reference one of
the sides of the parallelogram"2 (Lombardo-Radice, 1966, p.265). Cavalieri considered
the lines in a parallelogram (see Figure 1.1.2). First of all he proved that the diagonal
divides a parallelogram into two equal triangles by showing that for every indivisible
of one of the triangles (e.g., BM) there exists an indivisible that is equal in the other
triangle (e.g., HE). Cavalieri could conclude that the sum of the lines in one of the
constituent triangles is half of the sum of the lines in the parallelogram.

Figure 1.1.2 - Cavalieri's idea shown on the parallelogram
AFDC (in Boyer & Merzbach, 2011, p.304; with our addition
of the segment GH).

This result, written in our terms, corresponds to∫ a

0
xdx =

a2

2
.

2Our English translation of the passage "Dato un parallelogramma qualunque e condotta in esso una
diagonale, tutti i quadrati del parallelogramma saranno il triplo di tutti i quadrati di uno qualsiasi dei
triangoli formati ad opera di detto diametro, posto come riferimento comune uno dei lati del parallelo-
gramma".
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He generalized this outcome, by comparing powers of the lines parallel to the base in a
parallelogram with the corresponding powers of the lines in either of the two triangles.

Thus, Cavalieri found that the sum of the squares of the lines in the triangle is
1

3
the sum

of the squares of the lines in the parallelogram. For the cubes of the lines, the ratio was
1

4
. In his Exercitationes geometricae sex, he then concluded by analogy that the ratio

between the sum of n times the lines in the triangle and the sum of the n times the lines
in the parallelogram is 1 to n+ 1. In our notation, he found∫ a

0
xndx =

an+1

n+ 1
.

The method employed by Cavalieri, as Boyer (1949) remarked, was based on several
lemmas which are equivalent to special cases of the binomial theorem. For example, for
the ratio of the cubes of the lines, he began with (a+ b)3 = a3 + 3a2b+ 3ab2 + b3. Then,
his procedure is somehow the following. Calling AF = c, GH = a and HE = b in Fig.
1.1.2, we have Σc3 = Σa3 + 3Σa2b + 3Σab2 + Σb3 where the sums Σ are taken over the
lines of the parallelogram and the triangles. Because of the symmetrical situation, it
becomes

Σc3 = 2Σa3 + 6Σa2b. (1.1)

Now, Σc3 = cΣc2 = cΣ(a + b)2 = c(Σa2 + 2Σab + Σb2). At this point, the previous

Cavalieri's proposition on the squares gives Σa2 = Σb2 =
1

3
Σc2. Thus,

Σc3 =c
(1

3
Σc2 + 2Σab+

1

3
Σc2

)
=

2

3
cΣc2 + 2cΣab

=
2

3
Σc3 + 2(a+ b)Σab

=
2

3
Σc3 + 2Σa2b+ 2Σab2

=
2

3
Σc3 + 4Σa2b

Hence, 4Σa2b =
1

3
Σc3, that is Σa2b =

1

12
Σc3. Replacing this result in (1.1) one obtains

Σc3 = 2Σa3 + 6
1

12
Σc3

and so
1

2
Σc3 = 2Σa3

that gives the ratio of the cubes:

Σa3 =
1

4
Σc3.
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Applying the known algebraic procedures, such as that illustrated by Boyer (1949), Cav-
alieri could reach an embryonic formulation of one important integration theorem. How-
ever, the sums imagined by Cavalieri are not the "classical" sums of �nite terms, but
they represent the collection of an in�nite number of lines.

Cavalieri's proposition, which appeared in 1639, was also independently worked out by
many other mathematicians between 1635 and 1655, such as Torricelli, Roberval, Pascal,
Fermat and Wallis. This theorem played a signi�cant role in the development of in-
�nitesimal methods. Boyer writes that "it was perhaps the �rst theorem in in�nitesimal
analysis to point toward the possibility of a more general algebraic rule of procedure,
such as that which, formulated a generation after by Newton and Leibniz, became basic
in the integral calculus" (Boyer, 1949, p.121).
Nonetheless, all the anticipations of methods of the Calculus developed in those years
were related to geometry and the role of algebra was still feeble. Moreover, in�nitesimal
lines, surfaces and solids appeared but not in�nitesimal numbers. The algebra and the
analytic geometry of 16th-17th century were an essential step to go in this direction,
namely to uproot the Aristotelian idea that in arithmetic no number can be smaller than
one. Fermat and Descartes developed and exploited an analytic geometry, by considering
symbols entering in an equation as indeterminate constants. To these symbols line seg-
ments could be associated. Thus, there was the tacit assumption that to every segment
corresponds a number. Boyer notices: "To such a view there was nothing incongruous
with the idea of in�nitesimal constants or numbers, since they would correspond to the
geometrical indivisibles which were being used so successfully." (Boyer, 1949, p.155).

To make an example, let us show the ingenious method of the French Fermat (1601-
1665) for determining maxima and minima, �rst appeared in 1637. We consider the �rst
problem he solved in Methodus ad disquirendam maximam et minimam. The problem
consists in dividing a segment of length b in two parts a and b − a in such a way that
their product a(b− a) is maximum. Fermat's argument develops as follows: let the �rst
segment be a+E, the second segment thus will be b− a−E and the product of the new
parts will be (a+ E)(b− a− E) = ba− a2 + bE − 2aE − E2. The arithmetic-algebraic
method of Fermat is based on an observation made by Pappus, which corresponds to
our property: a function is stationary in the neighbourhood of a value that makes it
maximum or minimum. Then, Fermat compared the two obtained expressions and he
set a pseudo-equality (adaequalitatem) between them. For convenience, we will use our
symbol ∼ where Fermat writes in words "adaeguabitur": ba−a2+bE−2aE−E2 ∼ ab−a2
which gives bE ∼ 2aE+E2. The smaller is the interval E, the nearer the pseudo-equality
becomes a true equation. Consequently Fermat divided by E and set E = 0, obtaining

the result a =
b

2
(he writes "aequabitur"). In our terms, his procedure can be summarized

as follows:
a(b− a)− (a+ E)(b− a− E)

E

E→0−−−→ 0.

Now we will write E → 0, but Fermat seems to have interpreted the vanishing of E in



9

the sense that E is actually zero.
Fermat employed his method also for determining tangents to curves. Here are the steps
he followed to �nd the tangent to the parabola in Fig. 1.1.3.

Figure 1.1.3 - Figure supporting Fermat's determination of
the tangent to a parabola (in Dupont, 1975, p.15).

From what he called the "speci�c property" of a curve (today we would say its
equation) and the similarity of the two right triangles in �gure, we shall have

d

d− E
=

(CB)2

(IO′)2
>

(CB)2

(IO)2
=

a2

(a− E)2

d

d− E
>

a2

(a− E)2

dE2 − 2daE >− a2E.

The smaller we take E, the more the point O can be considered as if it was on the curve.
Therefore, the inequality becomes a pseudo-equality:

dE2 − 2daE ∼ −a2E.

Dividing by E and then setting E = 0 we �nd the equality:

dE + a2 ∼2ad

a2 =2ad

a =2d.

Fermat thought in terms of equations and the in�nitely small. In his method, algebra is
the primary ingredient. However, from the following criticisms, we start noticing a �rst
sensation of unease in using algebraic rules on quantities like E. The greatest incongruity
criticized in this procedure was the fact that all the algebraic operations made with the
quantity E, included the division by E, as if it were an ordinary positive quantity, lose
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their sense if in the end E is set equal to zero.

In England, the mathematician and theologianWallis (1616-1703) conducted similar
studies, by employing the concepts of in�nity and in�nitesimals, although no rigorous
de�nition was established. He was largely inspired by the reading of Cavalieri's work
on indivisibles. The approach of the latter was geometrical, whereas Wallis proceeded
mainly arithmetically. He used in his own demonstrations the arithmetical symbolism in
order to give them brevity and clarity. As Cavalieri, Wallis considered a plane �gure as
made up by an in�nite number of parallel lines. Nevertheless, he preferred to describe

them as parallelograms having height
1

∞
or an in�nitely small part of the height of

the �gure. The symbol ∞ for in�nity appears here for the �rst time. Wallis said that
1

∞
represents an in�nitely small quantity or non-quanta. By using this approach, in

his De Sectionibus Conicis appeared in 1655, he proved that the area of a triangle is
the product of the base and half the height. He supposed the triangle be divided into

an in�nite number of parallelograms having height
1

∞
, taken as lines parallel to the

base. The areas of these parallelograms, starting from the vertex to the base, form an
arithmetic progression which begins with zero. Wallis used a well-known algebraic rule
that the sum of such an arithmetic progression is the product of the last term and half
the number of terms. In applying this formula, Wallis made no distinction between �nite
of in�nite numbers. Thus, calling A the base of the triangle and B its height, the last

term of the progression is
1

∞
AB and the total area is given by

1

∞
AB
∞
2

=
1

2
AB.

Most of his results base on crude manipulations of the symbols ∞, such as his demon-
stration of the proposition that we can write as∫ a

0
xndx =

an+1

n+ 1
.

In Arithmetica In�nitorum, he proceeded arithmetically by showing that

0 + 1

1 + 1
=

1

2
;

0 + 1 + 2

2 + 2 + 2
=

1

2
;

0 + 1 + 2 + 3

3 + 3 + 3 + 3
=

1

2
; . . .

So the ratio of any �nite number of terms is always
1

2
and he concluded it is

1

2
also for

an in�nite number of terms. For the squares he showed

0 + 1

1 + 1
=

1

3
+

1

6
;

0 + 1 + 4

4 + 4 + 4
=

1

3
+

1

12
;

0 + 1 + 4 + 9

9 + 9 + 9 + 9
=

1

3
+

1

18
; . . .

He then observed that the more the number of terms increases, the more the di�erence

between the result and
1

3
decreases. For an in�nite number of terms, he concluded, this
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di�erence is about to vanish completely and, as a consequence, the ratio is
1

3
.

Wallis's work declared the independence of arithmetic by geometry. His use of the in-
�nitesimals however was not clearer than what it was in Fermat's work. Indeed, if Fermat

set his vanishing E equal to 0, also Wallis wrote his in�nitely small height as
1

∞
= 0.

Nonetheless, thirty years later Wallis made an interesting remark about the in�nitesimal

nature of
1

∞
. He said: "We may observe a great di�erence between the proportion of

In�nite to Finite, and, of Finite to Nothing. For
1

∞
that which is a part in�nitely small

may, by in�nite Multiplication, equal the whole. But
0

1
, that which is Nothing, can by

no Multiplication become equal to Something" (Wallis, Defense of the angle of contact.
In Scott, 1981, p.21).

Let us come to Newton and Leibniz who are considered as the fathers of in�nitesimal
calculus. A quick analysis of the methods they developed and disseminated in the second
half of the 17th century. The solved problems can start from or be given in a geometrical
situation, but their resolution is almost completely independent from geometry, leaving a
greater space to algebra. In the spirit of this paragraph, it is not our intention to present
all the problems solved by Newton and Leibniz. With the shown examples we intend to
give an idea of the algebraic procedures on which their di�erent calculus methods were
grounded.

Newton (1642-1727) worked on power series expansion. One of his most known
results is the so-called "Newton's binomial", but we can say that Newton went farther
extending the formula

(a+ b)n =

n∑
h=0

(
n

h

)
an−hbh,

for any integer n, to the more general series expansion3

(1 + x)r =
∞∑
n=0

(
r

n

)
xn,

for any integer or rational r. Newton reached results like this one through several meth-
ods such as division, root extraction, etc. For instance, the power series expansion of
a2

b+ x
is obtained dividing a2 by b+ x.

In De analysi per aequationes numero terminorum in�nitas, written in 1669 but pub-
lished later in 1711, we can appreciate Newton's method of integration intended as anti-
derivation. We can illustrate it as follows. Let z represent the area of ABD where AB
is x, BD is y and AD is a portion of curve. Given to x a positive and �nite increment o
(which recalls Fermat's E), Bβ in Fig. 1.1.4, the area z will be increased of the area of

3The used notation is that of today.
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BβδD. Consider the equivalent rectangle BβHK which has o as base and v as height.
Then the area z is incremented of ov. Thus, notice that Newton introduced two di�erent
increments: one for the independent variable and another one for the dependent variable.
It allowed him to avoid speaking of pseudo-equalities.

Figure 1.1.4 - Figure supporting Newton's ar-
gument (in Dupont, 1980a, p.374).

Newton shows his method on a particular example:

z =
2

3
x3/2

which he rewrites as

z2 =
4

9
x3.

To the increment o of x corresponds an increment ov of the area z so

(z + ov)2 =
4

9
(x+ o)3.

Expanding the powers and knowing that z2 =
4

9
x3, he obtains

z2 + 2ovz + o2v2 =
4

9
x3 +

4

9
3x2o+

4

9
3xo2 +

4

9
o3

2ovz + o2v2 =
4

3
x2o+

4

3
xo2 +

4

9
o3,

and dividing by o

2vz + ov2 =
4

3
x2 +

4

3
xo+

4

9
o2. (1.2)

Then he writes, with reference to Fig. 1.1.4: "Now if we suppose Bβ to be diminished
in�nitely and to vanish, or o to be nothing, v and y, in that Case will be equal, and the
Terms which are multiplied by o will vanish" (English translation of 1964; in Dupont,
1981a, p.376). Here, Newton makes explicitly o tend to zero, noticing that for o = 0 the
equality (1.2) "tends" to (1.3):

2yz =
4

3
x2 (1.3)
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that is

2y
2

3
x3/2 =

4

3
x2

y =x1/2.

At this point, Newton erroneously thought that also the converse his true, namely that if

y = x1/2 the area will be z =
2

3
x3/2. Now we know that it lacks the integration constant,

and that Newton actually found one particular primitive.
In the Methodus Fluxionum, written in 1671 but published only after his death, Newton
called �uents the magnitudes x and y which depend on time (an arti�cial time) and he
considered their �uxions in time ẋ and ẏ. Considering a little increment of the time
o, the �uents x and y will become respectively x + ẋo and y + ẏo. He stated clearly
the fundamental problem of the Calculus: given the relation of the �uents, determining
the relation of their �uxions; and conversely. Newton's method bases on the algebraic
substitution of x, y, z, ... with the incremented quantities x + ẋo, y + ẏo, z + żo, ...
Then, he expands and calculates, deletes the terms which do not contain o (which satisfy
the equality given for hypothesis) and divides by o. Moreover, since o is supposed to be
in�nitely small, the terms which contain it can be considered as zero with respect to the
quantities that do not depend on it, and are to be neglected.
Using this method, Newton found also the inversion theorem (fundamental theorem of
Calculus): if z is an area generated by the �owing of y, then he writes

ż : ẋ = y : 1.

Hence,
ż

ẋ
= y.

The method of the �uents and �uxions is only one of the two methods Newton worked
out in his in�nitesimal studies. The other one is the method of prime and ultimate ratios
and limits exposed in the Principia published in 1687. Newton presented the "ultimate
ratio in which quantities vanish" as "limits to which the ratios of these quantities de-
creasing without limit, approach, and which, though they can come nearer than any
given di�erence whatever, they can neither pass over nor attain before the quantities
have diminished inde�nitely" (Newton, Opera omnia. In Boyer, 1949, p.198). With this
method, Newton overcame the conception of the indivisibles and substituted it with an
intuitive idea of limit.

In the same period, in Germany, Leibniz (1646-1716) published in 1684 on the Acta
Eruditorum the work Nova methodus pro maximis et minimis, itemque tangentibus quae
nec fractas nec irrationales quantitates moratur et singulare pro illis calculi genus. His
method recalls that of Fermat, with the introduction of the di�erential instead of E. For
Leibniz, the increment of the variable x is dx, de�ned as an arbitrary segment. Given a
curve, Leibniz considered the corresponding function v(x) and introduced the di�erential
of v, dv, which is a segment that is to dx as v is to the sub-tangent (see Fig. 1.1.5). He
also said that dv is the di�erence v(x+dx)−v(x), however we know that it does not occur
for any increment dv but the two de�nitions coincide if the increment is in�nitesimal.
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Figure 1.1.5 - Figure supporting Leibniz's argument (in
Dupont, 1975, p.82).

As Dupont observes in his Storia del concetto di derivata (1975), with the introduction
of the di�erential and the algebraic operations on it, algebra had not to be considered
as calculus of the �nite magnitudes anymore. It became an in�nitesimal algebra and the
relations involving in�nitely small di�erences had to be written in new proper symbols.
It is in line with Leibniz's theory of the characteristica universalis, according to which
the symbols must have the inherent capability of expressing a notion. It is on these bases
that Leibniz grounded his in�nitesimal calculus. Let dv,dw,dy,dz be the di�erentials of
the functions v(x), w(x), y(x), z(x). Leibniz stated that

• if a is a constant, then da = 0 and dax = adx

• if y = v, then dy = dv

• d(z − y + w + x) = dz − dy + dw + dx

• dvx = xdv + vdx

• dvy =
±ydv ∓ vdy

y2
.

These rules were given without proof in the Nova Methodus. The di�erential dx remained
an arbitrary segment. No allusion was made to an in�nitesimal quantity. If we retrace
the story of the di�erential dx in Leibniz's mathematical work, it has to be related to the
di�erence operator d he used to calculate the �nite di�erence between two consecutive
terms of a sequence. In the previous Leibniz's manuscripts (around 1675), we can see that
the di�erential calculus arose as "extrapolation" (to use Bos's term in Bos, 1974) of the
calculus on numerical sequences, in a sort of passage from discrete to continuous. In these
manuscripts we can �nd the proof of the algebraic rules given later in Nova Methodus
and in them we can clearly notice that Leibniz actually considered the di�erential as an
in�nitesimal di�erence between two successive values of the variable. For instance, let
us consider the proof of the product formula dxy = xdy + ydx. Leibniz calculated it
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as di�erence between the incremented product, obtained replacing x with x+ dx and y
with y + dy, and xy. Thus

dxy = (x+ dx) · (y + dy)− xy = xdy + ydx+ dxdy.

Then, Leibniz omitted the term dxdy and here we see that the di�erentials he was con-
sidering were in�nitesimal. Indeed, the product of two in�nitesimal quantities dxdy is
negligible with respect to all the other terms in the sum. This was one of the most
discussed points in Leibnizian di�erential calculus. Notice that algebra alone could not
explain how dxy could be equal to xdy+ydx+dxdy and to xdy+ydx at the same time.
As far as the integration is concerned, Dupont (1981b) follows Bos (1974) a�rming that
Leibniz stressed the di�erence between his own method and the indivisibles one. Leibniz
highlighted that, in his calculus, he obtained quadratures as sums of area-di�erentials
(i.e., areas of rectangles having dimensions y and dx) rather than sums of lines in a
�gure. As Dupont (1981b) observes, it occurred in an advanced process of algebraisa-
tion of the in�nitesimal calculus which detached from both the �nite Cartesian algebra
and the pure Cavallieri's geometry. Leibniz algebraised Cavalieri's geometry by intro-
ducing the bidimensional di�erentials ydx. It was Leibniz that introduced the symbol
omn (from the Latin "omnia") and then

∫
for the sum. For instance, he found the re-

sult
1

2
(
∫

dy)2 =
∫

(
∫

dy)dy, which we have written in our symbols, but maintaining the

structure and the meaning given by Leibniz to the single parts.

Leibnizian "Nova Methodus" resulted very di�cult to read also for the greatest math-
ematicians of the time. As Dupont (1981b) remarks, this work contained uncertainties,
enigmas, contradictions and fundamental rules given without any proof. Perhaps, this
was due to the fact that Leibniz desired avoiding possible critics related to the in�nitely
small.
It is exactly this perception of having �nd great results in calculus, but not being able
to fully explain them through rigorous algebraic methods, that we tried to highlight in
this �rst paragraph. We saw how the role of algebra became more and more important
in the construction of calculus practices. Sometimes algebra perfectly explained, more
quickly than geometry, certain results; sometimes, instead, mathematicians had to do
great e�orts to justify their theorems or proofs to the mathematical community or they
tried not to mention what may attract criticisms. These ambiguities are largely due to
the fact that they were doing algebraic calculations with in�nite or in�nitesimal quanti-
ties. Something in the way of thinking mathematics was changing and certain algebraic
practices seemed not to �t perfectly the new ideas and conceptions.
This situation recalls us the concept of paradigm shift introduced by Kuhn in The
structure of scienti�c revolutions (1970). In the next paragraph we try to develop this
idea and we propose an approach through paradigms for studying the transition from
Algebra to Calculus.
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1.1.2 An approach through paradigms

A deep historical research of a given specialized science reveals the presence of "a set of
recurrent and quasi-standard illustrations of various theories in their conceptual, obser-
vational and instrumental applications" (Kuhn, 1970, p.43). In this way, the American
physicist, historian, and philosopher of science Kuhn describes the paradigms of a sci-
enti�c community. He distinguishes the paradigms from the rules. "Paradigms may be
prior to, more binding, and more complete than any set of rules that could be unequivo-
cally abstracted from them" (Kuhn, 1970, p.46). "Normal science", that is the research
grounded on one or more stable results, may proceed without any rule only as long as
the scienti�c community accepts and does not discuss the particular solutions already
achieved. The rules become relevant whenever the paradigms are perceived as unsure.
The pre-paradigmatic period is marked by frequent and deep debates about the validity
of certain methods, problems or models of solutions. These periods "when paradigms
are �rst under attack and then subject to change" (Kuhn, 1970, p.48) are, according to
Kuhn, characteristic of scienti�c revolutions.
In line with Kuhn's thought, we share the de�nition proposed by Kuzniak in his research
on the paradigms in geometry. Kuzniak (2011) intends the paradigm as the set of the
beliefs, the techniques and the principles shared by a scienti�c group. A paradigm

shift, described by Kuhn as a change in procedures and expectations, is then for us a
change in the way of thinking and in the way of working on a mathematical object or a
set of objects.
We can read under this lens the examples shown in the previous paragraph. They all
have in common the attempt to approach the problems of the normal science with the
standard techniques of the time. In particular, the rules of what Newton called "common
Analysis", that is Algebra, were applied to usual problems of quadrature, area and vol-
ume, maxima and minima. Nevertheless, in all the cases taken into account we can �nd
insights of a new way of thinking of the �gures, the curves, and the involved variables.
A new way of working on these mathematical objects was emerging. Symptomatic were
the reference to the indivisibles, the lines or the in�nitesimal rectangles composing the
�gure, and the introduction of in�nitesimal heights, segments or increments.
Moreover, as Kuhn states, the discovery of a new paradigm is marked by the perception
of some anomalies, something that breaks the expectations given by the paradigms of the
normal science. The researcher's reaction to these anomalies is characterized by a �rst
attempt of adapting the paradigmatic theory so that what appeared anomalous seems to
be expected. It is exactly what occurred in all the attempts, presented in the previous
paragraph, of using algebraic rules on the introduced in�nitesimal and in�nite quantities.
Sometimes this fact led to anomalies that algebra alone could not explain. We refer, for
instance, to the use of the �nite and positive increment E that turns out to be equal to
zero in Fermat; or to the in�nitesimal height of the rectangles in the �gures of Wallis,

written as
1

∞
= 0; or to the negligible dxdy in Leibniz and o in Newton. They all were

anomalies for common algebra, but also the only way to get the solution. Thus, they
appeared as a necessary change in procedures and expectations.
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Adopting an approach through paradigms, we can describe this historical shift to in-
�nitesimal calculus as a paradigm change.
More precisely, let us refer to a study in progress on paradigms in the Calculus domain,
carried out by Kuzniak, Vivier, Estrella and Montoya-Delgadillo. This research (Estrella
et al., 2014)4 interprets the mathematical work in the Calculus domain through three
paradigms.

AG: Analytic-Geometric which allows interpretations arisen from geometry or the real
world. The geometrical intuition guides the work with several implicits.

AC: Analytic-Calculative where the rules of calculus are de�ned, more or less explicitly,
and are applied independently from the re�ection upon the existence and validity
of the introduced objects.

AI: Analytic-In�nitesimal is characterized by a work of approximation, with a loss of
information in order to solve a problem: maxima and minima, the entry into a
work on neighbourhoods (or a more topological entry): "searching for ε", "the
negligible".

Therefore, following this characterization, we can read the transition from Algebra to
Calculus as a shift from the analytic-geometric and the analytic-calculative paradigms
to the analytic-in�nitesimal one.
Then, the incredible mathematical production of the 18th century and the following foun-
dation research contributed to shape the Analysis domain as we study it nowadays. The
appearance of the primitive concept of function (with Leibniz in 1692) and its following
development has certainly been a crucial step towards a clear formulation of the limit
notion. A turning point has then been the de�nition of real numbers in the second half
of the 19th century. Indeed, the well-formed concept of real number has allowed to for-
mally de�ne the limit notion and has fostered the process of arithmetisation of Analysis.
The scholarly knowledge5, as it is presented in our university textbooks and lectures, is
strongly grounded on the analytic-in�nitesimal paradigm. From an epistemological point
of view, this paradigm has introduced a particular way of regarding functions, curves and
involved variables: the local perspective. The term "perspective" is used with reference
to the French "perspective", introduced in literature by Vandebrouck (2011a). Besides
information in a point (pointwise properties) and in an interval (global properties), the
local perspective gives access to information on the function in the neighbourhood of a
point.
In the next paragraph, we introduce the perspectives on functions (Rogalski, 2008;
Maschietto, 2002, 2008; Vandebrouck, 2011a, 2011b) as an important epistemological
component of the transition from Algebra to Calculus. As we will see in the follow-
ing, this epistemological aspect has shaped our research questions and has become a
fundamental lens for investigating Calculus practices in classroom.

4Research conducted within the international project ECOS-CONICYT C13H03 involving France
and Chile.

5We use this expression in the sense of Chevallard (1992), to indicate mathematical knowledge as it
is produced by mathematicians or other producers
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1.1.3 Di�erent perspectives on functions

Calculus, or as it is called in other European countries Elementary Analysis, can be con-
sidered as the study of functions, of their properties and of the operations on them. This
mathematical domain is nowadays grounded on di�erential and integral calculus. It is
strictly related to problems of variation, calculation of areas, volumes and determination
of the tangent line to a curve. In the Italian curriculum, the last year of secondary school
(grade 13) is almost all devoted to the teaching of the fundamental concepts of Calculus:
limits, di�erentiation and integration. Nevertheless, the teaching and learning of func-
tions begins before and permeates all the upper secondary teaching (grade 9-13). The
functions are introduced to study particular problems in algebra and geometry. Their
learning is related to the solution of equations and inequalities and it develops with the
study of analytic geometry. Therefore, the teaching and learning of functions cannot
be separated from the learning of the other mathematical domains, especially that of
algebra. With the introduction of limits, derivatives and integrals, and so with the real
entry into Calculus work, a transition from Algebra to Calculus has to be operated. The
functions continue to be the object of the mathematical work, but their study acquires
di�erent features.
In Mathematics Education, several studies have been conducted on the notion of func-
tion and on its conceptualization. Some researches have focused on the multiple existing
representations of functions (e.g., Duval, 1993). Another aspect that has been deepened
is the idea of covariance at the base of the notion of function (e.g., Slavit, 1997).
In this thesis, we concentrate on another important epistemological component: the per-
spectives from which a function can be studied (Rogalski, 2008; Maschietto, 2002, 2008;
Vandebrouck, 2011a, 2011b). Indeed, they can help us in describing the transition from
Algebra to Calculus in the teaching context.

In the previous paragraph, we claimed that the entrance into Calculus is marked
by the introduction of an analytic-in�nitesimal paradigm. Its great novelty stands in
the change of regard on functions, which we can formalise as a change in the adopted
perspective on them. According to the properties that are taken into account on a
given function, the adopted perspective can be pointwise, global or local. Following
Vandebrouck (2011a, 2011b), let us de�ne pointwise, global and local properties on a
given real function f of one real variable.
A property of f at a given point x0 is pointwise when it depends only on the value
assumed by f at x0. For instance, f(x0) = 3 is a pointwise property which tells us
nothing about f(x1) if x1 6= x0.
Further, we have global properties of f which are valid on intervals: parity, periodicity,
sign, variation, etc. For instance, f is increasing in the interval (a, b) is a global property.
Finally, a property of f is local at the point x0 if it depends on the values of f in a
neighbourhood of x0. For instance, f has limit l in x0, f is continuous or di�erentiable
in x0, f is negligible with respect to another function in a neighbourhood of x0, etc.
The distinction between the global and the local perspectives requires further develop-
ment. Indeed, the former is based on properties that are valid in an interval (a, b); the
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latter takes into account a neighbourhood of the point x0, that is an open interval con-
taining x0, for instance in the form (x0−δ, x0+δ). Thus, the notion of interval intervenes
in the de�nition of both global and local properties. Nevertheless, the two resulting per-
spectives are very di�erent. Let us distinguish in details the two situations.
From a global perspective, we can consider the whole function over all its domain or we
can �x a speci�c interval (a, b) on which the function has a particular (global) property.
So, by saying "f is even" or "f is de�ned as f(x) = x2" we are considering the function
over all its (explicit or implicit) domain. On the other hand, if we say "f is increasing
in (0, 1)", we are detecting a speci�c interval in which the function f has the property of
increasing.
From a local perspective, by observing for instance that f has a corner point in x = 1,
we cannot �x any particular interval containing 1, but an in�nite family of intervals (e.g.,
(1− δ, 1 + δ)), more or less narrow, can satisfy the (local) property.

Figure 1.1.6 - Examples of pointwise, global and local perspectives activated
on the graph of a function.

Other researches in Mathematics Education particularly focus on the global/local
game on functions (Maschietto, 2002, 2008; Rogalski, 2008). Maschietto discusses it at
a secondary school level, centring her research on the property of "local straightness"
of a graph as a cognitive root (Tall, 2000) for the property of "local linearity" of the
corresponding function. Her teaching experiments base on the use of the zoom in a tech-
nological environment, in order to introduce micro-straightness. She shows how local or
micro-straightness, playing the role of invariant in the zoom processes, support the initi-
ation of the global/local game. She stresses: "Linearity was previously seen as a global
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phenomenon, associated with a particular class of functions de�ned on intervals (or on
R). It has then to assume local features. This change also demands the reconstruction
of the relationship with the notion of tangent line to a curve at a point" (Maschietto,
2008, p.209).
Rogalski analyses this game local/global at university, claiming that one of the funda-
mental activities in Analysis consists in the distinction between these two points of view.
Speci�cally, he stresses the epistemological di�culty related to quanti�ers. The formal
de�nitions in mathematics make intervene a subtle mélange of existential quanti�ers ("it
exists y for which we have...") and universal quanti�ers ("for all x we have..."). They
appear since the �rst de�nitions involving continuity and di�erentiability and carry on
with the notion of uniformity. Emblematic is the case of continuity and uniform conti-
nuity.
A function f is uniformly continuous in I if:

∀ε > 0,∃δ > 0 : ∀x, x0 ∈ I, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε (1.4)

A function f is continuous in a point x0 ∈ I if:

∀ε > 0, ∃δ > 0 : ∀x, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε (1.5)

Notice that the δ, which limits the variation of the abscissa, in (1.4) depends only on ε,
which limits the variation of the ordinate, and not from the chosen points in I. Instead, in
(1.5) δ depends on both ε and the chosen point x0 ∈ I. Therefore, the uniform continuity
is a global property of the function, on the contrary of the simple continuity which is a
local property. Now, let us express the global property that the function f is continuous
in I.

∀x0 ∈ I, ∀ε > 0, ∃δ > 0 : ∀x ∈ I, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε (1.6)

This property is now global, in the sense that it is veri�ed for all x0 ∈ I (Rogalski would
de�ne it a "universal local" property). Let us compare (1.6) and (1.4) at the level of
quanti�ers. The phrase "∀x0 ∈ I" appears after the existential quanti�er for δ in (1.4)
and before it in (1.6). This apparently "little" change in the formal de�nition entails a
great di�erence at the level of meaning. A function which is uniformly continuous on I
is always continuous in I, but not conversely. And it is formally due to a slight di�erence
in the order of quanti�ers.

Rogalski extends local to universal local properties. Similarly Vandebrouck consid-
ers the extension of pointwise to universal pointwise properties, which are pointwise
properties veri�ed for all the values x in the domain or in a given interval. Thus, uni-
versal pointwise properties are global properties on I because they consist in pointwise
properties veri�ed for all x in I. For instance,

f is even ⇔ its de�nition domain D is symmetric
and ∀x ∈ D it is f(−x) = f(x).

Another slightly di�erent example is the de�nition of increasing function on an interval:
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f is increasing on I ⇔ ∀x1, x2 ∈ I, x1 ≤ x2 it is f(x1) ≤ f(x2).

In this case, the interest is on the values taken by f in two di�erent points of the interval
I, for every couple of points (x1, x2). The property is universal pointwise on the set of
the couples of points of I.
Notice that every universal pointwise property is expressed through a universal quanti�er
on the domain or a subset of it.
Therefore, mathematically verifying a global property of the function f on an interval
I means verifying a universal pointwise property for all x in I. Thus, mathematically,
universal pointwise properties and global properties coincide.
However, cognitively to verify a global property one can be interested in what the function
does point by point in a certain interval or one can look at the function over the whole
interval. Then we distinguish between

• a global perspective acquired as universal pointwise perspective on the function
f , when the interest is on the values of f point by point.

• a global perspective on the function f as such, when the interest is on f over a
whole interval (without distinguishing the di�erent points), or on the whole f on
its domain.

In the classical logic, if one proves by contradiction that ∃x ∈ I | f(x) = k, such
an x has not been constructed. It can be everywhere in the interval I. So, the perspective
on f is global as such, without any distinction of the single values taken in the di�erent
points of I. The classical logic does not distinguish if the existence of an x in I for which
f(x) = k has been proven by contradiction or by construction. Thus, in this �eld, the
two perspectives distinguished above can coincide. This may not occur for other kind of
logic, for example in the constructivist logic.

The global and the local works on functions lead us to consider two fundamental
ideas: that of "generic" and that of "approximation"6. They both are often source of
di�culties in the learning of Calculus.

From a global perspective, the mathematical sign to express "for each", "for every"
and "for all" is the same, namely the universal quanti�er "∀". The natural language
makes a distinction between the terms "every" and "all". They can both be used to talk
about things in general, but "every" has the distributive meaning of "all in each of its
parts". So, for example, if we say "Every Italian citizen has a name and a surname" we
want to underline the fact that "if taken one by one", to all Italian citizens has been
given a name and a surname. But we would prefer to say "All Italian citizens older than
18 has the right to vote" in order to stress that the totality of Italian people can vote,
without inner distinctions. In mathematics, instead, the expressions "for every" and "for
all" are completely equivalent from a logical point of view. This universal quanti�er is

6Panero (2013) and Panero et al. (2014) provide a starting point of the study of these two ideas
within the transition from Algebra to Calculus in secondary school.
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often used together with the idea of generic. We �nd this fundamental idea already in
Euclid (see his "generic" proof of the in�nity of prime numbers) and in some speculations
of philosophers (e.g., Locke: see below), but it was particularly exploited within algebraic
geometry at the turning of 19th century. The geometers introduced explicitly the notion
of "generic point", and the related practices in their discipline. However, while generic
points were widely used, one cannot �nd easily their de�nition. For that we can refer to
Van der Waerden:

"Indeed, by generic point of a variety, one usually means, even if this is not
always clearly explained, a point which satis�es no special equation, except
those equations which are met at every point." (Van der Waerden, 1926,
p.197)

and to Enriques and Chisini:

"The notion of a generic 'point' or 'element' of a variety, i.e., the distinction
between properties that pertain in general to the points of a variety and
properties that only pertain to exceptional points, now takes on a precise
meaning for all algebraic varieties. A property is said to pertain in general to
the points of a variety Vn, of dimension n, if the points of Vn not satisfying it
form � inside Vn � a variety of less than n dimensions." (Enriques & Chisini,
1915, p.139)

An interesting point of view is given by Speranza (1996), who analysed the idea of
"general triangle" through the words of the great philosopher Locke (1690): "[The gen-
eral triangle] must be neither oblique nor rectangle, neither equilateral, equicrural, nor
scalenon: but all and none of these at once"7.
The idea of generic occurs in the mathematical practices leading to the research of a
"generic stereotype" which represents all the basic features desired without any added
speci�c singularity.
In Calculus, it occurs when we know how a function behaves for some values of x and we
shift our reasoning on a "generic abscissa x", which must belong to the function domain,
but has no particular added characteristic.
The same happens in Algebra with the work on generic examples. For instance, let
us imagine that we have to decide if the sum of two even numbers is even or odd. In
Algebra, we can proceed empirically, testing several cases (e.g., 2 + 4 = 6, 4 + 8 = 12,
and so on) and, then, inducing the general property: the sum is an even number. This
is an example of generalization, that means inducing the general case, from a sequence
of particular cases. From an epistemological point of view, generalization is an empiric
induction, which entails an empiric, but not real proof. However, we can follow another
way in order to decide if the sum of two even numbers is even or odd: we can reason
on a particular example, giving emphasis to a general feature that characterizes all the
examples similar to the proposed one.

7Original quotation from the English translation we found in Speranza, 1996, p.15.
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14 = 7 + 7
22 = 11 + 11
36 = 18 + 18

As a consequence, it becomes useless to provide other examples: the given one can be
conceived as generic. This is a "generic proof", that is "a proof carried out on a generic
example" (Leron & Zaslavsky, 2013, p.24).

From a local perspective, at the base of fundamental concepts and reasoning processes
of Calculus are the ideas of approximation and convergence involving in�nite processes.
Then, the mathematical work can be very di�erent from that students are familiar with,
in approaching the study of Calculus. Let us recall Legrand's re�ections on the procedures
of Analysis, which he distinguishes from those of Algebra (Legrand, 1993). He speci�cally
makes the example of the notion of equality, which changes moving from Algebra to
Analysis. He states that for proving that an unknown quantity A is equal to a known
quantity B, and so for writing A = B, in Algebra, one passes through a �nite number
of intermediaries: A = C,C = D, . . . F = B whereas in Analysis, one proves that the
distance between A and B is less than any positive number, for an appropriate distance.
Thus, the meaning of equality is di�erent: in Algebra, we have an equality when two
expressions are equivalent; in Analysis, we have an equality when two quantities are
arbitrary close. Therefore, also the concept of equality between functions changes. In
Algebra, the fact that the function f is equal to the function g implies a coincidence
point by point (within a universal pointwise perspective)

f = g ⇔ Domf = Domg = D
and f(x) = g(x) ∀x ∈ D.

Instead, in Analysis, the idea of equality of functions can also take a local dimension.
This is the idea of approximation at the base of series expansions in x0.

f ' g in x0 ⇒ f(x)− g(x)→ 0 for x→ x0.

Roughly speaking, in the most part of Analysis processes, it is su�cient that two functions
are coincident in a neighbourhood of the point x0, and it is not necessary that this
happens for all the points x in their domain. We make the example of "germs" of
functions. These are classes of equivalence of functions de�ned as follows:

Def. of germs of functions - A germ of a real function f at x0 ∈ I is
the equivalence class of f under the equivalence relation:

f1 ∼ f2 ⇔ f1(x) = f2(x) ∀x ∈ J, for some neighborhood J ⊂ I of x.

The collection of germs at a point x0 can be denoted by C∞(x0).

Two functions representing the same germ of f at x0 have the same derivative on neigh-
bourhoods of x0, thus in such neighbourhoods it is not possible to distinguish one from
the other.
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Also within the local perspective, we want to point out some interesting issues which
are related to the natural language. As Cornu (1991) stresses, investigations on the
limit concept, such as those of Schwarzenberger & Tall (1978) or Robert (1982), have
shown that the verbal expressions "tends to" and "limit" have a previous meaning for
students before any lessons begin. The students continue to rely on these meanings
after they have been given a formal de�nition. So the words "tending towards" continue
to mean "approaching", "becoming", "being closer and closer to", ... They assume a
dynamic connotation. Cornu observes that the idea of approximation is usually �rst
encountered through a dynamic notion of limit and Sierpinska (1985) notices in this a
"physical" (epistemological) obstacle. She describes it as "The obstacle which consists of
associating the passage to the limit with a physical movement, with an approaching: 'one
inde�nitely approaches' or 'one approaches more and more', whilst the limit notion within
the formal theory is conceived in a 'static' way."8 (Sierpinska, 1985, p.40). Sierpinska
is referring to our modern formal theory, mainly due to the work of Weierstrass, which
is based on the concept of real number and on the ε − δ de�nition of limit. Moreover,
the idea of approaching makes another epistemological question arise, which has been at
the center of historical debates: the limit is attained or not? With regards to it, Boyer
observes that "In the light of the precision of Weierstrassian theory of limits, however,
the question is seen to be entirely inapposite. The limit concept does not involve the
idea of approaching, but only a static state of a�airs. The single question amounts really
to two: �rst, does the variable f(x) have a limit L for the value a of x. Secondly, is this
limit L the value of the function for the value a of x. If f(a) = L, then one can say that
the limit of the variable [i.e., f(x)] for the value x in question [i.e., a] is the value of the
variable [i.e., f(x)] for this value of x, but not that f(x) reaches f(a) or L, for this latter
statement has no meaning" (Boyer, 1949, pp.287-288).

1.2 The derivative concept

In order to study the transition from Algebra to Calculus, we are interested in the
concepts that make the algebraic practices, whose recall or introduction is necessary
when teaching Calculus, a bridge or a rupture.
Since, within a PhD study, it was not possible to investigate all the various facets of the
problematic articulation of Algebra and Calculus, we chose to focus on a speci�c Calculus
concept: the derivative.

1.2.1 Why the derivative concept?

The derivative is an important mathematical and didactic node. It is one of the �rst
and fundamental concepts of Calculus which evokes and calls into question competences,
notions and registers which are proper to the algebraic or the geometrical domain. In

8Our English translation of the passage: "L'obstacle qui consiste à associer le passage à la limite à
un mouvement physique, à un rapprochement: 'on s'approche indé�nement' ou 'on s'approche de plus
en plus', alors que la notion de limite dans la théorie formelle est conçue de façon 'statique'."
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particular, it involves functions and their properties, limits and also geometrical objects
such as the tangent line. At the same time, the derivative permits to solve several prob-
lems belonging to the Calculus domain, such as optimization problems, approximation
methods for the zeros, primitives of functions, and many others. Therefore, the derivative
seems a suitable theme within which facing algebraic practices (also coming from analytic
geometry) which are involved in the construction of Calculus ones. Moreover, the deriva-
tive treatment permits to work with various registers of representation for functions and
their possible coordination is rich. On the calculative (more algebraic) side, we cannot
ignore the huge importance that the di�erential calculus has not only in mathematics
but also in all applied sciences. On the functional (more analytic) side, the derivative
concept is both complex and fascinating, especially because the derivative of a function is
a function itself. Hence, as far as the perspectives are concerned, not only the derivative
allows a local kind of work on functions, but also the derivative itself can be studied as a
function from all the introduced perspectives. In relating a function with its derivative,
for instance, all the perspectives can be activated and have to be coordinated. Imagine
that you want to establish a relationship between the stationary points of a function f
and the zeros of its derivative f ′. Then, you need to adopt a local perspective on f and,
at the same time, a pointwise perspective on f ′. In the process for carrying out such a
relationship an interesting dialectic of perspectives occurs. Moreover, imagine that you
want to link f ′ to f ′′. The function f ′ which before was considered as the derivative of
f , now has to be seen as the starting function whose di�erentiation leads to f ′′. Thus,
working on derivatives may produce also an engaging exchange of roles. Within this
context, the properties and the relations of functions (and the perspectives with them)
can be worked at a really deep stage.
From the teaching point of view, the derivative notion is considered as a cornerstone in
the mathematics curriculum of the last year of secondary school, with relevant applica-
tions to physics. However, if learning how to di�erentiate a function is rather simple in
terms of computation, conceptualizing the object derivative, and especially the derivative
function, may not reveal that simple.

1.2.2 The derivative concept in the scholarly mathematics

At the level of scholarly mathematics, various approaches lead to the de�nition of deriva-
tive, and consequently to di�erent conceptualizations of the notion.

The �rst approach consists of the classical limit of the incremental ratio of a function
f . To make an example, we quote the de�nition given by Bramanti et al. (2000, p.171).
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Def. 1 - Let f : (a, b) → R; we say that f has derivative in x0 ∈ (a, b) if

lim
h→0

f(x0 + h)− f(x0)

h
exists and is �nite. This limit is called �rst derivative

(or simply, derivative) of f in x0 and it is denoted with one of the following
symbols:

f ′(x0)
df

dx

∣∣∣
x=x0

Df(x0) ḟ(x0)

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0) (1.7)

The straight line of equation y = f(x0) + f ′(x0)(x− x0) is called tangent line
to the graph of f at the point (x0, f(x0)).

The derivative is presented as the gradient of the tangent line, de�ned as the limit position
of a secant to the function (see Fig. 1.2.1). We owe to d'Alembert this de�nition. He
introduced the "nombre dérivé"9 as the limit value of the growth rate of the function f
at the point x0. Moreover, he claimed that the secant line becomes the tangent line when
the two points of intersection with the curve become only one and then the tangent is the
limit of the secant line (d'Alembert, Mélanges de littérature, d'histoire et de philosophie.
In Sierpinska, 1985, p.20).

Figure 1.2.1 - Definition 1 compares the infinitesimals PA and XX0: the limit
of their ratio is f ′(x0) (see Def. 1).

Another de�nition we �nd on university textbooks is due to Fréchet and it is based
on the idea of approximation of functions through power series expansion. We can read
it on Geymonat's textbook (Geymonat, 1981, p.188), for example.

9We want to highlight that often the choice of the names denoting mathematical entities can really
in�uence the conceptions and the images the one can make of them. For example, the expression "nombre
dérivé" for f ′(x0) makes it explicit and evident that it is a number. In Italian, instead, to refer to f ′(x0)
we commonly use the verbal phrase "derivata della funzione nel punto" (derivative of the function in
the point) which hides the fact that it is a number.
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Def. 2 - Let f be a real function of a real variable de�ned in the [open] interval
I (not reduced to a single point) and let x0 ∈ I. We say that f is di�erentiable
in x0 with derivative λ ∈ R if and only if it is

f(x) = f(x0) + λ(x− x0) + o(x− x0) as x→ x0. (1.8)

[...] If f is a real function of a real variable, the straight line through
P0(x0, f(x0)) of equation

y = f(x0) + λ(x− x0)

where λ is given by (1.8) is called tangent line to the graph of f in the point
P0 and denoted with Tx0f ; (1.8) then means that for x close to x0 the function
f can be approximated with a linear function, i.e., the graph of f is well
approximated by the graph of its tangent. Intuitively, we can say that the
graph of f in the neighbourhood of P0 is "almost linear" (or "almost straight").

In Def. 2, the derivative is presented as a real number λ, which is a coe�cient of a
series expansion of �rst order of the function f in x0. It is shown to be the gradient of
the tangent line at x0, de�ned as the straight line that best approximates the graph of
the function in the point. In other words, by substituting the curve with the straight
line, the committed error is an in�nitesimal of higher order with respect to the increment
x − x0 as x − x0 → 0 (see Fig. 1.2.2). As a consequence, the function turns out to be
"almost straight".

Figure 1.2.2 - Definition 2 compares the infinitesimals QP and XX0: QP must
be of higher order than XX0 (see Def. 2).
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Let us prove that Def. 2 is equivalent to Def. 110.

Proof. Saying that for f it exists and it is �nite the limit

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0)

where h = x− x0, means that

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0)

lim
x→x0

f(x)− f(x0)

x− x0
− f ′(x0) = 0

lim
x→x0

f(x)− f(x0)− f ′(x0)(x− x0)

x− x0
= 0.

It is equivalent to say that

f(x)− f(x0)− f ′(x0)(x− x0) = o(x− x0) as x→ x0

so
f(x) = f(x0) + f ′(x0)(x− x0) + o(x− x0) as x→ x0

that is (1.8) with λ = f ′(x0). �

Another approach bases again on the idea of substituting the function with a straight
line in a neighbourhood of the point x0. Indeed, the series expansion (1.8) of f can be
also read as

f(x)− f(x0) = λ(x− x0) + o(x− x0) as x→ x0.

Hence, for λ = 0 we obtain the straight line y = f(x0), whereas for λ 6= 0 we obtain the
following de�nition.

Def. 2' - Let f be a real function of a real variable de�ned in the open interval
I and let x0 ∈ I. We say that f is di�erentiable in x0 with derivative λ ∈ R if
and only if it is

lim
x→x0

f(x)− f(x0)

λ(x− x0)
= 1. (1.9)

This approach considers a straight line passing through the point (x0, f(x0)) which is
asymptotically equivalent to the function f in a neighbourhood of x0 (see Fig. 1.2.3).
Such a straight line is the tangent line at x0. From Def. 2', we �nd immediately the
value of the derivative λ. Indeed, in (1.9) λ does not depend on x and so it can be pull
out of the limit sign:

1

λ
lim
x→x0

f(x)− f(x0)

x− x0
= 1

10Notice that this equivalence is valid in dimension 1. However, in dimension n > 1, Def. 2 implies
Def. 1 but not conversely.
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and since λ 6= 0 we obtain

lim
x→x0

f(x)− f(x0)

x− x0
= λ.

Setting then h = x− x0 the latter limit is exactly that of (1.7) with λ = f ′(x0).

Figure 1.2.3 - Definition 2' compares the infinitesimals QX and PX: they must
have the same order (see Def. 2').

A third approach is based on the idea of best a�ne approximation, whose de�nition
is given as follows.

Def. of best affine approximation - We call a�ne approximation of
f in a neighbourhood of x0 a function ra, with a ∈ R, de�ned by ra(x) =
f(x0) + a(x− x0). We say that ra is the best a�ne approximation of f if

∀b ∈ R,∃δ > 0 : ∀x ∈ Iδ(x0)⇒ |f(x)− ra(x)| ≤ |f(x)− rb(x)|.

Brie�y, the distance of f(x) from the best a�ne approximation is smaller than the
distance of f(x) from any other a�ne approximation of f . See Fig. 1.2.4 for a graphical
representation.
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Figure 1.2.4 - Definition 3 compares the distances PB and PA: the former
must be the smallest one (see Def. 3).

Therefore, here is Def. 3 statement.

Def. 3 - Let f be a real function of a real variable de�ned in the open interval
I and let x0 ∈ I. We say that f is di�erentiable in x0 with derivative f ′(x0)
if and only if it admits a best a�ne approximation t. Then, t is unique and
t = rf ′(x0).

Def. 3 presents the tangent line of equation y = f(x0) + f ′(x0)(x − x0) as the best
a�ne approximation of the function f in a neighbourhood of x0. Let us prove that this
de�nition is equivalent to Def. 1.

Proof. "⇐" Let us suppose that ra(x) = f(x0) + a(x− x0) is the best a�ne approximation of f
in x0. Thus,

∀b ∈ R,∃δ > 0 : ∀x, 0 < |x− x0| < δ ⇒ |f(x)− ra(x)| ≤ |f(x)− rb(x)|.

Dividing by |x− x0|, we obtain∣∣∣f(x)− f(x0)− a(x− x0)

x− x0

∣∣∣ ≤ ∣∣∣f(x)− f(x0)− b(x− x0)

x− x0

∣∣∣
∣∣∣f(x)− f(x0)

x− x0
− a
∣∣∣ ≤ ∣∣∣f(x)− f(x0)

x− x0
− b
∣∣∣.

For ε > 0, we can choose b = a+ ε, and so∣∣∣f(x)− f(x0)

x− x0
− a
∣∣∣ ≤ ∣∣∣f(x)− f(x0)

x− x0
− a− ε

∣∣∣.
But also it can be b = a− ε, so∣∣∣f(x)− f(x0)

x− x0
− a
∣∣∣ ≤ ∣∣∣f(x)− f(x0)

x− x0
− a+ ε

∣∣∣.
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For the same quantity u(x) =
f(x)− f(x0)

x− x0
− a, we have simultaneously |u(x)| ≤ |u(x)− ε| and

|u(x)| ≤ |u(x) + ε|. So, |u(x)| ≤ ε/2.
Hence, as x→ x0, u(x)→ 0, which means that

lim
x→x0

f(x)− f(x0)

x− x0
= a.

Therefore, f has derivative in x0 and it is f ′(x0) = a. The best a�ne approximation of f in x0
is then rf ′(x0).

"⇒" Let us suppose that for f it exists and it is �nite the limit (1.7), which we can rewrite
with h = x− x0:

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0).

Let us consider any b ∈ R, b 6= f ′(x0). We have to prove that

|f(x)− rf ′(x0)(x)| < |f(x)− rb(x)|

and so that

|f(x)− f(x0)− f ′(x0)(x− x0)| < |f(x)− f(x0)− b(x− x0)|

which, divided by |x− x0|, is∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣ < ∣∣∣f(x)− f(x0)

x− x0
− b
∣∣∣.

If x tends to x0,
f(x)− f(x0)

x− x0
− f ′(x0) → 0 and

f(x)− f(x0)

x− x0
→ f ′(x0) for hypothesis. Thus,

our thesis transforms into

0 < |f ′(x0)− b|

which is always true since for hypothesis b 6= f ′(x0), so it is either b > f ′(x0) or b < f ′(x0). �

Finally, let us present a geometrical approach which bases on the distances in the
plane. For the graphical situation see Fig. 1.2.5.

Def. 4 - Let f be a real function of a real variable de�ned in the open interval
I and let x0 ∈ I. We say that f is di�erentiable in x0 with derivative λ ∈ R if
and only if it exists a non-vertical straight line t with gradient λ which passes
through P0(x0, f(x0)) and so that

lim
x→x0

d(P, t)

||PP0||
= 0 (1.10)

where d(P, t) is the distance from the generic point P on the curve representing
the function and the straight line t, and || · || denotes the distance between two
points in R2.
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Figure 1.2.5 - Definition 4 compares the infinitesimals PP ′ and PP0: PP
′ must

be of higher order than PP0 (see Def. 4).

In this case, we say that the curve representing the function "�attens" on the straight
line t in a neighbourhood of P0. t is unique and it is the tangent line, whose slope is
given by f ′(x0). Let us prove that also Def. 4 is equivalent to Def. 1.

Proof. First of all, let us make explicit the ratio of the distances appearing in (1.10). A non-
vertical straight line t passing through P0 has generic equation y = f(x0) + a(x − x0) ⇒ ax −
y + f(x0)− ax0 = 0. Let us take P (x, f(x)) as a generic point of the curve. Then,

d(P, t) =
|ax− f(x) + f(x0)− ax0|√

a2 + 1

and
||PP0|| =

√
(x− x0)2 + (f(x)− f(x0))2.

So the ratio of the distances is

d(P, t)

||PP0||
=

|ax− ax0 − f(x) + f(x0)|√
a2 + 1

√
(x− x0)2 + (f(x)− f(x0))2

which, divided and multiplied by |x− x0|, becomes

d(P, t)

||PP0||
=

∣∣∣a− f(x)− f(x0)

x− x0

∣∣∣
√
a2 + 1

√
1 +

(f(x)− f(x0)

x− x0

)2 .
Let us set θ(x) =

f(x)− f(x0)

x− x0
. Thus,

d(P, t)

||PP0||
=

|a− θ(x)|√
a2 + 1

√
1 + θ2(x)

. (1.11)

"⇒" Let us suppose that for f it exists and it is �nite the limit (1.7), which we can rewrite with
h = x− x0:

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0).
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Then, lim
x→x0

θ(x) = f ′(x0). Let make x tend to x0 in (1.11). We obtain

lim
x→x0

d(P, t)

||PP0||
= lim

x→x0

|a− θ(x)|√
a2 + 1

√
1 + θ2(x)

.

Since
|a− θ(x)|√

a2 + 1
√

1 + θ2(x)
≤ |a− θ(x)|, then

0 ≤ lim
x→x0

d(P, t)

||PP0||
≤ lim

x→x0

|a− θ(x)| = a− f ′(x0).

Therefore, it exists a straight line, namely that of gradient a = f ′(x0), for which lim
x→x0

d(P, t)

||PP0||
= 0.

"⇐" Let us suppose lim
x→x0

d(P, t)

||PP0||
= 0 for the straight line t : y = f(x0) + a(x− x0). Let us

set u(x) =
√
a2 + 1

d(P, t)

||PP0||
, then also u(x) goes to 0 as x→ x0. Recalling (1.11), we obtain the

following equation of second order in θ.

u =
|a− θ|√
1 + θ2

u2 =
a2 − 2aθ + θ2

1 + θ2

u2 + u2θ2 = a2 − 2aθ + θ2

(1− u2)θ2 − 2aθ + a2 − u2 = 0.

Hence, we obtain as solutions

θ1,2 =
a±

√
a2 − (1− u2)(a2 − u2)

1− u2
=
a± u

√
1 + a2 − u2

1− u2
.

For x→ x0, u→ 0, then θ1,2 → a, which means

lim
x→x0

f(x)− f(x0)

x− x0
= a.

Therefore, f has derivative in x0 and this derivative is a. �

Even though all the presented de�nitions entail a local perspective on the involved
function, they may lead to a di�erent conceptualization of the derivative and of the
tangent line. As a didactic remark, we observe that each of these de�nitions could be
transposed to secondary school teaching, obviously with proper adaptations. Recalling
the distinction between concept image and concept de�nition made by Tall and
Vinner (1981), we claim that the proposed concept de�nitions of the derivative are gen-
erated by di�erent concept images of the tangent line. This strictly depends on the fact
that, in each of the di�erent approaches, the derivative is always de�ned as the gradient
of the tangent line to the given function in a point, but the conveyed concept image of
the tangent line is not the same for all the given de�nitions. Such de�nitions are all
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equivalent, as we proved, but the �rst (Def. 1) is supported by a tangent concept image
as "the limit of secant lines", whereas the others (Def. 2,2',3,4) exploit the concept
image of the tangent as "the straight line which best approximates the function". As we
showed in the accompanying �gures, these two images can be graphically and geometri-
cally described as the interdependence of di�erent variables brought into play.
In the next section we better portray the importance of the derivative concept in the �eld
of Mathematics Education, through the lenses of the existing researches concerning the
theme. In particular, we go in-depth in the concept image and concept de�nition research
about the tangent and the function, in order to analyse what Tall calls the cognitive
roots (Tall, 1989, 2000) for these concepts.

1.3 The derivative concept in Mathematics Education

Introducing the derivative concept in the secondary school entails talking about the
tangent line to a function in a given point and, more generally, working with functions:
the function to be di�erentiated and the derivative function itself. In Italy, di�erentiation
is part of the curriculum of the last year of secondary school. However, the tangent line
is already treated as a geometrical and algebraic object since the �rst years of the upper
secondary school, speci�cally within the work with the conics. Usually, the tangent to
the circle at its point P is de�ned as the straight line that has only one intersection with
the circle. An alternative de�nition is the straight line which passes through P and is
perpendicular to the radius OP , where O is the center of the circle. In the case of the
other conics (parabola, ellipse and hyperbola) the �rst de�nition is maintained: a straight
line is tangent to the conic if and only if it has only one point of intersection with the
conic. This means that, when the students face the derivative concept as the gradient
of the tangent line to a generic curve in a point, they have already in their mind some
concept images of the tangent linked to the previous work with conics. And when the
derivative has to be introduced as a function, some function concept images can emerge
in the construction of a concept de�nition for the derivative function.

1.3.1 Concept image and concept de�nition

Concept image and concept de�nition are distinguished by Tall and Vinner (1981). They
observed indeed that

"Many concepts we meet in mathematics have been encountered in some form
or other before they are formally de�ned and a complex cognitive structure
exists in the mind of every individual, yielding a variety of personal mental
images when a concept is evoked" (Tall & Vinner, 1981, p.151).

Thus, they highlighted "a distinction between the mathematical concepts as formally
de�ned and the cognitive processes by which they are conceived" (Tall & Vinner, 1981,
p.151). They speak about concept image referring to the cognitive structure that an
individual associate in his mind with a speci�c concept. Thus, it includes all the mental
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pictures and all the properties and processes associated with it. Instead, the concept
de�nition is "a form of words used to specify that concept. [...] It may also be a personal
reconstruction of a de�nition made by the student. It is then the form of words that
the student uses for his own explanation of his (evoked) concept image" (Tall & Vinner,
1981, p.152). In this way, a personal concept de�nition can di�er from the formal concept
de�nition which is accepted by the mathematical community. As a matter of fact, there
can be a factor in the concept image which is potentially in con�ict with the formal
concept de�nition. The so-called "potential con�ict factors" may obstacle the learning of
the formal theory. Indeed, if such a potential con�ict factor a�ects their concept image,
there is the risk that students might proceed sure in their own interpretations of the
involved notions and simply consider the formal theory as inoperative and super�uous.
Tall (1989) focused then on the secondary school curriculum, in particular the British
one, observing that presenting concepts in a simpli�ed context and then build on it
in order to get formal concept de�nitions does not actually reveal e�ective as didactic
methodology. Indeed, he noticed that "When ideas are presented in a restricted context,
the concept image may include characteristics that are true in this context but not in
general" (Tall, 1989, p.38). He made the example of the tangent to the circle, referring
to a study of Vinner (1982). In that restricted context, the developed concept image of
the tangent is that it touches the circle at a single point and does not cross it.

Concept image and concept de�nition of the tangent

Let us discuss some fundamental studies involving the tangent line in the �eld of Math-
ematics Education research.

Vinner's study (1982), to which Tall refers (1987, 1989), showed that early experi-
ences in geometry of the tangent to the circle foster the students' belief that the tangent
is a line that touches the graph at one point and does not pass across it. The associated
concept image causes cognitive con�ict, when for example the notion of tangent is met
in other more complex contexts, such as the tangent at an in�ection point, where it does
cross the curve. Also Fischbein (1987), in his researches about intuition, regarded the
tangent to a circle as a paradigmatic model of the tangent line.

Sierpinska (1985) conducted a deep study of the epistemological obstacles related
to the notion of limit. The context of her research was an activity involving a mobile
material device properly designed to foster the identi�cation of the tangent as the limit
of a variable secant. A pair of students was required to write a tangent de�nition, only
according to their direct experience with the device. Another couple of students received
only this written information for tracing a tangent to a graph. Then, both the pairs were
given the task of determining the equation of the tangent to the curve y = sinx at the
point x = 0. The orchestration of the whole activity was clearly based on the de�nition
of the tangent to a curve in P as the limit position of a secant to the curve in P and in
another point, when the points coincide in P . As an unexpected conclusive remark on
the experiment, Sierpinska veri�ed that

"[...] the notion of tangent is a new concept for the students who need to



36

free themselves from several obstacles. One cannot count on the fact that the
interpretation of the derivative as the angular coe�cient of the tangent could
approach this notion if it is introduced �rstly as the limit of the sequence of
di�erential quotients"11 (Sierpinska, 1985, p.58).

We can read this comment as a �rst highlighting that the concept de�nition of the tangent
as "limit of secants" actually could be not as e�ective as it seems. Indeed, the students
showed some di�culties to give meaning to the notion of "limit of secants".

In Tall (1987), the concept image of the tangent has been studied in deep details.
The context was a broader experience of introducing the idea of gradient of a graph
through the use of computers. An experimental group of students worked on activities
speci�cally designed in a computer-based environment. In particular, they got familiar
with the use of computer for magnifying graphs to see if they "looked straight", and to
draw a line through two close points on a graph. Five control classes followed traditional
lessons in which an intuitive meaning of a tangent was assumed. A graphical test was
given to both the experimental and the control group. From a comparison of the results,
Tall concluded that

"[...] the experiences of the experimental group helped them to develop a more
coherent concept image, with an enhanced ability to transfer this knowledge
to a new context. [...] However, potential con�icts remained, with a signif-
icant number of students retaining the notion of a 'generic tangent' which
'touches the graph at a single point', giving di�culties when the tangent
coincides with part of the graph." (Tall, 1987, p.75).

Through this remark, Tall stressed the power of the concept image of the tangent to
the circle (or more general to the conics) as the straight line that touches the curve at
a single point. Such an idea persists in the students mind and it is source of obstacles
when later the students have to face the case of a generic curve.

Castela (1995) chose exactly this situation as a signi�cant example of students learn-
ing with and against their previous knowledge. The focus of her study indeed was on
the role played by old conceptions12 in the development of new ones. More precisely,
Castela investigated the concept images which the students show when they face a task
involving the tangent in the graphical frame. In particular, from an analysis of the French
secondary curriculum, she detected three di�erent points of view that intervene more or
less in the teaching of the tangent to the circle and can be more or less extended by
the students to other more generic curves. A point of view is intended by Castela as
"a section of the body of mathematical knowledge about a given object, which gather

11Our English translation of the original passage: "[...] la notion de tangente est un concept nouveau
pour les élèves qui demandent le franchissement de beaucoup d'obstacles. On ne peut pas compter sur le
fait que l'interprétation de la dérivée comme le coe�cient angulaire de la tangente puisse approcher cette
notion si elle est introduite d'abord comme limite de la suite de quotients di�érentiels."

12Castela (1995) uses the term conception to account for the coherence perceived in the observable
behaviours of students who are facing a group of tasks involving the same mathematical concept.
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de�nitions, theorems, situations and signi�ers"13 (Castela, 1995, p.10). Thus, for the
circle, she distinguished the following points of view.

• "Calculus", in which the tangent is characterized as the straight line that best
approximates the curve locally. This point of view is not explicitly approached in
lower secondary school.

• "Intersection", in which a straight line is tangent according to its position with
respect to the curve, neither external nor secant, and to the number of points of
intersection with the curve, that must be only one. This point of view can be easily
generalized by the students.

• "Perpendicular to the radius", in which the characteristic of the tangent is to be
orthogonal to the radius that match the center of the circle with the tangency point
on it. This point of view can be hardly generalized by the students, since usually
no reference to the osculator circle is made at secondary school level.

Castela designed a questionnaire based on di�erent graphical situations in which a
straight line is drawn tangent to a curve in a certain point. She gave it to 6 classes
of students who had not been taught derivatives yet, and to 7 classes of students who
instead had already learnt derivatives. The context was mainly the scienti�c high school,
from grade 10 to 12. This test allowed the researcher to investigate the presence of the
local point of view related to "Calculus" in the students' concept image. For instance,
through mixed approaches some students tried to verify the criteria "Intersection" in a
local neighbourhood of the marked point on the given graphs. Thus, there have been
detected some intermediary stages between the simple generalization of the point of view
"Intersection" and the point of view "Calculus". Castela �nally observed not only a per-
sistence of the taught knowledge related to the circle and extended to di�erent curves,
but even a sort of implicit encouragement to its generalization in the teaching practices.
Comparing the results by grade, she found that, in the situation of pre-teaching of deriva-
tives, the students do not have occasion to get in contact with concept images involving
the local point of view on the considered curve. So, when they are taught the derivative,
they have to partially break with the previous knowledge, quitting the characterization
referred to the circle and the conics in general. However, the latter should not be aban-
doned de�nitively, but should be restricted to a smaller validity �eld, for possible future
generalization (osculator circle, etc.). At the same time, the students' concept image
has to be enriched by the new approximation point of view. Using Harel and Tall's
terms (Harel & Tall, 1991) the teaching-learning of the tangent notion cannot consist
of a simple expansive generalization. Indeed, it is not a matter of just extending the
student's existing cognitive structure without requiring changes in his fundamental im-
ages. Rather, it entails a reconstructive generalization because it requires reconstruction
of the existing cognitive structure. In the reconstructive generalization students have to

13Our English translation of the original passage: "un découpage dans le corps des savoirs mathéma-
tiques sur un objet donné, rassemblant dé�nitions, théorèmes, situations et signi�ants".



38

change radically the old concept images so as to be applicable in a broader context. In
conclusion of her study, Castela claimed

"The rupture with a primitive point of view which is partially unsuitable,
the emergence of a general fresh point of view, this has led us to the will
of describing the involved learning in terms of change, of discontinuity, of
old-new opposition. [...] The establishment of the point of view 'Calculus',
generally far from being a coup d'état, could be anticipated and prepared,
perhaps also allowed, through a progressive evolution of the conception [...]"14

(Castela, 1995, p.39)

A similar characterization of the students' concept images of the tangent has been
made by Biza and Zachariades (2010). In addition to other previous works, this research
considered both secondary school pupils and undergraduate students and took into ac-
count also epistemological issues of the tangent possible concept images. Indeed, Biza
and Zachariades stressed the importance that the notion of tangent holds with regard to
many Calculus concepts (e.g., limiting processes, geometrical interpretation of derivative,
linear approximation of a curve). Moreover, they pointed out the involvement of the tan-
gent line at all instruction levels and in several mathematical contexts, namely Euclidean
geometry, analytic geometry, Calculus. Furthermore, they highlighted that the ways to
de�ne the tangent are multiple as well as its representations through the use of di�er-
ent semiotic systems, in particular the graphical and the symbolic ones. They discussed
then the di�erent perspectives (term used in the same sense as Vandebrouck, 2011a)
characterizing the tangent concept image in the Geometry and the Calculus domains. In
Calculus, the fact that a curve admits or not a tangent line at a certain point is a local
property of the curve, because it involves the curve at the point and at a neighbourhood
of it (e.g., the tangent line is the limiting position of secant lines, or the tangent line is
the best linear approximation of the curve at that point). However, in Geometry, in the
case of the circle, the tangent line is usually de�ned through global properties referring
to the entire curve (e.g., the tangent line to a circle has only one common point with the
curve). The transition from the global to the local perspective (the global/local game)
has been deeply studied by Maschietto (2002, 2008) and it comes to be an essential is-
sue in the transition from Algebra to Calculus, as we have already underlined. Tasks
involving the tangent notion, then, can provide a powerful stage for the investigation of
the perspectives and in particular the local one in the teaching of Calculus. In this light,
Biza and Zachariades detected three di�erent perspectives on tangent line with respect
to the curve. They are

• the Analytical Local perspective, which �ts the de�nition and the uses of the tangent
line in Calculus domains;

14Our English translation of the original passage: "Rupture avec un point de vue primitif partiellement
inadéquat, émergence d'un point de vue général inédit, ceci nous a conduit à vouloir décrire l'apprentissage
en jeu en termes de changement, de discontinuité, d'opposition ancien-nouveau. [...] L'installation du
point de vue 'Analyse', loin de prendre en général la forme d'un coup d'état, pouvait etre précédée et
préparée, peut-etre meme autorisée, par une évolution progressive de la conception [...]."
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• the Geometrical Global perspective, in which, in contrast, the tangent preserves
geometrical properties applied globally on the entire curve;

• the Intermediate Local perspective, which lies between the other two and is char-
acterized by the application of geometrical properties locally at a neighbourhood
of the tangency point.

In the Intermediate Local perspective, the students simply try to apply the geometrical
properties valid in a global perspective in a neighbourhood of the tangency point. Thus,
they achieve an expansive generalization. Within the Analytical Local perspective, the
students put into play a reconstructive generalization (Biza & Zachariades, 2010; Harel &
Tall, 1991). Biza and Zachariades proposed a questionnaire both to a group of secondary
school pupils and a group of undergraduates attending their �rst year of university. The
given tasks required the participants to: describe in their own words the tangent line
and its properties; identify or construct the tangent line; provide de�nitions; and, write
and apply the formula in general and speci�c cases. The results of this study have
also provided evidences about the tangent in its symbolic representation, especially with
respect to the group of undergraduates. Indeed, they showed that

"[...] the knowledge of the formula and its applications does not necessarily
imply that an undergraduate has a rich and accurate image of the tangent
line, its properties and its relationship with the curve. [...] Sometimes they
use argumentation based on the concept de�nition in order to support insuf-
�cient concept images they have about tangency" (Biza & Zachariades, 2010,
p.2015).

For instance, the perfect knowledge of the formal and symbolic de�nition of the tangent
did not prevent many of the involved students from arguing that a curve has not tangent
line when it is vertical. Therefore, the only correct formulation of a de�nition is not
enough to reveal the student's understanding about the notion. In conclusion to their
research paper, Biza and Zachariades suggested what a teaching practice related to the
tangent notion should take into account. We report a signi�cant excerpt from their
conclusions:

"A teaching practice that is informed by the complexity of students' under-
standings and does not con�ne itself in the development of algorithmic skills
has to engage students with more representations and richer set of examples
in order to facilitate students �rstly to reveal their understandings and then,
if necessary, to reconstruct their images. A system of assessment that looks
for evidence of algorithmic skills is not su�cient in ensuring students' un-
derstandings being brought from one level of education to another" (Biza &
Zachariades, 2010, pp.27-2816).

15The page is referred to the online version in the Loughborough University Institutional Repository.
Metadata Record: https://dspace.lboro.ac.uk/2134/8869

16See note n.15
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Biza and Zachariades stressed the importance of the didactic implications of their research
also in the foresight that the undergraduates involved in the study may become future
mathematics teachers. If their concept images have not been properly enriched and
some inconsistency persists with their correct formal concept de�nitions, their actions as
teachers could be counter-productive.

Finally, let us consider Páez and Vivier (2013), who conducted and reported on a
similar study about teachers' conceptions17 of tangent line. They detected the following
conceptions (see Table 1.1).

Table 1.1 - Table of the conceptions of tangent line (in Páez & Vivier, 2013, Annex
D).

Some activities, properly designed to cause cognitive unbalance playing with these
conceptions of the tangent line, were proposed in a teachers' education workshop in
México, in 2010. The participants were all upper secondary school teachers and the main
aim was to make them reorganize their conceptions, to connect them, to re�ect about
them. The teachers had to work in teams, which were formed according to their answers
in a preliminary diagnostic questionnaire about the tangent. During the working group
the teachers could use the Digital Geometrical Environment of GeoGebra. Afterwards, a
plenary discussion was orchestrated, followed by an individual autore�ection. As a result,
Páez and Vivier have found a very strong global and visual conception linked to the
circle (CglobV in Table 1.1). Furthermore, as Biza and Zachariades (2010) observed, even
though the tangent and the curve are two concepts that seem well known for mathematics
teachers, after deeper investigation they may be easily destabilized and they may feel the
need to reorganize their concept images to �t them with the formal concept de�nition.

Concept image and concept de�nition of the derivative function

Since the derivative of a function is a function itself, in the introduction of the derivative
function, concept images and concept de�nitions of the function intervene.
The concept of function and the functional thinking include many aspects. On the one

17Páez and Vivier use the term conception in the sense of Balache�: "A conception is the state of
dynamical equilibrium of an action-feedback loop between a subject and a milieu under proscriptive
constraints of viability" (Balache� & Gaudin, 2013, p.213).
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hand functional dependencies can be described and detected in several representational
systems such as graphs, words, tables or formulas (Duval, 1993; Arzarello, 2006). On
the other hand the nature of functional dependencies has di�erent characteristics (Voll-
rath, 1989; Malle, 2000). Vollrath (1989) distinguished three fundamental aspects of the
functional thinking.

1. The relation aspect : functional dependencies are regarded as pointwise relations
(static view).

2. The change aspect : dynamic view of functional dependencies including the aspect
of covariation of values as the change of a variable a�ecting the change of the other.

3. The object aspect : functions seen as objects or as a whole.

Malle (2000) slightly modi�ed the aspects 1. and 2. of Vollrath in:

1. Assignment aspect : to each x it is assigned exactly one f(x).

2. Covariation aspect : any change of x produces a certain change of f(x) and vice
versa.

Several research in Mathematics Education have focused on the change or covariation
aspect, opposing it to the static view of the relation or assignment aspect.

Tall (1996) stated "One purpose of the function is to represent how things change"
(Tall, 1996, p.1). Thus Calculus, intended as the study of variations, is necessarily and
inherently related to the function concept and the functional thinking. Tall exalted the
dynamic feature of a function, seeing it in the algebraic register as an example of procept
(Gray & Tall, 1994), that is a combination of process and concept. From this point of
view, the function, as well as other Calculus notions (e.g., limit, derivative, integral),
is �rstly perceived as a process and then, through recurring cycles of activity, it is in-
ternalized as a concept. Beside the process-concept dialectic, another interesting one is
proposed by Douady (1986) concerning the tool aspect or the object aspect of a mathe-
matical concept. Thus, the function, as well as the limit or the derivative, is a tool "when
we focus our attention on its use to solve a problem"18 (Douady, 1986, p.9). Moreover,
it is intended as "the cultural object having its place in the larger building that is the
socially recognized scholarly knowledge in a certain moment"19 (Douady, 1986, p.9).

Slavit (1997) promoted a property-oriented view on functions which enhances the
aspects of functional growth and covariation, instead of the relational aspect. His inten-
tion was to propose a new pattern for students' rei�cation of functions (in the sense of
Sfard, 1991). He described such an approach as "the gradual awareness of speci�c func-
tional growth properties of a local and global nature, followed by the ability to recognize
and analyse functions by identifying the presence or absence of these growth properties"

18Our English translation of the original excerpt: "lorsque nous focalisons notre intérêt sur l'usage qui
en est fait pour résoudre un problème".

19Our English translation of the original excerpt: "l'objet culturel ayant sa place dans un édi�ce plus
large qui est le savoir savant à un moment donné, reconnu socialement".
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(Slavit, 1997, p.265). Examples of functional growth properties are zeros, concavity, and
asymptotes. For acquiring a property-oriented view of functions, a student has to develop
the ability of recognizing the equivalence of procedures that are performed in di�erent
semiotic systems, and the ability of generalizing procedures across di�erent classes and
types of functions. Through this route, Slavit claimed that "A student can reify the
notion of function as a mathematical object capable of possessing or not possessing these
properties" (Slavit, 1997, p.265).

In the Italian school, the de�nition of function highlights the relational aspect. In-
deed, a function f is de�ned as follows.

Def. of function - Let A and B be two sets. A function f : A → B
is a relation that with each x, belonging to A, associates one and only one
element of B. The set A is called domain of f and all the elements in B which
correspond to at least one element of A form a subset of B called codomain
of f .

This de�nition, in which we can recognize the Bourbakist in�uence20, can already appear
in grade 8 (at the end of lower secondary school) and it is recalled at the beginning of the
upper secondary school.Several studies have underlined some misconceptions linked to
this de�nition, due to its abstractness and generality. The change or covariation aspect
is not made evident by it. Moreover, the general character of the de�nition risks to be
quickly forgotten since students actually create their concept images of the function get-
ting in contact with a few classes of functions (linear, quadratic, polynomial functions,
etc.).

Vinner and Dreyfus (1989) pointed out that students' criteria to decide whether a
given example is a function or not are based on their concept image and not on the con-
cept de�nition. Vinner (1983) worked with high school students, testing their conceptions
of functions. He found that even students who could give a correct formal de�nition of
function actually used their intuitive concept images in answering questions about func-
tions. Around 40% of them believed that the graph of a function should be necessarily
regular, persistent or reasonably increasing. Moreover, he found many students thinking
that a function has to be given by a single formula.

The latter is only one of the typical misconceptions of functions that often make the
concept image non-consistent with the concept de�nition. Tall (1996) reported on the
following students' speci�c conceptions of function, discussed in literature: a function is
given by a formula, and if y is a function of x, then it must include x in the formula; the
graph of a function is expected to have a recognizable shape (e.g., polynomial, trigono-
metric or exponential) and to have certain "continuous" properties.

Sierpinska (1992) conducted a study on the epistemological obstacles related to the
work with functions. In parallel with the other researches, she also found the obstacle

20Bourbaki's def. of function - f is a function from one set to another, say A to B, if f is a
subset of the Cartesian product of A (the domain) and B (the range or codomain), such that for every
a ∈ A there is exactly one b ∈ B with (a, b) ∈ f
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given by the belief that only relationships that one can write through an analytic formula
are functions. Another typical example of obstacle she noticed is the identi�cation of a
function with its representation (graphical, tabular, etc).

Concerning misconceptions of functions that are linked particularly to graphical rep-
resentation, we can refer to Clement (1985). He highlighted the "graph-as-picture" mis-
conception, which is frequent especially in physics, when students appear to treat the
graph as a literal picture of the problem situation. Such a misconception points out the
di�culty to interpret the functional dependency in a dynamic way. Moreover, Clement
talked about the "height-for-slope" error that students are likely to commit when asked
to compare the slope of two points on a graph. In some cases, they reason in a pointwise
way, comparing the ordinates and not correctly the slope at these points.

With regard to this latter misconception, we move on to consider di�culties that
occur in articulating the relationship between a function and its derivative function. Al-
though it seems that students can grasp it better working on graphs rather than on
other representations, the research in Mathematics Education warns us against some
possible misconceptions also arising from the graphical work. In particular, we refer to
Nemirovsky and Rubin's study (1992) on the students' tendency to assume resemblances
between a function and its derivative. They referred to the "height-for-slope" miscon-
ception studied by Clement (1985) by showing a typical example of its occurrence (see
Fig. 1.3.1). There are two possible sources for this mistake: a representational one (in
the Cartesian graph, the comparison occurs at the level of the ordinates, and the slope is
not taken into account) and a conceptual one (position and velocity are not adequately
distinguished).

Figure 1.3.1 - A typical problem triggering the "height-for-slope" miscon-
ception (in Nemirovsky & Rubin, 1992, p.1).

For their inquiry, Nemirovsky and Rubin provided the participating students with one of
three experimental contexts: motion, �uids, or numerical integration. They all were high
school students who had not been taught Calculus yet. The researchers started from the
assumption that human beings can intuitively relate function and derivative, in the sense
that they are able to construct complex bodies of knowledge to make sense of situations
involving change. The analysis of the students' interviews revealed a frequent tendency
to assume resemblances between the behaviour or appearance of a function and that
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of its derivative. For "assumptions of resemblance" the authors intend "premises that
the graphs of two di�erent functions will be perceived as having common attributes."
(Nemirovsky & Rubin, 1992, p.5). They distinguished di�erent types of resemblance:

1. simple replication (the predicted graph is identical to the original graph);

2. same direction of change (e.g., increasing derivatives correspond to increasing func-
tions, and decreasing derivatives correspond to decreasing functions);

3. same shape (e.g., straight lines correspond to straight lines);

4. same sign (graphs above the x-axis generate graphs above the x-axis and vice
versa);

5. same geometrical transformation, when students are given two velocity graphs and
one position graph and they are asked to infer what the second position graph
should be.

Resemblance appears as a tool for the students to make sense of a complex situation. It
is not chosen by chance. Nemirovsky and Rubin underlined that this choice emerges from
an interplay between expectations and cues, the latter being of syntactic, semantic and
linguistic nature. They di�erently prompt the students to choose speci�c resemblances.
The syntactic cues are based on graphical features and, for instance, they foster the
students to resemblances of type 5. Instead, the so-called "isomorphic variation", which
occurs when students assume that a function and its derivative change in a similar way
(resemblance of type 2.), is due to semantic cues, based on real-world knowledge (for
example, the common experience that going faster implies travelling further). Finally,
linguistic cues are ambiguities of language that support resemblance (e.g., the uses of
"more/less" and "up/down"). So, more (or less) velocity means more (or less) distance,
as if they always changed in the same direction (resemblance of type 2.).
It is only after some time and some practice that certain students became aware that
one function (the derivative) described the local variation of the other. Some students
perceived the "steepness" of a graph, which is a graphical-perceptual feature, or the slope
of a curve, as the rate of change of y with respect to the change of x. Thus, gradually
from resemblance principles application, they moved on to what Nemirovsky and Rubin
de�ne "variational approaches". The authors concluded that

"[The initial] assumptions of resemblance lead to a particular approach to
problems of prediction between a function and its derivative, characterized by
forcing a match of global features of the two graphs (e.g., increasing/decreasing,
sign) and by focusing on one of them (function or derivative) rather than on
their relationship" (Nemirovsky & Rubin, 1992, p.32).

On the contrary, a variational approach focuses on the relationship between a function
and its derivative rather than on the global properties of each graph. However, for
students it is not simple to develop a variational approach: it takes time and also, we
would add, a change in students' perspective on the involved functions, namely from
global to local. That of function and its derivative then remains a delicate relationship.
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1.3.2 An approach to the derivative based on cognitive roots

Tall (1989; Tall et al., 2000) proposed a curriculum change consisting of new didactic
sequences that start not from mathematical foundations, but from what he calls the
cognitive roots. Here is the de�nition he gave in 1989:

"A cognitive root is an anchoring concept which the learner �nds easy to
comprehend, yet forms a basis on which a theory may be built" (Tall, 1989,
p.40).

Later, from Tall's collaboration with Barnard, the notion of cognitive unit has been
formulated as "a piece of cognitive structure that can be held in the focus of attention
all at one time" together with its immediately available cognitive connections (Barnard
and Tall, 1997, p.41). This work fostered Tall to re-elaborate the fundamental idea
of cognitive root as a special type of cognitive unit that relates to the fundamental
knowledge familiar to the student who is beginning a new conceptual development. In
another collaboration, the following more complete de�nition was given.

"A cognitive root is a concept that:

(i) is a meaningful cognitive unit of core knowledge for the student at the
beginning of the learning sequence,

(ii) allows initial development through a strategy of cognitive expansion
rather than signi�cant cognitive reconstruction,

(iii) contains the possibility of long-term meaning in later developments,

(iv) is robust enough to remain useful as more sophisticated understanding
develops" (Tall, McGowen & DeMarois, 2000, p.4).

Referring to the learning of mathematical concepts, Tall added: "It is hoped that a �rmly
based cognitive root will allow the learning sequence to build from meaningful founda-
tions that may be enriched and adjusted whilst maintaining the strength of the entire
structure" (Tall, McGowen & DeMarois, 2000, p.4).

For the purpose of our research, centred on the derivative notion, in particular two
cognitive roots of Calculus reveal very important.

The notion of "local straightness" has been proposed by Tall (1989) as a cognitive
root of the local linearity of functions, and so of their di�erentiability. Local straightness
is identi�ed with the property of looking straight under high magni�cation (see Fig.
1.3.2). Several researches in Mathematics Education base on this cognitive root for a
di�erent approach to Calculus teaching (e.g., Tall, 1989, 2000; Maschietto, 2002, 2008;
Giraldo & Carvalho, 2003).
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Figure 1.3.2 - The local magnification process for differentiable and non-
differentiable curves (in Giraldo & Carvalho, 2003, p.2).

The notion of local straightness naturally leads to talk about "the slope of the graph",
that corresponds to the slope of the straight line the function looks like under high
magni�cation. That straight line can be seen as the tangent line to a point of the curve
which lies in the zoomed window. Thus, in turn, the intuitive and embodied notion of
slope of the graph can be seen as a cognitive root for the derivative concept.

Another cognitive root proposed by Tall is instead related to the concept of function:
the "function machine" as an input-output box (see Fig. 1.3.3). Given the complexity
of the notion of function, such a cognitive root embodies both its process-object duality
and also its multiple representations (Tall, McGowen & DeMarois, 2000).

Figure 1.3.3 - The function box as a table, a formula and a graph (in Tall,
McGowen & DeMarois, 2000, p.5).

Tall and his colleagues (Tall et al., 2000) specify that a function box is not to be intended,
as usually occurs, as a sort of "guess the internal rule/formula" problem. That kind of
activity indeed generates often the epistemological obstacle that all functions are given
by a formula. The function box may be used in a di�erent and more general way, working
with functions given by a procedure rather than a simple formula.
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This kind of analysis leads Tall to formulate a didactic project for the secondary
teaching of Calculus. He bases on Bruner's three distinct ways in which "the individual
translates experience into a model of the world", namely, enactive, iconic and symbolic
(Bruner, 1966, p.10). Thus, Tall comes to interpret the cognitive roots in terms of cog-
nitive growth. As they are initially approached, the cognitive roots allow a student to
enter the �rst world of mathematics: the "conceptual-embodied world". It "includes not
only our mental perceptions of real-world objects, but also our internal conceptions that
involve visuospatial imagery" (Tall, 2004, p.285). Then, a work of reconstruction has to
be made on the cognitive root, in order to strengthen the deriving cognitive structure.
Thus, the student can access at the "proceptual-symbolic world", where the embodied
processes become procepts (Gray & Tall, 1994), and �nally at the "formal-axiomatic
world", where the concepts are expressed through formal de�nitions.
The possible approaches to Calculus that di�erent curricula can propose are very var-
ious: from the real-world Calculus, in which intuitions are built through visuospatial
representations, through numeric, symbolic and graphic representations in elementary
Calculus, and on to the formal approach of de�nition-theorem-proof-illustration typical
of the Analysis. For an e�ective curriculum, Tall proposes a good balance of work in
the three worlds of mathematics, starting from embodied cognitive roots of concepts.
In 1989, he criticized curriculum regulations, as the British ones, which suggest a very
formal entry to Calculus (that is the one we generally go through in Italian secondary
schools nowadays):

1. work on limits in general;

2. �x x to calculate the limit of
f(x+ h)− f(x)

h
as h gets small and call the limit

f ′(x);

3. vary x in f ′(x) to get the derivative as a function.

Tall highlighted the cognitive obstacles that the research in Mathematics Education has
shown at each stage. In particular, he observed that "the geometric idea of using a
secant approaching a tangent is not cognitively intuitive in the sense that it does not
occur spontaneously" (Tall, 1989, p.40), as it has been veri�ed also by Sierpinska (1985).
Tall and other researchers in Mathematics Education (Tall, 1989, 2000; Maschietto,
2002, 2008; Giraldo & Carvalho, 2003) have proposed innovative approaches to Calculus
concepts, and in particular to the derivative, basing on the use of technology and on the
notion of local straightness.

In particular, Maschietto (2002, 2008) investigated the implications that the use of
zoom-controls has on transformations of the graphical representation of functions. The
analysis of the experiments revealed the construction for the students and the teacher
of the mathematical meaning of a strongly perceptive phenomenon, that is the "micro-
straightness". Thus, related to this phenomenon, a speci�c language has been formulated
and new gestures and speci�c signs emerge. Maschietto observed that they can be actu-
ally used e�ectively in the processes of constructing mathematical meaning.
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1.4 Outline of our research problem

In this chapter, we have highlighted some of the epistemological components that com-
bined together make the introduction to Calculus a delicate didactic moment. It occurs
at the end of the schooling path of a student, in his high school studies. In Italy, we refer
to the Indicazioni nazionali degli obiettivi speci�ci di apprendimento per i licei (National
guidelines21 of the speci�c learning objectives for high schools, issued by the Italian Min-
isterial Decree n.211 of October 7, 2010), which constitute part of the Italian secondary
curricula. Let us consider the guidelines speci�cally devoted to scienti�c high schools
(Attachment F to the M.D.211), in the section titled "Matematica" ("Mathematics")
(pp.13-17). In the general premise,

"[...] the elements of algebraic calculus, the elements of the Cartesian analytic
geometry, a good knowledge of the elementary functions of Calculus, the
elementary notions of the di�erential and integral calculus" (p.13)

form one of the so-called "groups of concepts and methods to be studied". It is relevant
that the algebraic calculus, the analytic geometry and the di�erential and integral cal-
culus have been gather together.
The theme "Aritmetica e algebra" ("Arithmetic and algebra") holds a central position
in the �rst two years of upper secondary school. Usually, it is already introduced as
literal calculus and solution of �rst degree equations at the end of lower secondary school
(grade 8). In grade 9 and 10, it acquires an increasing importance, being identi�ed with
the study of numeric sets and of their properties, and the resolution of second degree
equations, inequalities and systems.
The theme "Relazioni e funzioni" ("Relations and functions") develops throughout the
�ve years of upper secondary school, representing at the beginning about one �fth of
the curriculum contents and becoming more and more relevant. About three quarters of
the last year curriculum (grade 13) is devoted to the systematic study of real functions
of one real variable, limits, di�erential and integral calculus. In Table 1.2 we provide
a schematic overlook of the curriculum contents with respect to the themes involving
arithmetic and algebra (�rst row) and relations and functions (second row)22.

21In this dissertation, we translate the Italian term "indicazioni" as "guidelines". Indeed, in the Italian
case, they actually consist in a discursive text, where some indications about contents and methods are
given to teachers, without any rigid standards de�nition.

22The upper secondary contents involving Algebra and Calculus derive by our elaboration of the
National guidelines. The latter, indeed, are entirely made of discursive indications for teachers. We
have extrapolated the contents from the explications concerning the themes "Aritmetica e Algebra" and
"Relazioni e funzioni".
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Table 1.2 - From the Italian curriculum.

Notice that, the fundamental concepts and operations of Calculus, including the
derivative, are not treated until grade 13. However, in the preceding years (grade 9-12)
a preliminary work on elementary functions occurs, whose features are mainly algebraic
and graphical.

As far as the perspectives on functions are concerned, we can observe that in a �rst
moment, speci�cally when algebra plays the main role, a universal pointwise perspective
prevails in the mathematical work. Indeed, the object of study are algebraic expressions
in one (or more) unknowns. They can be thought as possible equations of certain func-
tions. Since their expressions are intended valid for each x belonging to the existing
domain, the perspective on the corresponding functions comes to be universal pointwise.
After, when a graphical work intervenes, the global perspective takes shape in addition to
the pointwise one. Finally, with the approach to limits a local perspective is introduced.
Because of this speci�c distribution of mathematical topics throughout the secondary
teaching, the approach to Calculus is strongly dependent on a prior algebraic work on
functions. Is this base enough to make students internalize suitably the fundamental
concepts of Calculus? Is a student well-prepared to face the local study of Analysis at
university? We do not have the pretension to answer to such great questions, but it
is with these concerns and taking into account the evolution of perspectives described
above that our research problem arises. We ask:
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How do the algebraic practices intervene in the development of Calculus practices,
such as those involving the derivative concept, in secondary school?

Our hypothesis is that algebraic formulas, techniques and procedures are certainly
an essential base on which constructing Calculus practices. However, they can also con-
tribute to create some obstacles in understanding Calculus concepts. We use the expres-
sion "obstacle" in the sense of Brousseau, who writes "[A learned] notion receives certain
particularizations, limitations, deformations of language and meaning; if it succeeds well
enough and long enough, it takes on a value, a consistency, a meaning, a development
that make its modi�cation, re-use, generalization and rejection more and more di�cult.
For later acquisitions, it becomes both an obstacle and a support" (Brousseau, 1997,
p.82). In claiming so, he recalls Bachelard's assumption that "we know against a previ-
ous knowing" (Bachelard, 1938, p.13). As we saw in Section 1.3, some algebraic practices
can be so rooted in the students' mathematical work that then is really di�cult to rein-
terpret or uproot them. Sometimes they foster in the learners' mind ideas and images
which it is not easy to rework. But such a re-elaboration is strictly needed in the case of
several algebraic rules in the initiation to Calculus work. For instance, let us consider the
common algebraic practice of setting up the existence conditions for a fractional equation
and, then, rejecting a solution if not acceptable for the conditions. It leads the students

to keep in their mind the idea that the algebraic fraction
1

x
for x ∈ R, for example, is not

de�ned in R if x = 0. After having employed this practices for years, they �nd themselves
to cope again with the situation when they approach Calculus. Indeed, they learn that

the limit lim
x→0

1

x
is∞. The latter practice and outcome entail a reinterpretation of the old

algebraic practice: it is true that the function f(x) =
1

x
does not exist in x = 0, but we

can say something more, namely that the function tends to∞ as x goes to 0. Notice that

the two claims reveal a di�erent perspective on the function
1

x
: the former is pointwise,

while the latter is local. It is not a chance, since many of the reworkings needed in the
Algebra/Calculus transition correspond to a change in perspective, especially towards a
local one. Hence, our initial research problem can be reformulated as follows.

What role is given to the local perspective when the Algebra/Calculus tran-
sition occurs in the secondary school?

In this chapter, we have shown that the local perspective is strongly present in the
scholarly mathematical knowledge concerning functions and their properties, in partic-
ular the di�erentiability. So we wonder about the e�ects of the didactic transposition
process (Chevallard, 1985; see Paragraph 2.1.2) on the local perspective on functions in
the secondary school context. Our supposition is that its presence in the mathemati-
cal work becomes feebler and feebler. In the Italian curriculum, a great importance is
given to the algebraic procedures in teaching Calculus, often with more interest in the
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techniques rather than in the justi�cation of them. Consequently, the local perspective
seems to be not really worked in secondary school. As Vandebrouck highlights "Even
though the notion of limits, continuity and di�erentiability of functions are introduced
in secondary school, the local perspective seems necessary only at university level. [...]
Problems of continuity or di�erentiability are introduced in an algebraic way and they
consist mainly in calculating limits by algebraic rules. So the algebraisation of tasks
erases the pointwise and global perspectives and moreover doesn't allow reaching out to
the local perspective" (Vandebrouck, 2011b, p.2096).

This question represents a �rst outline of the broader problem we intend to study,
focusing on the derivative concept. In the next chapter, the introduction of our theoretical
framework will enable us to formulate properly our research questions, starting from the
research problem we have just posed.
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Chapter 2

Theoretical framework

In this chapter we frame our study in the Anthropological Theory of the Didactic (ATD),
which has been elaborated and disseminated by Chevallard for the last 30 years. In this
research background, we will move on to introduce the theoretical tools through which
our analysis is made. The networking of three main lenses will help us in investigating
how the derivative concept is transposed in the secondary school context: the praxeolo-
gies (Chevallard, 1999), the perspectives (Vandebrouck, 2011) and the semiotic bundle
(Arzarello, 2006). The integration of these three lenses will allow us to reformulate our
research problem, outlined in Section 1.4, in terms of research questions. Through these
combined theoretical tools, the study of the transposition process will develop on three
levels: the analysis of the curricular materials (Chapter 3), the analysis of three case
studies of teachers' practices in classroom (Chapter 4) and the analysis of two activities
proposed to the students (Chapter 5). Closing this chapter, we will underline that our
focus is particularly on the teacher's role who, availing of the curricular materials (in-
tended curriculum) and taking into account the e�ects of her teaching on her students'
learning (attained curriculum), has to transpose the concept in classroom (implemented
curriculum).

2.1 Anthropological Theory of the Didactic

This thesis is deeply rooted in the theoretical background outlined by Chevallard's re-
search during the last 30 years. It is through a great number of contributions that
Chevallard has disseminated the principles of his theory of didactics, named the An-
thropological Theory of the Didactic (Théorie Anthropologique du Didactique), shorten
in ATD from now on. We refer only to some of these papers, workshops or lectures
(Chevallard, 1985, 1992, 1999). Moreover, we advert to a paper written by Bosch &
Gascón (2006) to present the theory, its application and its development in Mathematics
Education research.
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2.1.1 Fundamental elements of the theory

As an initial remark, let us give reason for the name of this theory: "Anthropological
Theory of the Didactic".
Firstly, the ATD is a theory of the didactic ("du didactique" in French), that consists of
"all that is didactic". Secondly, the fundamental postulate of the ATD, which we report
in Chevallard's words, justi�es the adjective "anthropological".

"[...] The ATD situates the mathematical activity, and so the study activity
in mathematics, within the set of human activities and social institutions"1

(Chevallard, 1999, p.223).

In order to explain the structural elements of the ATD, Chevallard (1992) starts
exactly from the institutions, which are presented as the core of the theory. They are
to be intended in a large sense: an institution can be the school, the classroom or the
lesson, but the family is an institution as well. With every institution I a number of
objects are associated, OI , which represents the set of institutional objects for I. An
object O exists for I if I has de�ned a relation with it, denoted with RI(O). Institutions
and objects are the �rst primitive terms that constitute the theory. A third one are the
people: a person X becomes a subject of I if he/she "enters it". If X is a person entering
the institution I, where the object O is worked, then a personal relation is built between
the subject X and the object O, denoted by R(X,O). Fig. 2.1.1 illustrates a schematic
elaboration where these �rst fundamental notions are interrelated. To make an example,
in the institution C = classroom, we can consider the subjects: s, a student, and t, the
teacher. With the objectM = mathematics, each subject will have his/her own personal
relation: the teacher's relation with mathematics R(t,M) and the student's relation with
mathematics R(s,M). Their personal relations with the object mathematics are di�erent
�rst of all because of the di�erent position they occupy inside the institution.

Figure 2.1.1 - Example of relations subject-object within an institution.

1Our English translation of the original passage "[...] La TAD situe l'activité mathématique, et donc
l'activité d'étude en mathématiques, dans l'ensemble des activités humaines et des institutions sociales."



55

Chevallard (1992) then states that knowing an object means having a certain relation
with it. Thus, in our example, the involved subjects know the object mathematics
through their personal relation with it, with respect to the wider institutional relation
that the classroom has with is, RC(M). Chevallard (1992) talks about learning whenever
the personal relation that a subject has with O, that is R(X,O), changes. In this way, he
distinguishes some particular institutions that are the didactic institutions, which have
the aim of making R(X,O) conform to RI(O) for every subjects X in the student's
position and for all the institutional objects O which are didactic issues. There can
be some objects O for which R(X,O) is empty: those are institutional objects that the
subjectsX do not have to know. Chevallard (1992) de�nes as institutional instruction the
set of changes operated on the personal relations R(X,O) where O is a didactic issue to
be learnt by all the students X. The didactic intention of an institution I is made visible
through the creation of didactic systems. This entails that one or more subjects of I come
to hold the teacher's position and some other subjects come to hold the student's position,
developing their relations with one or more didactic issues. For example, the schools are
particular didactic systems. There are some "ecological" conditions, as Chevallard (1992)
de�nes them, thanks to which a didactic system can not only exist but also work. These
conditions consist of what Brousseau (1997) calls the didactic contract and the milieu. A
didactic system cannot work without these two components and, conversely, the working
of a didactic system modi�es them. Moreover, behind every didactic system there has to
exist a teaching system that shelters it. Thus, a didactic system lives inside a teaching
system that in turn is determined by a noosphere. The latter is de�ned as the "sphere
of those who think about education" (Bosch & Gascón, 2006, p.52) or more precisely "a
plurality of agents [...] including politicians, mathematicians ('scholars') and members
of the teaching system (teachers in particular)" (Bosch & Gascón, 2006, p.53).
Thus, after this complex and detailed description of the elements which interplay in the
ATD, let us summarize, in Fig. 2.1.2, the institutions and their encapsulation.

Figure 2.1.2 - Our schematic summary of the institutions related to the
school context.

2.1.2 The notion of didactic transposition

Starting from the scheme in Fig. 2.1.2, we focus on the following important issue: how the
knowledge relates to the whole structure. A piece of knowledge, as stated by Chevallard
(1992), is a particular category of objects which can be learnt, can be taught, can be
used, but �rst of all has to be produced. For each piece of knowledge S (that stands
for savoir) Chevallard (1992) considers the associated institution P (S) which produces
S. Therefore, a certain piece of knowledge initially lives in its natural habitat that is
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P (S). Its presence in some other institution I presupposes that a sort of "transport"
from P (S) to I has occurred. Chevallard calls it institutional transposition of P (S) in I.
If we consider the school associated with I, then the process of the school reconstruction
of S, starting from what P (S) has produced is called didactic transposition. Re�ecting
upon it, Bosch & Gascón state that

"[the didactic transposition] formulates the need to consider that what is
being taught at school ('contents' or 'knowledge') is, in a certain way, an
exogenous production, something generated outside school that is moved �
'transposed' � to school out of a social need of education and di�usion. For
this purpose, it needs to go through a series of adapting transformations to
be able to 'live' in the new environment that school o�ers [...] The process of
didactic transposition then starts far away from school, in the choice of the
bodies of knowledge that have to be transmitted. Then follows a clearly cre-
ative type of work � not a mere "transference", adaptation or simpli�cation
�, namely a process of de-construction and rebuilding of the di�erent ele-
ments of the knowledge, with the aim of making it 'teachable' while keeping
its power and functional character." (Bosch & Gascón, 2006, p.53)

Therefore there is "original" or "scholarly" mathematical knowledge as it is produced
by mathematicians or other producers. Then, it is transformed in the knowledge "to
be taught" as it is o�cially designed by curricula. The responsible for the �rst step of
the transposition (from scholarly knowledge to knowledge to be taught) are the agents
composing the "noosphere", which organize and disseminate the knowledge to be taught
through the production of o�cial programmes, textbooks, recommendations to teachers,
didactic materials, etc. Afterwards, there is the mathematical knowledge as it is actually
taught by teachers in their classrooms and the mathematical knowledge as it is actually
learnt by students. Mathematical knowledge in each of these steps is subjected to a
transposition, operated �rstly by the noosphere, then by the teachers, and �nally by the
students. We can see in Fig. 2.1.3 a scheme of the process.

Figure 2.1.3 - The didactic transposition process (in Bosch & Gascón, 2006,
p.56).

In Paragraph 1.2.2 we discussed the introduction of the derivative concept in the
university mathematical courses, so at a scholar level. In order to study the didactic
transposition of the concept, from the productions of the noosphere to the e�ective
teachers' practices in classroom, we refer to the three levels of a national curriculum
introduced in Mathematics Education around the 80s. More precisely, a curriculum
develops on three interdependent planes:

• the intended curriculum;
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• the implemented curriculum;

• the attained curriculum.

They were introduced by the Second International Mathematics Study (SIMS ), which
started at the middle of the 70s and was conducted throughout all the 80s. The intended
curriculum consists of "the curricular goals and intentions that the country has for its
students" (Mullis & Martin, 2007, p.11). Through o�cial documents such as national
guidelines, syllabus and textbooks, the education minister conveys the contents to be
taught in classroom along with indications. The implemented curriculum pertains what
is actually taught at school. The teacher has a central role in implementing the math-
ematics curriculum, and her beliefs, choices, decisions and approaches shape the taught
knowledge in the classroom. Teachers' background and formation largely in�uence the
implemented curriculum. Finally, the attained curriculum refers to "the mathematics
that the student has learned and the attitudes that the student has acquired as a result
of being taught the curriculum in school" (Mullis & Martin, 2007, p.11). The attained
curriculum may be considered as the �nal product of the educational process. The study
of these three steps was a central focus of the SIMS.
Such an investigation clearly has common features with Chevallard's study of didactic
transposition. The intended curriculum contains the knowledge to be taught, the imple-
mented curriculum involves the taught knowledge and the attained curriculum refers to
the learnt knowledge.

2.2 Analysis tools

This section introduces the theoretical lenses that guide our analysis of the didactic
transposition of the derivative concept. We justify the choice of them and explain how
they are interrelated in our research.

2.2.1 Networking of theories as a research practice

In the research in Mathematics Education, many di�erent theories and theoretical frame-
works have been developed. To deal with the diversity of theories, at CERME4 (Congress
of European Research in Mathematics Education) in 2005, the Networking Theories
Group was initiated. It gathers members from France, Germany, Israel, Italy, UK, and
Spain and it is coordinated by the German Bikner-Ahsbahs. They started from the
shared assumption that the existence of di�erent theories is a resource for the research in
Mathematics Education. Thus, rejecting the idea of merging all into one big theory, they
considered the possibilities of connecting theories. The group has grown and networking
theories has become a real research practice. We make reference to the volume published
by Bikner-Ahsbahs and Prediger (2014) to give the following de�nition.

"By networking, we mean research practices that aim at creating a dialogue
and establishing relationships between parts of theoretical approaches while
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respecting the identity of the di�erent approaches" (Bikner-Ahsbahs & Predi-
ger, 2014, p.118).

They present a scale of networking strategies, according to the degree of integration (see
Fig. 2.1.4). The extreme positions are ignoring other theories and unifying globally,
which are not considered as strategies. Indeed, the former would mean that theories
exist as isolated entities, without the possibility of learning from each other; whereas the
latter would lead to have a whole huge theory, in contrast with the aim of maintaining
the peculiarities of each component theory.

Figure 2.1.4 - A landscape of strategies for connecting theoretical ap-
proaches (Bikner-Ahsbahs & Prediger, 2014, p.119).

Thus, networking strategies are de�ned as

"[...] the connecting strategies that respect on the one hand the pluralism
and/or modularity of autonomous theoretical approaches but are on the other
hand concerned with reducing the unconnected multiplicity of theoretical
approaches in the scienti�c discipline" (Bikner-Ahsbahs & Prediger, 2014,
p.119).

Among all possible networking strategies, we want to stress those that combine and coor-
dinate theoretical approaches for a networked understanding of an empirical phenomenon
or a piece of data. Combining and coordinating means looking at the same phenomenon
from di�erent theoretical perspectives as a way for going in-depth the phenomenon under
analysis. In particular, the strategy of coordinating is used "when a conceptual frame-
work is built by �tting together elements from di�erent theories for making sense of
an empirical phenomenon" (Bikner-Ahsbahs & Prediger, 2014, p.120). Many di�erent
methods are proposed by the Networking Theories Group for supporting processes of
networking. Among them, there is the method of parallel analysis of the same piece of
data through di�erent theoretical lenses.

Drawing on the research practice of networking of theories, we adopt the coordinating
strategy to network three elements coming from three di�erent theories.
First of all, since we are interested in studying the practices that involve the derivative
concept, we refer to a fundamental notion of ATD: that of praxeology (Chevallard,
1999). This theoretical tool allows us to detect the involved types of task, the techniques
to solve them and the related justi�cations, together with the theory elements that
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support the justifying arguments. Nonetheless, it provides us with a quite static and
general picture of the employed practices. Perhaps, also if we consider di�erent textbooks,
examination tasks or curricula regulations, the picture we get of the adopted praxeologies
can be very similar. In other words, it does not help us accounting for more deep
di�erences in the dynamics underlying the praxeologies. How are the perspectives
(Vandebrouck, 2011) activated? How are the semiotic resources (Arzarello, 2006)
employed? We integrate these latter lenses in our data analysis, using parallel analysis
as a networking method. In the next paragraph, we present each of these theoretical tools
and justify their coordination. Starting from some fundamental assumptions in the study
of our research problem, the integration of the perspectives and the semiotic bundle and
their coordination with the praxeology construct give us the possibility to identify and
describe the dynamics of practices we intend to study in the Algebra/Calculus transition.

2.2.2 Chevallard's notion of praxeology and model of didactic moments

Chevallard (1999) introduces and develops the notion of praxeological organization, or
more brie�y praxeology, in his theory. At the basis of the ATD there is the assumption
that

"every human activity which is regularly accomplished can be subsumed un-
der a unique model, which the word praxeology here summarizes"2 (Cheval-
lard, 1999, p.223).

A praxeology is constructed and depends strongly on the notions of task and type of
task. Given the type of task T , a T -related praxeology �rstly speci�es a technique τ ,
that is a way to accomplish the tasks t belonging to T . Thus, a T -related praxeology
�rstly contains a practical-technical block, denoted by [T/τ ]. Within a given institution,
for any type of task, the related technique is always accompanied by at least an em-
bryonic form of a rational speech about itself. This rational speech, named technology
and denoted by θ, is aimed to "rationally" justify the technique, that is to ensure that
the technique really gives us what we want to �nd. Nevertheless, a technology θ for the
technique τ has also another function that is to explain, to make intelligible, to clarify τ .
A third possible function of a technology θ consists of producing techniques for the type
of task T . Finally, the technological speech, in turn, contains some statements we can
ask reason of. Thus, we have a higher level of justi�cation-explication-production related
to technology that is called theory and denoted by Θ. Therefore, within a praxeological
organization, besides the practical-technical block [T/τ ], a technological-theoretical one
[θ/Θ] takes shape. A T -related praxeology is then composed of four elements [T/τ/θ/Θ].
Moreover, Chevallard (1999) classi�es mathematical praxeologies into a sequence of in-
creasing complexity. Built up around a single kind of problem, we have pointwise prax-
eologies, which can be successively gather according to their theoretical background to
give rise to local, regional or global praxeologies that cover respectively a whole math-
ematical theme, a sector or a domain. In this thesis, we will refer mainly to pointwise

2Our English translation of the passage: "toute activité humaine régulièrement accomplie peut être
subsumée sous un modèle unique, que résume ici le mot de praxéologie".
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and at most local praxeologies. Furthermore, following Chevallard (1999), we distin-
guish between two di�erent levels of praxeology: the mathematical praxeology and
the didactic praxeology. He writes:

"Given a mathematical theme of study θ, we are going to consider in sequence
a) the mathematical reality that can be built in a mathematical classroom
where the theme θ is studied, b) the way in which this mathematical reality
can be built, that is the way in which the study of the theme θ is accomplished.
The �rst object - 'the mathematical reality that...' - is nothing else but a
mathematical praxeology or mathematical organization, which we will denote
OMθ. The second object - 'the way in which...' - is what we will call a didactic
organization, which we will denote in a similar way ODθ."3 (Chevallard, 1999,
p.232)

Mathematical praxeologies

A type of task T is generally expressed through a verb and a particular content, for
example "expanding the given literal expression" or "calculating the value of a function
in a given point"4. A task t is a type of task which has been speci�ed in all its parts, for
example "expanding the literal expression (2x + 1)(2x − 1) + (x − 1)2" or "calculating
the value of the function f(x) = x2 − x+ 1 in the point x0 = 4". To make an example,
let us consider the praxeology for this latter type of task.

Task Calculating the value of the function f(x) = x2 − x + 1 in
the point x0 = 4.

Technique Substitute x with 4 in the analytic expression of f , obtaining
f(4) = 42 − 4 + 1 = 13.

Technology The point (x0, y0) lies on the curve of equation f(x) i�
f(x0) = y0.

Theory Properties of the algebraic curves.

The mathematical praxeologies are in continuous evolution. As Chevallard claims:
"The institutions are walked through by a praxeological dynamics [...] The praxeolo-
gies indeed get old: their theoretical and technological components lose their reliability
and become opaque, whereas new technologies emerge."5 (Chevallard, 1999, p.230). A

3Our English translation of the passage: "Étant donné un thème d'étude mathématique θ, on consid-
érera successivement a) la réalité mathématique qui peut se construire dans une classe de mathématiques
où l'on étudie le thème θ, b) la manière dont peut se construire cette réalité mathématique, c'est-à-dire
la manière dont peut s'y réaliser l'étude du thème θ. Le premier objet - 'la réalité mathématique qui...'
- n'est rien d'autre qu'une praxéologie mathématique ou organisation mathématique, qu'on notera OMθ.
Le second objet - 'la manière dont...' - est ce qu'on nommera une organisation didactique, qu'on notera,
de manière analogue, ODθ".

4Chevallard also makes examples that fall not only within the mathematical context, but here we
exclusively deal with tasks of mathematical nature.

5Our English translation of the passage: "Les institutions sont parcourues par toute une dynamique
praxéologique [...] Les praxéologies, en fait, vieillissent: leurs composants théoriques et technologiques
perdent de leur crédit et deviennent opaques, tandis que des technologies nouvelles émergent."
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praxeological dynamics can be internal or external to a praxeology. On the one hand,
it can consist of an internal dialectics between the practical-technical block and the
technological-theoretical one. It occurs, for instance, when a technique is constructed
step by step thanks to frequent abductions to theory. On the other hand, a praxeology
can enter another developing one, contributing to its construction or improvement: this
is an external praxeological dynamics. To make a simple example, in all textbooks of

grade 9-10 within the parabola study we �nd the formula V
(
− b

2a
,−∆

4a

)
for the vertex.

The students become used to automatically apply it. However, with an increasing work
on functions, in grade 11, a high-level common mathematical praxeology is fostered by
teachers in classroom. It exploits the previously shown praxeology related to the type of
task "calculating the value of a function in a given point".

Task Determining the coordinates of the vertex of the parabola
y = x2 − x+ 1.

Technique Calculate the abscissa of the vertex, that is xV = − b

2a
,

obtaining xV = 1/2. Then, substitute x with xV in the
analytic expression of the parabola, obtaining yV = (1/2)2−
1/2 + 1 = 3/4.

Technology The vertex is a point of the parabola curve.
Theory The point (x0, y0) lies on the curve of equation f(x) i�

f(x0) = y0. Properties of the algebraic curves.

The praxeology to �nd the vertex of a parabola has then evolved thanks to the embedding
of a praxeology coming from the theory of algebraic curves. The new technique leads the
students to conceptualize the parabola as an algebraic curve. So it makes the level of

the praxeology higher with respect to a blind application of the formula V
(
− b

2a
,−∆

4a

)
and it makes work better the concept of function.

Within our research we take into account two types of task involving the derivative
notion.

Type of task Ttangent "determining the equation of the tangent line to a generic
function in a point"

Type of task Tf ′ "representing the derivative function"

Indeed, these are the most worked types of task in the Italian secondary school for
introducing the derivative concept, as the gradient of the tangent line, and the derivative
function. Moreover, the construction of a praxeology for these types of task seem to us
a suitable context to trigger the activation of a local perspective.
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Didactic praxeologies

One of the main didactic tasks of a maths teacher is to transpose to students the mathe-
matical praxeology for each type of task. In a maths course, when a teacher thinks about
the way to teach a speci�c notion, a key question arises: "How to approach the issue
τT ?", where τT is the technique or set of techniques to accomplish the type of task T
related to the given notion. The didactic praxeologies or didactic organizations OD are
the teacher's possible answers to this kind of questions.
It is to study the didactic praxeologies that Chevallard has introduced the model of

didactic moments (Chevallard, 1999). At a macro level, this model permits to observe
how the teacher structures the lessons around a particular notion and a particular type
of task. Chevallard identi�es six didactic moments in the teacher's intervention in the
classroom. For practical reasons we will list them here, but it must be stressed that they
do not occur in a particular order and, generally, they need more than an episode to be
accomplished.

• The moment of the �rst meeting with the type of task T must be read not neces-
sarily in a chronological sense but better as a signi�cant meeting that really poses
T as a problematical type of task.

• The moment of exploration of the type of task T entails the construction of a
technique τ (at least in embryonic form) which allows to accomplish T .

• The technological-theoretical moment aims to the realization of the technological-
theoretical environment related to the praxis [T/τ ].

• The moment of practising the mathematical praxeology is a moment for adapting
and perfecting it.

• The institutionalization moment consists in a work of synthesis and formulation of
the mathematical praxeology, and also in a work of amalgamation of it with those
previously studied.

• The assessment moment occurs on two levels: (i) the evaluation of the mastery
acquired with the mathematical praxeology, and (ii) the evaluation of the validity
of the praxeology itself.

During the process of construction of a new technique, with a proper technology, for
a speci�c given task, the old techniques, with their own technologies, emerge and take
part in the formulation of the new practice. In other words, it starts up an interesting
dynamics of old and new praxeologies which can belong to di�erent mathematical do-
mains. In our speci�c case, new praxeologies have to be constructed within the Calculus
domain and old praxeologies, previously acquired in Geometry or Algebra, resurface and
play a fundamental role in the construction process, both at technical and technologi-
cal level. The common feature of old involved praxeologies lies in the fact that all of
them present algebraic techniques to accomplish the related task. On the contrary, the
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techniques referring to the fresh developing praxeology are proper to Calculus (such as
limits). So, our focus is on this dynamics between old and new praxeologies, in order
to describe how the old Algebra-related praxeologies intervene in the construction of the
new Calculus-related ones. In this sense, Chevallard's frame provides us with a complete,
though static, picture of the situation and with names to properly call the di�erent actors
on the stage. Nevertheless, our research question itself has a dynamical nature. We in-
tend to describe how a certain dynamics develops. To do that, we need other theoretical
lenses which can help us to �nd out what prepares the ground for the setting of a new
technique and, more generally, what determines the evolution in time of mathematical
praxeologies.

2.2.3 Activated perspectives on the involved functions

At a �ner level of analysis, we focus on the di�erent perspectives - pointwise, global
and local - which are activated on functions by the proposed mathematical tasks and
the related developed praxeologies. In particular, with the aim of investigating the
praxeological dynamics, here is our �rst hypothesis:

Hp1: A change in perspectives marks the evolution of a praxeology.

For example, the type of task Ttangent has usually already been worked from a point-
wise perspective or a global one with the determination of the tangent to a conic. In
that occasion, algebraic techniques have been exploited, such as the ∆ = 0 technique or
the so-called "doubling rule". With a generic function f , these old techniques, together
with the involved perspectives, are not successful anymore. The praxeological evolution
occurs thanks to a change towards a local perspective on f . As far as the type of task
Tf ′ is concerned, the pointwise technique to �nd f ′(x0), which involves the limit of the
incremental ratio, must be reworked in a global technique to determine f ′(x). Also in
this case, the praxeological dynamics is caused by a shift in perspectives on both the
functions f and f ′.
Using the perspectives as an analysis tool, we are interested in detecting their activation
in the work done on functions.
More precisely, we identify a pointwise perspective when the work on a function is
centred on a speci�c point or a �nite set of points. We recognise a global perspective
when the interest is on a speci�c interval or on the whole domain of the function (even
when the domain is not explicit). In particular, we also speak of global perspective when
a pointwise property is considered for a generic value of x belonging to an interval or
to the domain (universal pointwise perspective). Finally, we recognise a local per-
spective when the focus is on "what the function does" in a neighbourhood of the point,
without any speci�cation of the extremes of the considered interval.
Identifying a perspective entails �rst of all to clarify on which object the perspective is
activated. Indeed, it has to be pointed out that a certain perspective is always activated
with respect to a particular function. To make an example, the claim "f ′(2) = 3" may
be read as a pointwise information about f ′ in x = 2, but also as a local property about
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the slope of f in x = 2.
In addition, this example shows us that the way in which a property is stressed is ex-
tremely important in order to grasp the activated perspective on a speci�c function.
Indeed, it is certainly necessary to identify that a certain property of f or f ′ is claimed,
but also it is essential to analyse the way in which such a claim is made. Sometimes
indeed we grasp the real perspective from which a certain proposition is made only if we
observe carefully how it is formulated. For instance, some local properties such as "f is
discontinuous in x0" often reveals the pointwise corresponding image that the function
has a hole in x0. On the contrary, sometimes a perspective is not formulated in an ut-
tered claim, but it is implicitly conveyed by a drawing or a gesture. For example, if one
claims "f ′(2) = 0" we are led to suppose that he is saying something pointwise on f ′.
However, if at the same time he moves his hand horizontally on the graph of f , we can
interpret his claim as a local consideration on f .
Therefore, for our analysis, it is extremely important not only what is said but also how
it is said. For this reason, we introduce our third lens: the semiotic bundle that can give
us information about the activated perspectives. This is our second hypothesis:

Hp2: A change in the used semiotic resource triggers a praxeological evolu-
tion.

It happens, for instance, when a graphical technique is converted into symbols and the
resulting praxeology evolves in a more abstract one.

2.2.4 Employed semiotic resources

Another lens to investigate the dynamics within and between mathematical praxeologies
is the semiotic analysis. We base it on the concept of semiotic bundle, introduced by
Arzarello (2006) to study the relationships among the semiotic resources that are involved
in a mathematical activity. Arzarello starts from the de�nition of semiotic system given
by Ernest (2006). It establishes that a semiotic system is the composition of:

• a set of signs (uttered, spoken, written, drawn or electronically encoded);

• a set of rules for producing and transforming signs;

• a set of relationships between signs and their meanings.

A semiotic system has important semiotic functions, e.g., transformational and symbolic
(see Arzarello et al. 1994). The transformational function consists of "the possibility
of transforming signs within a �xed system or from a system to another, according to
precise rules" (Arzarello, 2006, p.272). Treatment and conversion within and between
semiotic registers of representation, introduced by Duval (1993), are transformations of
this kind. The symbolic function instead refers to "the possibility of interpreting a sign
within a register, possibly in di�erent ways, but without any material treatment or con-
version on it" (Arzarello, 2006, p.272).

Arzarello (2006) widens Ernest's de�nition for two reasons:
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(i) to encompass the variety of semiotic resources used by students and teachers, such
as gestures, glances, drawings and extra-linguistic modes of expressions;

(ii) to study the relationship within and between the registers simultaneously active
and their dynamics, since their activation is multimodal.

Therefore, he de�nes a semiotic set as composed of three elements:

• a set of signs (in the sense of Peirce6) produced with di�erent intentional actions;

• a set of modes for producing and transforming signs;

• a set of relationships among signs and respective meanings.

A semiotic bundle or bundle of semiotic sets, in turn, is made up of

• a collection of semiotic sets;

• a set of relationships between them.

According to Arzarello, "speech, gestures and written representations (from sketches and
diagrams to mathematical symbols)" are examples of "three di�erent types of semiotic
sets" and all together, with the relationships among them, "constitute a semiotic bundle,
which dynamically evolves in time" (Arzarello, 2006, p.284). With regards to mathemat-
ics learning, he proposes two di�erent kinds of analysis:

"The �rst one is synchronic analysis, which studies relationships among dif-
ferent semiotic sets activated simultaneously by the subject. The second is
diachronic analysis, which studies the relationships among semiotic sets ac-
tivated by the subject in successive moments" (Arzarello, 2006, p.287).

The semiotic bundle and the perspectives

Di�erent semiotic resources can be activated while working on functions: speech, gestures
and written speech, symbols, sketches or drawings. They can exploit di�erent registers
of representation (algebraic, symbolic, graphical, etc.) on functions and reveal or hide a
particular perspective on them. It is important to stress that a semiotic bundle is not a
juxtaposition of the composing semiotic sets. On the contrary, we distinguish the com-
ponents only for sake of analysis, but actually the semiotic sets are deeply intertwined
to form a unitary system. Arzarello makes the example of the unity speech-gesture as
semiotic bundle and recalls McNeill: "we should regard the gesture and the spoken ut-
terance as di�erent sides of a single underlying mental process" (McNeill, 1992, p.1).
When speech and gestures concur to underline the same perspective on a function, this

6In a letter to Lady Welby, Peirce de�ned a sign as follows. "I de�ne a Sign as anything which is so
determined by something else, called its Object, and so determines an e�ect upon a person, which e�ect
I call its Interpretant, that the latter is thereby mediately determined by the former" (Peirce, 1977,
pp.80-81; Letter to Lady Welby, 1908).
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unity may enhance such a perspective and foster its adoption. However, it is also possi-
ble that two or more di�erent semiotic resources simultaneously active highlight di�erent
perspectives on a function. For instance, while the local claim "f is discontinuous in x0"
is uttered, a pointwise gesture is made on the graph of f in the point x0. In this case,
the semiotic bundle composed of speech, graph and gesture presents some con�icting
features with respect to the adopted perspective. It may interfere with the intention of
conveying a local perspective on the function.
In regards to this relation between semiotic resources and perspectives, we want to re-
mark that sometimes some semiotic bundles are suitable, more than others, to disclose a
certain perspective on functions. For example, accompanying global remarks on a func-
tion with its graph may enhance the global perspective on it. Furthermore, recalling the
categorization of gestures in McNeill (1992), a pointing gesture might convey a point-
wise perspective, whereas a continuous iconic gesture, for example along the graph, may
prompt to a global perspective on it.
Therefore, in our semiotic analysis it seems extremely important to us to investigate how
the perspectives network with the semiotic bundle. To this purpose, two points appear
very useful to detect and to discuss within the analysis:

• which semiotic resources are combined together to convey a speci�c perspective (in
particular, the local one);

• the concordance/discordance of the perspectives conveyed by the di�erent resources
composing the semiotic bundle.

2.3 Focus on the teacher

With the interest in studying the didactic transposition of the derivative concept in the
secondary school, at the core of our analysis are the teachers' praxeologies in classroom.
This is the second step of the didactic transposition process: from the mathematics to be
taught to the taught mathematics. To better understand the didactic choices, techniques
and justi�cations that form the didactic praxeology of a teacher, we have to take into
account the in�uence of the �rst work of transposition made by the noosphere: from
the scholarly mathematics to the mathematics to be taught. Indeed, all the materials
provided by the minister of education, educational programmes, and other noosphere
agents, represent institutional constraints for the teacher who designs her lessons and
implements them in her classroom. She has to conform her goals to those of the national
curriculum, she can avail of the textbook as a supporting resource, and, especially at the
last year of upper secondary school (grade 13), one of her main concerns is to prepare
students for the �nal national assessment. All these constraints, along with the experience
of teaching she has, her knowledge of the classroom and the speci�c school context,
generate in the teacher certain beliefs. Such orientations might strongly in�uence her
praxeologies.
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2.3.1 The in�uence of the beliefs on teachers' praxeologies

With the purpose of describing teachers' praxeologies, we have to take into account the
in�uence of teachers' practical knowledge, that is teachers' knowledge about their work.
A description of teachers' practical knowledge is given by Elbaz (1983). It includes expe-
riential knowledge on the �eld about the students' learning approaches, interests, needs,
strengths and di�culties, about teaching techniques and classroom management, about
the social context of the school. It also encompasses teachers' theoretical knowledge of
the subject and of pedagogical issues related to an individual's development and learning.
A teacher elaborates her practical knowledge in terms of personal value and beliefs. Many
researches in Mathematics Education show that the teaching of mathematics is a�ected
in a signi�cant way by the belief system and knowledge (e.g., Ernest, 1989; Schoenfeld,
2011; Furinghetti & Morselli, 2011). According to Ernest (1989), beliefs are one of the
most in�uential elements on mathematics teachers' practice, along with the social con-
text in which the teaching takes place and the re�ection on the teaching-learning process.
Schoenfeld (2011) bases his theory of decision making on three components: resources
(including knowledge), orientations (or beliefs) and goals. He sees them as the elements
whose interaction and combination determine the decision-making of a teacher, especially
when she has to cope with an unexpected episode in the lesson development. Furinghetti
and Morselli's study on the teaching of proof (Furinghetti & Morselli, 2011) has focused
in particular on teachers' beliefs, pointing out that they can be internally oriented (them-
selves as persons, as learners, as teachers) or externally oriented (the nature of mathe-
matics, the nature of mathematics teaching and learning). Furthermore, they stress the
important question of inconsistencies between beliefs and instructional practices, which
has been studied in literature. Following Furinghetti and Morselli (2011), to unravel the
problem of inconsistencies, we will consider leading beliefs, that are beliefs that seem to
drive the way the teacher deals with a particular mathematical object/process.

Concerned with the teachers' practical knowledge, several teacher-centred studies,
namely researches on teachers' education and professional development, have focused on
the identi�cation of the knowledge that is necessary to handle for teaching of mathemat-
ics. One of the �rst researches in this direction was conducted by Shulman (1986). He
detected three content-speci�c dimensions that characterized "the knowledge that grows
in the minds of teachers" (Shulman, 1986, p.9).

(a) The subject matter content knowledge includes knowledge of the subject and its
organizing structures.

(b) The curricular knowledge is the knowledge of all the curriculum material designed
for the teaching of particular subjects and topics at a given level, along with the
related indications and contraindications.

(c) The pedagogical content knowledge consists of the knowledge of "the most useful
ways of representing and formulating the subject that make it comprehensible to
others. [...] Pedagogical content knowledge also includes an understanding of what
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makes the learning of speci�c topics easy or di�cult: the conceptions and precon-
ceptions that students of di�erent ages and backgrounds bring with them to the
learning of those most frequently taught topics and lessons" (Shulman, 1986, p.9)

Starting from Shulman's studies, Ball and Bass (2003) have elaborated a practice-
based theory of Mathematical Knowledge for Teaching (MKT), which has been de�ned
as the "mathematical knowledge needed to carry out the work of teaching mathematics"
(Ball, Thames & Phelps, 2008, p.395). A re�nement to Shulman's categories has been
proposed (see Fig. 2.3.1).

Figure 2.3.1 - Scheme of the MKT model (in Hill, Ball & Schilling, 2008,
p.377).

The subject matter knowledge includes the common content knowledge (CCK), the spe-
cialized content knowledge (SCK) and the knowledge at the mathematical horizon. CCK
is the knowledge teachers need in order "to be able to do the work that they assign their
students" (Ball, Thames & Phelps, 2008, p.399), as any other mathematicians who know
that particular content. SCK represents "the mathematical knowledge that allows teach-
ers to engage in particular teaching tasks", such as knowing how to "accurately provide
mathematical explanations for common rules and procedures" (Hill, Ball & Schilling,
2008, p.377). Finally, what we can call horizon content knowledge concerns the knowl-
edge of the relationships between the di�erent topics of the curriculum.
The pedagogical content knowledge instead is subdivided into the knowledge of content
and students (KCS), the knowledge of content and teaching (KCT) and the knowledge
of curriculum, where KCS is "focused on teachers' understandings of how students learn
particular content" (Hill, Ball & Schilling, 2008, p.378), and KCT "combines knowing
about teaching and knowing about mathematics" (Ball, Thames & Phelps, 2008, p.401).
The lines between the sub-domains of MKT can be subtle. For instance,

"[...] recognizing a wrong answer is common content knowledge (CCK),
whereas sizing up the nature of an error, especially an unfamiliar error, typ-
ically requires nimbleness in thinking about numbers, attention to patterns,
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and �exible thinking about meaning in ways that are distinctive of specialized
content knowledge (SCK). In contrast, familiarity with common errors and
deciding which of several errors students are most likely to make are examples
of knowledge of content and students (KCS)." (Ball, Thames & Phelps, 2008,
p.401).

This model has been used by many researchers in the last decade. The Spanish inter-
pretation operated by the SIDM group (from the Spanish "Research Seminar into Math-
ematics Educations") is particularly interesting. They center their study on signi�cant
knowledge only for mathematics teachers. Thus, starting from Ball's and colleagues' re-
search they have worked out the Mathematics Teacher's Specialized Knowledge (MTSK)
model (Carreño et al., 2013; Flores et al., 2014). One of its peculiarities seems to us
the re-organization of the structure of the MKT around the mathematics teacher's belief
system (see Fig. 2.3.2).

Figure 2.3.2 - Scheme of the MTST model (in Flores et al., 2014).

Ball's team model and its adaptations in Mathematics Education research have the
quality of being a �ner and e�ective characterization of the mathematical knowledge
needed to teach. However, their main limit lies in the fact that they cannot give reason
of the dynamics that necessarily arise when the community of the teachers and the
community of researchers meet for example in a teachers' education program. Arzarello
and colleagues (Aldon et al., 2013; Arzarello et al., 2014) highlight that the teachers'
professional development is described in literature

"[...] in terms of communities of practice, communities of inquiry, adaptive
systems, collective participation, sustained conversation and egalitarian di-
alogue. The cornerstone of these studies is the notion of critical re�ection,
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conceived not only as a fundamental attitude to be instilled in teachers but
also as a professional responsibility (Arzarello et al., 2014, p.350).

When the focus of attention is centred on the teachers, complexity and dynamism emerge.
To deal with them, French and Italian researchers (Aldon et al., 2013; Arzarello et al.
2014) distance themselves from the quite static MKT model and propose a theoretical
model grounded on Chevallard's notion of didactic transposition occurring at a meta
level.

2.3.2 The meta-didactic transposition process

Arzarello and colleagues construct "a descriptive and interpretative model, which con-
siders some of the main variables in teacher education (the community of teachers, the
researchers, the role of the institutions), and accounts for their mutual relationships and
evolution over time" (Arzarello et al., 2014, p.348). They call the overall resulting process
meta-didactic transposition, and so also the model takes the same name: Meta-Didactic
Transposition model (in short, MDT).
MDT model takes into account the practices of mathematics researchers and those of
mathematics teachers, when the respective communities come into contact. It is based
on Chevallard's Anthropological Theory of the Didactic (Chevallard 1985, 1992, 1999;
Bosch & Gascón 2006), but with the intention to adapt and extend ATD to the context
of teacher education.
The model accounts for the complex dynamics which characterize the activities involving
the community of researchers and that of teachers. Moreover, it considers the institu-
tional constraints imposed on both the communities (e.g., ministerial goals for teachers'
education programmes, intended/implemented/attained curricula and textbooks).
Thus, �ve variables are intertwined in determining the meta-didactic transposition pro-
cess: the institutional aspects, the meta-didactic praxeologies, the double dialectics, the
brokering processes and the dynamics between internal and external components.

The teachers' and researchers' communities involved in the MDT process, are subjects
within a certain institution. Teachers belong to the actual schools where they teach, and
researchers refer to the School as a higher institution: the noosphere that decides curric-
ula, has particular teaching traditions, produces textbooks, and so on. Indeed, when the
researchers in Mathematics Education come into contact with the teachers' community
hold simultaneously two di�erent positions. They belong to the university or the depart-
ment where they work, but in that particular occasion they act as teachers' educators.
MDT model considers meta-didactic praxeologies, which consist of the tasks, techniques,
and justifying discourses that develop during the process of teacher education. For in-
stance, the task can be stimulating the teachers' re�ection, and the relative technique
can be the collective discussion. In so doing, it is possible that the two communities
of educators and teachers come to share a common theoretical framework that justi�es
the mathematical tasks, techniques and argumentation under scrutiny. The discussion is
about the didactic praxeologies that di�erent teachers can adopt dealing with a speci�c
mathematical problem. For this reason, the described praxeology occurring at a meta
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level is called a meta-didactic praxeology. As Arzarello and colleagues observe,

"[A meta-didactic praxeology is] the result of the interaction between the
re�ections of the community of researchers about the didactic praxeologies
previously designed and developed, and the concrete practices used by the
teachers in their professional activities" (Arzarello et al., 2014, p.354).

At the beginning of a meta-didactic transposition process two distinguished communities
are identi�able: that of researchers (in the role of designers and educators), and that of
the teachers (in the role of teachers-students). The researchers and the teachers have
their own praxeologies, that a priori can be very di�erent. The MDT process aims to
develop teachers' existing praxeologies towards new ones, which consist of a blending
of the two initial praxeologies: a shared praxeology. The latter can have e�ect also on
the initial praxeologies of the two communities: the teachers can return back to their
classroom with new teachers' praxeologies and the researchers can come back to think
about the training phases and redesign them, developing new researchers' praxeologies.
Figure 2.3.1 schematically illustrates the actors and the dynamics in the MDT process.

Figure 2.4.1 - The Meta-didactical Transposition model (in Arzarello et al.,
2014., p.355)

An important result of the MDT process is that some of the components characteriz-
ing the two communities' praxeologies change their status. Typically, some components
which are internal to the researchers' praxeologies enter the teachers' praxeologies, and
from external for the latter they become gradually internal. It occurs that the researchers'
praxeologies change as well, as a result of the interaction with the community of teach-
ers. It is also possible that the educational process makes some components, which are
initially external to both the communities, become internal (for instance, under new reg-
ulations for the curriculum or for the �nal assessment).
The MDT process is often facilitated by the mediation of the brokers: they are subjects
that belong to both the communities, e.g., the teacher-researchers.
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Moreover, the success of the process relies in the so-called double dialectic. The �rst di-
alectic happens at the didactic level in the classroom, while the second dialectic is at the
meta-didactic level. The former is about the mathematical meaning that the students
have constructed in the classroom. The latter is given by the interpretation that the
teacher gives to the �rst dialectic, as an e�ect of her praxeology in the classroom, and
the interpretation of the �rst dialectic according to the researchers' community, who help
the teachers in re�ecting upon it.

In this thesis we focus on the teacher's role within the process of didactic transposition
of the derivative concept in the classroom. A certain interaction between the researchers
and the teachers has occurred. It has been essentially made of a posteriori meetings in
which the teachers re�ected upon what happened in classroom, asking the help of the
researchers who observed the lessons and analysed them. Even though it was not one
of the aims of the thesis project, during the re�ection on the praxeologies observed in
the classroom, the theoretical framework, initially internal only to the community of the
researchers, has been partially shared with some of the involved teachers. To describe
such an interaction, we will make reference to the MDT model, naturally grounded on
the ATD theory.

2.4 Research questions and overall methodology

Let us retrace our research problem. Our starting point was to study the articulation of
Algebra and Calculus in the secondary school. We began with an epistemological analysis
to understand in what the two domains di�er in terms of mathematical work. We �nally
came to express the Algebra/Calculus transition as a change in the perspectives activated
on functions. In particular, we identi�ed the introduction of a local perspective on func-
tions as one of the main features that distinguish Calculus practices from the algebraic
ones. Contextualizing our research in the secondary school, where such a transition be-
gan to be studied, we formulated our research problem (see Section 1.4). We recall it here:

What role is given to the local perspective when the Algebra/Calculus transition occurs in
the secondary school?

In particular, we have chosen to investigate the transition through a speci�c mathe-
matical theme which lives between the two domains: the derivative. We have presented
the di�erent "scholar" approaches to the derivative concept and discussed the concep-
tions and the obstacles that the research in Mathematics Education has pointed out so
far in relation to this concept. The notion of didactic transposition, introduced in this
chapter, allows us to specify the generic phrase "when the Algebra/Calculus transition
occurs in the secondary school". More precisely, indeed, we are interested in the di-
dactic transposition of the derivative concept in the secondary school, as a
particular transposition phase of the Algebra/Calculus transition. We intend as didactic
transposition both the process that transposes the knowledge produced at a certain level
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onto another one and the product of this process. Usually, we try to deduce the process
from the product it has worked out.
Moreover, the tools constituting our theoretical framework, presented in Section 2.2, en-
able us to reformulate the research problem into the following overall research question:

(RQ) How does the local perspective intervene in the development of derivative-
related praxeologies in the secondary school?

In particular, the derivative-related praxeologies we are interested in are referred to two
speci�c types of task:

Ttangent: determining the equation of the tangent line to a generic
function in a point;

Tf ′ : representing the derivative function.

These two types of task involve the development of Calculus praxeologies. Thus, we
expect that they provide us with suitable contexts in which observing the activation of a
local perspective. Therefore, to answer our main research question (RQ) we pose these
�rst sub-question:

(RQ.1) What role is given to the local perspective on functions in the sec-
ondary teaching of the derivative?

This �rst research sub-question will guide our analysis of the didactic transposition of
the derivative concept in

- the regulations of the national curriculum;

- the textbooks theory and expected resolution of exercises;

- the expected resolution of the �nal examination problems.

The analysis of such institutional materials will provide us with an overlook of the in-
tended curriculum teachers have to refer to for treating the derivative notion.
Then, as we have stressed in Section 2.3, our main concern is the second step of the
didactic transposition: from the knowledge to be taught to the taught knowledge by the
teachers in their classrooms. Through the analysis of three case studies of three teachers
we will try to answer the following sub-questions:

(RQ.2) How do teachers construct the derivative-related praxeologies with and
for their students?

(RQ.1+2) What role do teachers give to the local perspective on functions in
the construction of such derivative-related praxeologies?
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To answer these latter sub-questions, the semiotic analysis appears to us extremely im-
portant, because teachers have, in addition to the textbooks, the possibility to use si-
multaneously and dynamically di�erent semiotic resources to work on functions.

It is our intention also to have insight on the attained curriculum, even though we are
aware that this will be just a narrow window on the e�ects of the teachers' praxeologies
have had on students. In the analysis of the activities7 speci�cally designed and proposed
to the students, we ask:

(RQ.3) In which ways di�erent praxeologies developed in classroom can a�ect
the students' praxeologies, in terms of local perspective?

7In this dissertation, as we will further specify in Chapter 5, the term "activity" denotes a problem
or a set of problems that the students have to solve, by working alone or in team, for constructing or
consolidating the meaning of the involved mathematical objects.
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Chapter 3

Analysis of the intended curriculum

The intended curriculum is constituted by all the institutional material produced by
the noosphere: o�cial programmes, textbooks, recommendations to teachers, didactic
materials, etc. In particular, we focus �rstly on the Italian National guidelines of 2010
for scienti�c high schools, secondly on the two most adopted textbooks in Piedmontese
scienti�c high schools, and thirdly on the Italian �nal examination given to experimental
courses of scienti�c high schools in June 2013.
We address to the scienti�c upper secondary instruction because our research questions, in
particular the intention to examine if the local perspective is present and at what extent,
can be framed in a broader meta-question: are the students well-prepared to face Analysis
concepts as they are treated within the scholarly mathematics at university? Supposing
that the most part of students who decide to attend university courses of mathematics
comes from a scienti�c upper secondary instruction, we chose to concentrate on national
guidelines, textbooks and examination designed and devoted to scienti�c high schools
only.

3.1 The derivative in the National guidelines

In order to analyse the institutional regulations, we refer to the Indicazioni nazionali
degli obiettivi speci�ci di apprendimento per i licei (National guidelines of the speci�c
learning objectives for high schools, issued by the Italian Ministerial Decree n.211 of
October 7, 2010) which represents part of the Italian secondary curricula. In particular,
we focus our attention on the guidelines speci�cally devoted to scienti�c high schools
(Attachment F to the M.D.211), in the section "Mathematics" (pp.337-341). Notice that
the contents are not presented in a schematic way, grade by grade. Instead, all the topics
to cover are merged in a discursive text, divided in three subgroups: grade 9-10, grade
11-12 and grade 13. A brief general introduction opens the section making explicit the
overall competences and objectives. Some concepts and methods are gathered together
and it seems relevant to us that one of these groups is constituted by

"the elements of algebraic calculus, the elements of the Cartesian analytic
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geometry, a good knowledge of the elementary functions of Calculus, the
elementary notions of the di�erential and integral calculus" (p.337).

Algebraic calculus and analytic geometry belong to the same group of concepts and
methods as the study of functions and the di�erential and integral calculus.
The introduction is closed by the main general guideline: "Few concepts and fundamental
methods, acquired in depth" (p.338).
The foreword is followed by the speci�c learning goals. Within them, let us focus on the
indications concerning the derivative concept. Thus, we refer to grade 11-12 and grade
13.

In grade 11-12, within the theme "Relations and functions" we read

"An important theme of study will be the concept of speed of variation for a
process represented by a function" (our underlining, p.340).

The suggestion is then to work on the speed of variation as preliminary to the concept
of derivative. In particular, this is a physical approach to the cognitive root of the
"slope" of a function in a point. This is because, in a graph position-time representing
a physical phenomenon, the speed with which the process varies in an interval of time
∆t corresponds to the slope of the segment matching the points (t0, s(t0)) and (t0 +
∆t, s(t0 + ∆t)). Anyway, in the curriculum there is no further indication, so the teachers
are free to approach the concept of speed of variation as best they think.

In grade 13, within the same theme "Relations and functions" the derivative holds a
central position along with the main concepts of Calculus.

"The student will acquire the main concepts of in�nitesimal calculus � in
particular continuity, di�erentiability and integrability - also in relation to
the problematics which generated them (instantaneous speed in mechanics,
tangent to a curve, determination of areas and volumes). It will be not
required a particular training in the computational techniques, which will be
limited to the capability of di�erentiating functions that are already known,
simple products, quotients and compositions of functions, rational functions
and to the capability of integrating entire functions as polynomial and other
elementary functions" (our underlining, p.341).

Di�erentiability, as well as continuity and integrability, is presented as a fundamental
property of the in�nitesimal calculus. We recognize in this passage the previously stated
rule "Few concepts and fundamental methods, acquired in depth" (p.338). Indeed, it is
recommended not to insist on di�cult calculations.
Afterwards, the topic of di�erential equations is covered. This concept has been intro-
duced in the regular curriculum since 2010, while before it was only present as possible
in-depth study.

"Another important theme of study will be the concept of di�erential equa-
tion, what we mean with its solutions and its main properties, as well as some
important and signi�cant examples of di�erential equation, with particular
regard to Newton's equation of dynamics" (our underlining, p.341).
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This concept makes derivatives and integrals work as tools, whereas above they have
been introduced as objects. We refer to the dialectic tool-object described by Douady
(1986) in her research. She states that "A student possesses mathematical knowledge if
he is able to provoke its functioning as explicit tools in the problems he has to solve [...]
if he is able to adapt it when the usual conditions for its use are not precisely veri�ed for
interpreting problems or for posing questions with regard to it"1 (Douady, 1986, p.11).
The importance of employing the Calculus concepts as tools is also stressed ahead in the
curriculum regulations.

"It will be a matter of understanding the role of in�nitesimal calculus as
fundamental conceptual tool in describing and modelling phenomena that
come from physics or of di�erent nature. Moreover, the student will become
familiar with the general idea of optimization and with its applications in
several contexts." (our underlining, p.17).

3.1.1 Remarks

Di�erentiability appears in the grade 13 curriculum, along with the other important
local properties of continuity and integrability. It can be even anticipated in grade 11-12,
working with the concept of speed of variation, especially in a physical context. However,
the local feature of these properties is not mentioned nor hinted. In fact, it is
more than simply implicit, because its evidence comes up only after a deep reading and
interpretation of the hidden links made by the curriculum. The approaches to adopt are
left to the teachers' choices. It is all up to the teachers, who get a great freedom but
also a great responsibility, to introduce the local perspective on these properties, and in
particular on di�erentiability.
Therefore, it becomes extremely interesting, in order to study the didactic transposition
of the derivative notion, to analyse how the national guidelines are interpreted �rstly
by the textbooks' authors and secondly by those who have to prepare the national �nal
examination in mathematics. Worked out in this chapter, such an analysis will set
the stage for Chapter 4, where we will focus on the teachers who, availing of all the
institutional materials, have to teach the notion in classroom.

3.2 The derivative in the textbooks

We are going to analyse the introduction to the derivative concept and to the derivative
function in two Italian textbooks.

• Bergamini, M., Trifone, A. & Barozzi, G. (2013). Matematica.blu 2.0, vol. 5, Libro
digitale multimediale. Zanichelli: Bologna.

1Our English translation of the original passage: "Un élève a des connaissances en mathématiques
s'il est capable d'en provoquer le fonctionnement comme outils explicites dans des problèmes qu'il doit
résoudre [...] s'il est capable de les adapter lorsque les conditions habituelles d'emploi ne sont pas ex-
actement satisfaites pour interpréter des problèmes ou poser des questions à leurs propos".
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• Sasso, L. (2012). Nuova matematica a colori, Edizione BLU per la Riforma. Quinto
anno. Vol. 5. Petrini De Agostini Scuola: Novara.

Here are the criteria of our choice. In April 2012, the Fondazione Giovanni Agnelli has
published the data of an inquiry conducted on the high schools in Piedmont (Fondazione
Giovanni Agnelli, 2012). It is a classi�cation of the schools based on their ex students'
results in the �rst year of university. It takes into account four criteria: the school e�ect
(speci�c contribution given to the students' preparation by the institute), the students'
e�ect (some individual characteristic of students which can in�uence their results), the
territorial e�ects (territorial context of the school), the addresses e�ect (socio-cultural
context of the institute).
We selected in this list the �rst 25 scienti�c high schools in Piedmont and consulted the
list of the adopted textbooks for the school year 2014-2015, which is available on each
school website. By comparing the adoptions of 129 classrooms (for the detailed table of
adoptions, see Appendix A), it turns out that 83 of them have preferred the textbook
written by Bergamini, Trifone and Barozzi (2013) - also in di�erent editions - and 27
instead use the one written by Sasso (2012). They both follow the national guidelines of
2010. Let us analyse how each of these textbooks introduces the derivative concept and
the derivative function as well.

3.2.1 Matematica.blu 2.0 by Bergamini, Trifone, Barozzi

In this textbook, after some chapters devoted to the functions and their properties, the
limit of functions and sequences, we �nd the chapter titled "The derivative of a function".
Let us focus particularly on the �rst section which is similarly named "The derivative of
a function" (pp.1618-1623). See Figure 3.2.1 for a conceptual map of this section.

Figure 3.2.1 - Conceptual map of the section "The derivative of a function".
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Approach to the derivative concept and its de�nition

The derivative concept is approached through the problem of determining the equation
of the tangent line to a curve in a point. The property for the circle, and in general for
the conics, is recalled: "the tangent in a point P is that straight line which intersects
the conic itself only in P" (p. 1618). Then, the authors observe that this property is not
valid for a generic curve and make the graphical counterexample in Fig. 3.2.2 and the
verbal counterexample of a parabola cut in a single point by its axis.

Figure 3.2.2 - The tangent t is tangent to the curve in the point P , but it
intersects it also in the point P ′ (in Bergamini et al., 2013, p.1618).

It is then recalled "the notion of limit, thinking of the process according to which it is
possible to approximate the tangent line through secant lines that approach it more and
more" (p. 1618). The following de�nition is given, accompanied by the graph in Fig.
3.2.3.

Definition. Tangent line to a curve - The tangent line t to a curve in
a point P is the limit position, if it exists, of the secant PQ as Q tends (both
from the left and from the right) to P .

Figure 3.2.3 - Figure supporting the definition of tangent line to a curve (in
Bergamini et al., 2013, p.1618).

Therefore the generic de�nition of a tangent line is explicitly provided by the text-
book as the "limit position" of the secant lines intersecting the curve in the tangency
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point and in another one which "tends to" it. These secant lines are said to "approach"
the tangent "more and more". This idea is graphically conveyed in Figure 3.2.3 through
two small arrows towards the tangency point (from the left and from the right). Thus,
the recall of the notion of limit, the expressions "tends to", "approach more and more"
are verbal hints to a local perspective on the generic curve. The only description of Fig.
3.2.3 is given directly in the de�nition. The link between the two semiotic resources
(words and graph) is largely left to the reader's interpretation of the �gure. It is not that
simple, especially because all the graphical data provided as a support look essentially
pointwise: the points P , Q, Q′, Q′′. It is implicit, for example, that Q,Q′, Q′′ can be
seen as a sequence that approaches P .

In order to �nd the equation of the so-de�ned tangent line to the function y = f(x),
the �rst step proposed by the textbook consists of de�ning the incremental ratio, which
is immediately given through symbols. Given the point A(c, f(c)) belonging to the graph
of f , the abscissa c is increased of the quantity h, obtaining the point B(c+h, f(c+h)).
The increments ∆x = xB − xA = h and ∆y = yB − yA = f(c+ h)− f(c) are considered.

The incremental ratio is then de�ned as
∆y

∆x
=
f(c+ h)− f(c)

h
, with reference to the

graphical representation in Fig. 3.2.4.

Figure 3.2.4 - Figure supporting the definition of incremental ratio (in
Bergamini et al., 2013, p.1619).
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The incremental ratio is interpreted as the angular coe�cient2 of the straight line pass-
ing through A and B. A detailed example with the speci�c parabola y = 2x2 − 3x in
c = 1 is provided. In the provided de�nition and example, the pointwise and global

perspectives prevail within the semiotic bundle words+symbols+graph.
Afterwards, in the paragraph "The derivative of a function" the idea of a point ap-
proaching another one on the curve, introduced with the tangent de�nition, is developed
further. Speci�cally, the approaching is algebraically interpreted within a Cartesian ref-
erence system. Indeed, on the graph of equation y = f(x) the points A(c, f(c)) and
B(c + h, f(c + h)) are taken into account. A note on the border underlines that "the
point A is �xed while the point B varies as h varies" (p.1620). To convey the idea of
the variation of h, di�erent secant lines are drawn for three decreasing values of h. Each
secant line is drawn along with the tangent in A on a Cartesian plane reproducing the
graph of the function y = f(x) and the points A and B, the latter depending on h. The
three resulting Cartesian planes are then put into sequence, as if they were successive
frames of a �lm, in order to convey the idea of movement (see Fig. 3.2.5).

Figure 3.2.5 - a, b and c represent three different possible secant position
of the straight line AB, compared with the tangent t in A (in Bergamini et
al., 2013, p.1620).

The following technological speech (p.1620), that we report word by word, explains the
Fig. 3.2.5.

2In Italian, the coe�cient of x in the equation y = mx + q is called "coe�ciente angolare", with
reference to the property m = tanα, where α is the angle that the line forms with the positive direction
of x-axis. Normally, Italian textbooks, teachers and students refer to m as "coe�ciente angolare" since
the �rst time the straight line is studied in the Cartesian plane (grade 8). Although the slope of a line
is strictly related to the angle which it forms with x-axis, the used name partially hides this relation.
Students usually do not link automatically, or at least not directly, the value of m with the slope of the
line. We think that the Italian name can evoke a certain mental image, di�erent from the image linked
to the English word "gradient" or the French word "coe�cient directeur" for example. We believe that
this fact can di�erently in�uence the mathematical discussion and activity in classroom. Therefore, in
the transcriptions or speech elaborations, we generally prefer keeping the literal translation "angular
coe�cient", instead of the correct English translation "gradient" or "slope".
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By giving to h values that get smaller and smaller, the point B approaches more
and more the point A. When h → 0, the point B tends to overlap the point
A and the straight line AB tends to become the tangent line to the curve in
A. The angular coe�cient of the secant line AB, that is the incremental ratio,
tends to the angular coe�cient of the tangent line, which is called derivative
of the function in the point c.

Notice that the local perspective is introduced with an idea of approaching.
This is realized in a graphical register as an interval (in this case, a right interval) of the
point, whose width becomes smaller and smaller. Graphically such an idea of movement
is conveyed by the juxtaposition of three successive frames, in which the width of the
interval h gets decreasing values. In words, the approaching is expressed as

• "B approaches more and more the point A";

• "B tends to overlap A";

• "the straight line AB tends to become the tangent";

and it is associated with the value of h, the width of the interval, which becomes

• "smaller and smaller";

• in symbols "h→ 0".

Thus, words and symbols are used together to explain the graphical representation in
Fig. 3.2.5, expressing:

- the idea of movement as an approaching;

- the idea of something which becomes smaller and smaller;

- the idea of something which becomes something else.

The semiotic bundle composed of words+symbols+graph aims to introduce a local per-
spective on f . However, the activation of the local perspective is left to the

reader's understanding of the relationships existing among the three semiotic re-
sources, brie�y illustrated in the technological speech. First of all, the reader has to see
in the di�erent graphs given in sequence the movement of the secant line towards the
tangent line; then, he has to relate this movement to c+h which approaches c on x-axis;
�nally, he has to express this approaching symbolically as h → 0. And especially the
�nal step is a di�cult jump, because from the global interval [c; c + h] drawn in Fig.
3.2.5, the reader has to pass to the local neighbourhood where h→ 0. Thus, after some
work of pointwise nature (detection of A, B and the secant line AB) and of global nature
(the successive intervals [c; c+ h]), it is this �nal step that allows to really adopt a local
perspective.

The de�nition of derivative is then given as follows, accompanied by the graphical
representation in Fig. 3.2.6.
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Definition. Derivative of a function - Let y = f(x) be a function
de�ned on the interval [a; b], we call derivative of the function in the point c
internal to the interval, and it is denoted with f ′(c), the limit, if it exists and
is �nite, as h goes to 0, of the incremental ratio of f relative to c:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

Figure 3.2.6 - Figure supporting the definition of the derivative of a func-
tion. (in Bergamini et al., 2013, p.1620).

The successive paragraph, "The derivative calculation", provides an example of calcu-
lation of the derivative of a function in a point. More precisely, the task consists of
calculating the derivative of the function y = x2 − x in c = 3.

Hence, we can remark that the de�nition transposed by Bergamini et al. (2013) is the
Def. 1 discussed in Paragraph 1.2.2. The tangent line is the limit position of a sequence
of secant lines to the curve and the derivative is the limit of the incremental ratio of the
function. In conclusion, the local perspective remains implicit in the relationships

internal to the semiotic bundle composed of graph, words and symbols.

Introduction of the derivative function

Immediately after the derivative calculation in the given point c = 3, within the same
paragraph, the derivative function is introduced as follows.

We can calculate the derivative of a function also in a generic point. In this
case, the obtained value f ′(x) is a function of x and, for this reason, we speak
also of derivative function. [...] The derivative function, as x varies, provides
the angular coe�cient of all the tangent lines to the given function.

The paragraph "The derivative calculation" closes with an example: the calculation of
the derivative of the function f(x) = 4x2 in the generic point x. The �rst step of the
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resolution gives the algebraic technique without further explanations:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

The only hint to the local perspective on f is the presence of the symbol of limit,
which derives from a direct application of the technique given for f ′(c). Thus, the local
perspective is implicitly present in the de�nition of the derivative function thanks
to the use of the symbol lim.

Jumping to page 1851, within the chapter devoted to the study of function, we �nd
the graphical representation of the derivative function. The section "The graphs of a
function and of its derivative" deals with the graphical relationships between the graph
of a function f(x) and that of its derivative f ′(x). Such relationships are summarized in
Fig. 3.2.7 (a,b,c,d).

Figure 3.2.7(a) -
In x0 the function
f(x) has a relative
maximum. In the
same point, the
derivative f ′(x) is
zero and so its
graph intersects
x-axis in x0. On
the left of x0,
the derivative is
positive, on the
right it is nega-
tive (p.1851).

Figure 3.2.7(b)
- In x0 the func-
tion f(x) has a
relative minimum:
so f ′(x0) = 0. The
graph of the
derivative inter-
sects x-axis in x0:
on the left of x0,
the derivative is
negative, on the
right it is positive
(p.1851).

Figure 3.2.7(c)
- In x0 f(x) has
an ascending hor-
izontal inflection
point, so f ′(x0) =
0. The graph of
the derivative in-
tersects x-axis in
x0, and f

′(x) is pos-
itive both on the
right and on the
left of x0. There-
fore in x0 there
is a minimum for
f ′(x) (p.1851).

Figure 3.2.7(d)
- In x0 f(x) has an
descending hori-
zontal inflection
point: with the
same considera-
tions as in the
previous case, for
x 6= x0, f ′(x) is
negative. There-
fore in x0 there
is a maximum for
f ′(x) (p.1851).

Notice that, with the purpose of giving to the derivative function a graphical rep-
resentation, some local considerations about the involved functions are made.
They are directly formulated on f ′, whose sign is distinguished on the left and on the
right of the point x0. Thus, they indirectly entail a local graphical reading of the maxi-
mum, minimum and horizontal in�ections of f .
In this case, all the semiotic sets involved in the semiotic bundle, namely graph, words
and symbols, concur to underline a local perspective on the functions f ′ and indirectly
on the function f .
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Exercises

Let us give a quick overlook on the proposed exercises. We refer to the types of task
related with the theoretical paragraphs we have just analysed above. In particular, we
focus on the exercises that speci�cally refer to the introduction of the derivative concept,
of the derivative function and of its graph. More precisely, the tasks analysed are 101:
86 of them make direct reference to the section "The derivative of a function" (pp.1655-
1659) and the remaining 15 are taken from the section "The graphs of a function and of
its derivative" (pp.1905-1909).
As a �rst step in our analysis, we detect the di�erent types of task proposed. Some
preliminary exercises are aimed to the handling of the elements that compose the formal
de�nition of incremental ratio. Then, we �nd more calculative exercises which, given the
analytic expression of a function f(x), require to determine its incremental ratio for �xed
or generic values of c and h. After, some tasks require to calculate the derivative of a
given function in a given or generic point c. Sometimes a guided exercise is provided:
we consider it very useful to identify the expected techniques, modes of application and
justifying arguments. Finally, within the exercises related to the study of functions, some
tasks ask to deduce the graphical representation of the derivative function, starting from
the graph of a function and some others ask the converse: to deduce the graphical rep-
resentation of a function, starting from the graph of its derivative.
Thus, seven types of task have been detected. Let us present at least one representative
task for each of them.

Type of task T1 (18 tasks): Computing and handling the elements of the formal de�ni-
tion of incremental ratio.

Ex.8 p.1655 - Given the function y =
x2 − 1

x
, consider c = 2 and h = 0, 1 and

determine ∆x and ∆y.

Type of task T2 (9 tasks): Determining the incremental ratio of a given function f in a
given point c, for a generic increment h.

Ex.20 p.1656 - f(x) =
x− 5

x
c = 4.

Type of task T3 (8 tasks): Determining the incremental ratio of a given function f in a
generic point c, for a generic increment h.

Ex.28(a) p.1656 - f(x) =
√
x.

Type of task T4 (21 tasks): Calculating the derivative of a given function f in a given
point c, by applying the de�nition.



88

Ex.33(a) p.1657 - f(x) = x3 + 4x+ 1 c = 1.

Type of task T5 (4 tasks): Proving that it is not possible to calculate the derivative of
the given function f in the given point c.

Ex.43 p.1658 - f(x) =
√
x− 1 c = 1.

Type of task T6 (26 tasks): Calculating the derivative of a given function f in the generic
point c.

Ex.59 p.1658 - f(x) = −e1+x.

Type of task T7 (5 tasks): Given the graph of y = f(x), determining the graph of its
derivative y = f ′(x).

Ex.272 p.1906

Ex.274 p.1906 - Draw in the same Cartesian plane the graph of the function
y = 2xe2x and that of its derivative and then �nd the coordinates of their
intersection point.

Type of task T8 (10 tasks): Given the graph of y = f ′(x), determining the graph of the
function y = f(x).
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Ex.279(b) p.1908

Table 3.1 schematically summarizes the semiotic resources the student is expected to
use and the perspectives he is expected to adopt in solving the types of task Ti, for
i = 1, . . . , 8.

Type of task

(% of tasks)

expected

semiotic resource

expected perspectives

T1 (18%) symbols pointwise on f
T2 (9%) symbols pointwise, global on f
T3 (8%) symbols pointwise, global on f
T4 (21%) symbols pointwise on f and f ′

T5 (4%) symbols pointwise on f and f ′

T6 (25%) symbols global(=univ. pointwise) on f and f ′

T7 (5%) graphs (& symbols) pointwise, global and local on f and f ′

T8 (10%) graphs pointwise, global and local on f and f ′

Table 3.1 - Expected use of the semiotic resources and perspectives to solve
the types of task involving the derivative concept and the derivative function.

A brief analysis of the tasks, that involve the derivative and the derivative function
at the initial stage of introduction and understanding of the concept, leads us to some
conclusive remarks. Bergamini et al. (2013) propose several exercises requiring the use
of symbols. However, a relevant 15% of them requires almost exclusively to activate the
graphical resource. The way in which the latter is expected to be worked encompasses
a good handle of the perspectives on functions, also the local one. Indeed, some tasks
(belonging to T7 and T8) propose graphs of discontinuous or non-di�erentiable functions.
In the part devoted to the theory, we have found some local considerations in the

graphical work on the derivative function, thus we suppose that the students are
expected to use them for solving the similar given tasks.
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3.2.2 Nuova Matematica a colori by Sasso

In this textbook, the theme "Di�erential calculus" comes after the theme "Limits and
continuity". The derivative is introduced after the limits of real functions of a real
variable, the limits of sequences and the continuity. We are going to analyse the �rst
section devoted to the derivative, whose title is "The derivative concept" (pp.258-264).
See Fig. 3.2.8 for a conceptual map of this section.

Figure 3.2.8 - Conceptual map of the section "The derivative concept".

Approach to the derivative concept and its de�nition

The concept is approached through the presentation of two problems "which, also histor-
ically, led to its birth" (p. 258): the problem of the tangent line and the problem of the
instantaneous speed. A text box on the border gives some historical hints about Leibniz
and Newton and the period in which they worked out the di�erential calculus.

As for the problem of the tangent, the text develops in a very discursive way. It
is recalled that the problem of the tangent equation has been already solved within the
analytic geometry in the case of the conics. But here the question is: "What is the tangent
line to a curve in one of its points P?" (p. 258). Then, the author discusses some possible
attempts to de�ne it. The �rst de�nition might be: "it is the only straight line passing
through P that does not intersect the curve at other points" (p. 258). Nonetheless, he
proposes two graphical counterexamples (see Fig. 3.2.9): the former concerns a tangent
line that intersects the curve not only in P , but also in another point; the latter shows
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one of the in�nite straight lines passing through the origin in the graph of the absolute
value of x.

Figure 3.2.9 - On the left: the tangent to the curve in P intersects the curve
at another point; on the right: there exists an infinite number of straight
lines passing through O which intersect the curve in a single point, but intu-
itively we cannot consider these straight lines as tangent to the curve (in
Sasso, 2012, p.258).

The second attempt is the same de�nition that is valid for the conics: "[the tangent is]
the straight line that has a double intersection with the curve in P" (p. 258). Then, the
author points out a di�culty by making the symbolic example of the system between
y = sinx and y = mx. The solving equation would be sinx = mx which is not a poly-
nomial equation. So, "there is no way to count the multiplicity of the solutions of this
equation, and consequently to impose that the solution x = 0 is double" (p. 258). Hence,
the author highlights the need to consider a new idea, from a new dynamical point of
view. From now on, let us transcribe word by word what is written in the textbook.

Given the function y = f(x) and a point P (x0, f(x0)) belonging to its graph,
in order to de�ne the tangent line of f in P let us �rstly take into account a
straight line which passes through P and which is secant to the curve in another
point Q, "close" to P , with abscissa x0 + h (see Fig. 3.2.10). [A text box on
the border recalls that on-line this �gure is available in its dynamical version.]
We know that the angular coe�cient of the straight line PQ is expressed by
the formula:
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mPQ =
yQ − yP
xQ − xP

=
f(x0 + h)− f(x0)

h

and that the straight line PQ has equation:

y − f(x0) = mPQ(x− x0).

Let us imagine that h tends to 0. The point Q moves on the graph of f
and approaches P , till overlapping it when h = 0. Contextually the secant
line turns around P , till it reaches a "limit" position which intuitively we can
identify with that of the tangent line. Let us consider the limit towards which
the angular coe�cient of the straight line PQ tends as h goes to 0:

lim
h→0

mPQ = lim
h→0

f(x0 + h)− f(x0)

h
.

If this limit tends to a �nite value, we can de�ne the tangent line as the straight
line which passes through P and which has this angular coe�cient.

Figure 3.2.10 - Figure supporting the procedure described above to find the
tangent to a generic function y = f(x) at P (in Sasso, 2012, p.259).

The author serves of verbal and graphical resources, along with symbols. Observe
some of the chosen terms or expressions concerning the point Q on the curve:

• "close" to P ;

• Q moves on the graph of f ;

• it approaches P ;

• till overlapping it when h = 0;
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and concerning the straight line PQ:

• turns around P ;

• till it reaches a "limit" position.

We only �nd unusual the expression "when h = 0", since h is never actually equal to
zero.
Nevertheless, all these terms convey an idea of movement that on the graph can be given
only by means of a rounded arrow towards the tangent position (see Fig. 3.2.10). The
local perspective is thus approached by using terms which convey an idea of

movement. Such terms however refer to a static �gure that is dynamical in the on-line
version. Let us suppose that an ordinary reader looks only at the �gure on the textbook.
Then, linking the "dynamical" text to what happens on the graph can be very di�cult.
Indeed, the given graphical context is necessarily global, because in a drawing on a piece
of paper the interval h detects inevitably a global portion of the curve of f . In such a
global context, the reader has to identify a local movement in a neighbourhood of the
point x0. And he is expected to do so only with the help of the accompanying text.
Thus, the local perspective is potentially contained in the text and mostly in the relation
that the reader manages to establish between the text and the �gure. So, the adoption
of a local perspective is left to the capability of the reader to imagine the

local movement in the right way and in all its details. We realize that this process is
not simple at all, without the intervention of a mediation �gure like the teacher is in the
classroom.

As far as the instantaneous speed is concerned, the author makes the example of a
body that falls down. The question he poses is: "What is the speed of the object in
a given instant?" (pp.259-260). Knowing the position function s(t) of an object, the
average speed in the interval [t0, t0 + h] is written as the ratio:

s(t0 + h)− s(t0)
h

.

Then, the author introduces the limit as h → 0. He justi�es this operation by claiming
that the more the interval of time [t0, t0 + h], on which the average speed is calculated,
is small, the more the average speed will approximate the instantaneous speed in t0. At
a �rst glance, it seems that the author is basing on an idea of approximation. Nonethe-
less, this statement is very close to the case of the tangent line. Indeed, the mentioned
approximation is not that of the curve described by s = s(t), but that of the average
speed which becomes the instantaneous speed. Therefore, as before with the case of the
tangent, the basic idea is again that the secant vector, representing the average speed,
becomes the tangent vector, which is the instantaneous speed in t0. Thus, within the
physics example of the instantaneous speed, the local dimension is realized with the

introduction of the limit operation and justi�ed by using not terms of movement
but an equivalent idea of change.
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Afterwards, in the paragraph "Derivative in a point", the textbook compares the
two problems by highlighting in them the same pattern (increment h, ratio, limit of the
ratio as h goes to 0), which is retraced step by step for any function f in any point x0
of its domain. The de�nition of incremental ratio is stated and the �nal limit is called
derivative. The graphical situation in Fig. 3.2.11 is illustrated and the following formal
de�nition is given (p. 261).

Derivative of a function in a point

A function of equation y = f(x) is said di�erentiable in a point x0, belonging
to its domain, if

lim
h→0

f(x0 + h)− f(x0)

h
(3.1)

exists and is �nite. This limit takes the name of �rst derivative (or simply
derivative) of f in x0 and it is denoted with the symbol:
f ′(x0)

Figure 3.2.11 - Figure accompanying the definition of derivative in a point
(in Sasso, 2012, p.261).

The paragraph "Derivative in a point" is closed by an example, where the type of task is
explicitly given: "Calculation of the derivative of a function in a point according to the
de�nition" (p. 261). The speci�c task chosen to illustrate the technique (3.1) involves
f(x) = x2 in x0 = 2. In the proposed resolution, the technique (3.1) is directly applied
with f(2+h) = (2+h)2 and f(2) = 22. A graphical representation shows that the result
4 corresponds to the gradient of the tangent to the parabola in P (2, 4).
At the end of the paragraph, an alternative de�nition of derivative is given as an in-depth
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note, by setting x = x0 + h. f ′(x0) is then alternatively de�ned as lim
x→x0

f(x)− f(x0)

x− x0
.

Hence, we can notice that Sasso (2012) approaches the derivative as the limit of the
incremental ratio. So, he proposes a didactic transposition of the de�nition we denoted
as Def. 1 in Paragraph 1.2.2. The tangent line to a generic curve in P is presented as
the limit position of a secant line PQ when Q approaches P . The local perspective
on f is implicit in the use of terms involving

- the idea of movement, such as "close", "approaches", "overlapping";

- the idea of "becoming instantaneous" as the considered increment of time becomes
smaller and smaller.

Introduction of the derivative function

Moving on to the end of the section "The derivative concept", the closing paragraph deals
with the "Derivative function and higher order derivatives". Let us transcribe word by
word the shift from the pointwise de�nition of f ′(x0) to the global de�nition of f ′(x) (p.
263).

Given a function f , we can de�ne a new function f ′, called (�rst) derivative
function of f , that with each point, where f is di�erentiable, associates its
derivative. Formally, if D is the domain of the function f and D′ is the subset
of D in which f is di�erentiable, the function f ′ is de�ned as follows:

f ′ : D′ → R, for which x 7→ f ′(x).

An example follows this de�nition, where the type of task is speci�ed: "[Determining the]
derivative of a function according to the de�nition" (p. 264). Then, chosen f(x) = x2,
the author calculates the derivative of f "in the generic point of abscissa x ∈ R". An
algebraic technique to �nd the derivative function is suggested. The author explicitly
writes:

lim
h→0

f(x+ h)− f(x)

h
Limit (3.1) with x0 = x. (3.2)

In the given de�nition and example, there is no local consideration on the function f .
The local perspective is not expressly highlighted by the algebraic technique

(3.2). The symbol of limit is present, but it derives from the formal de�nition just given
for the derivative in a point (3.1) and then it is mainly treated through syntactical manip-
ulations. Also the technological hint in the example, namely "Limit (3.1) with x0 = x"
does not actually entail local remarks on the function f involved in the limit calculation.
The local perspective remains implicit in the symbols used, speci�cally lim and
h→ 0.
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To �nd a graphical representation of the derivative function we have to jump to page
440, to the section "Deducible graphs" in the chapter "Study of function". Here the
paragraph "From the graph of a function to that of its derivative" is entirely devoted to
how graphically representing the derivative function y = f ′(x).
A general technological speech illustrates step by step the properties that the graph of
y = f ′(x) must have. We list them below, as the textbook does (pp.440-441).

To sketch a possible graph of the derivative of a function y = f(x) it is enough
to draw upon the following considerations.
a. The function y = f ′(x) has for domain the set of values of x for which the

function y = f(x) is di�erentiable.
b. The function y = f ′(x) is even if y = f(x) is odd, it is odd if y = f(x) is even

(try to prove it as an exercise).
c. The zeros of the function y = f ′(x) (that are the abscissas of the points in

which [f ′] intersects x-axis) are the stationary points of y = f(x) (that are
points of relative maximum or minimum or in�ection points with horizontal
tangent).

d. The sign of the function y = f ′(x) is: positive in the intervals in which y = f(x)
is increasing and negative in the intervals in which y = f(x) is decreasing.

e. The points of relative maximum or minimum of the function y = f ′(x) corre-
spond to the in�ection points of the function y = f(x).

f. The intervals of variation of the function y = f ′(x) correspond to the intervals
where the function y = f(x) is concave or convex: if y = f(x) is convex in an
interval, then y = f ′(x) is increasing in that interval, if instead y = f(x) is
concave, then y = f ′(x) is decreasing.

This list of properties precedes the following example, whose task is "Let's deduce from
the graph of the function y = f(x), drawn in �g. 7.18 [see Fig. 3.2.12], the graph of the
function y = f ′(x)" (p. 441).
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Figure 3.2.12 - From left to right: graph of the function y = f(x); let's
represent the regions of plane in which the graph of y = f ′(x) lies taking
into account that f ′(x) is positive where f(x) increases and negative where it
decreases. Moreover the zeros of f ′(x) (in red) are the points of relative
maximum/minimum of f(x); considering that the graph of y = f ′(x) has points of
relative maximum/minimum at the inflection points of f(x), we can draw in red
the graph of f ′(x) (in Sasso, 2012, p.441).

The technique is illustrated through the graphical steps in Fig. 3.2.12, and the related
captions explain how the supporting properties are used. In particular, the technique
consists of detecting the points of maximum, minimum and in�ection for f and highlight-
ing them on x-axis. Basing on the previous properties c. and d., the sign of the function
y = f ′(x) is marked by blackening the zones where f ′ cannot pass and the intersections
of f ′ with x-axis are marked by three full dots on it. In the last step, the graph of f ′ is
drawn by taking into particular account the property e. to correctly place the maximum
and minimum points.

In the resolution of this task, graphical and verbal resources are integrated to form
the semiotic bundle. This entails some global and pointwise considerations on the graph
of f and on the graph of f ′. The main remarks indeed are made on

• the signi�cant points of f (maximum and minimum points, in�ection points) and
consequently of f ′ (zeros and maximum/minimum points);

• the variation intervals of f in relation to the sign intervals of f ′.

These are pointwise and global adaptations of the properties stated above. No real

local work is done on the involved functions. For instance, the tangent line is not
mentioned as a possible help in understanding the trend of the two functions.

Exercises

Let us move on to a quick analysis of the exercises. With regard to the theoretical
referential just analysed above, we focus on the exercises that speci�cally refer to the
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introduction of the derivative concept, of the derivative function and of its graph. More
precisely, we have analysed 56 tasks: 51 of them make direct reference to the section
"The derivative concept" (pp.294-296) and the remaining 5 are taken from the section
"Deducible graphs" (pp.477-478).
The �rst step of the analysis consists of subdividing all the tasks into types of task.
Speci�cally, some preliminary exercises are aimed to the understanding of the formal
de�nition and its geometrical meaning. After, we �nd more calculative exercises which,
given the analytic expression of a function f(x), require to determine its derivative in a
given value of x0 or the derivative function as well. It is expressly demanded to apply
the de�nition (through the limit of the incremental ratio as h goes to 0). The �rst of
each group of exercises presents a guided resolution. It is useful to have insight into the
expected techniques, modes of application and justifying arguments. Finally, in regard
to the section devoted to the deducible graphs, some exercises consists of deducing the
graphical representation of the derivative function, starting from the graph of a function.
So, �ve types of task have been detected. Let us present at least one representative task
for each of them.

Type of task T1 (5 tasks): Recognizing the formal writing of the de�nition of the deriva-
tive in a point.

Ex.2 p.294 - To calculate according to the de�nition the derivative of the
function y = f(x) in the point x0 = 2, which of the following limits has to be
calculated?

A. lim
h→0

f(2 + h)− f(h)

h

B. lim
h→0

f(2− h)− f(2)

h

C. lim
h→0

f(2 + h)− f(2)

h

D. lim
h→0

f(2− h) + f(2)

h

Ex.6 p.294 - Each of the limits you �nd in the �rst column represents the
derivative of a function f in the speci�ed point x0. Make the right matches.

a. lim
h→0

(2 + h)3 − 8

h
A. f(x) = x2 x0 = 4

b. lim
h→0

(−2 + h)3 + 8

h
B. f(x) = x2 x0 = −4

c. lim
h→0

(4 + h)2 − 16

h
C. f(x) = x3 x0 = 2

d. lim
h→0

(−4 + h)2 − 16

h
D. f(x) = x3 x0 = −2

Type of task T2 (4 tasks): Interpreting graphs by using the derivative concept.
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Ex.7 p.295 - Observe the �gure below, where the tangent lines have been
drawn to the graph of the function f at the three points P , Q and R.
Basing on the geometrical meaning of the derivative, complete the following
equivalences:
f ′(−2) = . . . f ′(2) = . . . f ′(4) = . . .

Ex.8 p.295 - Each of the following �gures shows the graph of a function and
the graph of the derivative function. Identify which of the two is the graph of
the derivative, by recalling its geometrical meaning.

Type of task T3 (22 tasks): Calculating the derivative of a function in a given point,
according to the de�nition.

Ex.11 p.296 - f(x) = x2 − 2x x0 = 3.

Type of task T4 (20 tasks): Calculating the derivative of a function, according to the
de�nition.
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Ex.35 p.296 - f(x) =
2

x
.

Type of task T5 (5 tasks): Given the graph of a function f , sketching the graph of its
derivative.

Ex.241 p.477 - The accompanying �gure shows the graph of a function y =
f(x); moreover the abscissas of the points of relative maximum/minimum and
of in�ection are indicated. Sketch the graph of y = f ′(x).

In Table 3.2 we detect which semiotic resources the student is expected to use and which
perspectives he is expected to adopt in solving the types of task T1, T2, T3, T4 and T5.

Type of task

(% of tasks)

expected

semiotic resource

expected perspectives

T1 (9%) symbols pointwise on f and f ′

T2 (7%) graphs pointwise, global or local on f and f ′

T3 (40%) symbols pointwise on f and f ′

T4 (35%) symbols global(=univ. pointwise) on f and f ′

T5 (9%) graphs pointwise, global and local on f and f ′

Table 3.2 - Expected use of the semiotic resources and perspectives to solve
the types of task involving the derivative concept and the derivative function.

After a brief analysis of the tasks involving the derivative and the derivative func-
tion, at a �rst level of introduction and understanding of the concept, we can make some
conclusive comments. Sasso (2012) proposes several symbolical exercises, and some of
them foster a reasoned manipulation of the symbolic writing. Nonetheless, a signi�cant
16% of these introductive exercises almost exclusively employs the graphical resource.
The latter, contrary to the symbolic one, a priori may foster the adoption of all the per-
spectives on the involved functions, even the local one. In particular, a local reasoning is
needed in the last group of tasks (T5) where the given function can also be discontinuous
or non-di�erentiable at some points. In the guided exercise, some local remarks are
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present and they are fundamental to solve the task. Thus, we suppose that they
are expected from the student in all the similar proposed tasks.
Therefore, only the graphical work seems to suitably foster the possible adop-

tion of a local perspective.

3.2.3 Remarks

We have analyzed two of the most widespread textbooks in scienti�c high schools in Pied-
mont. In particular, we have focused on the approach to the derivative concept and its
de�nition, the introduction to the derivative function and the exercises relative to these
theoretical issues. Though di�erent schemes of exposition, both the textbooks de�ne the
derivative as the limit of the incremental ratio of a generic function, when the increment
of the abscissa goes to zero. It corresponds to a �rst transposition of the Def. 1 given
and discussed in paragraph 1.2.2. The written speech justifying this de�nition involves
the presentation of the tangent line as the limit position of a sequence of secant lines,
when the interval between the two intersections with the curve wears thin. To be oper-
ational this de�nition entails �rstly a pointwise and global work: the choice of another
point on the curve, di�erent from that of tangency, and so of an interval between the two
abscissas. For both the textbooks, this work is done in the semiotic bundle composed
of graph, words and symbols. The local perspective enters this semiotic bundle through
the symbolic resource, namely with the introduction of the symbols lim as h → 0. The
words try to convey the local perspective through terms of movement, and in particular
of approaching. On the static graph, instead, the idea of a point approaching another
one is really di�cult to express. A possibility (that of Sasso, 2012) is to add arrows
on the graph, to indicate that a point moves towards another one. Another possibility
(that of Bergamini et al., 2013) consists in juxtaposing a sequence of di�erent Cartesian
planes, where the points on the curve are chosen each time more close. In both cases,
the adoption of the local perspective is left to the reader's capability of correctly inter-
preting such graphical devices in relation to the words that accompany them. In other
terms, it is up to the reader to understand and establish the correct relationships among
the di�erent resources of the semiotic bundle graph+words+symbols. The result is that
the local perspective is potentially, but implicitly, contained in the semiotic resources
provided by the textbook.
What can directly foster its adoption is the representation of the derivative function, not
in the algebraic register, but in the graphical one. Especially within the examples and the
exercises, a local work is needed in order to interpret the behaviour of a function in the
neighbourhood of a stationary point or a point of discontinuity or non-di�erentiability.
Therefore, the local perspective becomes explicit when the graphical resource is accom-
panied by a speech that enhances the reading of the graph in a neighbourhood of a
point (on the left / on the right of it) rather than the idea of movement or the sudden
introduction of the symbol lim.
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3.3 The derivative in the �nal examination

The data we take into account in this paragraph are contained and discussed in greater de-
tail in a comparative study between France and Italy concerning the teaching of functions
at secondary level (Derouet & Panero, 2014). In this study, the Italian �nal examination
given to experimental courses in scienti�c high schools in June 2013 has been compared
with the corresponding baccalauréat S Metropole of June 2013. In the context of this
thesis, we �nd interesting to focus on some of the exercises and problems of the Italian
examination in question which involve derivatives.
The mathematical test is composed of two problems and ten questions. Notice that the
student has to solve one problem and �ve questions, then the commission will correct
only the exercises that have been indicated by the student. Let us consider the two
problems proposed in June 2013. The original text (MIUR, 2013) is in Appendix B.

Problem 1

A function f(x) is de�ned and di�erentiable, along with its derivatives of �rst
and second order, in [0,+∞[ and the �gure [see Fig. 3.2.13] shows the graphs
Γ and Λ respectively of f(x) and its second derivative f ′′(x). The tangent to Γ
in its in�ection point, whose coordinates are (2; 4), passes through (0; 0), while
the straight lines y = 8 and y = 0 are horizontal asymptotes respectively for Γ
and Λ.
1. Prove that the function f ′(x), that is the �rst derivative of f(x), has a
maximum and determine its coordinates. Knowing that for each x in the
domain it is f ′′(x) ≤ f ′(x) ≤ f(x), what is the possible graph of f ′(x)?
2. Suppose that f(x) represents, obviously with suitable measure units, the
growth model of a certain type of population. What information about its
evolution one can deduce from the graphs in �gure and in particular from the
fact that Γ presents an horizontal asymptote and an in�ection point?

3. If Γ is the graph of the function f(x) =
a

1 + eb−x
, prove that a = 8 and

b = 2.
4. Under the hypothesis of the point 3., calculate the area of the region of
plane delimited by Λ and by the x-axis on the interval [0, 2].

Figure 3.2.13 - The graph given as a reference for Problem 1 text.
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Our �rst remark is that almost the whole problem turns around the derivative func-
tion. Indeed, f ′ is the object of the study, while f and f ′′ are tools to accomplish it.
Let us examine which types of task related to the derivative notion are proposed. We
provide an expected answer for each of them, in order to understand how the derivative
intervenes in the resolution.

Question 1. Given the graph of one of its primitives f and that of its derivative f ′′

and some pointwise information about the tangent line in the in�ection point of f ,

• proving the existence of a maximum for f ′;

• determining the coordinates of the maximum of f ′;

• drawing a possible graph for f ′, knowing that f ′′(x) ≤ f ′(x) ≤ f(x) for all x in the
domain.

Expected answer to question 1:

In order to �nd the maximum of f ′, we search for x for which the derivative, that is f ′′, is zero,
so it means f ′′(x) = 0. We observe that the graph of f ′′, represented by Λ, cuts the x-axis in
x = 2 and changes of sign, thus x = 2 is the abscissa of a stationary point of f ′. By studying
the sign of f ′′(x), we determine if it is a maximum or a minimum.

x

f ′′(x)

f ′(x)

0 2 +∞

+ 0 −

Hence, f ′ admits a maximum in x = 2. The ordinate of this maximum is f ′(2). Now, f ′(2) is
the gradient of the tangent to the curve of f , that is Γ, at the in�ection point of abscissa 2.

f ′(2) =
f(2)− 0

2− 0
=

4

2
= 2

since the tangent to Γ at the in�ection point, whose coordinates are (2; 4), passes through (0; 0).
Therefore, the coordinates of the maximum of f ′ are (2; 2).
Afterwards, from the variation of f ,

x

f(x)

f ′(x)

0 +∞

+
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we deduce that f ′ is positive on [0; +∞[. From the sign of f ′′,

x

f ′′(x)

f ′(x)

0 2 +∞

+ 0 −

we deduce that f ′ is increasing on [0; 2], then decreasing on [2; +∞[ and it admits a maximum
in x = 2 (namely the point (2; 2) we found before). Finally, from the variation of f ′′,

x

f ′′(x)

f (3)(x)

0 ≈ 1 ≈ 3 +∞

+ 0 − 0 +

we deduce that f ′ is convex, then concave, then convex again. Moreover, since f ′′(x) ≤ f ′(x) ≤
f(x), the curve of f ′ lies in the region of plane delimited by the two curves Γ and Λ (Fig. 3.2.14).

Figure 3.2.14 - Possible graphical representation of f ′.

Question 3. Determining two parameters involved in the analytic expression of a func-
tion, having two conditions.

Expected answer to question 3:

Thanks to the data given in the statement and the answer to question 1, we know that f(2) = 4
and f ′(2) = 2.

Further, if f(x) =
a

1 + eb−x
, then f ′(x) = a

eb−x

(1 + eb−x)2
.
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We can observe that f ′(x) = f(x)
eb−x

1 + eb−x
.

So, we have to solve the following system:

{
f(2) = 4
f ′(2) = 2

⇔



a

1 + eb−2
= 4

f(2)
eb−2

1 + eb−2
= 2

⇔



a

1 + eb−2
= 4

4
eb−2

1 + eb−2
= 2

⇔


a

1 + eb−2
= 4

2eb−2 = 1 + eb−2
⇔


a

1 + eb−2
= 4

eb−2 = 1

⇔

{ a

1 + eb−2
= 4

b = 2
⇔


a
2 = 4

b = 2
⇔
{
a = 8
b = 2

Question 4. Calculating the area under the curve of the derivative of second order, by
using an integral.

Expected answer to question 4:

The required area A is equal to the following de�nite integral:

A =

∫ 2

0

f ′′(x) dx.

Now, according to the fundamental theorem of the integral calculus, if G is a primitive of g, then∫ b

a
g(x) dx = G(b)−G(a).

Here, one primitive of f ′′ is f ′, so

A = f ′(2)− f ′(0) = 2− 8e2

(1 + e2)2
.

In solving these types of task, the notion of derivative is expected to be recalled both
as an object and as a tool (Douady, 1986). Indeed, on the one hand, the student has to
apply the de�nition of derivative itself as the gradient of the tangent line. It occurs, for
instance, when it is expressly required to determine the ordinate of the maximum point of
f ′ in question 1.. On the other hand, the student is also expected to introduce and to use
the derivative as a tool in order to solve tasks that do not directly allude to the derivative.
It happens in question 3., when the student has to put into play the derivation formula

D
[u
v

]
=
u′v − uv′

v2
, in order to establish the system of two equations in two unknowns.

And it is also the case of question 4., when f ′ has to be seen as the primitive of f ′′ and
so it intervenes as a tool in the solving formula, namely A =

∫ 2
0 f
′′(x)dx = f ′(2)− f ′(0).

Thus, at a technical level the derivative is employed in di�erent forms:



106

- as a direct application of the de�nition;

- as a tool in other formulas/methods speci�cally employed to solve the task.

On the technological-theoretical side, the function f ′ changes frequently its role within
the properties and the de�nitions to recall. In particular, it must be considered as both
the derivative of f and the primitive of f ′′. This is a complex involvement of the deriva-
tive concept and of the derivative function.
As for the perspectives, notice that, actually, within this problem, it is not necessary
to activate a local perspective on the involved functions. The game remains
pointwise/global, and it is the same for its derivatives of �rst and second order, f ′ and
f ′′.
What is largely fostered here is the coordination of di�erent semiotic resources: about f
and f ′′ graphical, discursive and symbolic information is given, while about f ′ we have
not access to any kind of representation. Its graph is directly required in question 1.,
whereas a symbolic expression has to be found in order to establish the system in ques-
tion 3.

Problem 2

Let f be the function de�ned for all x positive by f(x) = x3 lnx.
1. Study f and sketch its graph γ in a Cartesian orthonormal reference system
Oxy; after having veri�ed that γ presents both an in�ection point and a min-
imum point, calculate, using a calculator, their abscissas rounded to the third
decimal place.
2. Let P be the point in which γ intersects x-axis. Find the equation of the
parabola which has axis parallel to y-axis, passes through the origin and is
tangent to γ in P .
3. Let R be the region delimited by γ and by x-axis on the right-open interval
]0, 1]. Calculate the area of R, showing the followed reasoning and express it
in mm2, having supposed that the linear measure unit corresponds to 1 dm.
4. Draw the symmetrical curve of γ with respect to y-axis and also write its
equation. Do the same for the symmetrical curve of γ with respect to the
straight line y = −1.

Notice that this task is less centred on the derivative. The object of the study is
mainly f and, even though f ′ and f ′′ are not mentioned, they become useful as tools
to study f . The proposed types of task which involve the derivative, along with the
expected answers, are the following.

Question 1. Studying a given function in order to draw its possible graph (in particular,
studying its variation and its concavity).

Expected answer to question 1.
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In order to study the variation of the function f , we have to study the sign of the derivative f ′

of f . For all x ∈ Df ,

f ′(x) = 3x2 lnx+ x3
1

x
= 3x2 lnx+ x2 = x2(3 lnx+ 1).

Hence,

f ′(x) ≥ 0⇔ x2(3 lnx+ 1) ≥ 0⇔ 3 lnx+ 1 ≥ 0⇔ lnx ≥ −1

3
⇔ x ≥ e−1/3

x

f ′(x)

f(x)

0 e−1/3 +∞

− 0 +

Therefore, f admits a minimum in x = e−1/3. The minimumM has coordinates (e−1/3; f(e−1/3)),
so M(e−1/3;− 1

3e).

In order to study the concavity of the function f , we have to study the sign of the second
derivative f ′′ of f . For all x ∈ Df ,

f ′′(x) = 2x(3 lnx+ 1) + x2
3

x
= 2x(3 lnx+ 1) + 3x = x(6 lnx+ 5).

Hence,
f ′′(x) ≥ 0⇔ x(6 lnx+ 5) ≥ 0

and, since x ∈ Df = ]0; +∞[, x is always positive, then

f ′′(x) ≥ 0⇔ 6 lnx+ 5 ≥ 0⇔ lnx ≥ −5

6
⇔ x ≥ e−5/6

.

x

f ′′(x)

0 e−5/6 +∞

− 0 +

Thus, f is concave on
]
0; e−5/6

]
and convex on

[
e−5/6; +∞

[
.

Therefore, γ admits an in�ection point at the abscissa x = e−5/6. The in�ection point F has

coordinates (e−5/6; f(e−5/6)), so F (e−5/6;− 5
6e
−5/6).

Question 2. Determining the equation of a parabola, knowing that it passes through two
points and that it is tangent to a given curve in one of these points.

Expected answer to question 2.
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The parabola, whose symmetry axis is parallel to y-axis, has equation y = ax2 + bx + c, where
the real numbers a, b, c are to determine. If the parabola has to be tangent to the curve γ in
P , both the curves must have the same tangent in P . It means that, in the point of abscissa
x = 1, the derivative of g, where g(x) = ax2 + bx+ c, must be equal to the derivative of f , where
f(x) = x3 lnx:

g′(1) = f ′(1)⇔ 2a · 1 + b = 1 · (3 ln 1 + 1)⇔ 2a+ b = 1. (3.3)

By imposing the following conditions: the parabola passes through the point P and through the
origin, and the equation (3.3) is satis�ed, we obtain the system:

 0 = a · 1 + b · 1 + c
0 = a · 0 + b · 0 + c
2a+ b = 1

⇔

 a+ b+ c = 0
c = 0
b = 1− 2a

⇔

 a+ 1− 2a = 0
c = 0
b = 1− 2a

⇔

 a = 1
c = 0
b = 1− 2a

⇔

 a = 1
c = 0
b = −1

Thus, the parabola representing the function g has equation y = x2 − x.

Question 3. Calculating an area, through an improper integral.

Expected answer to question 3.

The area of R corresponds to the following integral (since f is negative on the given interval):

AreaR = −
∫ 1

0

x3 lnxdx = − lim
t→0+

∫ 1

t

x3 lnxdx.

We apply the formula of integration by parts:∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx

where

f(x) = lnx⇒ f ′(x) =
1

x

g′(x) = x3 ⇒ g(x) =
x4

4
.

We obtain:

AreaR = − lim
t→0+

([x4
4

lnx
]1
t
−
∫ 1

t

1

x

x4

4
dx
)

= − lim
t→0+

(
− t4

4
ln t− 1

4

∫ 1

t

x3 dx
)

= − lim
t→0+

(
− t4

4
ln t− 1

4

[x4
4

]1
t

)
= − lim

t→0+

(
− t4

4
ln t− 1

16
(1− t4)

)
=

1

4
lim
t→0+

t4 ln t+
1

16
lim
t→0+

(1− t4) =
1

4
lim
t→0+

t4 ln t+
1

16
.
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The limit lim
t→0+

t4 ln t gives an indeterminate form [∞ · 0]. Therefore,

lim
t→0+

t4 ln t = lim
t→0+

ln t

t−4
=
[∞
∞

]
U.F.

= lim
t→0+

t−1

−4t−5
= lim

t→0+

t4

−4
=

0+

−4
= 0− (thanks to the rule of de l'Hôpital)

Then, we obtain that the AreaR = 1
16 dm

2 = 0, 0625 dm2 = 625mm2.

In the methods to accomplish all these types of task, the derivative intervenes as a tool
(Douady, 1986), in particular at the symbolic level. In the statement, there is no allusion
to the use of the derivative in the solving techniques. The need to recall it emerges
through the argumentation of the resolution processes, namely on the technological-
theoretical plane. In question 1., the student has to mobilize a fundamental property
related to the derivative concept, that is the relation between the variation of the function
and the sign of its derivative. In question 2., it is necessary to make operative the
de�nition of derivative as the gradient of the tangent line, since the latter must be the
same for both the involved functions. Anyway, it should be usual for the students to
employ the derivative as a tool within these situations. In question 3., instead, the use of
the derivative is completely up to the student and not suggested by the context, which
consists of an integral calculation. Here, resorting the derivative reveals essential in the
following techniques:

- applying the formula of integration by parts for calculating the integral
∫ 1

t
x3 lnx dx;

- applying the rule of de l'Hôpital for solving the indeterminate form, given by the
lim
t→0+

t4 ln t.

Contrary to Problem 1, information about f is given in a verbal-symbolic form and also
the introduction of f ′ by the student may occur at the syntactical level.
Even though the student has to resort the derivative as a tool, it does not lead to

the adoption of a local perspective on the studied function, namely f . Applying
properties and formulas in a pointwise or global way reveals su�cient.
Anyway, in this case, it is the integral notion that should activate a local perspective
on the function f . Indeed, the integral to calculate is improper, since the function
f(x) = x3 lnx is not de�ned in x = 0, which is the left extreme of the given interval.
Thus, without any indication, the student has to introduce an intermediary t, varying
between 0 and 1, to calculate the area as the integral

∫ 1
t x

3 lnx dx, and �nally to make
t tend to 0+. This is the only moment, in the resolution of the two problems, in which
a local perspective is e�ectively required on the given function f . Nevertheless, we can
conclude that the local aspects are really put into play only in one over the eight questions
proposed throughout the two problems, and it happens within the determination of an
integral and not through the use of the derivative.
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3.3.1 Remarks

Many of the proposed tasks of the analysed �nal examination involve the derivative con-
cept. The expected resolution entails the di�erentiation both as an object and as a tool
(Douady, 1986). This is not just a matter of calculations. Indeed, some exercises make
the derivative work in the graphical frame, with frequent changes from the algebraic-
symbolic register to the graphical one.
Nevertheless, recalling and employing the derivative and its properties to solve the tasks
do not require to adopt a local perspective on the involved functions. However, it is
the work with the integral that entails this adoption. Thus, we can say that the local
perspective is expected to be activated, but only in one over the eight proposed tasks
(not all compulsory, because it is the student that chooses which problem, composed of
four questions, to solve). Moreover, it occurs within an integration task, not directly
involving the derivative. In conclusion, the local feature of the di�erentiability property
is not evaluated in the �nal examination we have analysed.



Chapter 4

Analysis of teachers' practices:
three case studies

This chapter is the core of the thesis. We focus on teachers' practices in classroom. First
of all, we are going to introduce the three phases of the research: interviews with the
teachers, observation of their practices around the derivative concept in classroom and
activities with the students. These three phases have provided us with audiotapes, videos,
written productions. We analyse the data through the theoretical framework introduced
in Chapter 2 (see Section 2.2). The aim is examining how the local perspective enters the
semiotic bundle and intervenes in the mathematical praxeology developed by the teacher
in the classroom.

4.1 Research methodology

Three teachers joined up our research project. They have di�erent working experiences
in di�erent high schools. We revealed them the basic intention of our research project:
to study the teaching practices related to the derivative concept. Initially, we did not
tell them anything about our analysis lenses, so that the lessons follow their natural
course. The lessons necessarily occurred in an unusual context, due to the presence of
an external observer. Our concern was to in�uence the regular lesson development no
more than that. The data collection consists of three phases: we conducted a preliminary
interview; we observed each teacher's lessons; we proposed two activities to the students.
The data collected in the last phase are analysed in depth in the next chapter, whereas
in this chapter our focus is on the teachers.

4.1.1 Interviews

Each teacher has been interviewed. The conversation has been audio-recorded upon the
interviewee's consent.
We made explicit that the context was that of a PhD thesis in Mathematics Education.
In particular, we presented the project as a research on the teaching of the derivative
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concept. The teachers seemed interested in the topic. Indeed, they all expressed their
personal concern about the di�culty in teaching and learning this notion. Then, we
explained our methodological approach as external observers in the classroom. Their
lessons would have been videotaped upon their consent. We showed our intention of
proposing two activities to the students. We did not reveal the content not to in�uence
their natural practices. Nonetheless, we promised to discuss together about the activi-
ties, before proposing them in the classroom.
Finally, we made explicit to the teachers the purpose of the preliminary interview. In
the light of the following observation phase, we needed to get insights into their usual
practices, in favour of a better interpretation of data. We made extremely clear from
the start that our goal was not to compare or judge them. Rather, we were interested in
having a range of practices as varied as possible.

Therefore, we organized a semi-structured qualitative research interview, following
Kvale's guidelines (1996). We prepared a sequence of themes we wanted to cover around
the teaching of the derivative topic.

• Use of the textbook;

• Usual or ideal introduction of the derivative concept;

• Usual or ideal introduction of the derivative function;

• Possible in�uences from previous practices.

Around these themes, we prepared a list of essential questions, to pose or cover during the
interview. Nonetheless, we were opened to changes of sequence and formulation of the
questions, "in order to follow up the answers given and the stories told by the subjects"
(Kvale, 1996, p.124).

• What textbook has been adopted in your school?

• Do you like it? Do you follow it?

• How did you introduce limits with your students? What kind of work did you do
on them?

• Do you think it may in�uence the students' approach to the derivative concept?

• How do you usually introduce the derivative notion?

• How do you usually introduce the derivative function?

• What are the main di�culties among the students?
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Usually the ice-breaking question concerns the introduction of the derivative concept or
the adopted textbook.

Beside this preliminary interview, we had other opportunities to talk more infor-
mally with the teachers during and after the observation phase. In those occasions, our
questions have been more probing and interpreting, rather than introducing and direct
(Kvale, 1996). It means that our preliminary questions formulated like "Can you tell me
something about...?" or "How do you do that?" transform into the form "Could you say
something more about what happened?" or "Is it correct that you feel/mean that...?".
These last questions depend on what we observed during the lessons (e.g., a reaction to
some student's intervention, a particular choice of task/resource).

From the research point of view, the interviews provided us with some insights into
the so-called declared or expected practices. More deeply, they revealed us the teach-
ers' beliefs about the topic and the related practices (Furinghetti & Morselli, 2011; see
Paragraph 2.3.1). They permitted us to interpret some teacher's behaviours or to justify
some of her choices.

We are going to present some signi�cant extracts from the interviews in the opening
paragraph of each teacher's case. We do not transcript them, because our goal is not to
analyse their speech, but to collect their beliefs about the proposed themes. Therefore,
you will �nd a personal elaboration of the answers content.

4.1.2 Observation in classroom

To collect data of teachers' real practices in classroom, we adopted the method of par-
ticipant observation (DeWalt, DeWalt & Wayland, 1998). It is commonly used in an-
thropological �eldwork, but it has been more and more employed also in Mathematics
Education as "the most common way of collecting and interpreting data from the class-
room" (Arzarello et al., 1998, p.249). The participant observer "develops a split between
observing and observed subjects in a dialogical relation" (Arzarello et al., 1998, p.250).
Using the distinction made by DeWalt et al. (1998), our observation method is char-
acterized by a "moderate participation" that occurs when the observer "is present at
the scene of the action but does not actively participate or interact, or only occasionally
interacts, with people in it" (DeWalt et al., 1998, p.262). It is what has happened in each
classroom for about 10 hours of lessons. Upon the teachers' and students' consent, we
videotaped the lessons for later analysis. The most signi�cant parts of the videos have
been selected (through the criteria described in the next paragraph), cut and transcribed.
The transcription includes all the employed semiotic resources: not only the speech, but
also screen shots of gestures, drawn graphs, sketches, written symbols and so on. You
will �nd the transcription of these excerpts integrated within the paragraph discourse
in the case of each teacher. The letter "T" denotes the teacher, the letter "S" followed
by a number (e.g., S1, S2, ...) denotes a particular student, while "Ss" denote an unde-
tectable group of students or almost the totality of the class. Outside the transcription
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lines, instead, we use the name initials to refer to the teachers, namely M., M.G. and V..

4.2 Analysis methodology

In this paragraph we are going to explain how we have chosen the extracts to analyse and
how we have combined the theoretical lenses introduced in Chapter 2 for the analysis.

4.2.1 Choice of the practices to analyse

The observation of each teacher in classroom left us with more than 10 hours of video-
taped lessons. Obviously, not every practice is signi�cant to be analysed. Our focus is
on the two types of task Ttangent and Tf ′ we recall below.

Type of task Ttangent "determining the equation of the tangent line to a generic
function in a point"

Type of task Tf ′ "representing the derivative function"

These types of task turn out to be extremely important and delicate for the three teachers
since the �rst interview. They usually work on them to accomplish the respective didactic
tasks: "introducing the derivative concept" and "fostering the conceptualization of the
derivative function". In particular, we are interested in analysing the phases through
which the teacher guides the students' mathematical work, by introducing or constructing
the techniques for Ttangent and Tf ′ .
It is in those circumstances, indeed, that the teacher (consciously or not) introduces a
new perspective on the involved functions (typically f and f ′) and, at the same time, she
must deal with the previously worked perspectives. The perspectives on f ′ are all new
for the students, whereas much work has already been done on f from a pointwise and
global point of view. Beside them, dealing with the derivative concept leads to adopt a
local perspective on f , which is fresh for the students at grade 13. It entails an exchange
between old and new knowledge, seen as both savoir and savoir faire.
Moreover, there are some semiotic resources (such as graphs or symbols) that can be
chosen by the teacher in order to approach and solve the task. Availing of these resources,
in turn, can foster the activation of certain perspectives on the involved functions or even
restrain some others.

4.2.2 Lenses of analysis and their combination

Following Chevallard's model of didactic moments, we focus in particular on three phases
of the teacher's design and development of the praxeology. Referring to the types of task
Ttangent and Tf ′ , we detect the moment of the �rst meeting with T , the moment of
exploration and construction of a technique and the technological-theoretical moment.
Even if the teacher has a clear and organized scheme in her mind, the three moments are
often intertwined in a classroom practice. We give a general overlook on the teacher's
didactic organization, by stressing the types of task, tasks and problems she proposes



115

and solves with the students. We try to interpret the role of each part of the organization
within the developing praxeology.
During the process of construction of a new technique, with a proper technology, for
a speci�c given task, the old techniques, with their own technologies, emerge and take
part in the formulation of the new practice. Our analysis allows us to determine which
previously worked praxeologies intervene, in what moment and at what level.
Then, we conduct a more �ne analysis of some selected video extracts. We primarily base
on activated perspectives and semiotic resources. Essentially, we characterize teacher's
and students' speech, gestures, symbols, sketches or drawings in terms of pointwise,
global or local perspectives. The analysis is accompanied by our personal remarks about
the dialectics between perspectives and semiotic resources, within the rising praxeology.
Thanks to this kind of analysis we try to explain how previously worked praxeologies
intervene in the formulation of the new ones. In particular, before starting the analysis
of each case, we want to schematically recall in Table 4.1 the conics-related praxeology.
In all our case studies, it is part of the students background and the teacher has to deal
with it, be her choice to recall, to review or to reject it.

OMconics

Type of task Determining the equation of the tangent line to a conic
in one of its points P

Techniques 1) ∆ = 0
2) Doubling rule
3) mtg = −(mradius)

−1 (for the circle)
Technology 1) The tangent line is de�ned as the straight line that

has two coincident intersections with the conic
2) /
3) The tangent to a circle centred in O in one of its
points P is the perpendicular to the radius OP , pass-
ing through P ; they know by heart the relation of anti-
reciprocity for the angular coe�cients of two perpen-
dicular lines.

Theory 1) Analytic equation of a generic straight line pass-
ing through a given point P , system algebraic solving
rules, second order equations, �rst and second order
inequalities
2) /
3) Analytic equation of a generic straight line passing
through a given point P , �rst order equations

Table 4.1 - Mathematical praxeology for the tangent to a conic: con-
structed two years before, it is common to our three case studies.
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4.3 The case of M.

M. teaches maths and physics in a high school in Savigliano (Cuneo). She has been
working in this school for several years, and in particular with Quinta B 's students since
they attended their third year. The school has adopted the textbook Nuova Matematica
a colori. Edizione BLU per la riforma written by Sasso (2012). M. has contributed to its
choice, �nding it "very close to her way of teaching". She follows it for both preparing
lessons and giving exercises to students. Nevertheless, she also chooses interesting activ-
ities from other resources, such as the modules Multi ForMat by Maraschini & Palma
(2000). Moreover, in her practices, she tells to be in�uenced by L'analisi in�nitesimale
negli studi preuniversitari: proposte didattiche (Dupont, 1983), that is a booklet written
by Prof. Pascal Dupont for the university courses of Mathematics Education attended
by M..

4.3.1 From the interviews: M.'s beliefs

In the preliminary interview with M., in November 2012, we spoke about the work done
with her students on limits, as preparatory to the introduction of the derivative concept.

How did you introduce limits with your students? What kind of work did

you do on them? And how do you think this may in�uence the students'

approach to the derivative concept?

M. approached the limit de�nition with the neighbourhood notion. She does not use the
de�nition in ε− δ, because she thinks it seriously complicates things for students. In her
experience, she noticed that students always get concerned about this de�nition and make
great e�orts just to remember it by heart, without trying to understand it. By referring
to neighbourhoods, without any explicitness in terms of ε and δ, M. and her students
graphically tried to conceptualize the limit notion. They started from a neighbourhood
on y-axis and went towards a neighbourhood on x-axis. They also approached the few
theorems they studied, such as the limit uniqueness and the squeeze theorem, with the
limit de�nition given through neighbourhoods.
Afterwards they dealt with the so-called remarkable limits. She always says that there
are only two limits of special interest:

lim
x→0

sinx

x
= 1 and lim

x→+∞

(
1 +

1

x

)x
= e

They proved these two and deduced all the other limits from them. In order to justify
the second remarkable limit, M. had the opportunity to speak about Nepero's number

de�nition as the limit of the sequence lim
n→+∞

(
1+

1

n

)n
, which they had intuitively studied

with tables of values in excel.

How do you usually introduce the derivative notion?

As the textbook does (Sasso, 2012), M. usually introduces the derivative concept by
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proposing two problems that, also from an historical point of view, have led to the intro-
duction of this notion. The �rst is the geometrical problem of the tangent line and the
second is the physical problem of the instantaneous speed. They solved both of them by

introducing a limit: as ∆x → 0, in the case of
∆y

∆x
, and as ∆t → 0, in the case of

∆s

∆t
.

Then, M. compares the two problems, showing that they actually are the same problem.
In the geometrical case, M. denotes f ′(x0) the obtained limit, when it exists and it is
�nite. She calls it derivative of the function f in the point of abscissa x0. She stresses
its geometrical meaning: it corresponds to the angular coe�cient1 of the tangent line to
the function f in x0.

In classroom, since the �rst lesson about the derivative concept, M. immediately
spoke about "derivative function". After we discussed about the way she introduced the
derivative function to students.

Let's talk about the choices you made about the introduction of the deriva-

tive function: moment of the lesson, methods, ...?

She answered: "I always think about it: starting from the derivative function in a point,
which is a number, one must obtain the function. This is really a delicate step... It is a
sort of conquest: every time, I make a calculation that I could actually make only once.
I �nd that if you [teacher] give to students a justi�cation of what you are doing, they get
it better..."
As far as the methods are concerned, M. thinks that the key consists of working on both
the algebraic and the graphical side. She prefers explaining by hand, at the blackboard,
the whole process to obtain the graph of f ′, starting from that of f . That is because she
believes this can help the students in conceptualizing the derivative of a function as a
function itself, with its own graphical representation. So, she wants them to do the whole
process by hand on their notebooks, before doing it with GeoGebra. She adds: "I love
GeoGebra and I really believe that working dynamically with this kind of software can
be extremely useful both to strengthen and to discover. Indeed, within some contexts,
such as the Euclidean geometry and the geometrical transformations, I rely on GeoGebra
to help visualization. On the contrary, with the derivatives, I see it as a mean to con�rm
all the steps done by hand".

4.3.2 Type of task Ttangent: determining the equation of the tangent
line to a generic function in a point

From the interviews, it transpires that M. includes the textbook among the didactic
resources to design her lessons. Indeed, she tells us that she has chosen Sasso's textbook,
proposed it to her colleagues and, then, adopted it along with the whole school. In
classroom, the structure she actually gives to the �rst lesson is exactly the textbook
one (see Paragraph 3.2.2, in particular Fig. 3.2.8). She also gives the reference to the
students, so that they can follow: "The things we are going to see now are on your

1For the use of the expression "angular coe�cient", see note n.4 in Chapter 3.
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textbook, approximately... the page is 258". Then, she suggests a "title" for the lesson,
by saying:

"If you want to note something down, now we are going to do the introduction
to the derivative concept: the problem of variations. Derivatives are one of the
fundamental Calculus concepts and they will help us to solve several problems.
[...] I'm going to introduce two problems that from an historical point of view
led, in the 17th century, through their resolution, to the derivative concept.
They are the problem of the tangent and the problem of the instantaneous
speed."

During the construction of the praxeology for the problem of the tangent, the teacher
holds the control of the lesson. The students intervene only for posing questions, if
they do not understand something on the blackboard, or if they are questioned by the
teacher. By presenting the problem of the tangent and the problem of the instantaneous
speed, with some examples, the teacher works on the technological-theoretical block of
the praxeology. Afterwards, she formalizes the derivative concept:

"I start by de�ning the derivative of a function in a point."

She de�nes it as the limit of the incremental ratio of the function, when the abscissa
x0 is incremented of h, as h goes to 0. Thus, she gives a technique to �nd the angular
coe�cient of the tangent line to a generic function in a point. Returning back to the
problem of the tangent, she makes an example with the function y = x2 in the point of
abscissa x0 = 2, in order to show the technique just introduced and to practice it.
M.'s didactic organization is summarized in Table 4.2.
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Tasks t, type of tasks T and

problems given in classroom

Construction of the OM for

Ttangent
Problem 1 (of the tangent), Ttangent:
we have a generic function, we want
to determine the tangent line in a
speci�c point.

The teacher wants to stress the
similarities between this two
kinds of problems, working at a
technological-theoretical level.

Problem 2 (of the instantaneous
speed): we launch a body upward,
we want to determine its speed in
the instant 3 seconds.

The teacher prepares the tools (in
particular, the limit) for construct-
ing a new technique τtangent, justify-
ing their necessity.

Tmtg : formalizing the derivative con-
cept.

By introducing a subtype of task
Tmtg ⊂ Ttangent, the teacher gives a
technique τmtg to �nd the angular
coe�cient of the tangent line.

tmtg : calculating the �rst derivative
of the function y = x2 in the point
of abscissa x0 = 2.

Within an example, the teacher
practices the technique τmtg .

ttangent: writing the equation of the
tangent line to the function y = x2

in x0 = 2.

Within the same example, the
teacher frames the technique τmtg
inside the general technique τtangent.

Table 4.2 - M.'s didactic organization around the type of task Ttangent.

Notice that other previous praxeologies intervene: OMstraight line (Table 4.3), in the
mathematical domain, and OMaverage speed (Table 4.4), in the physical domain. In both
of them, we �nd an algebraic formula involved at the technical level: that of the angular

coe�cient of a straight line m =
∆y

∆x
and that of the average speed v =

∆s

∆t
.

OMstraight line

Type of task Determining the equation of a straight line passing through
two points P (xP , yP ) and Q(xQ, yQ)

Technique r : y − yP = mPQ(x− xP ) or y − yQ = mPQ(x− xQ)

where mPQ =
yP − yQ
xP − xQ

Technology Graphical and intuitive justi�cation.
Theory - Through two points in the plane it passes one and only one

straight line.
- Coordinates in the Cartesian plane.

Table 4.3 - Previous mathematical praxeology related to the straight
line.
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OMaverage speed

Type of task Determining the average speed of a body moving from A to
B.

Technique v =
sB − sA
tB − tA

Technology &
Theory

Average speed is the rate of change of distance with time.

Table 4.4 - Previous physical praxeology related to the average speed.

The teacher develops the praxeology OM [Tmtg/τmtg/θmtg/Θtangent]. Three didactic
moments are detectable:

1. meeting with the type of task, trough two signi�cant problems;

2. construction of the technological-theoretical block for Tmtg ;

3. elaboration of a technique for Tmtg .

The approach to the two problems presented and the technique τmtg introduced have a
local character, essentially because of the use of limit symbol. We are interested in how
this local perspective on f is introduced by the teacher.

Construction of the technological-theoretical block for Tmtg

M. poses the �rst problem: she draws a generic function f , she chooses a point P (x0, y0)
on this graph, traces the tangent line in P (Fig. 4.3.1) and gives the type of task Ttangent:

"We want to determine the tangent line to the curve in the point P ."

Figure 4.3.1 - M.'s formulation of the type of

task Ttangent in the graphical register.

Then, she stops to re�ect with the class upon the same problem when the function
is a conic. We are going to analyse, from both a perspective-based and a semiotic point
of view, the teacher's and the students' utterances.
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What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

1 T: "Let's think about it for a while... The prob-
lem of the tangent is not a problem we have never
faced before. Think about the analytic geometry.
What have we done with the conics?"

2 S1: "Doubling rule."

3 S2: "Delta equal to zero."

4 T: "Ok. If we have a conic, so a second order
curve, we have seen the possibility to... Someone
said "doubling rule". When did it work? When
the point belonged to..."

pointwise speech
indicators

5 S1: "To the curve." pointwise speech
indicators

6 T: "The point belonged to the curve. I've never
proved it, I gave it to you as a rule, but it
has a link, we could see it, with the deriva-
tive. The other possibility was for example to
impose the tangency condition... If we have to
de�ne what it means that a straight line is tan-
gent to a curve, how did we do it? By im-
posing the tangency condition, that is by say-
ing that the points, the solutions, between the
straight line and the conic were?"

pointwise speech
indicators

7 S3: "Coincident." pointwise speech
indicators

8 T: "Eh! Coincident! So we imposed delta equal
to zero. But when can we do it? Obviously when,
from the system between the straight line and the
conic, I obtain an equation...?"

9 S4: "Of second order."

10 T: "Of second order. Right?"

11 Ss: "Yes."

12 T: "But if I have a generic curve, so a function
such as y = sinx, am I able to solve the system
[which gives] sinx = mx?"

13 Ss: "No..."
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14 T: "Absolutely not. So, you see, we need for a
more general method, that gives us the possibility
to �nd the tangent in a point to any curve."

With a brief speech, M. recalls to the students the algebraic methods used in the
conics-related praxeology (see Table 4.1), in particular the doubling rule and the ∆ = 0
method [1-3 ]. As for the former, she lets transpire that a justi�cation lies within the
derivative theory, whereas, for the latter, she stresses that its application is strictly related
to conics [4-11 ]. From a technological-theoretical point of view, M. underlines that these
methods have a pointwise character [6-8 ], and she explicitly highlights the need for a
more general method [12-14 ]. Thus, she poses the new praxeology in a general position
with respect to the previous conics-related one.
Afterwards, she deletes the picture in Fig. 4.3.1 and draws it again. Here are the words
and written signs she uses to prepare the ground for what she calls a "dynamical idea"
[line 15 ].

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

15 T: "We can see it [the problem] with an idea,
I'd dare to say, of dynamical kind. Let's
start not from the tangent, but from the se-
cant line to the curve. That is, let's start
from the curve y = f(x). We take a point x,
then we take a point x plus... I'd call it ∆x.
Or better, let's call the point x0..." (she com-
pletes the drawing in Fig. 4.3.2(a)) "So,
we consider the point P and the point Q. The
point P has coordinates (x0, f(x0)) [...] then,
we consider another point, I took it on the right
[of P ], but I could take it on the left, it doesn't
matter. With the increment, I mean not neces-
sarily a positive increment. So, x0 +∆x, and its
image is clearly f(x0 + ∆x)."

global

pointwise

graph
+ symbols
+ speech
indicators
speech
indicators

16 T: "Let's write the equation of the secant line."
(Tracing the straight line through P and Q) "Do
we know how to write it?"

pointwise graph

17 S5: "Yes [...] We �nd m..."

18 T: "We �nd the angular coe�cient... as what?"

19 S5: "As the delta between the y of the two points
and the x of the two points."

global oral symbols
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20 T: "Sure." (Writing m =
∆y

∆x
) "We know it

well: delta y over delta x, so the ratio between
the vertical increment and the horizontal one."
(She adds ∆y and ∆x on the graph, as in Fig.
4.3.2(b))

global symbols
+ speech
indicators +
graph

F
ig
ur
es

Figure 4.3.2(a) and 4.3.2(b) - M.'s reformulation of the type of task Ttangent
always in the graphical register.

Student S5 recalls the praxeology OMstraight line (see Table 4.3) to �nd, within the
analytic geometry, the equation of a straight line [17 and 19 ]. M. writes it and makes it
explicit for the case in which they are (Fig. 4.3.3). She adds:

"Our
∆y

∆x
, written in terms of the function, is called 'incremental ratio', that

from a geometrical point of view represents the angular coe�cient of the secant
line."

Figure 4.3.3 - M. implements the recalled m

technique as incremental ratio.

By starting from the secant, giving two points P and Q on the function, M. fosters the
students to recall the straight line-related praxeology, and in particular, the formula for
the angular coe�cientm. Notice that she starts from a pointwise perspective on the given
function, by choosing two points on it [15-16 ]. Then, she moves to a global perspective,
by calculating the incremental ratio of f between the two points [19-20 and Fig. 4.3.3].
Another remark is about the symbols placed on the graph: these two semiotic sets are
strictly tied. M. refers to the increment as ∆x, both in the speech and in the written

symbols, and this may induce the students to recall the de�nition of m as
∆y

∆x
[17 and

19 ]. Afterwards, she introduces the dynamical idea and goes towards a local perspective
on f . Let us see how.
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What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

21 T: "If I take, instead of Q, a closer point Q′, and
I trace the secant line." (She traces the line PQ′,
Fig. 4.3.4) "Then, I take a point Q′′ and then
again the secant line." (She traces the line PQ′′,
Fig. 4.3.4)

pointwise graph +
speech
indicators

22 T: "What happens as Q gets closer and
closer to P?"

local speech
indicators

23 S4: "It [the line] becomes tangent instead of se-
cant."

local speech
indicators

24 T: "Yes! As Q gets closer and closer to P , the
angular coe�cient of the secant, let's call it
mPQ, becomes that of...?"

local speech
indicators

25 Ss: "The tangent."

26 T: "That of the tangent. How can we speak about
this approaching...?"

local speech
indicators

27 Ss: "Delta x goes to zero." local speech
indicators

28 T: "Delta x goes to zero or, if you want, with
the... limit!" (She writes the limit in Fig. 4.3.5)

local speech
indicators
+ symbols

F
ig
ur
es

Figure 4.3.4 - M.'s dynamical idea to make the
secant become the tangent.

Figure 4.3.5 - M. intro-
duces the limit for ∆x→ 0.

With the idea of introducing a sequence of points on the function Q,Q′, Q′′, ... that
get closer and closer to P , M. fosters the students to recall the limit theory. This dy-
namical idea, supported by the drawing, justi�es the need for a technique that involves
the limit as the increment goes to zero. So the work is pointwise on f when the teacher
chooses the points Q′ and Q′′ [21 ]. It becomes local when M. supports her drawing with
the speech, by saying "As Q gets closer and closer to P" [22 ]. And it moves on to a work
on written symbols, with the "localization" of the global sign ∆x, previously introduced
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[15 ]. The shift is made through the speech, proposed by students [27 ], after M.'s request
of formalizing "this approaching" [26 ]. The sign ∆x, which so far has represented any
global interval between two any points on x-axis, now is seen in a local perspective, as
representing the interval between two points that get closer and closer, that is a (right)
neighbourhood of the point x0. The limit sign, that intervenes in line [28 ], Fig. 4.3.5,
comes to be justi�ed by M. with the process of "localization" of the sign ∆x. We observe
that this process remains implicit in the graph, with which M. is supporting her speech.
This is something we can say at a very �ne level of analysis, but we think it is very
important. The local perspective on f , which is present in the speech through indicators
of "localized movement", remains implicit in the graph. Indeed, during the speech, ∆x is
never modi�ed and it remains a rather big interval on the drawing. Moreover, no gesture
is made on the graph in order to show that Q is approaching P . The speech consists
in reading of the previously drawn graph, without further actions on it. The local per-
spective on f , that is really exalted in the speech with implicit link to the represented
graph, is then almost immediately delegated to the symbols (lim, ∆x→ 0). The symbols
chosen on the graph (e.g., ∆x, that evokes analogies in physics with ∆t) and the speech
for reading the drawing (e.g., expressions like "closer and closer" or "approaching") serve
up to students the elements to recall the limit technique and the ∆x→ 0 writing.

The same process is activated by M. on the second problem, that of the instantaneous
speed. It is shown on an example:

"We launch a body upwards [...] we want to determine its speed in the instant
3 seconds".

M.'s formulation and resolution process are shown in Fig. 4.3.6. We will skip the tran-
script details, because of the analogies with the previous problem, in terms of drawings
and justifying speech.

Figure 4.3.6 - M. introduces and solve the problem 2.

M. closes the presentation of the two problems by saying what follows.
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What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

27 T: "It is very important the problem
of variations, that is the relationship
between the variation of two magni-
tudes. Sometimes it is important to know
what the function exactly does in a point, so
I give you an abscissa and you calculate the
correspondent ordinate. But it is also important
the trend, in general, of a function. Think about
the angular coe�cient. Since this quantity"
(she points at the limit) "represents the angular
coe�cient of the tangent line, we know that
if the angular coe�cient is positive, then the
straight line is increasing, so the variation [of
the function] will be an increasing variation."

pointwise

global

speech
indicators

Notice that explicitly speaking the teacher is marking the di�erence between the value
of the function in a point, that is a pointwise information, and the variation, as a global
information on the function. She is not speaking about local implications, yet, even if
the employed technique involves the limit. Thus, we can say that the local dimension
on f remains implicit at the technical level, but not made explicit on the technological-
theoretical side.

Elaboration of a technique for Tmtg

Let us consider the formalization that M. gives to the derivative concept. She introduces
it as a technique τmtg for the sub-type of task Tmtg , that is determining the angular
coe�cient of the tangent line to a generic function in a point. In line [28 ] we �nd her
speech. The teacher makes explicit that so far they have always "worked nearby". As a
marginal observation, she makes explicit the local character of their work on f .

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

28 T: "I start by de�ning the derivative of a
function in a point. You see, so far, chosen
a point, we've always worked nearby."

pointwise
local

speech
indicators

f ′

f

29 T: "Given a function y = f(x), we
de�ne 'derivative' the limit of the
incremental ratio of the function, cal-
culated in that point." (Then, she draws
again the situation but calling h the
increment ∆x, Fig. 4.3.7 on the right)

local speech
indicators
+ graph +
symbols

f
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30 T: "Then, we de�ne as deriva-
tive of the function in the point x0,
that is the derivative of the function
calculated in the point x0, the limit as h
goes to 0 of the incremental ratio ∆y
over ∆x, that is..." (She writes the
limit in Fig. 4.3.7) "We denote it with
f ′(x0), derivative of the function f
calculated in the point x0."

pointwise
local

speech
indicators
+ symbols

f ′

f

31 T: [...] "So, we can say that the geometrical
meaning of the derivative is what? It repre-
sents the angular coe�cient of the tangent
line to the function in the point x0. Obvi-
ously, I mean the point of abscissa x0."

F
ig
ur
es

Figure 4.3.7 - M.'s formalization of the derivative concept.

With the written formalization of the derivative (Fig. 4.3.7), M. wants to give a tech-
nique to determine the angular coe�cient of the tangent line to a function, as the remark
[31 ] stresses. So, she devolves to the derivative a technical role in the praxeology for deter-
mining the tangent line to a generic function. The praxeology OM [Tmtg , τmtg , θmtg ,Θmtg ]
is now built. M. proposes to work on an example, in order to practice the technique she
has just introduced. She gives and solves the task tmtg ∈ Tmtg , which consists of deter-
mining the derivative of the function y = x2 in the point of abscissa x0 = 2. She �nds
f ′(2) = 4 (Fig. 4.3.8) and she makes a �nal remark about the tangent line [32-37 ].

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

32 T: "Actually, look at the drawing... Since
it is 4, what does it represent?"

pointwise speech
indicators

f ′

33 Ss: "The tangent."

34 T: "Not the tangent, don't say me the tan-
gent! It represents?"
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35 Ss: "The angular coe�cient..."

36 T: "The slope, the angular coe�cient of
the tangent line in the point of abscissa 2."
(She writes mtg under the result 4 and
traces the tangent line in the point (2, 4)
on the graph, Fig. 4.3.8)

pointwise speech
indicators

f

37 T: "So, if it [the angular coe�-
cient] is positive, you can see that
the function will be...?" (Her hand follows
the function going upwards) "Increasing,
right?"

global speech
indicators
+ iconic
gesture

f

F
ig
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es

Figure 4.3.8 - M. gives and solves the tasks tmtg ⊂ ttangent.

Notice that, as in line [27 ], the speech that accompanies the graph and the symbols
underlines the link between a pointwise perspective on f ′ and a global perspective on f .
The established relation is again between the value of f ′(x0) and the global variation of
f in the interval that contains the point of abscissa x0 [37 ].

M. �nally includes the subtask tmtg within the broader task ttangent [38 ]. This last
step completes the technique for the type of task Ttangent [45 ].

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

38 T: "If we would like to write the equation of
the tangent line?"

39 Ss: "We make it pass through...", "We im-
pose the passage through the point (2, 4)...",
"...with the angular coe�cient..."

40 T: "What expression of the straight line do
we use?"

41 Ss: "y − y0..."
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42 T: "Exactly." (She writes it on the
blackboard, Fig. 4.3.8) "Where
we replace x0 and f(x0) with what?"

pointwise symbols f

43 Ss: "The coordinates of the point." pointwise speech
indicators

f

44 T: "The coordinates of the point, so in our
case (2, 4), and then we replace m with?"
(She circles mtg under the limit result and
f ′(2) at the beginning of the limit calcu-
lation) "You see, here we can also write
f ′(2), instead of m." (She �nds the equa-
tion y = 4x− 4)

pointwise symbols f ′

45 T: "In general, the equation of the tan-
gent line, as you �nd it on textbooks, is
y − y0 = f ′(x0)(x − x0)." (Writing it on
the blackboard)

pointwise symbols f ′

The conclusion of the exercise, in which M. �nds the equation of the tangent line,
recalls the whole straight line-related praxeology. The tangent line is then seen as the
straight line passing through the given point of abscissa x0 on f and having f ′(x0) as
angular coe�cient.

The new praxeology OMtangent is summed up in Table 4.5. The technological speech
is made of sentences explicitly uttered by the teacher in classroom. As for the theoretical
knowledge, the �rst three are new pieces of knowledge, whereas all the others are old
pieces of knowledge to recall.
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OMtangent

Type of task
Ttangent

Determining the equation of the tangent line to a generic
function in a point.

Technique
τtangent

tg : y − f(x0) = f ′(x0)(x− x0) where

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
Technology
θtangent

Given a point P (x0, f(x0)), consider a small increment h
of the abscissa x0. You obtain another point on the curve
Q(x0+h, f(x0+h)). Trace the secant line PQ, its angular co-

e�cient is given by mPQ =
yQ − yP
xQ − xP

=
f(x0 + h)− f(x0)

h
.

Imagine a sequence of points Q,Q′, Q′′, . . . that get closer
and closer to P . It means that h goes to 0. The limit posi-
tion of the secant PQ,PQ′, PQ′′, . . . is the tangent in P . So

lim
P→Q

mPQ = lim
h→0

f(x0 + h)− f(x0)

h
= mtg, which we denote

with f ′(x0).
Finally, the tangent line is the straight line y−y0 = m(x−x0)
passing through P with angular coe�cient mtg = f ′(x0).

Theory
Θtangent

- The de�nition of the tangent line to a generic function in
a point as the limit position of a line cutting the function in
that point and into another one, which gets closer and closer
to it.
- The problem of the tangent.
- The problem of the instantaneous speed.

- The analytic equation of a straight line, m =
y1 − y2
x1 − x2

- The limits theory.
Table 4.5 - M.'s mathematical praxeology for the type of task Ttangent.

Remarks

The initial teacher's speech aims at showing to the students that the old algebraic praxe-
ologies, namely the conics-related ones, do not �t a more general problem. The new limit
technique to solve the problem of the tangent is presented as a more general method with
respect to the previous algebraic ones. Two praxeologies are recalled, in particular that
of the straight line equation, which still belongs to the Algebra domain. The local per-
spective has to be induced by the teacher. Centered on the limit technique, the lecture
prevails as dicactic technique along with the IRE (Initiate-Response-Evaluate) model
of questioning the students. The limit is proposed by the students as a technique but
induced by the target questions and the symbolical situation prepared by the teacher.
She uses the graphical resource supplied with symbols and accompanied by terms of
"localized movement". Anyway, the local dimension, which is implicitly contained in
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the speech, is almost immediately delegated to the limit symbol. The graph remains a
pointwise and global support. The formalization phase is local in so far as the limit is
used. From the introduction of this symbol on, all the local expressions we can detect in
the speech are directly associated with the limit technique ("as h goes to 0", "limit of the
incremental ratio", etc.). All the terms of "localized movement" disappear. Moreover, it
is stressed the fact that the tangent gives information about the variation of the given
function, enhancing a global perspective on it.
As a consequence, OMtangent has a strong practical-technical block, with local features
embedded in the use of the limit symbol. Instead, the technological-theoretical block
turns out to be based on a tangent de�nition provided by the teacher to foster the intro-
duction of the limit.

4.3.3 Type of task Tf ′: representing the derivative function

During the �rst lesson, after having introduced the derivative concept, M. speaks about
"derivative function". As she tells us after, the approach has to be both algebraic and
graphical.
Let us now consider what happens in the classroom. We recall that the derivative notion
has just been de�ned as:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

Immediately after M. addresses the type of task Tf ′ , by saying:

"Let's try to calculate the derivative of some functions, now".

M.'s didactic methodology consists of deducing the generic technique τf ′ by working on
particular cases. The �rst one is a numerical example, namely the task tmtg we have
hinted to before (see Fig. 4.3.8), through which M. wants the students to work on the
just elaborated technique τmtg . Once solved tmtg , M. generalizes it into another task
tf ′ ∈ Tf ′ :

"Let's calculate the �rst derivative of the function y = x2 in a generic point
of abscissa x."

Thus, she begins to explore the type of task Tf ′ through a particular case. This is the
moment of construction of the block [Tf ′/τf ′ ], where Tf ′ is approached from the algebraic
side. Indeed, in this phase of the work in classroom, the type of task Tf ′ is speci�ed in
algebraically representing the derivative function. That is why we denote the type of
task and the related praxeology with the superscript "alg": T algf ′ and OMalg

f ′ . The two
algebraic phases of the work are summarized in Table 4.6.
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Tasks t, type of tasks T and

problems given in classroom

Construction of the OM for T algf ′

tmtg : calculating the �rst derivative
of the function y = x2 in the point
of abscissa x0 = 2.

This can be seen as a transitional
task: the teacher gives and solves
it not only to work on the just in-
troduced technique τmtg , but also to
create the basis for the next task.

tf ′ : calculating the �rst derivative
of the function y = x2 in the generic
point of abscissa x.

Generalizing the previous task from
x0 to a generic x, the teacher works
on the technological plane, from
θmtg to θf ′ . She gives an algebraic
technique for Tf ′ .

Table 4.6 - M.'s didactic organization for working on the type of task
Tf ′ in the algebraic register.

In a successive moment, M. will work on the derivative function also in the graphi-
cal register of representation, so that we will have also a T graf ′ (see ahead subparagraph
"Elaboration of a technology, passing through the graphical technique").

We are going to analyse essentially two didactic moments:

1. the elaboration of the algebraic technique, starting from the technological speech;

2. the elaboration of a technology, passing through the graphical technique.

The introduction of a new global perspective on the derivative function is realized by M.
with particular examples which have generic relevance. M. chooses a pointwise task on
f ′ and she has to transform it into a universal pointwise one, in order to move towards
a global perspective on the derivative function.
In this �rst approach to the problem, the perspective on the function f is still implicitly
local, because of the limit sign used in the technique.

Elaboration of the algebraic technique, starting from the technological speech

Let us focus on the particular task tmtg , that we have previously met within the praxeol-
ogy OMtangent (see Fig. 4.3.8). Here we transcribe the resolution phase, skipped in the
previous paragraph, in order to show the functionality of this task as generic example in
the teacher's intention.

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

1 T: "Let's make an example: y = x2."
(She draws the graph, Fig. 4.3.9) "Ev-
erybody knows it. We would like to cal-
culate the �rst derivative of this function
in the point of abscissa x0 = 2." (She de-
tects the point on the graph, Fig. 4.3.9)

global
pointwise

graph
speech
indicators

f
f ′
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2 T: "So, what shall I do? It means
that I calculate f ′ in 2." (She writes
f ′(2)) "What shall I do now? The
limit as h goes to 0 of the incremental ratio.
Notice that, instead of x0, I've already de-
tailed it: f(2 + h) − f(2) over h." (She
writes the limit, Fig. 4.3.10) "Does it
work? Are you all with me?"

pointwise
local and
pointwise

speech
indicators
+ symbols

f ′

f

3 Ss: "Yes."

4 T: "Equal... And now I do the calculation."
(She replaces f(2 + h) with (2 + h)2 and
f(2) with 22, then she develops the square
of the binomial, and eliminates 4 and 4 in
the numerator, Fig. 4.3.10)

pointwise symbols f

5 T: "Notice that the only care we must
have, maybe it seems strange, is that the
variable of this limit isn't x anymore, but it
is?"

local speech
indicators
+ symbols

f

6 Ss: "h."

7 T: "h. After all, you can see it also here"
(She underlines h in the limit sign) "We
haven't any problem here, but later when
we'll generalize, there will be also x. So, be
careful to the variable of the limit, ok? So,
h goes to 0."

local speech
indicators
+ symbols

f

8 T: "What is the value of this limit?"

9 Ss: "4", "0"

10 T: "Too much answers: 4, 1, 0, in�nity.
Everything and more."

11 Ss: "0", "0 over 0" local oral sym-
bols

f

12 T: "So calculate it!" (She puts h in evi-
dence, �nding h(4 + h) at numerator; she
eliminates h at numerator with h at denom-
inator, Fig. 4.3.11) "It becomes 4 + 0, and
then?"

local symbols
+ speech
indicators

f

13 Ss: "4"

14 T: "The result is 4." pointwise symbols f ′
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Figure 4.3.9 - M. poses the task tmtg .

Figure 4.3.10 - M. applies the technique
τmtg in order to solve the task tmtg .

Figure 4.3.11 - M. solves the
task tmtg .

The teacher proposes a pointwise task on f ′ [1 ], so the perspective on f ′ remains
on the point x0 for the whole solving process [1-14 ]. During this process, instead, the
perspectives on f frequently change. Notice that the implemented technique τmtg [2 ]
(Fig. 4.3.10) potentially has a local dimension on f , due to the presence of the limit sign.
This local dimension is here neutralized by the pointwise one, since the function f is con-
tinuous and di�erentiable in the point x0. Indeed, a pointwise perspective is su�cient to
replace x0 in the expression of f [4 ]. M. makes an explicit reference to the limit variable
h [5-7 ], that is potentially a local remark on f , because it gives a local dimension to the
global incremental ratio. Nevertheless, we stress that this local remark actually remains
at the syntactic level: M.'s speech refers to the involved variables. Her main concern
indeed is the possible confusion between x, that is the variable of the function, and h,
that is the variable of the limit. This remark is made to prepare to the next step, where
h and x will coexist in the same calculation [7 ].
In solving the limit [8-14 ], algebraic praxeologies intervene, especially the algebraic tech-
nique to solve the indeterminate form [0/0] (see Table 4.7).

OM[0/0]

Type of task Solve the indeterminate form [0/0] (in limits involving poly-
nomial functions).

Technique Algebraically decompose the polynomials at numerator and
at denominator. Eliminate the common factor. Solve the
simpli�ed limit.

Technology The indeterminate form [0/0] is due to the presence of an
in�nitesimal common factor above and below the fraction
sign.

Theory Decomposition rules of polynomials.
Table 4.7 - Previous mathematical praxeology related to the resolu-
tion of the indeterminate form [0/0].
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Now, let us see how this task takes the role of generic example, leading to the algebraic
representation of the derivative function.

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

15 T: "Now, to summarize, what have we
done? The concept of derivative, but
calculated in a point." (She points to an
imaginary point in front of her, with her
left hand, Fig. 4.3.12 on the left) [...] "The
derivative of a function in a point, what
does it give?"

pointwise speech
indicators
+ pointing
gesture

f ′

16 S6: "A coe�cient."

17 T: "A number, exactly. But now let's make
a step forwards. We have y = x2 and
we have calculated the angular coe�cient
of the tangent line in the point x0 = 2."
(She repeats the same gesture of be-
fore with the left hand, as in Fig.
4.3.12 on the left) "If now I ask you:
"What is the value of the angular coef-
�cient in the point with abscissa x0 = 5?"
One should again work hard and do all the
calculation. Right? In x0 = 1... and so
on." (She moves her hands as if something
is rolling in front of her) "You see, it's not
so convenient, also from a practical point of
view."

pointwise speech
indicators
+ symbols
+ pointing
gesture

f ′

18 T: "So, what shall I do? The calculation
in a generic point x" (She joins upwards
the �ngers of her right hand and then turns
it down to her left hand that is open up-
wards, Fig. 4.3.12 on the right) "Ok? That
is, instead of calling it x0, I call it x." (She
turns again her right hand on the open left
hand, as before, Fig. 4.3.12 on the right)

global(=univ.
pointwise)

speech
indicators
+ symbols
+ gestures

f and
f ′

19 T: "And now we must be really careful! I
call it x. Which outcome I expect?"

20 S1: "A function." global speech
indicators

f ′

21 T: "Can it be a number?"
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22 S4: "With x." global oral sym-
bols

f ′

23 T: "Yes, it will be a function of x. So,
you understand that we can speak about
"derivative function", which will be again
a function of x."

global speech
indicators
+ symbols

f ′

24 S2: "And then we can replace inside it..." pointwise speech
indicators

f ′

25 T: "Perfect! S2 is saying "Of course,
then, if I want the coe�cient of the tangent
in the point x0 = 5, it will be su�cient to
put x = 5 in the derivative function". Let's
do it!"

pointwise speech
indicators
+ symbols

f ′

F
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Figure 4.3.12 - M.'s different gestures for "the point x0" (on the left)
and "the generic point x" (on the right).

After this comment, the teacher solves the same task following the same steps with x0 = x
instead of x0 = 2. She obtains f ′(x) = 2x (see Fig. 4.3.13).

Figure 4.3.13 - M. poses and solves the task tf ′ .

The �rst utterance and the �rst gesture used by the teacher [15 ] (Fig. 4.3.12 on the
left) stress that the starting perspective is pointwise on f ′. Then, she underlines that
making other numerical examples is actually useless, since every one of these examples
(x0 = 5, x0 = 1,...) would always entail the same calculations done for x0 = 2 [17 ]. The
case of x0 = 2 is becoming a generic example. M. introduces a syntactical technique: the
replacement of x0 with x [18 ]. The previous argument [17 ] can be seen as a technology for
this technique. More precisely, the non-convenience of working on the pointwise sign x0 is
the teacher's justi�cation for shifting to the generic sign x, which is universal pointwise.
The generic sign x represents "every value of x0". Even M.'s gesture for accompanying
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the universal pointwise expression "the generic point x" [18 ] is di�erent from the one
used before for referring to "the point x0" [15 ] (see Fig. 4.3.12 on the right). Finally, the
teacher makes the students re�ect upon the global expectations on the result [19-23 ]:
f ′(x) is expected to be globally a function of x, in which we can replace x with any
number we wish [24-25 ]. In this passage, another technique can be detected for �nding
out the derivative of f in a particular abscissa: the replacement of x with this abscissa
in the expression of f ′(x). On the technological side, this technique is supported by the
whole previous argument about the derivative function.
Notice that M. devolves the shift from pointwise to global perspective on f ′ to the
syntactical process, which is typical of the algebraic writing: from a particular x0 to a
generic x. This is the classical algebraic technique of the replacement of a variable with
its value and vice versa.

The new praxeology for the type of task Tf ′ in its algebraic formulation is built
(see Table 4.8). The technological speech is made of sentences explicitly uttered by the
teacher in the classroom.

OMalg
f ′

Type of task Tf ′ Algebraically representing the derivative function.

Technique τf ′ f ′(x) = lim
h→0

f(x+ h)− f(x)

h
Technology θf ′ If we want to know f ′(x0) for many values of x0 the calcu-

lations become long and not so convenient. So, we can take
the generic point x, calculate f ′(x0) in x0 = x and after re-
place the desired x0-value in the obtained expression. f ′(x0)
is a number, whereas f ′(x) is a function.

Theory Θf ′ - Shift from a pointwise value to the global function.
- Algebraic writing of an expression in the generic x.

Table 4.8 - M.'s mathematical praxeology for the type of task Tf ′ in the
algebraic register.

Elaboration of a technology, passing through the graphical technique

M. proposes and solves with the students two graphical activities concerning the proper-
ties of f ′ and its relation with f . The technical work prevails, since teacher and students
are engaged in globally constructing the graph of f ′, starting from that of f . In parallel,
a local perspective must be adopted on f , looking at the tangent at every point. This
graphical technique �nally leads to compare f and f ′, so to re�ect on the technological-
theoretical side. In one of the a posteriori interviews, M. comments:

"According to me, this kind of graphical work should clarify the concept of
derivative function, showing that it is a function with its own graph. More-
over, it is important to me the fact that they [students] can already see a link
between f and f ′... I believe that they must face it [the problem] with their
own forces, also working hard on the blackboard to get their results."
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Let us now see brie�y what the two graphical activities consist of.

Tasks t, type of tasks T and

problems given in classroom

Construction of the OM for T graf ′

Task t1: reconstructing the graph of
a function f , given the table of val-
ues x|f(x)|m(x) (Fig. 4.3.14)

The teacher guides a student (named S1) in
solving the tasks at the blackboard. They
develop an embryonic graphical technique and
they re�ne the technological-theoretical speech
by specifying what makes this technique work.

Task t2: sketching the graph of the
function y = m(x)

Task t3: drawing the graph of the
function f(x) = 1/3x3 − 1/3x2 −
2/3x

The teacher guides a student (named S2) in
solving the task. They re�ne the technology for
the graphical technique by means of reference
to the theory.Task t4: calculating f ′ and drawing

its graph
Table 4.9 - M.'s didactic organization for working on the graphical type of
task Tf ′ .

x f(x) m(x)

1 1 1

2 3/2 1/2

3 3 2

4 9/2 0

5 4 −1

6 3/2 −4

7 1/2 ?
8 3/2 1/2

Figure 4.3.14 -
Table of values
given in task t1.

The �rst activity (tasks t1 + t2) is proposed by the teacher to a student (named S1)
and involves both blackboards they have in the classroom, initially to deal with di�erent
registers of representation on functions: namely the numerical and the graphical ones.
Unfortunately, we have not the video of the �rst part of the activity, because we could
not record, but we have notes of some relevant utterances and reconstructions of the
graphical steps at the blackboard. Since the activities last almost two hours, we prefer
presenting them by points. Thus, from line [26 ] to line [42 ], each line [n] refers to a
summarized action or sentence, and not to a single transcription.

What happens

(teacher-students actions)

Perspectives Semiotic

resources

on f ,
f ′

26 T: "Let's draw point by point this situation
on the Cartesian plane." S1 detects the
given points (x, f(x)) (see Fig. 4.3.15)

pointwise speech
indicators
+ num.
symbols +
graph

f
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27 T: "Using another color, representm(x). In
each point let's represent the tangent, since
we know its gradient. Without lengthen it,
remain in the neighborhood of the point."
In each (x, f(x)), S1 draws a segment with
the given slop m(x) (as in Fig. 4.3.16).

local speech
indicators
+ graph

f

28 The teacher suggests to connect the points,
maintaining the tangency to the segments.
S1 starts drawing the graph in Fig. 4.3.17.

global graph f

29 S1: "If [m] is 0, it means that [the tangent
line] is constant, it's like y = k." She de-
tects a maximum point (see Fig. 4.3.17)

local graph +
oral sym-
bols

f

30 S1: "[m] is unde�ned, the function [f ]
in that point isn't di�erentiable. Maybe
it is not continuous in that point..." The
teacher recalls the example of the absolute
value function y = |x| in x = 0. S1 detects
a corner in (7, 1/2) (see Fig. 4.3.17)

local speech
indicators
+ graph

f

F
ig
ur
es

Figure 4.3.15 - (our reconstruction) S1 detects the given points
(x, f(x)) in the Cartesian plane.

Figure 4.3.16 - (our reconstruction) S1 traces the segments of tangent
with the given slope m.
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Figure 4.3.17 - S1 interpolates the detected points in order to have a
possible graph of f .

Starting from pointwise numerical data (Fig. 4.3.14), the work on f is �rstly locally
and then globally graphical. The only unusual information is the slop on f at some points
and the teacher guides the student in using it [27-28 ]. This is mainly a technical graphical
work, as said before, but we have two moments [29 ] and [30 ] in which the student S1
stops and tries to justify what she's going to draw. It happens at the maximum abscissa,
x = 4, and at the abscissa x = 7, where the slope is not de�ned. The given task on f is
global (reconstructing the graph [28 ]), but for accomplishing it the student has to look
locally at f , using the tangent line [28-30 ].

What happens

(teacher-students actions)

Perspectives Semiotic

resources

on f ,
f ′

31 T: "What does m(x) represent? It
is the gradient of the curve tangent
in the point with abscissa x. Practically,
it is a function of the variable x." T asks
S1 to make an attempt of drawing y =
m(x), referring to it as the "derivative func-
tion".

global symbols
+ speech
indicators

m =
f ′

32 Guided by the teacher, S1 interprets the
data in the table (Fig. 4.3.14) graphically:
"I put m(x) on y-axis."

pointwise graph m =
f ′

33 T: "S1, try to connect the points
(x,m(x))." S1's �rst attempt is in Fig.
4.3.18.

global speech
indicators
+ graph

m =
f ′

34 S1 wonders how the graph of m could be in
x = 7: "It goes towards... in�nity?"

local graph +
speech
indicators

m =
f ′
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35 T prompts her attention to the corner she
has drawn in f and, in particular, to the
right and the left values of m: "Listen: in
a point, right and left limits are �nite but
di�erent."

local speech
indicators
+ graph

m =
f ′

36 S1: "There is a jump!" local speech
indicators
+ graph

m =
f ′

F
ig
ur
es

Figure 4.3.18 - S1 tries to connect the points of m in the Cartesian plane.

The teacher changes the perspective on m(x) [31 ]. So far, they use its values as local
information about the slop of f [27-30 ], but now they are going to use them as pointwise
data on the function m itself [31-32 ]. In other words, they start to work on m as the
derivative function f ′. Task t2, as task t1, is global (drawing the graph of f ′ [33 ]), but
it entails local doubts and re�ections [34-36 ].

Then the teacher helps S1 in sketching the graph of the function m, and intervenes
on the technological plane. Indeed, she �rstly recalls the relation between the slope of
f and the sign of m in the tangent equation that she writes generically as y = mx + q.
In particular, she discusses the sign of the gradient m. Within a global perspective, she
makes the sign of m explicit in each portion of the graph of f , namely on the intervals
[1, 4) and (4, 7) (see Fig. 4.3.19). In parallel, M. completes the graph of m on the other
blackboard (see Fig. 4.3.20).
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Figure 4.3.19 - M.'s discusses the

sign of the tangent gradient.

Figure 4.3.20 - M.'s completes the

possible graph of y = m(x).

The second activity (tasks t3 + t4) is developed by the teacher who involves another
student (named S2) at the blackboard. As before, both blackboards are used for the
treatment of the involved functions in di�erent registers of representation. The right
blackboard is devoted to the numerical-algebraic work, while the left one is reserved to
the graphical conversion. M. explicitly gives the tasks.

"Let f be de�ned by f(x) =
1

3
x3 − 1

3
x2 − 2

3
x. On f , let's do this work:

let's determine the values of the function at some points, then determine the
rates of instantaneous variation [gradient m] in each of these points and try
to understand where the function is increasing, decreasing and where it is
stationary. [...] The idea is to draw the third degree function and then to
draw its derivative function, in order to see the existing links [between the
two graphs]."

Notice that the tasks are initially pragmatic ("let's determine", "the idea is to
draw"...) to become more analytic and arguing-oriented ("try to understand", "in order
to see"...). Moreover, the tasks which the students are already able to do (determining
the values of a function, drawing its graph and recognizing properties on intervals) are
pointwise and global. Instead, the last question, that is the goal of the activity, requires
a local perspective, which the students are entering.

What happens

(teacher-students actions)

Perspectives Semiotic

resources

on f ,
f ′

37 In order to determine some values of f , T
suggests the numerical technique of the ta-
ble of values |x|f(x)| (see Fig. 4.3.21) and
calculates each value by substitution.

pointwise numerical
symbols

f

38 T draws the graph of f , by interpolat-
ing the determined points and availing stu-
dents' knowledge about "the end behavior
and the variation of a cubic" (see Fig.
4.3.22).

pointwise
local
global

graph +
speech
indicators

f
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39 T: "Let's do the limit of the incremental
ratio, we will �nd the derivative function,
that is m(x), and then we'll be able to �ll
the table in, because we'll substitute our val-
ues of x." T asks to a student, S2, to alge-
braically calculate

limh→0
f(x+ h)− f(x)

h
in the generic

point x.

local

global(=univ.
pointwise)

speech
indicators
+ symbols

f

f ′

40 S2 obtains x2− 2

3
x− 2

3
and denotes it with

f ′(x), recognizing a parabola.

global symbols f ′

41 S2 �lls the table in by substitution (see
Fig. 4.3.23). Then, he �nds the vertex

V
(
− b

2a
, f ′
(
− b

2a

))
and the intersections

A and B with x-axis, by solving f ′(x) = 0.

pointwise symbols f ′

42 S2 draws the parabola on the left black-
board near the graph of f (see Fig. 4.3.24).

global graph f ′

F
ig
ur
es

Figure 4.3.21 - Table of values of f . Figure 4.3.22 - Graph of
the cubic f .

Figure 4.3.23 - Table of values of m. Figure 4.3.24 - Graph of f
and f ′ side by side.

Beside the algebraic-graphical dialectics (the work on the two blackboards), it takes
place another interesting dialectics. Di�erent techniques, which are pointwise [37 and
41 ], local [39 ], and global [38, 40 and 42 ], successfully intertwine to give to m = f ′

the same status of function that f has. Notice that the teacher supports with explicit
justi�cation [39 ] only the local technique of the limit of the incremental ratio. With her
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words, M. reminds the students that calculating this limit in a generic point x leads to
the derivative function.

Nevertheless, the students have internalized the limit technique as a pointwise alge-
braic tool that allows them to �nd the derivative. It lack a local interpretation of the limit
formula. The teacher activate the local perspective on f , acting on the technological-
theoretical level. She promotes the work on the graphs they now have side-by-side,
starting from the results of calculation, namely the intersections of f ′ with x-axis, xA
and xB. She translates these pointwise data about f ′ into local information about f . She
locally adjusts the graph of f , deleting and drawing it again in a neighbourhood of xA
and xB (see Fig. 4.3.25). Finally, the teacher uses gestures to stress the relation between
positive/negative intervals of f ′ and increasing/decreasing intervals of f (see Fig. 4.3.26).
Thus, she stresses the correspondence of global properties of the two graphs, especially
the sign of f ′ and the variation of f .

Figure 4.3.25 - M. locally redraws the graph of f .

Figure 4.3.26(a) and 4.3.26(b) - M.'s global gestures in order to show the

relation between sign of f ′ (above) and variation of f (below).
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Therefore, we have an empirical praxeology for the type of task T graf ′ . It is summed
up in Table 4.10.

OMgra
f ′

Type of task Tf ′ Graphically representing the derivative function.
Technique τf ′ - In those intervals where f(x) is increasing, draw f ′(x) above

x-axis;
- In those intervals where f(x) is decreasing, draw f ′(x) be-
low x-axis;
- If you �nd a corner in f , put on y-axis the m-values of the
tangent line on the right and on the left of the corner.

Technology θf ′ Graphically representing y = f ′(x) means graphically repre-
senting y = m(x) where m(x) corresponds to the values of
the angular coe�cient m of the tangent to f , at each point
x. On the graph of f , trace the tangent line at some points.
Generally, it will have equation y = mx+q. Whenm > 0 the
tangent line is increasing and so the function; when m < 0
the line is decreasing and so the function; when the tangent
line is horizontal, neither increasing nor decreasing, m = 0.
When you have a corner in the graph of f , it means that you
have di�erent value of m on the right and on the left of the
corner.

Theory Θf ′ Relationship between the sign of m = f ′ and the variation
of f .

Table 4.10 - M.'s mathematical praxeology for the type of task Tf ′ in the
graphical register.

Remarks

The proposed technique to algebraically determine the derivative function bases on the
syntactical shift from the pointwise sign x0 to the universal pointwise sign x. The teacher
explicitly says: "Instead of calling it x0, I call it x". The functions f and f ′, which depend
on x, acquire then a global feature. It occurs through the universal pointwise employ
of symbols and speech. In particular, f ′(x) is de�ned as a function of x: sign which is
introduced as generic, and implicitly used in the global sense of variable.
Working on the graphical task is really important for the teacher, in particular to get a
global view on the derivative function. Given or reconstructed the graph of a function f ,
the task is drawing the graph of y = m(x), where m(x) is the gradient of the tangent to
f at the point x. The empirical method consists of interpolating some points (x,m(x)).
The graph of the derivative is presented as the graph having on y-axis the values of m
and on x-axis the corresponding values of the abscissas where m is calculated or given.
The �nal fostered perspective on f ′ is global, since the �nal goal is completing the possi-
ble graph of the derivative function, respecting two fundamental conditions. The former
is a pointwise condition: it has to pass through the determined points (x,m(x)). The
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latter is global: the positive/negative intervals of m = f ′ must correspond to the increas-
ing/decreasing intervals of the function f .
The work on the graph of f ′ has also some local implications on f : it permits to locally
redraw the graph of f , for example in a neighbourhood of the maximum/minimum points.

4.4 The case of M.G.

M.G. is a supply teacher of maths and physics in the same M.'s high school, in Savigliano
(Cuneo). It is her �rst year in this school, and in particular with Quinta A's students.
The students have had a di�erent teacher during the previous years. As we said before,
the school has adopted the textbook Nuova Matematica a colori. Edizione BLU per
la riforma written by Sasso (2012). M.G. has not contributed to its choice, but she
says: "It positively surprised me... Finding a book, whose approach is the one you
would follow. The graphical approach is present, also concerning the exercises part. And
it has interesting exercises". She consults it before preparing lessons and uses it for
giving exercises to students. Nevertheless, she also chooses original exercises from other
textbooks, such as Nuovo Lezioni di matematica by Lamberti, Mereu and Nanni (2012),
even more di�cult to stimulate students.

4.4.1 From the interviews: M.G.'s beliefs

In the preliminary interview with M.G., in January 2013, we spoke about the general sit-
uation of the class and about the work done on limits as preliminary to the introduction
of the derivative concept.

How did you introduce limits with your students? What kind of work did

you do on them?

To a direct question about the ε − δ de�nition, M.G. answers that her students "know
by heart all the four de�nitions". They started by an intuitive graphical de�nition and
by the meaning of "going nearer". She expresses her concern: "But then, the de�nitions
had to be learnt because, unfortunately, at the �nal examination they are required".
So, starting from a de�nition involving a generic idea of neighbourhoods, she got to the
formal de�nition. She insisted on the direction: from a neighbourhood on y-axis to a
neighbourhood on x-axis. She adds: "I insisted a little bit on the memorization [...] be-
cause I think that if you continue studying something by heart, soon or later something
enters your mind. And, making a transverse speech, I needed to know if the students were
studying. So making them repeat word by word this de�nition gave me an idea about it".
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How do you usually introduce the derivative notion?

She is planning the lesson: she intends to start with a revision of the problem of the tan-
gent in the analytic geometry, and then to move on to the general problem through the
derivative. She justi�es this choice by a general consideration about the students back-
ground: she does not really know what they have done during the previous years. She
needs to ascertain that they know how to solve the problem of the tangent. She reveals
her lessons planning in more details: "I make an introduction, with the excuse of revising
[the conics]. [...] Focusing on the problem of the tangent, we recall all the ways to �nd the
tangent [...] why I come to an equation of second order. And then if the curve is di�er-
ent? Patatrac. The idea will be: �rst of all, I draw it by hand with a ruler. The problem
is solved? No. Then, I introduce a Cartesian reference system and I ask to determine
the equation. And I haven't second order instruments anymore, which allow me to... I
would like to get it [the tangent] through the secant line... as the limit of the secant line".

In one of our following meetings, we spoke about the derivative function.

How do you usually introduce the derivative function?

She works algebraically on it, but for introducing the graph she says: "I always try to go
on the graph, because I see the graph, even if the de�nition may elude me. Nevertheless,
I prefer waiting a while before introducing the graph of the derivative function". Such a
wait is justi�ed by her students' fragility in using the graph as a support. It still sounds
strange for the students, who do not seem used to do it.

4.4.2 Type of task Ttangent: determining the equation of the tangent
line to a generic function in a point

M.G. introduces her �rst lesson about the derivative concept with an exercise taken from
the textbook (Sasso, 2012, ex.428 p.131; see the table below)2.

Exercise n. 428 page 131 of Sasso's textbook.

Let γ be a circle centred in the origin and passing through the point P (4, 3).
a. Write the equation of γ.
b. Write the equation of the straight line r, which is tangent to the circle in P .
c. Let Q be a point on the circle γ, belonging to the �rst quarter of plane and

having abscissa x. Express the angular coe�cient mPQ of the straight line PQ
in function of x.

2Considera la circonferenza γ, avente centro nell'origine e passante per il punto P (4, 3).
a. Scrivi l'equazione di γ.
b. Scrivi l'equazione della retta r, tangente alla circonferenza in P .
c. Considera un punto Q sulla circonferenza γ, appartenente al primo quadrante, di ascissa x ed esprimi
in funzione di x il coe�ciente angolare mPQ della retta PQ.
d. Calcola lim

x→4
mPQ. Come si può interpretare il risultato ottenuto in relazione a quanto ricavato al

punto b?
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d. Calculate lim
x→4

mPQ. How can you interpret the obtained result in relation to

what you found at point b?

This exercise is proposed by Sasso at the end of the unit about limits of real functions
of a real variable. It belongs to the "Problems that lead to the calculation of the limit
of an algebraic function", in the section "Geometrical problems".
Indeed, it involves a circle and the tangent line in one of its points. M.G. chooses it as
a link between the conics revision and the problem of the tangent. The conics-related
praxelogy (see Table 4.1) intervenes in this �rst phase of the lesson and it is somehow
compared with a new praxeology which involves the limit technique. The teacher quickly
reviews how to solve questions a and b, and instead she insists on questions c and d. For
the particular task proposed in question b, that is writing the equation of the tangent
line to the circle in P , the teacher compares two di�erent techniques to �nd the angular
coe�cient mtg:

1. mtg = − 1

mOP
, where O is the center of the circle;

2. mtg = lim
x→xP

mPQ, where Q is another point of the quarter of circle in the �rst

quarter of plane, whose abscissa is x.

Then, the teacher notices that the second technique can be a valid solving strategy when
one has a generic function, since in that case the methods seen with the conics (such as
technique 1.) do not work anymore. Therefore, M.G. introduces this technique testing
it on an example which the students can manage, so that they are able to compare the
obtained results. Then, she formalizes the new technique for a generic curve y = f(x),
and practices it in the case of particular elementary functions. More precisely she solves
the task: determining the equation of the tangent to y = ex in x0 = 1. In this case, she
distinguishes between tangent and normal line and she also calculates the equation of
the normal line in x0 = 1. The phases of the work are summarized in Table 4.11.

Tasks, type of tasks and prob-

lems given in classroom

Construction of the OM for Ttangent

First task : ex. 428 page 131 of the
textbook, questions c and d in par-
ticular.

The teacher explores the type of task Ttangent in
the case of a conic. She elaborates a new tech-
nique for �nding mtg, and justi�es it by inter-
preting it in the geometrical context. The tan-
gent is then seen as the limit position of the se-
cant line.

Problem: the case of a generic curve
y = f(x).

The new technique is formalized by the teacher.

Second task : determining the tan-
gent and the normal to the function
y = ex in the point x0 = 1.

The new technique is practised by the teacher.

Table 4.11 - M.G.'s didactic organization for working on the type of task Ttangent.
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Within this �rst lesson, the teacher builds the praxeology OMtangent in the case of a
generic curve. We can distinguish the following didactic moments:

1. meeting with the type of task Ttangent, through the exercise;

2. formalization on the new technique τtangent accompanied by the construction of a
new technological-theoretical support for the tangency condition;

3. practice of the new praxeology on an example.

This episode is also signi�cant for the introduction of a local perspective on the involved
function, that M.G. intends to realize on the particular example of the circle, by geo-
metrically interpreting the limit. She has to deal with the pointwise character of the
previously learnt techniques, speci�cally the one quickly reviewed at the point b of the
�rst proposed task.

Meeting with the type of task Ttangent

M.G. continues the exercise they started the previous lesson. So, she begins from quickly
reviewing the questions a and b. It follows the transcript.

What happens Perspectives Semiotic

(teacher-students dialogue) on γ resources

1 T: "I take the results, let's work on
the idea. [...] Given the circle γ :
x2 + y2 = 25, centred in the origin and
passing through the given point P (4, 3)" (she
represents the situation graphically) [...] "We
were asked to write the equation of the tangent
line in P" (she points to P ) "to the curve."
(She moves her hand on an imaginary tangent
in P , Fig. 4.4.1)

pointwise speech
indicators
+ graph
+ pointing
gesture
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2 T: "What have we done? Classic method. We
exploited the geometrical fact" (she traces the
radius OP ) "we calculated m, the angular co-
e�cient of OP , which was 3/4." (She writes

mOP =
3

4
) "And then we said that the direc-

tion of the tangent line to the curve in P" (she
traces the tangent line in P ) "will have been per-
pendicular to the radius, so to m of OP . And so
m of the tangent line will be −4/3." (She writes

mtg = −4

3
) "Afterwards, in order to determine

the equation of the tangent line, I have the an-
gular coe�cient, I make the bundle pass through
the point with this angular coe�cient, and I �nd

the equation. And we found y−3 = −4

3
(x−4)."

(She writes the equation)

pointwise graph
+ symbols

3 T: "In the following point, instead, there
was a di�erent request. We were asked to
consider another point Q that belongs to the cir-
cle" (she chooses a point Q, Fig. 4.4.2) "and to
the �rst quarter of plane."

pointwise speech
indicators
+ graph

4 T: "And then we were asked to write
the angular coe�cient of the straight line
passing through P and through Q." (She writes
mPQ) "For mPQ, no problem: angular coef-
�cient between two points. I use the formula
yQ − yP over xQ − xP ." (She writes it after
the expression "mPQ =") "We noticed that we
had to use only the upper part of the circle,
with the sign plus" (she writes "+

√
25− x2"

near the upper semicircle) "So, mPQ is equal to√
25− x2 − 3 over x− 4"

pointwise speech
indicators
+ symbols

F
ig
ur
es

Figure 4.4.1 - M.G.'s gestures to explicit the
task ttangent.

Figure 4.4.2 - M.G.'s
choice of Q.
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The work done by M.G. on the function is pointwise since she is referring to the
point P and another point Q on the circle γ. She �rstly considers the radius OP and
its direction [1 ]. The coordinates of P on γ are used to �nd mOP : thus, pointwise infor-
mation on γ are exploited. Then, the teacher employs the pointwise algebraic technique

mtg = − 1

mOP
to obtain the angular coe�cient of the tangent line in P [2 ]. Finally, she

comes back to the equation of the bundle and makes "it pass through the point" P . The
whole reasoning is P -centred, so the perspective activated on γ is pointwise. When the
teacher moves on to consider another point Q on γ [3 ] the perspective is still pointwise.
Also the information the teacher uses to �nd mPQ [4 ], namely the coordinates of P and
Q, are pointwise. The semiotic resources that support this pointwise reasoning are point-
ing gestures on the graph, while referring to P or Q. To recall the algebraic technique

mtg = − 1

mradius
, M.G. leans on the graph. In particular, she traces the radius OP and

then the tangent line in P . The drawing helps recalling the relation of perpendicularity
between the two.
The teacher makes a global remark on the curve γ by de�ning the equation of the upper
semicircle. In this case, she is supported by symbols: "with the sign plus", +

√
25− x2.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

5 T: "Then, which was the next request? [...]
It was about calculating the limit as x goes to 4
of mPQ." (She writes it on the black-
board, and then she adds very quickly what
follows) "We calculated the limit, it was
an indeterminate form 0 over 0, rationalization,
computations, at the end we got a numerical
value, that was?"

local speech
indicators
+ symbols

6 S1: "−4

3
."

7 T: "−4

3
" (She writes it on the blackboard) "And

then we left with the question: "does this −4

3

has something to do with this −4

3
that I found

with the geometrical fact?" I mean mtg which

was −4

3
. So, once we have done all the algebraic

steps, let's try to understand what we do when
we do this limit, when we write this m." (She
points to the limit and to mPQ)
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8 T: "m of PQ represents the direction of PQ
as straight line." (She points to P and to
Q) "What is the position of the straight line
through P and Q" (she traces the straight line
PQ) "with respect to the circle? It isn't tangent."

pointwise speech
indicators
+ pointing
gestures
+ graph

9 S2: "It's secant." pointwise speech
indicators

10 T: "It's secant. So mPQ is m of the secant
line. What do I do geometrically, as algebraically
x goes to 4? Where is x? x is the abscissa
of the point Q." (She writes Q(x,

√
25− x2) and

detects x on x-axis)

pointwise speech
indicators
+ symbols
+ graph

11 T: "And when x goes to 4, it means that
x is approaching 4." (She draws an arrow from x
to 4 on x-axis, as in Fig. 4.4.3) "If x goes to 4"
(She follows the arrow on x-axis, as in Fig. 4.4.3)
"but x is linked to Q" (She points to Q) "What
does Q do?"

local speech
indicators
+ symbol +
graph
+ iconic ges-
ture

12 S2: "It goes down."

13 T: "It goes down, walking on the circle." (She
moves her left �nger on the arrow on x-
axis and, at the same time, the chalk in her
right hand on the circle go from Q towards
P , Fig. 4.4.4) "So, it walks on the circle,
approaching more and more what?"

local speech
indicators
+ iconic ges-
tures
+ graph

14 Ss: "P ."

15 T: "P ."

F
ig
ur
es

Figure 4.4.3 - M.G. follows the arrow from x to 4 with her left finger.
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Figure 4.4.4 - M.G.'s simultaneous gestures to simulate the movement of x
towards 4 and of Q towards P .

The teacher starts introducing a local perspective, which is initially based on the use of
algebraic symbols (limx→4, [0/0]), accompanied by local verbal expressions such as "limit
as x goes to 4" [5 ]. Then, she proposes a geometrical interpretation of the employed
technique involving the limit [8-15 ]. Starting again from pointwise considerations [8-
10 ], she stresses the pointwise nature of mPQ and of the algebraic technique to �nd it.
She exploits the graph and the symbols support, with pointing gestures to P and to Q.
Afterwards, she graphically interprets the verbal expression "as x goes to 4" as the local
movement of the point Q towards the point P on the curve [11-15 ]. To simulate this
movement, M.G. follows with her �nger an arrow drawn on x-axis going from x to 4 (Fig.
4.4.3) [11 ] and simultaneously she walks on the curve with the chalk moving from Q to
P (Fig. 4.4.4) [13 ]. Such local gestures towards P are accompanied by the local verbal
expressions "x is approaching 4" or "Q is approaching more and more P". The students
here intervene only to answer the teacher's inputs.

What happens Perspectives Semiotic

(teacher-students dialogue) on γ resources

16 T: "As x goes to 4" (she moves the chalk in her
right hand, Fig. 4.4.5) "what does the angular
coe�cient of the secant line do?"

local speech
indicators
+ gesture

17 S2: "It's approaching 0." local speech
indicators

18 T: "It goes... to what?" (She walks through the
tangent in P with the chalk)

local speech
indicators
+ gesture

19 S3: "To that of the new straight line." local speech
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20 T: "To that of the tangent line. So the secant
line" (she tilts her left arm as in Fig. 4.4.5 on
the left) "as x goes to 4" (she follows the arrow
from x to 4 on x-axis with the chalk in her right
hand, as she did in Fig. 4.4.3) "goes to the tan-
gent line." (She moves her left arm as in Fig.
4.4.5 on the right) [...] "In this limit position,
the secant line is becoming the tangent line" (She
moves her arm on the blackboard representing
the two straight lines, see Fig. 4.4.6)

local speech
indicators +
iconic gestures

21 T: [...] "But I'm working with m. So the angu-
lar coe�cient of the secant line, as x goes to the
abscissa of the point of tangency, goes to the an-
gular coe�cient of the tangent line. Is it right?"

local speech
indicators

22 Ss: "Yes."

23 T: "Now, we have seen that if our problem is de-
termining the equation of the tangent line to a
curve, and if it is a conic it is simple but when
it is a di�erent curve it isn't simple anymore,
this can be the idea. The idea is that, since I
cannot calculate immediately the angular coe�-
cient of the tangent line, I walk away from the
point, I position myself in a secant place, in or-
der to approach it again, through a limit." (She
points to P , then to Q and �nally again to P )

local

pointwise

speech
indicators
pointing
gestures

F
ig
ur
es

Figure 4.4.5 and 4.4.6 - M.G.'s gestures to represents the secant line that
becomes tangent.

M.G. continues her interpretation of the limit as x goes to 4. Before she has considered
what happens to the point Q, now her focus is on what happens to mPQ [16-19 and 21 ],
and more generally to the secant line [20 ]. The verbs used by the teacher and the students
are verbs of local movement such as "goes to", "is approaching" and "is becoming". M.G.
accompanies them with a movement of the arm to simulate the shift from the secant to
the tangent line.
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From a praxeological point of view, the teacher identi�es the technique involving the
limit as the technique for a new and more general praxeology to determine the tangent
to a function in a point [23 ]. She justi�es it through the comparison with an old algebraic
technique on the example of the circle, and through a graphical interpretation.
According to our theoretical lenses, we can notice in comment [23 ] a certain discordance
between the pointwise pointing gestures and the simultaneously local verbal expressions.
The adoption of the local perspective may be somehow inhibited by the concomitance of
pointwise gestures.

Formalization of the new technique τtangent and remarks on the technological-

theoretical plane

M.G. formalizes the concept on the blackboard (Fig. 4.4.7), exploiting the idea on a
generic function y = f(x).

Figure 4.4.7 - M.G. formalizes the new technique in the case of
a generic function f .

She �nally makes some theoretical remarks on the formal expression of mtg.
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What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

24 T: "First doubt: This calculation, mtg, depends
on an operation, which is the limit operation.
"Limit of something". Let's suppose that I'm
able to calculate all the limits. Am I sure to
�nd a result?" (She points to mtg) "Do the limit
computation always give an outcome? Not nec-
essarily. Actually, this limit could exist or not.
We will investigate about this fact." (She spec-
i�es the two cases, with the symbols "∃" and
"@", as in Fig. 4.4.8) "It's sure that we have
to add something about this calculation. If the
limit exists [...] all outcomes are acceptable? [...]
There's a value that we can't accept, that is?"

local symbols

25 Ss: "In�nity", "Zero" local oral symbols

26 T: "In�nity." (She writes the symbol "∞" and
circles it, in the case of existence, Fig. 4.4.8)
"Why? Because let's recall what we wanted to
�nd: the angular coe�cient of the tangent line,
because we wanted to come back to the bundle.
The bundle was y−f(x0) = mtg(x−x0). I can't
think to replace an in�nite value as angular co-
e�cient here. What kind of straight line would
I get? [...] So, it must be a �nite value. Then if
the limit of the angular coe�cient of the secant
exists and is �nite, I obtain the angular coe�-
cient of the tangent."

local symbols

F
ig
ur
es

Figure 4.4.8 - M.G.'s symbols to summarize the
possible features of the limit value.

The teacher rests on the features of the limit value: it can exist or not and, if
existing, it can be �nite or in�nite. Her interpreting speech [24-26 ] contributes to the
new praxeology at a technological level. The perspective is implicitly local in the involved
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symbols of limit and in�nity. Notice that some students think that zero is a problematic
value [25 ] (as it has already happened in line [17 ]). The teacher does not comment such
interventions now. Perhaps she prefers to close the discussion and then to return back
to the case in which the limit is zero.

Practice of the new praxeology on an example

M.G. concludes the �rst theoretical part. She has shown a new technique for the type of
task Ttangent and made some technological and theoretical remarks about it. Afterwards,
she wants to practice the new technique on an example. Here is the situation she chooses
and how she manages it.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

27 T: "Let's see a practical example. Because,
now it seems that we have a lot of unknowns,
but actually it's not so. I consider a function:
ex. I take a point that belongs to the domain:
the domain here is all R, I can take whatever I
want, I take 1, x0 = 1. And I want to determine
the equation of the tangent to the curve in the
point of abscissa 1." (She writes the data at the
blackboard: "y = ex" and "x0 = 1")

global and
pointwise

speech
indicators
+ symbols

28 T: "Drawing." (She traces the graph of ex, she
detects the point 1 on x-axis and also f(1) on
y-axis, Fig. 4.4.9) "What is the problem? De-
termining the equation of the tangent line, that
is this line." (She traces the tangent line, Fig.
4.4.9)

global and
pointwise

graph

29 T: "And I already have the solution: y − f(1) =
mtg(x − 1). And again the only doubt is here"
(She circles mtg) "It's to �nd mtg, because
I know f(1): it's e1 = e."

pointwise speech
indicators
+ symbols

30 T: "But I know the strategy: I distance myself
from the point and then I come back." (She
moves her hands like in Fig. 4.4.10) "How much
I go far? Boh... We say, of h? We position in
1 + h."

global speech
indicators
+ gesture
+ symbols

31 T: "I don't have to calculate h. I use h only
to distance myself from the point a little bit, and
then ZAC to come back with h that goes to 0."
(She repeats the gesture in Fig. 4.4.10 on the
drawing)

local

global

speech
indicators
+ sounds
gestures
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Figure 4.4.9 - M.G. poses the particular task ttangent with f(x) = ex and x0 = 1.

Figure 4.4.10 - M.G.'s gesture to indicate the strategy for finding mtg: "I
distance myself from the point and then I come back" [30 ].

M.G. considers the example of y = ex and the task consists of determining the equa-
tion of the tangent line to the curve at the point of abscissa x0 = 1. While the teacher
chooses this speci�c point, she makes a global remark on the function domain [27 ]. Then,
she draws the graphical situation. Therefore, the starting perspectives are global and
pointwise on f(x) = ex. Also the teacher's wide gesture (see Fig. 4.4.10) and the ex-
pression "I distance myself from the point and then I come back" in line [30 ] have a
global character. After, she introduces some local perspective in her speech: she refers
to a "little" distance and to h going to zero [31 ]. However, her gesture is the same as
in Fig. 4.4.10: wide and global. So, we can notice a mismatch between the gesture and
the accompanying speech with respect to the perspective that they convey. Perhaps, the
activation of the local perspective could be somehow inhibited by the concomitance of
global gestures.

M.G. does all the calculation to �nd mtg in x0 = 1, using the new technique (see Fig.
4.4.11). At the end of the lesson, she comes back again to formalization and gives some
nomenclature, speaking of derivative for the �rst time [32-35 ].
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Figure 4.4.11 - M.G. solves the given task ttangent.

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

32 T: "Now, we cannot hope that in mathemat-
ics no one has found a way for avoiding to
write every time "msec" and "mtg". Be-
cause this way exists."

33 T: "Let's write one more time what we've
done." (She writes from right to left "mtg =
limh→0msec", see �rst row in Fig. 4.4.12)
[...] "What is msec? Let's interpret alge-
braically the meaning. It is f(x0+h)−f(x0)
over h. Then, we do the limit as h goes
to 0. And if this limit exists and is �nite,
I obtain the angular coe�cient of the tan-
gent line, which however... is denoted with
f ′(x0)." (She writes again from right to left

"f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
", see sec-

ond row in Fig. 4.4.12) "And it is called
'derivative of f in x0'. Derivative of the
function in the point x0." (See Fig. 4.4.12)

local
pointwise

symbols
speech
indicators

f
f ′

34 S2: "Why f ′?" global symbols f ′
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35 T: "Ah! They had to �nd a name. They had
to �nd a symbol that represents this situa-
tion [...] What is better stressed here? That
the angular coe�cient of the tangent line
depends on the function f" (She points to f
in the expression "f ′(x0)", see second row in
Fig. 4.4.12) "Because if I change function,
the angular coe�cient changes. But it de-
pends also on x0" (She circles with her �n-
ger "x0" in the expression "f ′(x0)", see sec-
ond row in Fig. 4.4.12) "If I change point,
the tangent line changes." [...] "Then let's
give it a name that puts into evidence what
it uses: f and x0. And let's say that it has
a geometrical interpretation as angular co-
e�cient."

global and
pointwise

symbols f ′

F
ig
ur
es

Figure 4.4.12 - M.G.'s introduction of the name "derivative".

Beside a local perspective on f which is implicit in the used symbols, the teacher
introduces the function f ′ and a pointwise perspective on it. Thanks to S2's question
[34 ], she better stresses the pointwise dependence of f ′(x0) on the point x0 [35 ].

The new praxeology OMtangent is summed up in Table 4.12, where we try to use the
teacher's expressions. In the theory part, only the �rst de�nition is new for the students.
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OMtangent

Type of task
Ttangent

Determining the equation of the tangent line to a generic
function in a point.

Technique
τtangent

tg : y − f(x0) = mtg(x− x0) where

mtg = lim
h→0

msec = lim
h→0

f(x0 + h)− f(x0)

h
that is denoted with f ′(x0) when it exists and is �nite.

Technology
θtangent

Given a point P (x0, f(x0)), consider an increment h of the
abscissa x0. You obtain another point on the curve Q(x0 +
h, f(x0+h)). Trace the secant line PQ, its angular coe�cient

is given by mPQ =
yQ − yP
xQ − xP

=
f(x0 + h)− f(x0)

h
. Imagine

that the abscissa of Q goes to the abscissa of P . It means
that h goes to 0. The limit position of the secant PQ is the

tangent in P . So mtg = lim
P→Q

msec = lim
h→0

f(x0 + h)− f(x0)

h
,

that if existing and �nite is denoted with f ′(x0).
Finally, the tangent line is the straight line belonging to the
bundle y−y0 = m(x−x0) that passes through P with angular
coe�cient mtg = f ′(x0).

Theory
Θtangent

- The de�nition of the tangent line to a generic function in
a point as the limit position of the secant line cutting the
function in that point and into another one, which walks on
the curve getting closer and closer to it.
- The problem of the tangent.
- The analytic equation of a straight line, especially m =
y1 − y2
x1 − x2
- The limits theory.

Table 4.12 - M.G.'s mathematical praxeology for the type of task Ttangent.

Remarks

Almost the entire lesson is centred on the technique to �nd mtg. The teacher has revised
the problem of the tangent to conics; the exercise she chooses as a connection with the
derivative topic is about the tangent to a circle. The new technique involving the limit
is presented in parallel with the previous algebraic ones. In particular, the comparison
occurs at the level of the result. The limit as a technique has not to be introduced, be-
cause it is already given by the exercise statement. The teacher's concern becomes that
of justifying why and how it works. The lesson is indeed characterized by the teacher's
lecture. The students take notes and only intervene to answer speci�c questions, accord-
ing to the IRE model. The teacher has to work on the technological-theoretical plane
to interpret the symbols meaning. She uses the graphical resource, the symbolic manip-
ulation, terms of "localized movement" and gestures. The local dimension is present is
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everyone of these resources, even if somehow not in perfect simultaneity. It occurs that
a local speech accompanies pointwise gestures on the graph or global gestures in the air.
For the students, whom local perspective is still rather weak, this slight discordance may
be disorientating.
The resulting praxeology OMtangent is local insofar as the limit symbol is used in the
formula for mtg. The technology is strongly based on the graphical interpretation of
the technique. The local perspective on the curve is implicitly present in the idea of
approaching. As for the theory, instead, the tangent de�nition is marginally touched by
the teacher, while working on mtg technique.

4.4.3 Type of task Tf ′: representing the derivative function

M.G. has closed the �rst lesson on the derivative concept by giving to the students
some exercises about the determination of the equation of the tangent line to a function
y = f(x) in a point x0 of the domain. The students have used the technique τtangent
developed in classroom.
At the beginning of the second lesson, M.G. declares that the goal is learning to calculate
derivatives more quickly, �nding together some important rules. She says:

"Now we're going to see the derivatives of elementary functions. [...] We're
going to build the table of our almost ten commandments, that has to be learnt
by heart. [...] We're going to prove them, almost all of them. [...] They all
come from the exercises you have done for homework but, if every time that
I have to calculate a derivative I have to take the incremental ratio and do
the limit, it becomes something long. By proving these little theorems, one
discovers that it's possible to do calculation more quickly."

The �rst case presented by the teacher is the constant function. But before �nding
the expression of its derivative, M.G. opens a parenthesis about the di�erent status
of f ′(x0) and f ′(x). Then, she obtains the derivative of the function f(x) = k as

limh→0
f(x+ h)− f(x)

h
, where "x", she says, "is generic". See Table 4.13 for the details

of M.G.'s didactic organization.

Tasks t, type of tasks T and

problems given in classroom

Construction of the OM for T algf ′

tf ′ : calculating the derivative of the
function y = k.

This task allows to directly work the
technique τf ′ with the generic x on
a particular function f .

Parenthesis: the di�erent nature of
f ′(x0) and f ′(x).

This parenthesis represents the cor-
responding technology of the tech-
nique they are going to use.

Table 4.13 - M.G.'s didactic organization for working the type of task
Tf ′ in the algebraic register.



163

Within this brief episode, the teacher provides the praxeology OMalg
f ′ [Tf ′/τf ′/θf ′/Θf ′ ]

for dealing with the type of task Tf ′ in the algebraic register. Let us distinguish two
didactic moments:

1. construction of the technological-theoretical support of an algebraic technique;

2. elaboration and practice of the algebraic technique on an example (signi�cant meet-
ing with the type of task Tf ′).

Several lessons later, M.G. will devote a whole hour to solve the graphical task of
�nding the graph of the derivative function, given the graph of a function (see ahead
subparagraph "The graphical technique is shown on an example").

M.G. wants to work on a global technique to �nd the derivative function. She makes
reference to "a generic x", but she has to deal with the pointwise character constructed
on f ′ with the previous tasks. In the algebraic approach to the problem, the perspective
on the involved function f is still implicitly local, thanks to the limit symbol involved in
the technique.

Construction of the technological-theoretical support of an algebraic tech-

nique for Tf ′

The teacher takes into account the constant function: y = k. When she asks "What is
its derivative?", she realizes that she has not introduced the derivative as a function yet.
Thus, she opens the following parenthesis.

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

1 T: "I must open a parenthesis... We have
said that if the limit as h goes to 0 of the
incremental ratio exists and it is �nite,"

(she writes "limh→0
∆f

h
", Fig. 4.4.13) [...]

"this limit is the angular coe�cient of the
tangent line, but it is also the derivative of
the function calculated in x0." (She writes
"= f ′(x0)")

local
pointwise

speech
indicators
+ symbols

f
f ′
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2 T: "You have noticed that in the
second group of exercises x0 was
not given. And, actually, if I cal-
culate the limit as h goes to 0 of...
Not in x0 anymore, but in any x
belonging to the domain, so a generic x..."

(She writes "limh→0
f(x+ h)− f(x)

h
") "I

obtain the derivative of f in x," (She adds
"= f ′(x)") "where x is generic."

global(=univ.
pointwise)

speech
indicators
+ symbols

f and
f ′

3 T: "And so, here" (pointing to f ′(x0)) "the
result is numerical, �nite, 5, 7, 21, ... a num-
ber."

pointwise symbols f ′

4 T: "Instead, here" (pointing to f ′(x))
"as a result I have an expression
that depends on x. And you have see it in
the second group of exercises where you
haven't 7 anymore, but you have an alge-
braic expression... y = 2x− 1, for example.
And actually this result is a function."

global speech
indicators
+ symbols

f ′

F
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Figure 4.4.13 - M.G. explains the
difference between f ′(x0) and f ′(x).

The teacher provides the technique to algebraically determine the derivative function
of a given f in line [2 ]. Her exact words are: "I calculate the limit as h goes to 0 of... Not
in x0 anymore, but in any x belonging to the domain, so a generic x...". The technique
consists of replacing x0 with x. The teacher opposes the pointwise character of f ′(x0)
[3 ] and the global character of f ′(x) [4 ]. She bases this distinction on a symbolic and
syntactical di�erence. She observes that the limit calculated for a given x0 gives you a
number, whereas the limit calculated for "any x belonging to the domain", "a generic x"
[2 ], gives you "an expression that depends on x" [4 ]. So, she uses the generic abscissa x
to have a universal pointwise perspective on f and f ′.
Our theoretical tool allows us to make a further remark about the engaged semiotic
resources. M.G.'s technological speech bases on the syntactical di�erence between the
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incremental ratio written in x0 and the same incremental ratio written in a generic x.
Nevertheless, the symbols she uses at the blackboard (see Fig. 4.4.13) do not properly

support this technological intention. Indeed, the symbolic expression
∆f

h
chosen by M.G.

does not contain any reference to x0. There is no evident di�erence between it and the

symbolic expression
f(x+ h)− f(x)

h
written below, where instead the dependence on x

is stressed. The use of the symbols, in this case, instead of supporting the speech, may
hide the di�erence the teacher is speaking of.

The algebraic technique is shown on an example

After the brief parenthesis, the teacher continues to solve the exercise of �nding the
derivative of the function y = k.

Figure 4.4.14 - M.G.'s determines the derivative of y = k.

Some minutes later, to conclude the lesson, M.G. draws a generic function in the Carte-
sian reference system (Fig. 4.4.14). In order to stress one more time the di�erence
between f ′(x0) and f ′(x), she chooses a graphical support.

Figure 4.4.15 - M.G.'s graphical support to explain the difference between

f ′(x0) and f ′(x).
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What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

5 T: "When I calculate the derivative
in a point, when I calculate f ′(x0)" (she
writes "f ′(x0)") "we have the angular
coe�cient of the tangent line to the curve
in that point. x0 is here" (she detects an
abscissa x0 on x-axis, as in Fig. 4.4.15(a))
"In this point" (she marks the point on the
curve) "I have the angular coe�cient, the
m of the tangent in x0." (She traces the
tangent and writes "mtg" on it, see Fig.
4.4.15(b))

pointwise speech
indicators
+ symbols
+ graph

f ′

and f

6 T: [...] "All our speech has been centered
not on a speci�c x0, but on a generic x."
(She makes two di�erent gestures, see Fig.
4.4.16(a) and 16(b))

global(=univ.
pointwise)

speech
indicators
+ oral
symbols +
gestures

f and
f ′

7 T: "What is the di�erence between f ′(x0)
and f ′(x)?" (she writes "f ′(x)" under
f ′(x0)) [...] "f ′(x) is the angular coe�-
cient of the tangent line to the curve not
in a �xed x0, but in any x of the domain."
(She completes the drawing by adding some
tangent lines at some abscissas x, see Fig.
4.4.15) "So I have all the possible direc-
tions as the point x varies in the domain.
[...] I have a function as a result, namely
f ′ depends on x, f ′ is a function."

global symbols
+ speech
indicators
+ graph

f ′

8 S1: "So as x varies we have di�erent re-
sults."

global speech
indicators

f ′

9 T: "Yes, di�erent results. And so if I want
to calculate it in x0" (she points to f ′(x))
"I calculate the derivative for all x and then
I measure it on x0, by substituting x0 every
time."

global →
pointwise

speech
indicators

f ′
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Figure 4.4.15(a) - M.G. detects a spe-
cific point of abscissa x0 on the curve.

Figure 4.4.15(b) - M.G. de-
tects the tangent at the ab-
scissa x0.

Figure 4.4.16(a) - M.G.'s gesture to in-
dicate "a specific x0" [6 ].

Figure 4.4.16(b) - M.G.'s
gesture to indicate "a generic
x." [6 ].

The teacher returns on the distinction between f ′(x0) and f ′(x). This time she ex-
ploits graphical and gesture resources. With a �xed x0 on x-axis [5 ] she associates the
gesture in Fig. 4.4.16(a). It iconically recalls the vertical alignment between x0 on x-axis
and the point (x0, f(x0)) on the curve representing the function f . The perspective is
pointwise on f and on f ′. With "any x in the domain" [7 ] she associates the gesture
in Fig. 4.4.16(b). Her left hand moves backwards and forwards horizontally in the air,
like an x that varies on x-axis. This global gesture accompanies the universal pointwise
teacher's attempt to detect some x and correspondingly some tangents on the graph of f
[7 ] (see Fig. 4.4.15). Such a combined use of graph and gestures gives a global perspec-
tive on f . As for the derivative function f ′, the drawn graph cannot help. The global
perspective on f ′ is made explicit through the speech: "all the possible directions as the
point x varies in the domain" [7 ]. The universal pointwise sign x here is explicitly used
in the global sense of variable.

In Table 4.14 we summarize the praxeology given by M.G. for determining the deriva-
tive function in the algebraic register.
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OMalg
f ′

Type of task Tf ′ Algebraically representing the derivative function.

Technique τf ′ f ′(x) = lim
h→0

f(x+ h)− f(x)

h

Technology θf ′ f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
gives a number, while the

same limit in a generic x of the domain gives a function. So,
we can calculate the limit in the generic point x and after
replace the wanted x0-value in the obtained expression.

Theory Θf ′ - Shift from pointwise to global perspective.
- Algebraic writing of an expression in the generic x.

Table 4.14 - M.G's mathematical praxeology for the type of task Tf ′ in
the algebraic register.

The graphical technique is shown on an example

Let us jump to the thirteenth lesson. Throughout this period, M.G. has worked on
the study of function, introducing the study of variation through the sign of the �rst
derivative and the study of concavity through the sign of the derivative of second order.
Then, she proposes to deduce the graph of the derivative function y′ = f ′(x) starting
from the only graph of the function y = f(x). She uses both the blackboards in the
classroom: on the right blackboard she draws the graph of y = f(x), while on the left
blackboard she deduces the graph of y′ = f ′(x). Here is the task, as it is uttered by the
teacher:

"Given the graph of a function, how can I deduce the graph of the derivative?
And this is a well-posed question because the derivative of a function is a
function itself. Therefore, being a function, it has its own graph."

She chooses a graph on the textbook (namely the example on page 441 of Sasso's
textbook) and she draws it on the right blackboard by saying: "I have highlighted the
important things" (see Fig. 4.4.17).

Figure 4.4.17 - The starting graph of f .
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In the following lines we analyze step by step the technique developed by M.G. in
order to solve the task. Basically, her intention is to lead a classical study of function (see
Table 4.15) whose object is the derivative function y′ = f ′(x), by reading the necessary
information directly from the given graph of y = f(x) [10 ].

OMstudy of function

Type of task Studying the function y = f(x) in order to draw its possible graph.
Technique - Domain: impose the existence conditions for the expression f(x).

- Intersections with axis: solve the system of y = f(x) with x = 0
and of y = f(x) with y = 0.
- Sign: study f(x) > 0.
- Vertical asymptotes: verify if limx→x0 f(x) =∞, for the speci�c
x0 where f is not de�ned.
- Horizontal asymptotes: verify if limx→∞ f(x) ∈ R;
- Oblique asymptotes: it is y = mx+q if limx→∞ f(x)/x = m ∈ R∗
and if limx→∞ (f(x)−mx) ∈ R.
- Stationary points: solve f ′(x) = 0.
- Variation: study f ′(x) > 0 ⇒ f is increasing; f is decreasing
elsewhere.
- In�ection points: solve f ′′(x) = 0.
- Concavity: study f ′′(x) > 0 ⇒ f is convex; f is concave
elsewhere.
- Sketch a graph with the found information.

Technology - Dom(f) = {x ∈ R|f(x) ∈ R}.
- Axis equations are x = 0 and y = 0.
- f is positive/negative for all x for which f(x) is positive/negative.
- Asymptotes de�nition.
- The stationary points are the derivative zeros.
- f is increasing/decreasing where the derivative is posi-
tive/negative.
- f changes concavity where the derivative has a stationary point.
- f is convex/concave where the derivative is increasing/decreasing.

Theory Functions (algebraic expression) and limits of functions.
De�nition of derivative as the gradient of the tangent line to the
function in a point.
De�nition of derivative of second order as the derivative of the
derivative.

Table 4.15 - Previous mathematical praxeology consisting in studying
a function to draw its graph.
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What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

10 T: "Well, to represent the graph of
a function, I have to study it. So,
domain, intersections, symmetries,
sign, asymptotes, searching for
maxima and minima, and so on. All
deduced from it." (She points to the graph
of f in Fig. 3.5.17)

global, point-
wise and lo-
cal

speech
indicators

f ′

11 T: "Domain of f ′: I run on the func-
tion with the tangent and I check if, by
chance, I run into some corner, cusp, non-
di�erentiable point. I run with the tan-
gent, do you see it? TI-TI-TI-TI-TI-
TI... (She quickly traces imaginary tan-
gents to f , as in Fig. 4.4.18) "I'd say that
I can always represent it. So, D′ = D =
R."

local

global

graph +
gesture +
sound

speech
indicators
+ symbols

f

f ′

F
ig
ur
es

Figure 4.4.18 - M.G.'s gesture on the graph of f to follow the tangent, as
she says TI-TI-TI.

The teacher starts from a global property of f ′: the domain [11 ]. To �nd information
about it, she looks at the graph of f under a local perspective. She "runs" on the graph,
reproducing the tangent. Every tangent corresponds to a sound "TI" and to an imaginary
short segment she traces with the chalk (Fig. 4.4.18). The local perspective on f is now
stressed with a gesture on the graph.
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What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

12 T: "Intersections of f ′: I am wondering
when this new function f ′(x) is equal to 0."
(She writes "f ′(x) = 0") "When f ′(x) is
equal to 0? Can I know the solutions of this
thing? Is it a known information? When
I studied that graph," (she points to the
graph of f) "I solved this equation �nding
out the stationary points." (Her left hand
moves horizontally as in Fig. 4.4.19)

pointwise

local

speech
indicators
+ symbols
speech
indicators
+ gesture

f ′

f

13 T: "The stationary points of the function
are the intersections of the derivative with
x-axis."

local
pointwise

speech
indicators

f
f ′

14 T: "x = −2, x = 0, x = 2: stationary points
for f , points of intersection with x-axis for
f ′." (She writes it on the blackboard and
marks the zeros of f ′ on the graph, see Fig.
4.4.20) "So the same values play a di�erent
role in the function and in the derivative."

local

pointwise

speech
indicators
+ symbols
speech
indicators
+ symbols
+ graph

f

f ′

F
ig
ur
es

Figure 4.4.19 - M.G.'s gesture to repre-
sent a stationary point.

Figure 4.4.20 - Graphical
translation on f ′ of the infor-
mation about its zeros.

The teacher focuses on another pointwise property of f ′: the intersections with x-
axis. She works �rstly on symbols, by imposing the equation "f ′(x) = 0". This equation
allows her to recall the praxeology for studying a function (see Table 4.15) [12 ]. Indeed,
solving f ′(x) = 0 is the algebraic practice to detect the stationary points of f . M.G.
uses another gesture to stress a local perspective on f . Her left hand moves horizontally
to reproduce the horizontal tangent at a stationary point (Fig. 4.4.19). The relation
between the zeros of f ′ and the stationary points of f is expressed in words [13 ]. Finally,
it is graphically converted in full dots on x-axis corresponding to x = −2, x = 0, x = 2
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(Fig. 4.4.20).

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

15 T: "Sign of f ′..." (She writes "y′ > 0
f ′(x) > 0", see Fig. 4.4.21 on the left)
"Can I �nd the answers to this inequality,
by reading them on the graph of the func-
tion? Think about the normal study of func-
tion, when you impose f ′(x) > 0, what do
you �nd out?"

global symbols f ′

16 Ss: "Decrease and increase."
"Maxima and minima."

global and
local

speech
indicators

f

17 T: "I �nd out if the function is
decreasing or increasing. Then I can
say if the stationary points are maxima or
minima, but �rstly I can say if the function
increases or decreases. Ok? What does the
function do? It decreases till the minimum,
increases till the maximum, decreases and
increases." (She retraces the graph with
the chalk)

global speech
indicators
+ gesture

f

18 T: "Where the function is increasing the
derivative is positive, when the function is
decreasing the derivative is negative." (She
draws the scheme in Fig. 4.4.21 on the
right)

global speech
indicators
+ scheme

f and
f ′

19 T: "This new graph has positive sign
from −2 to 0, it is drawn above x-axis,
I delete below." (She keeps her left hand
above x-axis and blackens the region of
plane below, as in Fig. 4.4.22)

global speech
indicators
+ graph +
gesture

f ′

F
ig
ur
es

Figure 4.4.21 - Symbols and scheme for
deducing f ′ sign from f variation.

Figure 4.4.22 - M.G.'s black-
ens the region of plane where f ′

graph does not pass.
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The third considered aspect is global: the sign of f ′. The teacher immediately ex-
presses it in symbols: "f ′(x) > 0" (Fig. 4.4.21 on the left). With this inequality she
reminds to students the praxeology for studying a function [15-16 ]. The teacher relates
the global sign of f ′ with the global variation of f [18 ]. To read the variation of f ,
she continuously retrace with the chalk the pro�le of f , checking where it decreases or
increases [17 ]. Finally, M.G. graphically converts the information about the sign of f ′,
by blackening the regions of plane above or below x-axis (see Fig. 4.4.22).

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′, f ′′

20 T: "Increase or decrease of f ′: what object
do I study in order to understand if a func-
tion increases or decreases?"

global speech
indicators

f ′

21 S2: "The derivative."

22 T: "The sign of the �rst derivative! The
�rst derivative of the �rst derivative is the
derivative of second order" (she writes it
in symbols, see Fig. 4.4.23 on the left)
"which I am still able to read on the graph
of the function, in terms of concavity. The
derivative of second order of f is positive
when it [f ] is convex." (She realizes the
scheme in Fig. 4.4.23)

global
global

symbols
speech
indicators
+ graph +
scheme

f ′, f ′′

f , f ′′

23 T: [...] "f ′ increases from −∞ to −1 and
also from 1 to +∞" (see Fig. 4.4.23 on the
right) "and decreases elsewhere."

global speech
indicators
+ symbols

f ′

F
ig
ur
es

Figure 4.4.23 - Symbols and scheme to study the variation of f ′.

A further aspect to take into account is the variation of f ′, that is a global prop-
erty. M.G. makes again reference to the praxeology for studying a function, by asking
"What object do I study in order to understand if a function increases or decreases?"
[20 ]. When a student answers "The derivative" [21 ], she speci�es "The sign of the �rst
derivative" [22 ]. Then, with a syntactical game of symbols, she writes "[f ′(x)]′ > 0"
and expresses it in terms of f : "f ′′(x) > 0" (Fig. 4.4.23). It allows her to recall the
praxeology for studying a function and to look at the convexity/concavity of the graph
of f . As she has done for the sign, she makes use of a scheme (Fig. 4.4.23) to relate the
convexity/concavity of f with the sign of the f ′′. Returning back to the symbolic initial
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expression "[f ′(x)]′ > 0", she reads it in terms of f ′, deducing the needed information
about its variation [23 ] (Fig. 4.4.23). She keeps this global data and shifts the attention
to local in�ection points of f [24 ].

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′, f ′′

24 T: "I'm going to mark the in�ection points:
−1 and 1. These in�ection points give me
some information about the derivative?"

local graph f

25 T: "Where f ′′(x) = 0, that is in the in�ec-
tion points of f , what does f ′ do?" (She
writes "f ′′(x) = 0" and then "[f ′(x)]′ = 0",
Fig. 4.4.24)

pointwise
local

symbols
graph

f ′,f ′′

f

26 T: "While here I read an in�ection point
for f , here I read a stationary point for f ′.
They are the possible maximum and mini-
mum. So in −1 I have a maximum and in 1
a minimum." (She marks them with a short
horizontal line, see Fig. 4.4.25)

local speech
indicators
+ graph

f and
f ′

F
ig
ur
es

Figure 4.4.24 - Symbols for studying the
stationary points of f ′.

Figure 4.4.25 - M.G.'s horizon-
tal signs on the graph of f ′ to
indicate the stationary points.

The teacher uses the same syntactical transformation on the symbolic expression
"f ′′(x) = 0" to get "[f ′(x)]′ = 0" [25 ]. It allows her to relate the in�ection points of f
to the stationary points of f ′ [26 ]. The teacher uses a local horizontal sign to mark the
stationary points on the graph of f ′ (Fig. 4.4.25).

By recollecting all the information deduced on f ′, the teacher sketches its possible
graph (see Fig. 4.4.26).
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Figure 4.4.26 - The final graph of f ′.

We can summarize the praxeology for Tf ′ in the graphical register in Table 4.16.

OMgra
f ′

Type of task Tf ′ Graphically representing the derivative function, starting
from the graph of a function f .

Technique τf ′ Following the steps of the study of function (from the previ-
ously acquired OMstudy of function, see Table 4.15).

Technology θf ′ The algebraic request about f ′ can be interpreted in terms
of f .

Theory Θf ′ The theory behind the praxeology for studying a function.
The reversibility of the implications f ′ property ⇒ f prop-
erty.

Table 4.16 - M.G.'s mathematical praxeology for the type of task Tf ′ in
the graphical register.

Remarks

In order to algebraically represent the derivative function, the teacher proposes the syn-
tactical technique of replacing the pointwise sign x0 with the universal pointwise sign
x. The explicit technique is expressed in words as follows: "calculate the limit as h
goes to 0 not in x0 anymore, but in any x belonging to the domain, so a generic x".
It entails a global perspective on the functions f and f ′, which depend on x. Such a
global perspective is reached on f , thanks to the graphical resource, and it is obtained
on f ′ as universal pointwise perspective, through the use of symbols and speech. We
noticed a slight disharmony between this two semiotic resources when used together. It
occurs that the speech underlines the di�erent pointwise and universal pointwise nature
of f ′(x0) and f ′(x), but the used symbols actually hide this di�erence.
The function f ′(x) is de�ned as "all the possible directions as the point x varies in the
domain". The universal pointwise sign x is explicitly used in the global sense of variable
and a global perspective is obtained on the function f ′.
The graphical work is a very delicate moment, according to the teacher (see the inter-
views in Paragraph 4.4.1). However, it is very important in order to make students aware
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that the derivative function is a function itself, with its own graph. Working with this
semiotic resource can enhance the global perspective on f ′. Given the graph of a function
f , the task is deducing the graph of y′ = f ′(x). The teacher uses the praxeology related
to the study of function, which they have recently practised in details in the classroom.
Thus, OMstudy of function turns out to be embedded in the new praxeology, both techni-
cally and technologically. By means of gestures and graphical resources, the study of
y′ = f ′(x) allows to activate a local perspective on f , whereas the perspectives on f ′ are
alternatively pointwise and global. Notice that this praxeology allows to get a �nal global
perspective on f ′ without passing through universal pointwise considerations. This ap-
proach implicitly gives for granted that the graph of the derivative function associates
the abscissa x with the gradient of the tangent line to f at the abscissa x.

4.5 The case of V.

V. teaches maths and physics in a high school in Turin. She has been working in this
school for several years, and in particular with Quinta E 's students since they attended
their third year. The school has adopted the textbook Manuale blu di Matematica 2.0
written by Bergamini, Trifone and Barozzi3, but V. prefers to follow her notes for prepar-
ing lessons and to use the textbook only for the exercises. In particular, to address the
theory part, she refers to the volume Lezioni di Analisi Matematica 1, written by Gey-
monant (1981) for Analysis university courses. This can be due to the fact that she has a
PhD in Analysis and that she gave lectures as teaching assistant in engineering courses.

4.5.1 From the interviews: V.'s beliefs

In the preliminary interview with V., in October 2012, we spoke about the work done
with her students on limits, as fundamental to analytically treat the derivative concept.

How did you introduce limits with your students? What kind of work did

you do on them? And how do you think this may in�uence the students'

approach to the derivative concept?

Starting from sequences and limits of sequences, thanks to IT supports such as GeoGebra
or Excel, V. made her students perceive by intuition the limit concept for n→ +∞. She
introduced the horizontal strip as a tool and they used expressions like "from a certain
point onward, it [the function graph] enters the strip", "I can make this strip as small as I
want", "it [the function graph] �attens more and more", "I can put it as close as I want"
and so on. It led to the formal de�nition with ε, which entails big di�culties for the
students. When they moved on to the limits of functions, setting x→ +∞ worked well,
by analogy with the discrete case. A di�culty came out while dealing with x going to a
point, because one has to take into account the continuity property. It is the continuity
de�nition itself that allows you to calculate the limit of a continuous function f , by

3This is the previous edition of Matematica.blu 2.0 (Bergamini et al., 2013).
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simply substituting the given x-value x0 into the expression f(x). Remarking that the
result is the same even if the function has a hole in the point x = x0, they established the
rule of "never being" in the single point x = x0 while calculating the limit value. They
�nally took into account those limits that lead to the indeterminate form [0/0]. They
began with polynomial examples and worked on the algebraic treatment, and then V.

introduced limits such as lim
x→0

sinx

x
. They discussed about the possibility to approximate

them with expressions containing only polynomials, to transform the situation into a
known case. To decide which polynomial function to use, they employed a graphical
support and used the zoom function. Thus, V. formalized a "f [function]-g[polynomial]
equivalence" by giving the de�nition of asymptotic equivalence as follows.

Def. Let f and g be two functions that goes to zero as x → 0. We say that

f and g are asymptotically equivalent when x→ 0, if lim
x→0

f(x)

g(x)
= 1 and

we write f(x) ∼︸︷︷︸
x→0

g(x).

Now, her expectation is that the imprint given to the work on limits has in�uenced the
students' conceptualization of the tangent line as the straight line that best approximates
the function in a point.

How do you usually introduce the derivative notion?

To introduce the derivative notion, V. often makes the students re�ect upon the tan-
gency concept, asking them "What is a tangent line?". Indeed, she thinks this is the
problem: "although we have spoken of tangent line in lots of occasions, the students
don't know how to de�ne it". V. usually raises the issue of the tangent line de�nition
in the classroom and tries to exploit the reactions: someone recalls the ∆ = 0 method,
some others the geometrical properties of the conics. Finally, V. recalls some previously
learnt concepts such as the instantaneous speed, the angular coe�cient of a straight line,
the trigonometric tangent of an angle. Normally, V. de�nes the tangent line to a curve
in a point as the limit position of a straight line that cuts the curve in that point and
in another one which gets closer and closer to it. She would like to use the interactive
whiteboard (IWB) in classroom to show the process with GeoGebra.

In one of the following meeting with V., in November 2012, we spoke about the
derivative function.

How do you usually introduce the derivative function?

From a graphical point of view, often by using GeoGebra, V. usually shows how the
derivative graph can be automatically generated, given the graph of a function. She shows
the procedure once with GeoGebra, but then she expects that the students reproduce it
with paper and pencil. V. wants them to develop a graphical reasoning ability. And one
of the reasons why her colleagues and her like the adopted textbook is exactly that it
proposes a lot of graphical exercises.
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4.5.2 Type of task Ttangent: determining the equation of the tangent
line to a generic function in a point

To the question "How do you introduce the derivative notion?", V.'s answer is that she
usually starts with the tangent line de�nition. In classroom, indeed, she immediately
poses the type of task Ttangent.

"Given a function, given a point on this function, we want to determine the
equation of the tangent line to the function in that point."

She does not give any graphical representation of the "given function", probably because
she wants it to be as generic as possible. Afterwards, she goes straight to the main
problem, by asking:

"First of all, which properties must a tangent line have?"

An open discussion about the tangent line de�nition arises, in which the students, as V.
expected, recall all the operational de�nitions concerning the conics. V.'s main goal, as
she later confesses us, consists of uprooting them, showing their ine�cacy with a generic
function. The previous praxeology to which the teacher and the students refer is the
conics-related praxeology, we summed up in Table 4.1.
Finally, in order to accomplish the general given type of task, V. proposes to �nd the
angular coe�cient of the tangent, following the more generic de�nition they are searching
for. Table 4.17 sums up the phases developed by V. to accomplish the type of task
Ttangent.

Tasks t, type of tasks T and

problems given in classroom

Construction of the OM for

Ttangent
Ttangent: determining the equation
of the tangent line to a function in a
point
Problem: de�ning the tangent line
to a function in a point

The teacher and the students discuss
on the general theory Θtangent

Tmtg : �nding the angular coe�cient
of the tangent line

The teacher leads the students in
constructing the technology for the
type of task Tmtg , from which they
develop the technique τmtg

Table 4.17 - V.'s didactic organization for working on the type of task
Ttangent.

The teacher and the students detect the subtype of task Tmtg inside the main type
of task Ttangent. They �rstly develop the praxeology OM [Tmtg/τmtg/θmtg/Θtangent]. We
can detect the three didactic moments:

1. �rst meeting with the type of task;

2. construction of the technological-theoretical block;
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3. elaboration of the technique.

Moreover, this episode is relevant for the introduction of a new local perspective on a
generic function, that V. realizes by using the object tangent line. So far, this object
has been tied to the conics study, where its de�nitions are pointwise and global. In the
construction process of a new more generic praxeology, V. has to deal with the pointwise
and global character of these previously learnt de�nitions and the related techniques and
technologies.

Construction of the technological-theoretical block for Tmtg

Let us focus now on the discussion arisen in the classroom after V.'s question: "Which
properties must a tangent line have?". We will not transcript all the statements, but
only the most signi�cant ones.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

1 S1: "[the tangent line must] intersect [the func-
tion] in a single point."

pointwise speech
indicators

2 S2: "[the tangent line] must be perpendicular." pointwise speech
indicators

3 S3: "For the circle..." (his hands form a T, as in
Fig. 4.5.1)

pointwise pointing
gesture

4 S4: "But, if it is so, not all the points
has a tangent line ... I'm imagining a
sloped function" (tilting his hand) "then
maybe the tangent line in that case could
intersect the function in another point, right?"

global speech
indicators

5 T: [...] "So, are you thinking of something like
this?" (She sketches the curve in Fig. 4.5.1)

global sketch

6 S4: "Yes, there is the tangent line but
it touches other points of the function."

global speech
indicators

7 T: "For example, if I search for the tangent line
here?" (She points at the maximum point on the
curve, see Fig. 4.5.2) "How do I imagine it?"

pointwise pointing
gesture

F
ig
ur
es
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Figure 4.5.1 - S3's gesture which reminds
of radius and tangent perpendicularity,
for the circle.

Figure 4.5.2 - V.'s first
non-example: the tangent
line could intersect the
curve in another point.

Basing on their previous experience with the tangent line and the conics [3 ], some
students propose pointwise properties [1-2 ], that are the theoretical basis on which the
old conics-related praxeology is grounded (see Table 4.16). The students approach this
type of task as those previously treated when the curve was a conic: they �rstly try
to adapt their old knowledge. Then, thanks to S4's global remark [4 ], the teacher uses
a global graphical non-example [5-7 ] (Figure 4.5.2) to show that the tangent line to a
function in a point could intersect the function again in another point.
We can notice that the teacher has not intentionally given any representation of the
generic function they are exploring. So, the students have the possibility to use every
kind of register or semiotic resource to express their utterances. On the one hand, the
students' words are accompanied by gestures that refer to conics-related practices, such
as that in Fig. 4.5.1. On the other hand, the teacher tries gradually to �x students'
utterances and gestures into written sketches on the board, so that the whole class can
discuss about them. The teacher chooses the graphical register of representation for this
purpose, and produces a conversion from the students' speech to the sketch in Fig. 4.5.2.
Proposed by the students but drawn by the teacher, written signs of this kind become
powerful instruments in the teacher's hands: she stresses their potential features, in order
to foster students' discussion.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

8 S5: "To avoid what S4 said, we can take
a suitable interval" (moving his two indexes up
and down together, as in Fig. 4.5.3) "where the
tangent line satis�es our conditions..."

local speech
indicators +
iconic gesture

9 T: "So, we limit the zone." local speech
indicators

10 S5: "At that point, if I want a tangent line to
a point in that interval, I can do it without any
other intersection of the line in that interval."

local speech
indicators

11 T: [...] "So, we take a point, wher-
ever we want, this one (x0, y0), we limit to
a suitable neighbourhood" (she sketches the sit-
uation at the white board, see Fig. 4.5.4) "and
what do we require there?"

local speech
indicators
+ sketched
signs

12 S6: "There, that the line intersects [the function]
only in that point."

local
pointwise

speech
indicators

13 S5: "It is not enough."
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14 T: "It is not enough. Why?"

15 S7: "It could be like this" (he draws in the air a
line intersecting the function, see Fig. 4.5.5)

pointwise iconic gesture

16 T: "It could do so" (She draws the situation in
Fig. 4.5.6)

pointwise graph

F
ig
ur
es

Figure 4.5.3 - S5's gesture expressing the
intention of limiting the zone of study.

Figure 4.5.4 - V.'s graph-
ical interpretation of S4's
intention [8 ] and [10 ].

Figure 4.5.5 - S7's gesture to figure out
that the straight line could be secant, in-
stead of tangent.

Figure 4.5.6 - V.'s sec-
ond counterexample: ac-
cording to the first defini-
tion given by the students,
the straight line could also
intersect the curve.

Students modify their proposal in a local direction [8-10 ], but the pointwise perspec-
tive is still too strong [12 ]. After S5's realization [13 ] and S7's pointwise remark [15 ],
the teacher makes a pointwise graphical counterexample [16 ] (Fig. 4.5.6) to show that
the students' de�nition is not e�ective.
Once again, the teacher converts the students' speech and gestures into a written sketch.
We can notice that S5's gesture (Fig. 4.5.3) represents an e�cient semiotic resource for
the students to speak about locality. Indeed, we will �nd a similar gesture ahead in the
discussion, produced by another student. The teacher exploits it, adding two vertical
lines on the sketch at the whiteboard (Fig. 4.5.4) and accompanying the gesture and
the written sign "| |" with a rigorous mathematical speech [11 ]. This is an example of
semiotic game: "The teacher mimics one of the signs produced in that moment by the
students (the basic sign) but simultaneously he uses di�erent words. [...] Namely, the
teacher uses one of the shared resources (gestures) to enter in a consonant communicative
attitude with his students and another one (speech) to push them towards the scienti�c
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meaning of what they are considering" (Arzarello & Paola, 2007, p.23). In V.'s case, the
relation of signs is more complex. Indeed, the teacher exploits one of the shared gestures,
but without repeating it. In recalling it, she changes the semiotic resource, converting the
gesture into the written sign "| |" and accompanying it with a meaningful mathematical
speech.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

17 S6: "That it is also, let me say, perpendicular. I
don't know exactly how..."

pointwise speech
indicators

18 T: "Why perpendicular?"

19 S8: "To what?" [...]

20 S9: "It could be perpendicular to the radius of
the circle which best approximates the curve,
couldn't it?" [...]

pointwise
local

speech
indicators

21 T: "So, the tangent to the circle which
best approximates the function in that point. It
is possible to do so, but it arises the problem to
�nd the circle which best approximates . . . It is
more di�cult from the beginning."

local speech
indicators

The pointwise property [17 ] is due to students' reference to the tangent line in the
case of a circle [20 ]. This is one of the tangent images that V. wants to undermine.
Nevertheless, it is interesting that S9 tries to relate what she knows with the new given
situation, introducing a local view [20-21 ]. V. concludes that this de�nition is not of
immediate and simple application.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

22 S10: "There are two methods..."

23 T: "Two methods for what?"

24 S10: "To calculate the tangent: ∆ = 0 that was
valid for hyperbolas, parabolas and circles; and
then the method of doubling. I thought about
them, but I don't understand how to..."

25 T: [...] "∆ = 0. Is it possible to apply it here?
[...] Why does ∆ = 0 method work for the curves
we studied two years ago?"

26 S5: "Because they are of second degree."

27 T: "And then?"

28 S1: "They have ∆."
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29 T: "Since the equation is of second degree, at the
end I have a second degree solving equation and
then, by imposing ∆ = 0, what am I requiring?"

30 S1: "That it has only one solution." pointwise speech
indicators

31 S3: "Two coincident solutions." pointwise speech
indicators

32 T: "Two coincident solutions. [...] But if I take
something like this" (she refers to the sketch in
Fig. 4.5.3) "which is its degree?"

33 S4: "At least third."

34 T: "Clearly the solving equation will be of third
degree. [...] And I would like to say that it
has two coincident solutions, but I can't because
there isn't ∆."

pointwise speech
indicators

Since it was successful with conics, someone reminds the algebraic ∆ = 0 method,
which they studied in the previous years [22-24 ]. V. points out the ine�ectiveness of that
process for a generic function [25-34 ] and stresses its pointwise aspect [30-31 and 34 ].
The discussion moves on to the possibility of applying the conics-related techniques, in
particular ∆ = 0 method. From the utterance [17 ] to [34 ], we point out that the only
semiotic resource they use is the speech. The teacher helps the students to argue why
the old ∆ = 0 technique worked with conics, but cannot be adapted to this more generic
type of task.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

35 S11: "It must all lie in the same half-plane, ex-
cept for the point."

global speech
indicators

36 T: "What do you mean?"

37 S11: "A function detects two half-planes." global speech
indicators

38 T: "Yes. They aren't half-planes, but
regions of plane."

global speech
indicators

39 S11: "Ok. And the straight line must always lie
in the same region of plane."

global speech
indicators

40 T: "Yes. Always?" towards local speech
indicators
+ intonation
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41 S11: "In the interval" (measuring a short dis-
tance with his hands, as in Fig. 4.5.7)

local speech
indicators +
iconic gesture

42 T: "Locally. All we are saying is only local."
(She sketches two vertical lines on the white
board, see Fig. 4.5.8) [...] "Ok, S11. And if I
draw a function like this" (She sketches the curve
in Fig. 4.5.9) "and I ask you to �nd the tangent
in this point" (indicating the in�ection point)
"Is there the tangent in that point or not?"

local speech
indicators
+ sketched
signs + point-
ing gesture

43 S6: "It tends to coincide with the function." local speech
indicators

44 S5: "It is like when we studied sinx that was
asymptotically equivalent to y = x, isn't it?"

local speech
indicators

45 T: "Did we have the tangent in that case?"

46 S7: "There exists the tangent but the reasoning
based on the regions of plane falls."
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Figure 4.5.7 - S11's gesture to locally
refer to an interval.

Figure 4.5.8 - Teacher's
conversion of S11's gesture
into written sign "| |"

Figure 4.5.9 - V.'s third counterexample: the tangent line in an inflection
point "passes through" the curve.

Another student makes a global proposal [35-39 ], then corrected into a local one
[40-41 ]. V. makes explicit that they are thinking locally and shows a local graphical
counterexample [42 ] (Fig. 4.5.9) of the tangent line in an in�ection point. S11's gesture
(Fig. 4.5.7) recalls the previous S5's gesture (Fig. 4.5.3). As in line [11 ], this shared
gesture to express a local perspective is followed by the teacher's conversion into the
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written sign "| |" (Fig. 4.5.8). Students are now completely disarmed on the pointwise
and global fronts. Every reference to conics-related praxeology has fallen. Nevertheless,
this last counterexample [42 ] (Fig. 4.5.9) reminds them of the asymptotic equivalence
property [43-46 ] and gives them the possibility to refer to another more recent praxeology,
summed up in Table 4.18.

OMasymptotic equivalence

Type of task Solving limits such as lim
x→0

sinx

x
.

Technique Firstly, observe that it gives an indeterminate form
[0/0]. Thanks to a graphical software, draw the graphs
of y = sinx and y = x. Zoom them in a neighbourhood
of the origin and notice that they seem to coincide.
Then, we can say that sinx ∼ x for x belonging to a
neighbourhood of x = 0.

So, lim
x→0

sinx

x
= lim

x→0

x

x
= 1.

Technology If you have to compare two in�nitesimal quantities in
a neighbourhood of x = 0, so that their ratio gives
[0/0], you need to compare the speed with which they
go to zero. If they turn to coincide in the given neigh-
bourhood, you can say that their are asymptotically
equivalent.

Theory - Analytic equation of a straight line, angular coe�-
cient as incremental ratio.
- Given de�nition of asymptotic equivalence:
Def. Let f and g be two functions that goes to zero
as x → 0. We say that f and g are asymptotically

equivalent when x → 0, if lim
x→0

f(x)

g(x)
= 1 and we write

f(x) ∼︸︷︷︸
x→0

g(x).

- Limits theory.
Table 4.18 - Previous mathematical praxeology constructed by V. re-
lated to the asymptotic equivalence between functions.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

47 S1: "The tangent can be the line
which best approximates the given curve
in a neighbourhood of the point, can't it?"

local speech
indicators

48 S5: "But it is what we did to have the asymptotic
equivalence!"
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49 S11: "Limit as x goes to x0 of f(x) over the
straight line is equal to 1." (He goes and write it
on the whiteboard, see Fig. 4.5.10)

local speech
indicators
+ symbols

50 T: [...] "If you remember, this is the condition
we used when we spoke about asymptotic equiva-
lence."

51 S1: "It is right or not? Let's get to the point."

52 T: "The fact is that it must work, but it is an
approach that I have never tried before. Let's try
together now."

F
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Figure 4.5.10 - S11 writes the relation
he has just expressed in words.

Eventually, one of the students proposes a local property: "The tangent line can be
the line which best approximates the given curve in a neighbourhood of the point, can't
it?" [47 ]. This is one of the possible ways to correctly de�ne the tangent line to a
function. Along with S11's attempt of formalizing [49 ] (Fig. 4.5.10), it represents a
turning point for the work in the classroom. Indeed, only in this moment the teacher
formulates in written symbols the type of task Ttangent (Fig. 4.5.11). V. poses the type
of task Tmtg ⊂ Ttangent by circling the unknown m in the equation of a generic straight
line which passes through the point (x0, f(x0)): y − f(x0) = m(x− x0).

Figure 4.5.11 - The teacher analytically formulates the type of task
Ttangent
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Since, so far, the problem was only formulated in words, the main semiotic resource has
been the speech. The �rst reformulation of the problem in written symbols marks a sig-
ni�cant change in the classroom mathematical activity. The shift towards the semiotic
resource of written symbols prepares the ground to the �rst technology produced for the
type of task Ttangent. Such a change in the semiotic activity corresponds to the abandon
of the conics-related praxeology (which has a pointwise-global character) in favour of the
asymptotic equivalence-related praxeology (which has a local character).
The teacher succeeds in abandoning the conics-related praxeology, which entailed alge-
braic techniques: namely ∆ = 0 method and mtg = −(mradius)

−1. It is a student (S11)
who proposes a symbolic formulation of the best approximation of a function through a
straight line. He employs the de�nition which comes from the theory of the asymptotic
equivalence. This is a local condition, which we denote with θ′mtg , since it represents a
�rst attempt to get an analytic expression for mtg:

θ′mtg : lim
x→x0

f(x)

f(x0) +m(x− x0)
= 1.

Whereas no component of the conics-related praxeology can be applied for treating the
type of task Ttangent, the theoretical component of the asymptotic equivalence-related
praxeology can be potentially employed in the construction of the technological level for
the rising praxeology.

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

53 S7 : "But... It is a sort of identity, isn't it?
I mean, if I replace x with x0, since it goes to
it, [the part with] m becomes zero and all be-
comes f(x) [f(x0)] divided by f(x) [f(x0)] which
is equal to 1. It's a sort of identity, of something
obvious, isn't it?"

pointwise speech
indicators

54 T: "It is not so obvious... I'm saying that
the function is approximated by a straight line
in the best way." [...]

local speech
indicators

55 T (referring to the equivalence in Fig. 4.5.11
on the right): "There exists and it is simple the
way to obtain m from it. But now I cannot see
the way to do it rigorously. Because [...] I'd need
to algebraically transform this equivalence, which
is the condition I want, so that I get m equal to
something." [...]

56 S11: "So m is equal to the limit as x goes to x0
of f(x)− f(x0) over x− x0, isn't it?"

local speech
indicators
+ oral symbols
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Figure 4.5.12 - V. writes S11's intuition
in symbols.

Within this symbolic formulation, again S11 intuitively gets the correct technique
τmtg : "m is equal to the limit as x goes to x0 of f(x) − f(x0) over x − x0" [56 ]. The
students go through a phase of "analytic babbling"4. V. writes S11's proposal in symbols
at the whiteboard (Fig. 4.5.12). She adds an interrogative point between the technology
θ′mtg and the technique τmtg . That is because they do not manage to get the guessed
technique through a rigorous algebraic manipulation. It depends on the fact that θ′mtg
is not the correct technology, as they will realize the lesson after. Some doubts start to
emerge on θ′mtg validity as well as on its pointwise character [53 ].

Technology re�nement to justify the technique for Tmtg

At the beginning of the second lesson on the derivative concept, V. comes back to the
Ttangent symbolic formulation (Fig. 4.5.11). She recalls also one of the last students'
interventions [53 ] about the validity of θ′mtg .

What happens Perspectives Semiotic

(teacher-students dialogue) on f resources

57 T (drawing the situation in Fig. 4.5.13): "This
is a straight line that obviously doesn't approx-
imate the function well. But, whatever value
I give to m, for all the straight lines which
pass through this point, the condition [θ′mtg ] is
true."

pointwise speech
indicators
+ graph

4The expression is borrowed by the ArAl project, born to promote an early approach to algebraic
thinking within the group GREM (Department of Mathematics, University of Modena-Reggio Emilia,
Italy). The ArAl project elaborated the metaphor of "algebraic babbling", which brings the learning
methods for the algebraic language closer to those used for natural language. Here, we use it in reference
to the "analytic" language of Calculus.
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58 T: "Why it [θ′mtg ] doesn't give me the
idea of asymptotic estimate? Because
the asymptotic estimate is valid for
in�nitesimal quantities, which go to 0.
Thus here �rst of all I need an
indeterminate form 0/0, the two quantities
must go to zero, and then I compare the speed
with which they go to zero."

local speech
indicators
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Figure 4.5.13 - V.'s graphical counterexample for θ′mtg
.

The moment of construction of the right technology θ′′mtg for the new technique τmtg
is complex and thorny. Thus, the teacher comes back to rein the lesson. She �rstly shows
the pointwise character of the previously given condition θ′mtg , which does not �t with
their request of local estimate [57 ]. Then, by recalling the principle of the asymptotic
equivalence, she proposes another graphical-symbolical formulation of the type of task
Ttangent (Figure 4.5.14). More speci�cally, she applies to the x-axis a vertical translation
of vector (0; f(x0)). While miming this geometrical transformation with an upward
movement of her hand, she says:

"In order to make the two quantities in�nitesimal, what do I do? Simply, it
corresponds to apply a translation. It is like we start from this point."

And she draws the red straight line on the graph as the new x-axis (see the graph in Fig.
4.5.14). Then, she focuses the students' attention on the quantities AB and CB, giving
names to the points on the graph. These two quantities are now in�nitesimals as x goes
to x0 and the asymptotic equivalence can be established between them. By expressing
in symbols the quantities AB and BC (see Fig. 4.5.14 on the right), she can eventually
write the right technology (Figure 4.5.15), which e�ectively justi�es the technique τmtg
(Figure 4.5.16). We denote it θ′′mtg :

θ′′mtg : lim
x→x0

f(x)− f(x0)

m(x− x0)
= 1.
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Figure 4.5.14 - V.'s second analytic formulation of the type of task
Ttangent: the x-axis is vertically translated by vector (0; f(x0)).

Figure 4.5.15 - The correct tech-
nology θ′′mtg

.
Figure 4.5.16 - From the correct
technology θ′′mtg

to the technique
τmtg .

The construction of the OM [Tmtg/τmtg/θ
′′
mtg/Θtangent] is now complete. A process of

synthesis allows the teacher and the students to integrate this result into the formulation
of the type of task Ttangent and completely solve it.

Table 4.19 summarizes the new praxeology for Ttangent. Notice that the technological
speech is made of sentences explicitly uttered by the teacher in the classroom. As far as
the theoretical knowledge is concerned, only the �rst one is a new piece of knowledge,
whereas all the others are old pieces of knowledge to recall. We can observe that the
asymptotic equivalence property is embedded in the theoretical component of this new
praxeology and it is fundamental for �nding the new technology θtangent.
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OMtangent

Type of task Ttangent Determining the equation of the tangent line to a generic
function in a point.

Technique τtangent tg : y−f(x0) = m(x−x0) where m = lim
x→x0

f(x)− f(x0)

x− x0
.

Technology θtangent Among all the straight lines which pass through the point
(x0, f(x0)), the tangent is the one that best approximates
the function. [...] The in�nitesimal quantity f(x) − f(x0)
is asymptotically equivalent to the in�nitesimal quantity
m(x− x0), so the following condition is satis�ed:

lim
x→x0

f(x)− f(x0)

m(x− x0)
= 1.

Then, m is a constant so I can bring it out of the limit sign,
�nding
1

m
lim
x→x0

f(x)− f(x0)

x− x0
= 1 ⇐⇒ m = lim

x→x0

f(x)− f(x0)

x− x0
.

Theory Θtangent - The de�nition of the tangent line to a generic function in a
given point as "the line which best approximates the given
curve in a neighbourhood of the [given] point" [47 ];
- The analytic equation of a straight line;
- The asymptotic equivalence property;
- The limits theory.

Table 4.19 - V. and her students' mathematical praxeology for the type of task
Ttangent.

Remarks

The teacher makes the students recall old algebraic praxeologies, namely the conics-
related one. Her didactic technique is the mathematical discussion, which is centred on
the tangent de�nition. The old algebraic techniques are rejected one by one in the case
of a generic function. Another more recent praxeology, which is linked to the asymp-
totic equivalence property, intervenes and gets a determinant role. It is related to limits,
so it belongs already to the Calculus domain. Indeed, it has already a local imprint-
ing. Therefore, we can observe that the local dimension is conferred to the problem
of the tangent and to the whole praxeology thanks to the embedding of the asymp-
totic equivalence-related praxeology. More precisely, the theory Θas.eq. enters the theory
Θtangent and determines the technology θmtg . As a consequence, OMtangent has a strong
technological-theoretical block, with a pronounced local character. The de�nition of
tangent, reached through the discussion, allows to approximate the given function in a
neighbourhood of a point. Thus, the resulting perspective on the function is local. The
teacher and the students explicitly gain it, �rstly through the speech, the written signs,
the gestures and, only after a little struggle, they move to symbols.
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4.5.3 Type of task Tf ′: representing the derivative function

In the previous paragraph we have analysed how V. has introduced the derivative concept.
Its �nal formalization (see Fig. 4.5.17) has been the following:

"f is di�erentiable in x0 (x0 ∈ domf) if it exists and is �nite

limx→x0
f(x)− f(x0)

x− x0
, which we denote with f ′(x0)".

Figure 4.5.17 - V.'s formalization of the derivative con-
cept.

She has given some exercises to the students, as homework, but they have found some
di�culties, due to the di�erent textbook notation. So, V. starts her third lesson about
derivatives by saying:

"We have seen a theoretical and introducing part. But now we are really
interested in learning how to do calculations. What's the problem? You have
tried to do some calculation for today, and you have seen that calculating
each time the limit of the incremental ratio is something tiring. [...] So, we'd
really like to have an automatic method for �nding the derivative. What we
are going to learn today is how calculating the derivative without having to
do every time the limit of the incremental ratio. [...] We will use another
notation, since it is more convenient".

Thus, she changes the limit variable by posing h = x − x0 (Fig. 4.5.18) and, doing so,
she gives an alternative technique τ ′mtg , which is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
,

to �nd the derivative of a function f in its point x0.
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Figure 4.5.18 - V.'s second formalization of the derivative concept.

V. proposes a �rst task tf ′ :

"Calculate the limit of the incremental ratio for the function f(x) = x2 [...]
Calculate the derivative for x2 in any point x0 of it".

Then, she interprets the result in terms of function (without making it explicit) and
starts �lling in a table f |f ′. The didactic task which V. wishes to accomplish is giving
rules for quick calculation, and not speci�cally introducing the derivative function. Nev-
ertheless, it is after a student's intervention that V. comes to speak about derivative as a
function. The derivative function is represented in the algebraic register. Therefore, we
can say that the type of task Tf ′ has been here speci�ed as algebraically representing the
derivative function. We add the superscript "alg" to stress that a particular register of
representation has been chosen to accomplish the type of task. The phases of the work
are summarized in Table 4.20.
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Tasks t, type of tasks T and

problems given in classroom

Construction of the OM for T algf ′

Problem: showing the equivalence
between the technique τmtg given in
classroom and the textbook one.

The teacher works at technological
level to show that the two techniques
are actually the same one. As a �-
nal result, she gives an alternative
technique τ ′mtg .

tf ′ : calculating the limit of the
incremental ratio for the function
f(x) = x2, that is the derivative in
any point x0 of it.

The teacher gives an algebraic tech-
nique τf ′ .

Problem (a student's doubt): do the
independent and dependent vari-
ables change, shifting from f to f ′?

The teacher answers the student's
question by speaking of the deriva-
tive as a function, with its algebraic
expression. It is an attempt on a
technological level for Tf ′ .

ttangent: writing the equation of the
tangent line to the parabola x2 in
the point of abscissa x = 2.

This task actually belongs to
Ttangent, since it refers to the
tangent equation, but the teacher
gives it in this moment in order to
practice the pointwise formula on
f ′, m = f ′(x0).

Table 4.20 - V.'s didactic organization for working on the type of task
Tf ′ in the algebraic register.

Within this episode, the teacher gives the praxeology OMalg
f ′ in the algebraic register.

We can distinguish V.'s actions in the three didactic moments:

1. �rst meeting with the type of task;

2. elaboration of an algebraic technique;

3. construction of a technological-theoretical block.

As for the perspectives, V. has to deal with the pointwise character on f ′, which is implicit
in the given de�nition (see τmtg and τ ′mtg). Nevertheless, the introduced technique τf ′
goes towards a global perspective on f ′, essentially for the use of the generic x0 sign. We
are interested in how this global perspective on f ′ is managed by the teacher.
Anyway, notice that the local perspective constructed on a generic function f , while
working on Ttangent, remains implicitly present in the use of the limit symbol at the
technical level.

Elaboration of an algebraic technique

Let us start focusing on the particular task tf ′ in which V. practices the alternative
technique τ ′mtg (Fig. 4.5.18). We concentrate especially on the �nal speech, when the
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teacher gives generality to the whole process.

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

1 T: "Let's try to make some exam-
ples. We are going to calculate the
limit of the incremental ratio for the func-
tion f(x) = x2. Try to write it on your
own. So, try to calculate the derivative for
x2 in any point x0 of it."

local

global(=univ.
pointwise)

speech
indicators
oral sym-
bols

f

f , f ′

2 S1: "Any point?"

3 T: "Any point... As usual, let's call it x0."

4 [The students work alone for a while, the
teacher walks through the classroom] S2:
"It gives 2x0!"

global(=univ.
pointwise)

symbols f ′

5 S1: "2x0 + 1." global(=univ.
pointwise)

symbols f ′

6 S2: "+1, it's true!"

7 T: "Why +1? It should be 2x0... Let's try."
(She makes all the steps at the whiteboard,
see Fig. 4.5.19) [...]

global(=univ.
pointwise)

symbols f ′

8 T: "Obviously, if you calculate this limit,
you get zero over zero." (She writes [0/0],
see Fig. 4.5.19) "Necessarily, always. If not
so, I have done something wrong, if I don't
get an indeterminate form."

local speech
indicators
+ symbols

f

9 T: "What have I discovered? I've discov-
ered that when I have the function x2, its
derivative is... point by point... is 2x0."

global(=univ.
pointwise)

speech
indicators
+ symbols

f , f ′

10 T: "So, if I write a function here, and its
derivative here" (she starts composing a ta-
ble at the blackboard, Fig. 4.5.20) "I've
discovered that the derivative of the func-
tion x2 is 2x." (She �lls the table in) "This
is an automatic process, because if I have
x2, from this moment on, I won't calculate
the limit of the incremental ratio anymore.
I know that its derivative is 2x."

global table +
symbols

f , f ′
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11 T: "I've calculated it once and for all,
in the general case of any point x0, so I
have it."

global(=univ.
pointwise)

speech
indicators
+ oral
symbols

f , f ′
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Figure 4.5.19 - V. solves the task tf ′ . Figure 4.5.20 - Table f |f ′ to
collect the main rules.

Notice that the given task [1 ] is universal pointwise on the involved functions ("any
point x0") and the techniques the students dispose of are pointwise on f ′. V.'s utterance
[3 ] seems to reveal that the class is somehow familiar with the work on generic signs.
While solving the exercise [4-8 ], V. keeps a local perspective on f : not only she uses the
limit sign, but also she stresses [8 ] its local implications from a technological point of
view. When she gets the result 2x0, she globally interprets it as "the derivative point
by point" [9 ], in a universal pointwise sense. V. suddenly replaces x0 with the global
variable x [10 ]. This semiotic technique is implicit in the change of signs from line [9 ] to
line [10 ]. V. uses the table f |f ′ as a resource to systematize. As for the perspectives, x0
is used as a universal pointwise sign, representing every abscissa x0 of the domain, while
x has the global meaning of variable. From a technological point of view, at this stage
V. does not make explicit the shift from x0 to x. It follows an opaque praxeology, whose
technique and related technology are only hinted.

Construction of the technological-theoretical block

The doubt of one of the students makes V. move on to a technological level.

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

12 S3: "The independent variable changes
from f to f ′... Is it x0 or is it
always the same?"

global speech
indicators
+ oral
symbols +
intonation

f , f ′

13 T: "It is a point x." global oral sym-
bols

f , f ′
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14 S3: "The variable from f to f ′ changes... I
mean, as the graph changes, it changes also
the x. If not so, I make confusion... Is it
right or wrong?"

global speech
indicators

f , f ′

15 T: "It is wrong, but it's right that you won-
der about it. Let's take f(x) = x2, which
I'm able to draw, that is the parabola." (She
draws the curve, see Fig. 4.5.21)

global graph +
symbols

f

16 T: "What have we discovered and proved?
That if I take any point x0" (she chooses a
point x0, see Fig. 4.5.21) "then the angular
coe�cient of the tangent line in the point of
abscissa x0 [...] is 2x0."

global(=univ.
pointwise)
pointwise

speech
indicators
symbols +
graph

f

17 T: "So, if I draw the tangent line here"
(she traces the tangent in the corresponding
point on the parabola, see Fig. 4.5.21) "this
straight line has 2x0 as angular coe�cient."
(She writes m = 2x0)

pointwise graph +
symbols

f

18 T: "What does it mean? That, at
this point, I can make x0 vary as I want."
(She moves her hand forwards and back-
wards, as in Fig. 4.5.22) "... At this
point, I can write x instead of x0, for con-
venience."

global speech
indicators
+ symbols
+ iconic
gestures

f , f ′

19 T: "And point by point I have a formula,
that is the following" (she writes f ′(x) =
2x) "which point by point" (she moves the
stick as in Fig. 4.5.23) "tells me the value of
the angular coe�cient of the tangent line."

global(=univ.
pointwise)

global

speech
indicators
+ symbols
iconic
gestures +
graph

f ′

f

F
ig
ur
es

Figure 4.5.21 - Graphical example chosen by V.
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Figure 4.5.22 - V.'s gesture to accompany the words "I can make x0 vary as
I want" [18 ].

Figure 4.5.23 - V.'s gesture to show the tangent "point by point" [19 ].

As we can infer from S3's interventions [12 and 14 ], the opaque praxeology introduced
by V. induces doubts and confusion in the students. The teacher clari�es the generic role
of x0 and justi�es, at a technological level, the shift from x0 to x which was not so explicit
in lines [9-10 ]. V. starts from stressing the pointwise basic character of the sign x0, by
choosing a particular point on x-axis and the corresponding one on the parabola y = x2

[15 ]. In line [16 ], we can notice an incongruity which occurs typically when one uses
the graphical resource to speak of something generic. One declares to consider a generic
point on the curve, any value of the abscissa x0. However, when detected on the drawing,
the point or the abscissa necessarily becomes a precise point on the curve or a speci�c
value of the abscissa. In order to regain generality and variability, V. uses the speech "I
can make x0 vary as I want [...] I can write x instead of x0" [18 ] and continuous gestures
on the graph (see Fig. 4.5.22). The previous hint to technology and technique [9-10 ]
is a little bit developed here. She justi�es the change of x0 into x (the used technique)
as a convenience. Actually she is giving to the generic universal pointwise sign x0 the
global status of variable. It happens through V.'s utterance [18 ] and the continuous
gesture (Fig. 4.5.22), combined together. As a consequence, the perspective on the
functions f(x) and f ′(x) would be global in the sense of variable. Nevertheless, when
the teacher makes explicit the global perspective on f ′(x), she enhances the universal
pointwise character of the formula f ′(x) = 2x, which "point by point tells me the value
of the angular coe�cient of the tangent line" [19 ]. Instead, her gestures on function f
(see Fig. 4.5.23) are continuous and global.
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What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

20 T (aiming to S3): "So, you are right to pose
the question, but one needs to understand
well what x is."

global speech
indicators
+ symbols

f , f ′

21 S3: "f ′(x) gives me the angular coe�-
cient..."

oral sym-
bols

22 T: "Yes, as x varies. So, the variable is the
same. Point by point, here I have a func-
tion that point by point automatically, as a
machine, tells me the angular coe�cient of
the tangent line."

global
global(=univ.
pointwise)

speech
indicators

f ′

23 S3: "Only, I don't understand the passage...
If we know thatm is 2x, f(x) corresponds to
y, while m corresponds to the tangent. How
can they be equivalent? I don't understand."

global oral sym-
bols

f , f ′

In the teacher's words [22 ] we �nd the de�nition of the derivative f ′ as "a function
that point by point automatically, as a machine, tells me the angular coe�cient of the
tangent line". The explicit perspective on f ′ is global in the sense of universal pointwise.
However, the new doubt of the student S3 is about the status of f ′ as a function [23 ].
He has a clear global image of the function f , thanks to the graphical register used in
the teacher's drawing, but he cannot understand how also the angular coe�cient m (and
so f ′) could behave like the function f does.

Finally, V. gives an exercise in order to "clarify the ideas":

"Write the equation of the tangent line to the parabola x2 in the point of
abscissa x = 2."

The students work alone for a while, then V. solves it at the whiteboard (Fig. 4.5.24).
Then, she aims again to S3.

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

24 T: "Is it clearer now?"

25 S3: "But if x is equal to 2, why does the
second x remain x?"

pointwise symbols f ′

26 T: "No, it's not x = 2... Ah, in the point!
This would be x0, yes, ok..." (she replaces
x with x0 at the beginning, Fig. 4.5.25)

pointwise speech
indicators
+ symbols

f ′

27 Ss (surprised): "Aaaaaah!" exclamation
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28 T: "Yes, but... Ok... All right?
In the point of abscissa 2."

pointwise speech
indicators

f ′

F
ig
ur
es

Figure 4.5.24 - V. solves the given
task ttangent.

Figure 4.5.25 - V. changes
x = 2 in x0 = 2.

The doubt of the student is once again due to a misunderstanding on the written
symbols, but it is relevant that the symbols in question are x and x0 [25 ]. The other
students seem to feel the same kind of uneasiness [27 ]. This example, which returns to
a pointwise perspective on f ′, seems not helping the student to grasp a global point of
view on the derivative function. On the contrary he would like to replace x with 2 [25 ]
in a completely pointwise perspective even on f .
The praxeology that V. activates for writing the derivative function, in the algebraic
register, is summed up in Table 4.21. Notice that the technological speech is made of
sentences explicitly uttered by the teacher in the classroom.

OMalg
f ′

Type of task Tf ′ Writing the derivative function in the algebraic register of
representation.

Technique τf ′ Calculate f ′(x0) = limh→0
f(x0 + h)− f(x0)

h
, then replace

x0 with x in the result.

Technology θf ′ limx→x0
f(x)− f(x0)

x− x0
is equivalent to

limh→0
f(x0 + h)− f(x0)

h
thanks to the change of variable

h = x− x0.
"I can make x0 vary as I want (gesture in Fig. 4.5.21)... At
this point, I can write x instead of x0, for convenience" [18 ]

Theory Θf ′ - The de�nition of derivative function as "a machine" that
given an x-value gives me the corresponding f(x)-value [22 ].
- The limits theory.
- The de�nition of the derivative in a point.

Table 4.21 - V. and her students' praxeology for the algebraic type
of task Tf ′ .
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Some hints about a graphical technique

Six lessons after, V. returns on the di�erence between the derivative in a given point
and the derivative in x. Within this context, she proposes a graphical task we call tgraf ′ :
given the graph a cubic function in GeoGebra, constructing the graph of its derivative.
The name tgraf ′ denotes that the task belongs to Tf ′ in a graphical register. It can be
formulated as graphically representing the derivative function. The teacher quickly shows
the solution of the task to the students. In the following transcription, we will refer to
Fig. 4.5.26 which V. is constructing in the Dynamic Geometry Environment (DGE) of
GeoGebra.

Figure 4.5.26 - GeoGebra screenshot, reference for the lines 29-37.

What happens

(teacher-students dialogue)

Perspectives Semiotic

resources

on f ,
f ′

29 T: "Let's suppose to have the function x −
x3, for example." (She keys "y = x − x3"
in GeoGebra and presses Enter) "This is its
graph."

global symbols +
graph in
DGE

f

30 T: "I consider a point of the function" (she
uses the command "point on" to detect the
point A on the graph) "and I consider the
tangent in this point to this function." (She
uses the command "tangent line to" select-
ing A and the graph)

pointwise speech
indicators
+ graph in
DGE

f

31 T: "If I drag this point" (she drags A, Fig.
4.5.27) "this is the tangent in that point."

global continuous
gesture in
DGE

f
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32 T: "Now, if I want the angular coe�-
cient... Well, where is the slope?... Slope
of this straight line." (She uses the com-
mand "slope" selecting the tangent) "This
number represents the derivative, the angu-
lar coe�cient, in that point." (She points
downwards with her index, Fig. 4.5.28)

pointwise speech
indicators
+ graph
in DGE +
gesture

f ′

33 T: "Now, if I de�ne another point B equal
to... Wait! Perpendicular line..." (she
uses the command "perpendicular" select-
ing x-axis and A) "In correspondence to
the abscissa of the point" (she positions the
cursor on the intersection between x-axis
and the perpendicular line, Fig. 4.5.29) "I
give m-value as ordinate."

pointwise speech
indicators
+ graph
in DGE +
pointing
gesture in
DGE

f ′

34 T: "This point A has a generic abscissa
x" (she positions the cursor again as in
Fig. 4.5.29) "I assign the ordinate m
in correspondence to this point... So I trace
the point [...] B = (xA,m)..."

pointwise speech
indicators
+ pointing
gesture in
DGE +
oral sym-
bols

f ′

35 S1: "It is not enough to write 0.32?" (He
refers to the numerical value of A abscissa)

pointwise numerical
symbols

f ′

36 T: "No, because, by doing so, I would �x it"
(she points to A on the whiteboard, Fig.
4.5.30) "instead I want it to vary." (She
moves her hand backwards and forwards on
x-axis, as in Fig. 4.5.31)

pointwise →
global

speech
indicators
+ gestures

f ′

37 S1: "Ah! Yes."

F
ig
ur
es

Figure 4.5.27 - V. drags the point to make the tangent "surf" on the graph.
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Figure 4.5.28 - V.'s pointing gesture
as she says "in that point" [32 ].

Figure 4.5.29 - V. positions
the cursor on A abscissa.

Figure 4.5.30 - V. points to the ab-
scissa of A with her finger.

Figure 4.5.31 - V. moves her
hand backwards and forwards
as she says "I want it to vary"
[29 ].

V. introduces a new resource: the Dynamic Geometry Environment of GeoGebra.
If suitably used, it has a great potential and the teacher wants to exploit it. It occurs
that many of the usual semiotic resources are now active in the Dynamic Geometry
Environment. Sometimes their e�ect is the same they would have on the whiteboard,
except that the result is obtained more quickly (e.g., drawing a graph or a straight line).
Nonetheless, the e�ect of the semiotic resources used in DGE is also incredibly enhanced
thanks to the dynamical feature of the software (e.g., dragging as continuous gesture).
First of all, the teacher makes GeoGebra draw the global graph of a cubic function [29 ]
(see Fig. 4.5.26). Then, she exploits the command of GeoGebra to detect a point A on
the graph [30 ]. This action would have be exclusively pointwise in a paper and pencil
environment or at the whiteboard. Made in DGE, the same action has is potentially
universal pointwise since the point can only move on the given graph and, if one drags
it, the point A becomes the generic point on the curve. When V. drags it [31 ] as in
Fig. 4.5.27, she easily activates as global perspective on f . Notice that V. has already
made the same continuous gesture on a parabola with the shadow of the stick [18 ] (see
Fig. 4.5.23). In that case, the speech was essential to explain the gesture ("I can make
it vary as I want") and the universal pointwise perspective had to be forced with the
words "point by point". Here, the shift from pointwise to universal pointwise is already
provided by the software. Afterwards, V. focuses on the derivative function. She detects
the slope of the tangent [32 ] and she would like to de�ne the point B which describes
the derivative curve as A moves on the given graph. She de�nes it in words through its
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coordinates [33-34 ]. Unfortunately she does not remember the command to indicate the
abscissa of a point in GeoGebra (i.e., x(A)). One of the students makes the pointwise
proposal of giving to the abscissa of B the numerical value that the abscissa of A has in
that particular position on the graph [35 ]. V. reacts contrasting the pointwise abscissa
of a �xed A and its global variation [36 ]. The teacher accompanies her rebuttal with two
di�erent gestures on the screen (Fig. 4.5.30 and 4.5.31), which are the same she made
before with the parabola case [18 ] (see Fig. 4.5.22).
V. suspends the activity and returns back to it with an already prepared �le the lesson
after. She sent us the �le, because we could not attend that lesson. In that occasion, she
drags A on the given curve and shows that the point B consequently moves, describing
the derivative trace (see Fig. 4.5.32). Notice that the trace is a pointwise tool, with a
high potential to activate a universal pointwise, and so a global, perspective.

Figure 4.5.32 - GeoGebra screenshot (complete).

Remarks

The algebraic technique given by the teacher consists in the syntactical change of the
universal pointwise sign x0 in the global sign x. It is expressed through the words "I can
make x0 vary as I want [...] I can write x". The perspective on the involved functions f
and f ′ which depend on the variable x turns out to be global. On f , the global perspective
is highlighted through the graph and the continuous gestures on it. On the derivative
function instead the employed semiotic resources are mainly symbols and speech, which
are used in a universal pointwise perspective. The de�nition of f ′(x) as a function as to
be forced verbally: "a function that point by point automatically, as a machine, tells me
the angular coe�cient of the tangent line". Notice that it is a global de�nition with a
universal pointwise character.
The graphical task is proposed and solved in GeoGebra. Given the graph of a function, it
consists of constructing the graph of the derivative function. The technical steps, which
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correspond to GeoGebra commands, are based on the pointwise property:

B ∈ f ′ if B(x(A),m)

where A is a generic point of the given f . The graph of the derivative is presented as
the locus of the points B, as A (and so, as x) varies. The �nal enhanced perspective
on f ′ turns out to be global, thanks to the use of the command "trace", which draws
the function point by point. The activation of the universal pointwise perspective is
facilitated in the dynamical geometry environment of GeoGebra. By choosing a point A
on the curve to di�erentiate, A is automatically a generic point of the curve of f . Since
B depends on A, in the same way, it becomes the generic point of the curve of f ′. The
shift to the universal pointwise perspective on f ′ is already provided by the software.
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Chapter 5

Analysis of students' work

In this chapter we move on to analyse the activities proposed in the three classrooms at
the end of the observation phase.
In this dissertation, the term "activity" denotes a problem or a set of problems that the
students have to solve, by working alone or in team, for constructing or consolidating
the meaning of the involved mathematical objects. In this sense, we refer to the mean-
ing that activity has in the UMI's (Unione Matematica Italiana) re�ections about the
mathematical laboratory (UMI, 2004).
The aim of the proposed activities is to get insights into the e�ects of the teacher's prax-
eologies in the students' autonomous work. In particular, we focus on the techniques and
the technologies they use, the perspectives they activate and the semiotic resources they
employ for solving the problems.
More precisely, Activity 1 (Section 5.3) is speci�cally focused on the graphical di�erenti-
ation, it involves a graphical work on functions and requires a written justi�cation of the
solution. Instead, Activity 2 (Section 5.4) concerns the algebraic writing of the tangency
condition and promotes an algebraic work on functions.
We present the a priori and a posteriori analysis of both the activities. In the a priori
analysis, we explain how the activities have been designed, by exploiting di�erent semi-
otic resources. Moreover, we illustrate at what extent they could help us in investigating
the students' acquisition of a local perspective on functions. The a posteriori analysis
refers to the results of some students.

5.1 The classrooms and their background

The students who worked on our activities were attending the last year of scienti�c high
school. They were 18-19 years old (grade 13). Activities 1 and 2 were proposed to each
classroom after about 10 hours of lessons on the derivative topic. In the previous chapter
only some particular moments of the observed lessons have been selected for the analysis.
Therefore, as �rst step, we summarize in Table 5.1 the mathematical contents taught by
each teacher in her classroom, before the proposal of the activities.
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M. in Quinta B M.G. in Quinta A V. in Quinta E

- Problem of the tangent line
and problem of the
instantaneous speed
- Angular coe�cient of the
tangent line as the limit of
the angular coe�cient of a
secant line to a function
- mtg =

limh→0
f(x0 + h)− f(x0)

h
=

f ′(x0)
- Equation of the tangent line to
a function f at the point of
abscissa x0:
y − f(x0) = f ′(x0)(x− x0)
- Determination of the
derivative of a given f(x) at a
given abscissa x0
- Derivative function as the
derivative of a given f(x) at a
generic abscissa x
- Second derivative as derivative
of the derivative: relation
between the sign of f ′′ and the
concavity of f
- Non-di�erentiable points
- Calculation of the derivative
of some elementary functions
- Graph of the derivative
function
- Theorems involving the
derivatives (sum, product,
quotient, inverse) without proof
- Application of the theorems to
the study of rational and
irrational functions

- Revision of the equation of
the tangent line to conics
- Tangent line as the limit of
the secant line to a function f
- Determination of the
angular coe�cient mtg as
limit of msec: mtg =

limh→0
f(x0 + h)− f(x0)

h
- De�nition of the derivative of
a function f at a point x0 as
f ′(x0) = mtg

- Equation of the tangent line
and of the normal line
- Distinction between the
number f ′(x0) and the function
f ′(x) when x is generic
- Calculation of the derivative
of some elementary functions
- Theorems involving the
derivatives (sum, product,
quotient, inverse) without proof
- Derivative function f ′(x) as
the angular coe�cient of the
tangent line in any x of the
domain, all the possible
directions as the point varies on
the curve
- Non-di�erentiable points
- Optimization problems
- Relation between sign of f ′

and variation of f : veri�cation
on two simple examples of
rational functions
- Second derivative and relation
between the sign of f ′′ and the
concavity of f
- Complete study of functions
- From the graph of the
function, deducing the graph of
the derivative

- De�nition of the tangent as
the straight line that best
approximates the function in
a point
- Alternative de�nition of the
tangent as the limit of the
secant line to a function
- Angular coe�cient of the
tangent line as

limx→x0

f(x)− f(x0)

x− x0
= f ′(x0)

- Equation of the tangent line to
a function f at the point x0:
y − f(x0) = f ′(x0)(x− x0)
- Non-di�erentiable points
- f ′(x0) =

limh→0
f(x0 + h)− f(x0)

h
- Calculation of the derivative
of some elementary functions
- Derivative function as a
"machine" that automatically
associates with x the value of
the angular coe�cient of the
tangent line to the function in x
- Theorems involving the
derivatives (sum, product,
quotient, inverse) with proof
- Relation between zeros of f ′

and maximum/minimum points
of f , sign of f ′ and variation of
f
- Application of the derivative
to the study of a function
- Brief demonstration of the
graph of the derivative function
with GeoGebra
- Optimization problems

Table 5.1 - Table of contents developed in classroom by each teacher before
the activity proposal.
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5.2 Methodology and data collection

The students solved both the proposed activities working in small groups of 3-4 people.
We wished to encourage the discussion in the group. For this purpose, we asked the
teacher's suggestion to form homogeneous groups, so that the components were at a
similar level of competences. Two or three groups have been videotaped while solving
the activities. Thus, the collected data consist of each group's written production and
some groups' video containing the exchanges and the re�ections that led to the �nal
production.
As the researcher who followed the activities in classroom, I had the only function to
introduce the work and to videotape the students. I made a general intervention only if
needed to understand the text of the problems. Generally, if possible, always the same
groups have been videotaped during both the activities, in order to give continuity to
our data.
In this phase, the teacher was asked to be a simple observer. She could walk through
the classroom observing what happened in the working groups, and she was required to
intervene the less she can. However, she had the right to help a group in di�culty, by
reminding them the de�nitions and the concepts introduced during the previous lessons.

5.3 Activity 1

Activity 1 is speci�cally designed around the process of graphical di�erentiation.

5.3.1 Description

The activity lasts one hour and is divided in three parts. The students are asked to write
a letter to two imaginary students having the same age, who are studying to pass the
�nal high school examination. This context and the proposed problems were inspired
by the research of Yoon, Thomas and Dreyfus (2011). The request of writing a letter
has mainly the function of making the students think about a systematization and a
justi�cation of their solution and method.
The �rst and the second part (see "Scheda 1" and "Scheda 2" in Appendix C) are centred
on the following graphical type of task: given the graphs of three functions (on the same
Cartesian plane), determining which of them represents respectively a function f , its �rst
derivative f ′ and its second derivative f ′′.
In the third part (see "Scheda 3" in Appendix C), the students are supposed to create
a situation similar to that of Problems 1 and 2. The task is to draw the graphs of three
functions on the same Cartesian plane, so that they represent respectively a function f ,
its �rst derivative f ′ and its second derivative f ′′.
A general prerequisite is represented by some pointwise, global and local properties of
functions, such as domain, sign, zeros, end behaviour, and at least a graphical idea of
variation and of maximum and minimum points. Speci�c prerequisites are the concept
of derivative in a point x0, the geometrical construction and the analytic equation of the
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tangent line to a function in a point, and some local properties, such as continuity and
discontinuity, di�erentiability and non-di�erentiable points.

5.3.2 A priori analysis

Firstly, let us describe the methodology we use to analyse the collected data. We use the
same lenses employed in analysing teachers' practices. Therefore, our focus is on three
components:

1. the praxeologies adopted in order to solve the proposed problems;

2. the perspectives assumed on the involved functions;

3. the semiotic resources activated in order to solve the activity.

Every problem is designed taking into account these three great components. In partic-
ular, the pieces of knowledge to recall for solving the activity are relationships between
the function f and its derivative f ′. They are summarized in Table 5.2, with the related
perspectives involved on f and f ′.

f f ′ Perspective(s) Type of

relation

maximum/minimum
point

zero local-pointwise l-p

variation in [a, b] sign in [a, b] global-global g-g

concavity in [a, b] variation in [a, b] global-global g-g

in�ection point maximum/minimum
point

local-local l-l

discontinuity point discontinuity point local-local l-l

non-di�erentiable point discontinuity point local-local l-l

horizontal/oblique
asymptote

horizontal asymptote
(y = 0/y = k)

local-local l-l

Table 5.2 - Relations f − f ′ and related perspectives required in Activity
1.

The �rst relation links a local property of f to a pointwise property of f ′. We denote
the relations of this kind with the acronym l-p (local-pointwise). The second relation
and the third one are between global properties of f and f ′: we denote them with g-g.
The last four relations are between local properties of f and f ′: we denote them with
l-l. It is also possible that students use these relations without activating the expected
perspectives. For example, let us imagine that a student notices that a function f is not
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di�erentiable in x0 and that he links this information to the fact that its derivative is
not de�ned in x0. We know that if f ′ is not de�ned in x0 it is obviously discontinuous
there, but we can not assume this implication for granted in the student's reasoning. In
this case, we can only say that the student has adopted a local perspective on f and a
pointwise perspective on f ′. Thus, a relation of type l-l is used in a l-p perspective.

Problem 1

Task 1 - The drawing shows the graphs of three functions. Determine the
right combination of them: a function f ; its derivative: f ′; the derivative of
f ′: f ′′.

This problem is taken from a study carried out by Yoon, Thomas and Dreyfus (2011).
Three graphs are given in the same Cartesian reference system. They are coloured in red,
blue and green, so that students can refer to them more simply. Any algebraic expression
is given, only the graphical representation. As for the semiotic resources, the drawing in
the graphical register prevails in the question and a written justi�cation is required in
the answer.

We chose this problem especially because it stimulates the adoption of a global per-
spective. Indeed, the pointwise perspective alone is not enough to reach the correct
combination of functions. This is because the maximum point of the blue function cor-
responds to the zero of both the red function and the green one. Thus, by activating
the relation l-p between the maximum of the function and the zero of its derivative in a
pointwise-pointwise perspective, the students are not able to establish if the derivative
of the blue function is the red or the green one. A global perspective is needed to see the
following correspondences:

• the positive sign of the blue function with the increasing variation of the red one;

• the positive/negative sign of the green function with the increasing/decreasing vari-
ation of the blue one.

Notice that the choice of the graphical register of representation and the absence of axis
scale are aimed to support and foster the adoption of a global perspective.
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Finally, a logic link of the obtained relations allows to conclude that the green function
is the derivative of the blue one that, in turns, is the derivative of the red one. The
problem is solved: f = red; f ′ = blue; f ′′ = green.

Problem 2

Task 2 - The drawing shows the graphs of three functions. Determine the
right combination of them: a function f ; its derivative: f ′; the derivative of
f ′: f ′′.

This problem is inspired from Thomas's research, but it is speci�cally constructed
to have discontinuous functions and non-di�erentiable points. In particular, the three
functions have been drawn with the software GeoGebra, by taping the following algebraic
equations:

y = e−|x| − x

2
+ 1; y′ =


−e−x − 1

2
, if x > 0

ex − 1

2
, if x < 0

; y′′ = e−|x|

As in Problem 1, the students are not required to �nd the algebraic expressions of
the involved functions. Indeed, only the three graphs are given and their equations are
hidden. As before, the main semiotic resources are the drawing in the graphical register
in the question and the written argumentation in the answer.

This problem is especially constructed to encourage the adoption of a local per-
spective. Indeed, the pointwise perspective alone does not allow to guess the correct
combination of functions. This is because in correspondence to the corner in the blue
function both the red and the green one are not continuous. So, if the l-l relation between
the non-di�erentiable points of a function and the discontinuity points of its derivative is
activated in a pointwise-pointwise perspective, the students cannot decide which function
between the red and the green one is the derivative of the blue function. Three di�erent
ways are then possible.

• Adopting a local perspective and basing the reasoning on the l-p relation between
the slope of the tangent to the blue graph and the ordinate of the graph of its
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derivative; noticing that the gradient of the left/right tangent to the blue graph in
the corner is positive/negative and it corresponds to a positive/negative ordinate
of the green function.

• Activating a global perspective and noticing the g-g correspondence between the in-
creasing/decreasing/increasing variation of the blue function and the positive/negative/
positive sign of the green one.

• Exploiting the l-p correspondence between the relative minimum of the blue func-
tion and the zero of the green one.

The global relation linking the function variation to the derivative sign leads to the
conclusion that the red function is the derivative of the green one. As in Problem 1,
notice that the graphical choices in the statement are aimed to support and foster the
adoption of a global perspective.
Finally, logically linking the obtained relations one �nds that the red function is the
derivative of the green one that, in turns, is the derivative of the blue one. So, f = blue,
f ′ = green, and f ′′ = red.

Problem 3

Task 3 - Constructing a graphical problem for this task: "The drawing shows
the graphs of three functions. Determine the right combination of them: a
function f ; its derivative: f ′; the derivative of f ′: f ′′".

The third request is designing the problem, after having learnt how to solve it. This
task is useful to reinforce the process of reasoning and check it again. We are interested
in the approach chosen by the students. It can be graphical and purely analytic, but also
algebraic based on functions whose algebraic expressions are known.

The semiotic resource exploited here is mainly the drawing in the graphical register
at the level of both question and answer.
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Expected praxeologies

Problems 1 and 2

Problems 1 and 2 have the same type of task: given three graphs in the same Cartesian
reference system, determining the right combination of them: a function f , its derivative
f ′ and the derivative of f ′, which is f ′′.
As far as the techniques are concerned, we distinguish two di�erent methods.

1. The analytic method is based on the properties of the functions which are directly
deduced from the properties of the graphs.

2. The tangent method is based on the estimation of the slope/gradient of the tangent
to the function to be di�erentiated, in order to guess the value of its derivative.

Then, one needs to logically concatenate the obtained relations to reach the solution.
The technologies that justify the analytic method are the relations formulated in Ta-
ble 5.2, while the technology for the tangent method is the correspondence between the
slope/gradient of the tangent to the function in a point x0 and the value of its derivative
in x0.
The common theory behind all these technologies is the de�nition of derivative as the
gradient of the tangent line to the function in the point of tangency (through the limit
of the incremental ratio).

Problem 3

Task 3 is somehow the converse of tasks 1 and 2. Indeed, it is required to draw three
graphs in the same Cartesian reference system in order to have a function f , its derivative
f ′ and the derivative of f ′, which is f ′′.
We expect two di�erent techniques.

1. The application of the analytic method or the tangent method depending on the
approach chosen by the group to solve Problems 1 and 2.

2. The application of an algebraic method that develops in the following steps: choos-
ing a function whose algebraic expression and graphical representation are known;
di�erentiating them through the di�erentiation formulas; drawing the graphs of the
three obtained functions.

The technology behind techniques 1 and 2 are the same as those of Problems 1 and 2.
Instead, for the algebraic method, the di�erentiation formulas applied to di�erentiate f
and f ′ guarantee that the chain f -f ′-f ′′ is correct.
The theory behind the technology of the analytic method or the tangent method is
always the de�nition of the derivative as the gradient of the tangent line to the function
in the point of tangency (through the limit of incremental ratio). Instead, behind the
technology of the algebraic method, we mostly have the algebraic operations and rules
involving derivatives, with their related proofs.
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5.3.3 A posteriori analysis

Let us start with an introduction to precise how the a posteriori analysis is made. First
of all, we focus on the activated praxeologies and we search for the expected methods
we have distinguished. Obviously, we take into particular account also methods and be-
haviours that we have not predicted. We choose at least one example for each method,
in order to analyse it more in depth. When available, we prefer analysing one of the
videotaped group, of which we have more data. Then, our analysis concentrates on
the perspectives activated by the students in every phase of the method they develop.
Moreover, we are interested in the semiotic resources the students use to support their
perspectives. In particular, are the given semiotic resources well-exploited in order to
activate the expected perspective on the involved functions? Do the students need to
introduce other semiotic resources to adopt this perspective? Do they assume an unex-
pected perspective and does it lead them to a mistake?

M.'s students

Let us recall that M. has worked deeply on the graph of the derivative function, since the
�rst lesson about the derivative notion (see the subparagraph "Elaboration of a technol-
ogy, passing through the graphical technique" in Paragraph 4.3.3). She has immediately
spoken about derivative of second order, so her students are expected to know the rela-
tion between f properties and f ′′ properties. Moreover, the students are familiar with
correspondences such as "if the function increases, then the derivative is positive" and
so on. Thus, in our expectations, the analytic method should be the most employed.
In Table 5.3, you �nd a general overlook on the work done by the di�erent groups (A,
B, C, D, E, F, G and H). We do not analyze Problem 3 because no group manages
to approach it within the hour of activity in classroom. Nonetheless, they solve it as
homework. At a quick glance, we could observe that six group over eight solve it graph-
ically, while two over eight work algebraically, starting from the equation and the graph
of known functions (e.g. sine, cosine, straight line, parabola, ...). These two groups are
medium-low or low-level group. Probably, if left free, they feel more self-con�dent in
resorting algebra: calculations reassure them of doing a good job.

Method Perspectives
analytic tangent pointwise global local

Problem 1 all all all A
Problem 2 all ∼B,∼C,∼G A,B,C,E,G,H all A,B,C,D,F,G

Table 5.3 - M.'s students and activity 1. The sign ∼ indicates that the
method/perspective is partially used by the group in solving the corre-
sponding problem.

At a technical level, all the students use the analytic method, as expected. Two
groups over eight resort the tangent method only to deal with the corner in Problem 2.
In particular, it happens when they have to explain the type of discontinuity in the green
and red graphs. This kind of justi�cation is part of the students' general local remarks,
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along with some considerations about the asymptotic behaviour of the presented func-
tions. Six groups over eight use such argumentation to support their solving process. The
local perspective is much more worked in Problem 2, triggered by the presence of points
of discontinuity and non-di�erentiability. Nonetheless, one group (group A of medium-
high level) makes some local remarks about the asymptotic end behaviour also within
Problem 1. Some groups (e.g. D and F) justify their solution to Problem 2 only through
local and global argumentation. They do not need to highlight pointwise aspects.

Analytic method

Let us consider group A as an example. This group has been also video-recorded. They
only base their reasoning on the properties of functions they deduce from the given
graphs. In particular, for approaching the �rst problem they employ the relations we list
below. Especially when their conjectures are wrong, we support them with extracts from
the text (see Fig. 5.3.1) and with video transcriptions.

Figure 5.3.1 - Group A's solution and justification to Problem 1.

• Correct g-g relation between the variation of the function and the sign of its deriva-
tive.

"Since f always increases, f ′ must be always positive." [5th line, Fig.
5.3.1]
"f ′ increases till the maximum point, then it decreases. So f ′′ must be
positive till the maximum point of f ′ and negative after." [6th-7th lines,
Fig. 5.3.1]

• Correct or partially correct l-l relation between the in�ection point of the function
and maximum point of its derivative.

"Where f presents an in�ection point with vertical tangent, f ′ presents
a maximum point;" [8th-9th lines, Fig. 5.3.1]
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"Where f ′ changes concavity, f ′′ presents a point of maximum/minimum"
[13th line, Fig. 5.3.1]

• Incorrect l-l relation between the maximum point of a function and the in�ection
point of its derivative.

[...] "f ′ presents a maximum point; as a consequence, also f ′′ presents
an in�ection point with vertical tangent at that point." [9th-10th line,
Fig. 5.3.1]

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

1 S1: "Here f has an in�ection point" (she
moves her �nger vertically in a neighbour-
hood of the zero of f , see Fig. 5.3.2) "and
here there is a maximum point" (she moves
her �nger horizontally in a neighbourhood
of the maximum of f ′, see Fig. 5.3.3) [...]
"We know that the coe�cient of the tangent
at that point is in�nite, I believe..."

local speech
indicators
+ gestures

f and
f ′

2 S2: [...] "And so, as a consequence,
also f ′′ presents an in�ection point, since
f ′ has a maximum point, I think!"

pointwise speech
indicators

f ′

and
f ′′

F
ig
ur
es

Figure 5.3.2 - S1's local gesture to reproduce the vertical tangent.

Figure 5.3.3 - S1's local gesture to reproduce the horizontal tangent.

• Correct l-l relation between horizontal asymptotes of a function and horizontal
asymptotes of its derivative.

"Since f has an horizontal asymptote, consequently the derivative goes
to zero as x→∞. And also f ′′ goes to zero." [11th-12th lines, Fig. 5.3.1]
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What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

3 S2: "You see, as it goes to in�nity,
the main function [the red one]
becomes more and more feeble, the co-
e�cient" (he points to the blue graph right
tail) "goes towards zero."

local speech
indicators

f and
f ′

4 S1: "And so, as x goes to in�nity, f
goes to... in�nity..." (she moves horizon-
tally the pen on the red graph, as in Fig.
5.3.4)

local speech
indicators
+ iconic
gesture

f

5 S2: "Yes, but f ′ that is the derivative rep-
resents the value of the angular coe�cient
of the tangent line. It goes towards zero
because, you see, it tends more and more
to become horizontal, even if it won't never
become horizontal, I think!" (he keeps his
hand horizontal, as in Fig. 5.3.5)

local speech
indicators
+ iconic
gesture

f ′

and f

6 S1: "How can we write it?"

7 S2: "Where f(x) goes to..." local speech
indicators

f

8 S1: "... has an horizontal asymptote,
the tangent is horizontal... It
has an horizontal asymptote." (She keeps
her hand horizontal, as in Fig. 5.3.6)

local speech
indicators
+ iconic
gesture

f

9 S2: "Does it have it? It goes slowly
towards in�nity. I don't know, I don't
know!"

local speech
indicators

f

10 S3: "No, to me, no."

11 S1: "It works, if you think about
it, because if you have an horizon-
tal tangent, you have the coe�cient
more and more towards zero." (she keeps
again her hand horizontal)

local speech
indicators
+ iconic
gesture

f and
f ′

12 S2: "Yes, that's true. Since f goes towards
its horizontal asymptote, as a conse-
quence the derivative will assume values
more and more close to zero."

local speech
indicators

f and
f ′
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Figure 5.3.4 - S1's local gesture on the graph to lengthen it in the plane.

Figure 5.3.5 - S2 keeps his hand horizon-
tal as he says "it becomes horizontal" [5 ].

Figure 5.3.6 - S1 keeps her hand
horizontal as she says "it has an
horizontal asymptote" [8 ].

• Incorrect p-p relation between zeros of the function and zeros of its derivative.

"f has a zero, consequently f ′ has no intersections with axis." [last line,
Fig. 5.3.1]

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

13 S1: "Ah! we have to say something about
the zeros! [...] It works: f has a zero and
f ′ has no zeros."

pointwise speech
indicators

f and
f ′

14 S2: "And consequently f ′′ has one zero?" pointwise speech
indicators

f ′′

15 S1: "No, it is not so. Let's write it only for
f and f ′."

16 S2: "How does it work?"

17 S1: "Well, maybe it works only for polyno-
mial functions... for the powers xn... the
derivative has one zero less than the func-
tion."

pointwise speech
indicators

f ′

and f

We can observe that the most part of the mistakes involve the local perspective. In-
deed, it is the freshest perspective on functions for the students.
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The wrong conjectures can have di�erent origins. Firstly, a graph misreading in a neigh-
bourhood of a point: it happens when S1 sees the vertical tangent in the in�ection point
of f , for example [1 ] (Fig. 5.3.2). Secondly, a logical duality of properties which are not
dual: establishing that an in�ection point in the function entails a maximum point in its
derivative leads S2 to conclude that f ′′ has an in�ection point, since f ′ has a maximum
point [1-2 ]. Thirdly, the misleading idea to relate two similar properties, such as zeros
of f and zeros of f ′ [13-17 ].
Nevertheless, this group has been the only one who notices the local asymptotic prop-
erties of the involved functions [3-12 ], bring them as justi�cation of the solution. Their
formulation has been supported by the use of speech and iconic gestures together.

Tangent method

Three groups over eight (two of high level and one of low level) partially adopt the
tangent method, integrating it with the analytic method. It occurs in solving Problem 2
when they have to explain some local aspects of the involved functions.
High-level group B justi�es the asymptotic behaviour of the red and the green functions,
starting from that of the blue one. An extract of written production is shown in Fig.
5.3.7:

"Finally, observing the behaviour towards ∞, we see that:
- where f has an oblique asymptote, f ′ has an horizontal asymptote
- where f has an horizontal asymptote, f ′ goes to 0
It occurs because as f tends to the asymptote, the angular coe�cient of the
tangent goes to a determinate value, consequently also the derivative (which
describes the trend of the angular coe�cient of the tangent) goes to this
value."

Figure 5.3.7 - Extract of Group B's justification to the solution of Problem 2.

Group C, composed of low level students, makes some considerations about the tan-
gent line. They focus on the left and on the right of the corner of the blue function, in
order to justify the discontinuities of the red and the green graphs. Let us read some
local sentences, taken from their written argumentation (Fig. 5.3.8).

"The blue curve is f(x) because where this curve presents a corner f ′(x)
(the green curve) presents a jump discontinuity (because, as in f(x) one �nds
two di�erent values of the tangents, the same must happen also for f ′(x)). In
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f ′′(x) we �nd an empty point because in f ′(x) the tangents are parallel. More-
over, by applying the properties of the derivative functions, one can check
that where f(x) is increasing f ′(x) is positive and where f(x) has upward
concavity f ′′(x) is positive."

Figure 5.3.8 - Extract of Group C's justification to Problem 2 solution.

Finally, high-level group G, who has also been videotaped, provides a correct classi�-
cation of the types of discontinuity in the derivative function, in relation with the types
of non-di�erentiable point of the function. Part of their discussion is analysed below
[1-3 ] and their written conclusions are shown in Fig. 5.3.9:

- "The discontinuity points of f ′(x) are non-di�erentiable points of f(x).

- The corners of f(x) correspond to the jump discontinuity of f ′(x).

- The cusps of f(x) are II order discontinuities of f ′(x).

- The in�ections points with vertical tangent are II order discontinuities
of f ′(x)."

Figure 5.3.9 - Extract of Group G's justification to the solution
of Problem 2.

S1 explains to S2 (who has missed that lesson) the di�erence between a cusp and an
in�ection point with vertical tangent, by taking into account the example of f(x) = 3

√
x.

He tries to give a graphical interpretation of its in�ection point in terms of gradient.
Notice that S1 speaks about "angular coe�cient of the function", implicitly referring to
the angular coe�cient of the tangent line to the function.
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What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

1 S1: "Here" (he points to the in�ection point
of y = 3

√
x in the sketch he has drawn, see

Fig. 5.3.10) "the angular coe�cient of it is
in�nite, isn't it?"

local graph f

2 S2: "Yes."

3 S1: "So, your derivative... your angular co-
e�cient is initially positive: it goes to zero,
it goes up, it goes upper and upper,
it goes to in�nity... Asymptote... Then,
it goes again to minus in�nity, in this way,
it gets again to go to zero. So it should be
an hyperbola." (He accompanies his words
by drawing the sketch in Fig. 5.3.11)

global and
local

speech
indicators
+ graph

f ′

F
ig
ur
es

Figure 5.3.10 - S1 draws a sketch of the
graph of y = 3

√
x.

Figure 5.3.11 - S1 draws a
sketch of the derivative.

Actually, S1's sketch of the derivative (Fig. 5.3.11), described in line [3 ] is a wrong
graphical interpretation. Indeed, the function f(x) = 3

√
x he chooses is always increasing

and its derivative always positive. After the vertical asymptote the derivative graph
must not start at −∞, but at +∞. Despite this mistake, it is interesting that the
student chooses the graph as the semiotic resource to explain to his classmate what a
vertical in�ection point means for the derivative. Notice that S1's considerations, while
he is drawing the derivative graph and describing it, are mainly global and local, without
any pointwise contribution.

In�uences of M.'s praxeology

All groups mainly base their reasoning on the properties of the given graphs. In e�ect,
M. has given a great important to the graphical construction of the derivative and its
relations with the graph of the starting function. We consider it as a strong in�uence of
M.'s praxeology.
It is not by chance that some students resort the tangent method when they have to
establish new relations. It is the case of the high-level groups B and G, coping respectively
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with the asymptotic behaviour and the non-di�erentiable and discontinuous points of the
involved functions. These are local considerations autonomously made by the students.
Whilst other local properties can be linked directly to M.'s practices in classroom. It is
the case of group C who refers to the tangent to locally interpret the corner in Problem
2. We suppose it is a direct reproduction of one of M.'s practices. Indeed, working on
the graph of the derivative function in classroom, she has had to deal with a corner
(see line [35 ] in the subparagraph "Elaboration of a technology, passing through the
graphical technique" in Paragraph 4.3.3). In that occasion, she interpreted the corner in
the function as a jump of the derivative, referring to the di�erent left and right tangents,
exactly as the group C does.

M.G.'s students

Remind that M.G. has given a precise praxeology for tracing the graph of the derivative
function, starting from the graph of a function (see Table 4.15 in the subpragraph "The
graphical technique is shown on an example" in Section 4.4). The praxeology OMgra

f ′ is
strongly based on an analytic method. Thus, we expect that the students choose it to
solve the given problems.

A general overlook on the work done by the di�erent groups (A, B, C, D and E) is
shown in Table 5.4. Problem 3 has not been approached by any of the groups within
the hour of activity in classroom. The students were free to solve it for homework, but
only two groups over �ve have actually solved it. Thus, we do not �nd it signi�cant to
analyse it.

Method Perspectives
analytic tangent pointwise global local

Problem 1 all all all
Problem 2 all ∼E A,D,E all E

Table 5.4 - M.G.'s students and activity 1. The sign ∼ indicates that the
method/perspective is partially used by the group in solving the corre-
sponding problem.

As expected, all the students employ the analytic method. Three groups (A, C, E)
over �ve employ the technique of the study of function, which the teacher has shown
in classroom working on the type of task Tf ′ in a graphical register. Groups B and D,
instead, base on general pointwise and global remarks about the involved graphs without
expressly use the study of function scheme. Only high-level group E makes local consid-
erations about the tangent within Problem 2. In particular, it occurs when they have to
explain the type of discontinuity in the green and red graphs. This justi�cation is the
single local remark made by M.G.'s students during this activity. No consideration has
been made about the asymptotic behaviour of the given functions. This lack seems to
be a natural consequence of the fact that the teacher in classroom has made no reference
to the relation between the asymptotic behaviour of f and f ′. Consequently, the local
perspective does not turn out to be so worked. Not even in Problem 2 where the points
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of discontinuity and of non-di�erentiability have been read at the most in a pointwise
perspective (except for high-level group E).

Analytic method

Figure 5.3.12 - Group A's first approach to Problem 1.

Low-level group A blindly uses the technique of the study of function they have seen
in classroom. S1 suggests: "Our reasoning has to be similar to the last things we have
studied." S2 completes "The deducible graphs" and opens her notebook. They resume
the technique from their lesson notes, which are even incorrect somewhere. They think
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to study the three functions at the same time, giving names to the most of the relevant
points in the graphs and to their coordinates (see Fig. 5.3.12).
Let us analyse a signi�cant moment in the group discussion that leads to the table in
Fig. 5.3.12.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

1 S2: "The blue curve has a maximum point
here." (She points to the blue maximum,
Fig. 5.3.13)

pointwise pointing
gesture

f

2 S1: "Absolute." global speech
indicators

f

3 S2: "Ok. Absolute." global speech
indicators

f

4 S3: "And here is an unde�ned point?" pointwise speech
indicators

f

5 S1: "It might be a chance, but prob-
ably this point is on the same..." (he
traces an imaginary vertical line passing
through M and C, as in Fig. 5.3.14)
"They are aligned." (They give to M the
same abscissa of C)

pointwise speech
indicators
+ gesture
+ symbols

f and
f ′

6 S1: "Maybe it is not by chance that
the other functions cut in this point." (He
points to C) "We know that all depend on
one of them that is the main one, but this
intersection point here and also here can
have a meaning." (He points to the inter-
sections of the red and the blue curves, then
to that of the red and the green curves)

pointwise speech
indicators
+ pointing
gestures

all

F
ig
ur
es

Figure 5.3.13 - S2 points to the maximum
of the blue graph [1 ].

Figure 5.3.14 - S1 notices
that M and C are vertically
aligned [5 ].

In this extract the group perspective on the involved function is mainly pointwise.
They observe that the blue graph has an absolute maximum point M [1-3 ], but then
they read it in a pointwise perspective: it is aligned with point C [5 ] (Fig. 5.3.14). This
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perspective is strengthened by some other pointwise considerations and gestures on the
involved graphs [6 ]. S1 imagines that the meaningless intersections between the given
graphs can have a sense.
The group does not actually try to exploit the study of function technique. Indeed, after
having completed the table in Fig. 5.3.12, they turn the page and never try to �nd
relations between the three columns representing the properties of the blue, the red and
the green functions.
Instead they try to directly apply the relations written on their notes. It consists of a
blind application of rules; a technique without the supporting technology. Unfortunately
S2's notes contains some errors [7 ] that misleads the group in �nding the solution.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

7 S2: "The intersections with x-axis of the
function... are the maxima and minima
of the derivative. So, since this one"
(she generally indicates the blue curve)
"has no intersection with axis, it cannot be
the function."

pointwise speech
indicators

f

8 Others: "Mm... Yes."

9 S1: "What are the steps for graphical deduc-
ing? Look at the intersections, sign,...?"

10 S2: "The stationary points of f are the
intersections with x-axis of f ′."

pointwise speech
indicators

f ′

11 S1: "What do we mean with stationary
points? The intersections with x and y?"

pointwise speech
indicators

f

12 S2: "The stationary points are the
intersections..."

pointwise speech
indicators

f

13 S1: "So, for example C and D?" pointwise symbols +
graph

f

14 S2: "We �nd the stationary points by im-
posing f ′ equal to zero... So wherever it is
null."

pointwise oral sym-
bols

f ′

15 S1: "Yes, I know."

16 S2: "Ah! The points where the deriva-
tive function cuts x-axis are the stationary
points of the starting function."

pointwise speech
indicators

f ′

17 S1: "Ok. So with stationary we mean max-
imum and minimum."
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18 S2: "Where it stands." local speech
indicators

f

They initially reverse the relation between the function and its derivative [7 ]. It is due
to the incorrect relation S2 has noted on her notebook: "The intersections with x-axis
of f(x) are the maximum and minimum points of f ′(x)". By following this property S2
excludes the blue one from being the starting function. After she reads the property in its
correct formulation [10 ], but they do not really know what "stationary" means [11-13 ].
They make confusion between the pointwise perspective that is not on the function but
on the derivative, as they correctly recall after [14 ]. Then, S1 associates the adjective
"stationary" to the maximum and minimum points of a function [17 ] and not to its
zeros. S2 locally adds that the stationary points are where the function stands [18 ].
The long discussion the group has had on this property shows us that, even if the used
name "stationary" evokes a local feature of a function, it might not be enough to really
activates such a perspective. More frequently, a stationary point is read in a pointwise
perspective.
Anyway, they use the relation zeros-stationary points in the two directions, as S1 says "the
intersections with x-axis give the maxima and minima" without specifying the subjects.
It leads them to the wrong conclusion that the red function is the derivative of the blue
function.
The teacher, who is walking through the classroom, asks them if everything is �ne. They
explain their reasoning and when they quote the wrong relation between zeros of the
function and stationary points of its derivative, the teacher intervenes by noticing that
this property is not valid, but it is the converse. She suggests to use the textbook as
source, instead of their notebook. Thus, S1 reads on page 441: "The sign of the derivative
function is positive in the intervals in which f(x) is increasing". He proposes to consider
the sign of f ′ and the variation of f . He works keeping the textbook on the side of the
text of Problem 1 (see Fig. 5.3.15). Here is how the group, led by S1, comes to the
conclusion that the green curve is the derivative of the blue one.

Figure 5.3.15 - S1 resumes theory from
the textbook and directly tries to apply
it to Problem 1.



228

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

19 S1: "The blue one is increasing till M ." global speech
indicators

f

20 T: "Yes."

21 S2: "In this interval the green function
is positive, the red one is negative. Then
viceversa, when it [the blue] is decreasing
it [the derivative] must be negative, the
red one is positive and the green one
is negative."

global speech
indicators
+ pointing
gestures
on graphs

f , f ′

22 T: "So?"

23 S2: "It leads us to say that the blue one is
the function and the green one is its deriva-
tive."

24 T: "It can be so. But now I have to verify
that the red one is actually the derivative of
second order of the blue one or the deriva-
tive of �rst order of the green one."

Group A abandons the pointwise perspective, �nally exploiting the global potential
of the given graphs. S1's global interventions [19 and 21 ] lead the group to the right
conclusion [22 ].

Another group, medium-level Group C, follows the technique employed by the teacher
in classroom step by step. The scheme given by the teacher is clearly recognizable.
Di�erently from group A, they support it with the correct technology. In Fig. 5.3.16 you
can �nd their answer to Problem 1.

Figure 5.3.16 - Group C's answer to Problem 1.
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Group C introduces numerical references on x-axis, precisely x = −1, 2, 3, 5, 7. Notice
that x = 2 and x = 4 correspond respectively to the intersections of the green and the
blue graphs and of the red and the blue graphs. These abscissas are not meaningful to
the purpose of the study of function. They adopt a pointwise perspective on the given
graphs, at least in the initial phase of the reasoning.
Group C adopts a local perspective on a function to get pointwise information about its
derivative (see Fig. 5.3.17 and Fig. 5.3.18).

• "Let us suppose by trial and error that the function f is the red one, let
us search for its stationary points in order to �nd the intersections with
x-axis for f ′(x) and let us give them arbitrary values.
f ′(x) = 0

↘ x = −1, x = 7 stationary points forf

points of intersection with x-axis forf ′(x)”

Figure 5.3.17 - Extract from Group C's solution and justification to Problem
1.

• "Let us impose f ′′(x) = 0 to �nd the stationary points of f ′(x) that
correspond to the intersection points of f ′′(x) with x-axis.
f ′′(x) = 0

↘ x = 3 points of intersection with x-axis forf ′′(x)

stationary points forf ′(x)”
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Figure 5.3.18 - Extract from Group C's solution and justification to Problem
1.

They deduce global information about the derivative of a function by studying its
global properties (see Fig. 5.3.19, 5.3.20 and 5.3.21).

• "By studying the variation of the function f(/f ′), I get the sign for
f ′(x)(/f ′′(x))
(signs scheme)"

Figure 5.3.19 and 5.3.20 - Extracts from Group C's solution and justifica-
tion to Problem 1.

•

Figure 5.3.21 - Extracts from group C's solution and justification to Prob-
lem 1.
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They also relate local properties of the function with local properties of its derivative
(see Fig. 5.3.22).

• "Let us �nd the points where f changes concavity that correspond to
search for max/min for f ′(x)
f ′′(x) = 0
↘ x = 3 = maximum point"

Figure 5.3.22 - Extract from group C's solution and justification to Problem
1.

Beside words, symbols and schemes, the students use graphical resources. Indeed
their goal is drawing f ′ graph (see Fig. 5.3.23, on the left), provided that f graph is the
red one. In this way, they �nd the matching graph among the given ones. They make
the same to deduce f ′′ graph (see Fig. 5.3.23, on the right).

Figure 5.3.23 - Extracts from Group C's solution and justification to Prob-
lem 1.

Tangent method

The only group that makes some local considerations about the involved functions
is the high-level group E. They are triggered by the presence of non-di�erentiable and
discontinuous points in Problem 2. The students call p the blue function, v the red
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function and g the green one. They correctly establish that p′ = g and g′ = v.
As a surplus, they make some �nal observations about the involved functions in x0, which
is point of non-di�erentiability for p and of discontinuity for g and v. They refer to "m of
the tangent in the neighbourhood of x0". Their words (see Fig. 5.3.24) initially describe
what they see on the given graphs:

"x0 in function p is a cusps, then a non-di�erentiable point
We can say that in function g (�rst derivative) x0 is a jump, the values m-
tangent in the neighbourhood of x0 are equal.
In function v (second derivative) x0 is a discontinuity which is possible to
eliminate. The values of m-tangent in the neighbourhood of x0 are equal but
opposite."

Figure 5.3.24 - Extract from group E's solution and justification to Problem
2.

Group E looks at the given graphs in a local perspective and describes what happens
to the gradient of the tangent in a neighbourhood of the point x0. They verify that
"the values m-tangent in the neighbourhood of x0 are equal" for the green function and
"equal but opposite" for the red one.
Then the group asks me if their solution is correct. In return, I ask them if they are
able to justify why in the derivative of �rst order there is a jump with equal m-tangent
values and in the derivative of second order there is a hole with equal but opposite m-
tangent values. I give them a little help by observing that in the minimum point of the
blue function m-tangent is zero and correspondingly the ordinate of the green derivative
function is exactly zero.
They grasp this suggestion about the way of looking at the graphs: local on the function
and pointwise on the derivative. Thus, their �nal observations base on the correspondence
between the value of the gradient of the tangent to a function and the value taken by
its derivative at the same abscissa (see Fig. 5.3.25). Such relation is also stressed on the
given graphs (see Fig. 5.3.26).

"k is a minimum. The angular coe�cient is equal to zero and, as a matter
of fact, the intersection point with axis [x] y is zero, whereas the angular
coe�cient in the neighbourhood of x−0 is positive; [1m on the blue graph, see
Fig. 5.3.26] so in the neighbourhood of x−0 in its �rst derivative y has the
same value as the angular coe�cient [1 on y-axis for the green graph, see Fig.
5.3.26] while in the neighbourhood of x+0 m-tang is negative [−2m on the blue
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graph, see Fig. 5.3.26] so in the neighbourhood of x+0 [in] its �rst derivative y
is equal to m. [−2 on y-axis for the green graph, see Fig. 5.3.26] In function
g the two coe�cients are equal because the two letters [grammatical error:
straight lines] are //, therefore in its derivative g′ = v in the neighbourhood
x±0 y is the same.

Figure 5.3.25 - Extract from group E's solution and justification to Problem
2.

Figure 5.3.26 - Extract from group E's solution and justification to Problem
2.

In�uences of M.G.'s praxeology

We �nd it relevant that more than half of M.G.'s students try to employ step by step the
technique used by the teacher. We think that one of the reasons of this behaviour relies
on the way the teacher has given OMgra

f ′ in classroom. The study of function technique
has not been discussed or found out by the students. As a consequence, the majority
of them �nd it easy to apply it step by step as an infallible method, even though they
do not handle the technology. No group tries to make new or original considerations,
except for group E that anyway has been guided by my indication. Except for this group,
all the local considerations consist of the repetition of the properties noted during the
lesson. Thus, we are not able to say if the students really look at the given function in
a neighbourhood of a point or if they are repeating what they have listened and noted.
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V.'s students

Before analysing how V.'s students approach the activity, we want to recall that V. has
only brie�y spoken about the graph of the derivative function. She has only introduced it
through an example in GeoGebra (see the subparagraph "Some hints about a graphical
technique" of Paragraph 4.5.3). The derivative graph was automatically created by the
software while a point and the tangent in that point moved on the graph of a given
function f . So the graph of f ′ has been shown as locus of the points having the same
abscissa of the corresponding point on f , and the angular coe�cient of the tangent to f
in that point as ordinate.
Moreover, in the classroom V. has not spoken about the derivative of second order yet.
It is not a prerequisite of the activity, since in the text the function f ′′ is presented
as "the derivative of f ′". Nevertheless, as a consequence, V.'s students have no direct
information about the relation between the sign of f ′′ and the concavity/convexity of f .
In Table 5.5, we give a general overlook on the work done by the di�erent groups (A, B,
C, D, E and F).

Method Perspectives
analytic tangent algebraic point. univ. p. global local

Problem 1 A,B,C,E D F,∼E A,B,D ∼E,F B,D,E,F C,D
Problem 2 A,B,C D ∼F A,B,D ∼F A,B,C,D,E ∼B,C,D,∼F
Problem 3 A,C D A,C,D A,C,D

Table 5.5 - V.'s students and activity 1. The sign ∼ indicates that the
method/perspective is partially used by the group in solving the corresponding prob-
lem. The columns in italic are the unexpected ones.

At a technical level, the most part of the students use an analytic method to solve the
problems. Nonetheless, it is also relevant that a group (D) chooses the tangent method
and a group (F) employs an unexpected algebraic method. Only the three high-level
groups (A, C and D) complete the whole activity within the given hour. The low-level
group (E) manages to solve only Problem 1, while the two medium-level groups B and
F get to approach Problem 2 and group B solves it. The most part of the groups base
on pointwise and global properties of the involved functions. Only two groups (C and
D) over six adopt a local perspective and in particular group C explicitly uses it in their
reasoning.

Analytic method

Let us consider group A as an example. This group has been also videotaped. They
only base their reasoning on the properties of functions they deduce from the given
graphs. In particular, for approaching the �rst problem they use the l-p relation be-
tween the maximum of a function and the zero of its derivative (see Table 5.2) but they
exploit it only in a pointwise-pointwise perspective. This fact leads them to detect a
wrong combination of functions f -f ′-f ′′. It follows the transcription of their utterances
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accompanied by their gestures. In this extract, students S1 and S2 are explaining their
reasoning to S3, who joins them a few minutes later. Notice that f , f ′ and f ′′ in the
last column refers not to the correct combination, but to the chain the students have in
mind.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

1 S1: "We have to decide which is f , which is
the derivative of f ′ and which is the second
derivative of f ."

2 S3: "Ah, ok."

3 S2: "Let me explain to you what we have
thought. The green one..."

4 S1: "Wait. Before the blue one. The blue
one is the function, because you see there is
a crossing of x" (he points with the pen to
the intersection of the green and the red
functions on x-axis, Fig. 5.3.27) "which
does not correspond to the zero of any other
function but it. Instead, here" (he points
to the maximum of the blue graph, Fig.
5.3.27) "it is zero because it is a maximum
and it is aligned with the two intersections
of x of the two derivatives."

pointwise speech
indicators
+ pointing
gestures

f , f ′

5 S1: "This..." (he points to the red graph
with the pen, Fig. 5.3.28) "We can say,
this is f ′."

global continuous
pointing
gesture

f ′

6 S2 and S3: "Yes."

7 S2: "And this" (he generally points to the
green graph with the pen) "this is f ′′, I
thought, because here it has the zeros..." (he
points to the maximum of the green func-
tion, Fig. 5.3.29)

pointwise speech
indicators
+ pointing
gestures

f ′′

8 S1: "But it has no correspondence here."
(he points to x-axis in correspondence to
the maximum of the green function, Fig.
5.3.29)

pointwise pointing
gesture

f ′′
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9 S2: "And also here." (he points to the
minimum of the green function) "But I
have no crossing with x here." (S1 and S2
point together to x-axis in correspondence
to the maximum of the green function, Fig.
5.3.29)

pointwise speech
indicators
+ pointing
gestures

f ′′

10 S2: "So, f , f ′ and f ′′." (He generally points
respectively to the blue function, the red
one and the green one)

global pointing
gestures

all

F
ig
ur
es

Figure 5.3.27 - With pointwise pointing gestures, S1 and S2 detect the l-p
relation between the blue graph and the other two.

Figure 5.3.28 - With a global continuous pointing gesture, S1 follows the
red graph with his pen.

Figure 5.3.29 - With pointwise pointing gestures, S1 and S2 imagine the re-
lation between the green graph and another hypothetical one.

In Fig. 5.3.30 we �nd a copy of their written justi�cation:

"Dear Lorenzo and Francesca,
we noticed that to the maximum of f(blue) corresponds the intersections of the
axis of abscissas of f(red) and f(green). So, these last two are the derivatives
of f(b); now, reasoning on them we can [say] that the maximum and the
minimum of f(v) do not correspond to any intersection of f(r), therefore f(r)
is the �rst derivative and f(v) is the second derivative."
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Figure 5.3.30 - Solution to Problem 1 and its justification by group A.

The students of group A base their reasoning in particular on the relation between
the minimum/maximum points of a function and the zeros of its derivative. This relation
is supposed to be a combination of a local perspective on f and a pointwise perspective
on f ′. Unfortunately, the students exploit it only in a pointwise way: the absolute max-
imum of the blue graph corresponds to the intersections of the red and the green ones
with x-axis. It is a relation point to point, as the pointing gestures made by S1 under-
line [4 ], (Fig. 5.3.27). It leads them to say that the blue function must be the starting
function. The same happens when S2 argues the the green function must be the second
derivative, because the absolute maximum and absolute minimum of the green graph do
not correspond to any intersection on x-axis of other functions. The used l-p relation is
detected with pointwise pointing gestures on the involved functions [7-9 ], (Fig. 5.3.29).
This pointwise-pointwise reading of the relation leads them to say that the green function
has no derivative.
Not only in the utterances [1-10 ], but also in the written justi�cation (Fig. 5.3.30),
we �nd frequently the terms "crossing", "intersection", "zeros" that reveal a pointwise
perspective.
In this problem, group A does not exploit the potentiality of the graph as a global semi-
otic resource. Only S1 makes a global continuous gesture on the red graph (Fig. 5.3.28),
but he does not know how to interpret it. He simply says: "This... We can say, this is
f ′." [5 ], without further global checking.

In solving Problem 2 the students understand their mistake. They �rstly notice the
l-l correspondence between the non-di�erentiable point in the blue graph and the dis-
continuous points in the red and the green graphs. Actually, the relation they identify
is pointwise-pointwise. Nevertheless, in this case, they also observe global properties of
the given graphs, in particular if they increase or decrease. Thus, they rely on the g-g
relation between the function variation and the derivative sign. Employing it globally,
they get to the right solution. These relationships between f and f ′ are summarized in
the group written argumentation (Fig. 5.3.31).

"The general rules for the graph of a derivative are:
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• In correspondence to a maximum, a minimum or an horizontal in�ection
point, the derivative intersects x-axis.

• When the function is decreasing the graph of the derivative is negative.
When [the �rst] is decreasing, [the other] is positive.

• If there is a non-di�erentiable point, the derivative function is not con-
tinuous in that point."

Figure 5.3.31 - General analytic method proposed by group
A to decide if a graph represents the derivative of another
one.

Also group C develops an analytic method. Beside the g-g relation between the
sign of the derivative and the variation of the function, in their written solution and
justi�cation of Problem 1 (Fig. 5.3.32) and Problem 2 (Fig. 5.3.33) we �nd explicit local
considerations.

"Dear Lorenzo and Francesca,
we re�ected upon your problem, and we got to this solution, that f is the red
function, f ′ is the blue one and f ′′ is the red one. The reason is the following:
f ′ at the right and left ends is approaching 0 (because f in the same points
tends to become horizontal, and so m = 0) in the maximum point of f ′,
the function f starts to decrease (in�ection point). f ′′ instead at the ends
is approaching 0 for the reason previously expressed, and the maximum and
minimum points of f ′′ represent the in�ection points of f ′. Good luck."

Also in the resolution and written justi�cation of Problem 2 (Fig. 5.3.33), group C
bases on local properties of the involved graphs in order to decide the right combination
of functions. We translate below only the local considerations we �nd in their written
argumentation (Fig. 5.3.33).
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Figure 5.3.32 - Solution to Problem 1 and justification by
group C.

Figure 5.3.33 - Solution to Problem 2 and written justifi-
cation by group C.

"[...] f is the blue curve, f ′ is the green one and f ′′ the red one; be-
cause in x0 f presents a corner (D′− 6= D′+ D′− = m and D′+ = l), and then,
since f ′ in x0 has two �nite and di�erent values, [the green f ′] represents the
derivative of f .
[...] The same remark can be made for f ′′: at the ends f ′ is almost horizontal
(m = 0) and so f ′′ is approaching zero. Moreover, f in x0 is not di�erantiable,
then f ′ and f ′′ aren't continuous in x0 (there is a hole)!"

These students make some local remarks about the horizontal asymptotes, the maxi-
mum, minimum and in�ection points and the non-di�erentiable and discontinuous points.
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They are marked by the use of speci�c speech indicators, which are underlined in the
text. They all reveal a local perspective on the involved functions.

• Expressions such as "is approaching 0", "tends to become horizontal", "is almost
horizontal" stress the great importance the students give to the end behaviour of
the involved functions. They are all linked to the l-l relation between asymptote
in the function and horizontal asymptote in the derivative.

• Expressions such as "starts to decrease" referred to the function after a maximum
point underline that the relation between the maximum/minimum points of a func-
tion and the in�ection points of its derivative is used locally.

• Sentences such as "f ′ in x0 has two �nite and di�erent values", "f in x0 is not
di�erantiable", "not continuous in x0" together with symbolic expressions like
"D′− 6= D′+ D′− = m and D′+ = l" are signs of a local focus on the involved
functions. Moreover, another resource is used to activate the local perspective:
they draw the two di�erent tangents in the corner of the blue curve and the two
parallel tangents to the green curve in the jump point.

Tangent method

We take group D as an example of application of the tangent method. This group
has not been video-recorded while solving Problems 1 and 2, but we have their writ-
ten productions. Nonetheless, we have a short video of their resolution of Problem 3.
From the justi�cations given in the written production, we observe that their reasoning
is grounded on the tangent line changing on the graph. We �nd con�rmation of that
also in the short video. In particular, for solving the �rst problem they use the relation
between the gradient of the tangent line to the function and the value of the derivative.
Their work is implicitly local on f . Let us �rstly examine their written justi�cation (Fig.
5.3.34).

"If we consider the degree of the curves in the �gure, we can suppose that
the order is:"
f → the red curve
f ′ → the blue curve
f ′′ → the green curve
If we observe the inclination of the angular coe�cient by following with a
ruler the tangent lines in each point of the given curves, we notice that the
angular coe�cient of the red one is always positive and it reaches the greatest
inclination in zero. The same reasoning can be made to di�erentiate the blue
one."
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Figure 5.3.34 - Solution to Problem 1 and its justifications
by Group D.

In Problem 2, they summarize their method as follows:

"Observe the angular coe�cient: if it increases the derivative will increase, if
it decreases f ′ decreases. [...]
RULE: Follow the angular coe�cient and notice non-di�erentiable points."

Moreover, in the short video at our disposal, we have con�rmation of their technique
with the pencil. The pencil lies on the paper and is moved as if it were the tangent
line to the graph they want to di�erentiate. We propose below the transcript of the
students working on Problem 3, accompanied by their gestures with the pencil on the
paper. Notice that S1 and S2 follow the graph they want to di�erentiate but the subject
of their speech is already the derivative function. Thus, in the utterances such as "it
starts..." or "it goes up..." the subject "it" is the derivative of the function on which they
are moving the pencil.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

1 S1: "It starts positively." local speech
indicators

f ′

2 S2: "Here it starts positive" (he positions
the pencil tangent to graph of the func-
tion they want to di�erentiate, as in Fig.
5.3.35(a))

local

local

continuous
gesture +
speech
indicators

f

f ′

3 S2: (He moves slowly the pencil on
the graph they want to di�erentiate)
"It goes up, it goes up..."

local

global

continuous
gesture +
speech
indicators

f

f ′

4 S1: "There it starts to go down." (S2's pen-
cil is passing through the in�ection point,
Fig. 5.3.35(b))

local

local

continuous
gesture +
speech
indicators

f

f ′
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5 S1: "There it is zero." (S2's pencil is get-
ting to the maximum point, Fig. 5.3.35(c))

local

pointwise

continuous
gesture +
speech
indicators

f

f ′
F
ig
ur
es

Figure 5.3.35(a), 5.3.35(b) and 5.3.35(c) - S2 is moving his pencil on the
graph they want to differentiate.

The students of group D base their reasoning on the estimation of the value and
the variation of the tangent gradient. They implicitly adopt a local perspective on the
function they want to di�erentiate and, at the same time, they make explicit local, global
or pointwise considerations on its derivative. While the pencil moves keeping tangent to
the graph of f (Fig. 5.3.35), the students imagine what happens to the derivative values.
Thanks to local gestures on f , they deduce some properties of f ′ that are:

• local such as "it starts positively" [1-2 ] or "it starts to go down" [4 ];

• global such as "it goes up" [3 ];

• pointwise such as "it is zero" [5 ].

In this way, the students manage to identify most of the relations between properties of
f and f ′ we have summed up in Table 5.2. They do not need to make the properties
of f explicit, because they rely on the direct correspondence between the properties of
the gradient of the tangent and the properties of the derivative. Group D stresses this
direct correspondence in their written method: "if it [the angular coe�cient] increases
the derivative will increase, if it [the angular coe�cient] decreases f ′ decreases". What
they �nd is the relation between the concavity/convexity of f and the variation of f ′.
However, they do not need to make explicit considerations about the concavity of f .
That's because they are directly relating the variation of the gradient with the variation
of the derivative.
In conclusion, the students of group D exploit the global potentiality of the given graphs,
but for this purpose they have to introduce a tool. This tool is the tangent line, iconically
represented by a ruler or a pencil. Through the introduction of this intermediary, the
students grasp direct information about the derivative of each of the graphs. So their
method turns to be pseudo-analytic, because it does not highlight properties of a function
that are particularly relevant in order to discover something about the derivative. It is
a correct technique that does not really lead the students to adopt a certain perspective
on the function that has to be di�erentiated.
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Unexpected algebraic method

Surprisingly, one of the videotaped groups carries out an unexpected technique to solve
Problem 1. The text provides only the graphs without any algebraic expression or any
speci�c reference on the Cartesian axis. Nevertheless, group F tries to guess the equa-
tions of the given curves in the form y = f(x), in order to recreate a known situation,
where they know how to behave. This is the reason why we call their technique "al-
gebraic method". Actually, as stressed above in our a priori analysis, we expected this
method as one of the possible resolutions of Problem 3. We �nd very interesting to
�nd it applied to solve Problem 1. The main perspective activated here is the universal
pointwise one. Indeed, every formula the group employs is valid for each x belonging
to R. Let us comment their discussion in order to solve the problem. We can distin-
guish two parallel attempts: the former is algebraic and universal pointwise; the latter
is analytic but strictly pointwise. The �rst method prevails on the second one because
of the greater security provided by calculations against the uncertain and disconnected
pointwise properties observed directly on the graphs.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

1 S1: "Well, if you have f(x)... To me, this"
(he points to the red graph) "is minus co-
sine for example. [...] We should have the
derivative of cosine that is sine."

global graph f

2 S2: "To me, rather than a cosine, that stu�
could be similar to the arctangent."

global graph f

3 S1: "Mmm... Great! But the arctangent
passes through..."

4 S2: "The origin. Yes, with a translation it's
not di�cult but..."

5 S3: "What is the derivative of the arctan-
gent?"

6 S1: "The derivative of the arctangent..."

7 S2: "1 over ..."

8 S1: [...] "It is 1 over 1 plus squared x, isn't
it?"

global(=univ.
pointwise)

symbolic
exp.

f ′
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9 S1: [...] "Wait, what about thinking like
this... Here" (he points to the maximum
of the blue function, Fig. 5.3.36(a)) "it [the
blue function] has a maximum. Let's use
the maximum and minimum points. Be-
cause you see there are lots of picks. Here
[the blue] we have a maximum, here [the
green] they are two and here [the red] we
have nothing. To me, the red is the func-
tion, the blue is the derivative and the green
one is the second derivative."

pointwise pointing
gesture

f ′

10 S3: "So, if we graphically represent
1

1 + x2
?"

global(=univ.
pointwise)

symbolic
exp.

f ′

11 S1: "Listen, I have an idea!" (he traces a
vertical line to link the maximum of the
blue graph to the zero of the red one, Fig.
5.3.36) "If we take x0 of f(x) where y =
0..."

pointwise sketch +
symbols

f , f ′

12 S3: "Prof? The graph of 1 over some-
thing?"

F
ig
ur
es

Figure 5.3.36(a), 5.3.36(b) and 5.3.36(c) - S1 draws a vertical line passing
through the blue maximum and the zero of the red and green graphs.

The �rst idea that the group has is to globally guess the analytic expression of the red
function (which accidentally is the right starting function) [1-2 ]. The students S1 and
S2 do so by comparing the form of the red graph to another one they have in mind (e.g.
cosine or arctangent graphs). The students S1 and S3 have two di�erent approaches. S3
immediately starts to do calculations supposing that the analytic expression of the red
function is f(x) = arctanx. In line [8 ] it appears for the �rst time a generic variable
x. From this moment on, S3 works in a universal pointwise perspective on the symbolic
expression of f ′(x). S1, instead, tries to �nd a graphical rule to detect f and f ′ but
he only makes pointwise considerations on each single graphs without being able to link
them [9 and 11 ]. His pointing gesture and his sketch (Fig. 5.3.36) on the given graphs
remain pointwise at the level of the maximum point or of the zeros. He does not get to



245

formulate the relation between the maximum of a function and the zero of its derivative.
S3 asks the teacher's suggestion about the graph of a function reciprocal [12 ]. She wants

to study and draw the graph of f ′(x) =
1

1 + x2
[10 ] in order to verify if it is similar to

the blue or to the green one. The teacher stresses that they are not required to �nd the
analytic expression of the represented functions. Nonetheless, S3 supported by the other
components of the group (S1 abandons the graphical approach for a while) continues on
her paper. She gets to the graph in Fig. 5.3.37, which the group recognize similar to the
blue one.

Figure 5.3.37 - Derivative graph deduced by group F.

Then, applying the quotient di�erentiation formula, she computes the expression of

f ′′(x) =
−2x

(1 + x2)2
. At this point the students make a mistake in the study of the

stationary points of f ′′. Indeed, they study the sign of f ′′ instead of the sign of its
derivative (f (3)). Since they �nd a maximum in x = 0, they stop confused. The teacher
intervenes again.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

13 T: "Try to justify the answer basing on the
graphs, do not search for an analytic expres-
sion."

global graph all

14 S1: "Ok."

15 S2: "Well, no justi�cation based on the
graphs comes to my mind..."

16 S1: "To me, we must reason here" (he
points to the blue maximum and to the ze-
ros of the other functions) "I would write
f(x0) = 0, then f ′(x0) must be what?"

pointwise pointing
gesture +
symbols

f , f ′

17 S3, S2: "y0"

18 S3, S1: "1"

19 S2: "How can you say that it is 1?"
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20 S1: "No. It's true. Ok, let's take y0. And
then f ′′(x0)?"

pointwise symbols f ′′

21 S2: "Its value is 0 again."

The teacher intervenes at the level of the semiotic resources that the students are
using: she advises to abandon the algebraic register in favor to the graphical one [13 ].
Through pointwise gestures and symbols, S1 proposes again his graphical approach [16 ]
but his conclusion is simply a list of strictly pointwise properties on f , f ′ and f ′′ in
the abscissa x0 [16-21 ]. No relation is stated between them. When the teacher returns
to check the group work, they explain to her their reasoning based on the algebraic
expressions of the curves [1-12 ].

What the students say and do Perspectives Semiotic

resources

on f ,
f ′, f ′′

22 T: "So, if it is the way through which you
understand it, write it."

23 S1: "Let's write it."

24 S2: "But it doesn't work!"

25 S1: "Why not? It works very well!"

26 S2: "We have calculated the maximum and
minimum points and they aren't correct."

27 T: [...] "Have you di�erentiated three
times?"

global(=univ.
pointwise)

speech all

28 S1: "Twice."

29 S2: "We compute the derivative and
we compute the maximum and minimum
points..."

30 S3: "No! We are so stupid! This" (she

refers to the sign scheme of
−2x

(1 + x2)2
) "is

the maximum of that one" (she points to the
blue one) "We have to �nd the derivative
of this function to obtain its maximum and
minimum points!"

global scheme f ′′

The teacher accepts the students' justi�cations and, di�erently from before [13 ], she
does not try to convince them to change the semiotic resource [22 ]. She simply checks
with them all the calculations. Thanks to the question-doubt the teacher poses [27 ], S3
notices that their technique lacks of a part. We can read all the steps of their method
directly through their words (Fig. 5.3.38, 5.3.39(a) and 5.3.39(b)).
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Figure 5.3.38 - Solution to Prob-
lem 1 by group F.

Figure 5.3.39(a) - Solution to Problem 1 and its justifications by group
F (recto).

"Dear Lorenzo and Francesca,
we found with di�culty the solution to your problem.

1. We translated y-axis for convenience, making the origin coincide with
x0 where two functions had value 0 and the third one had f(x0) as
maximum.

2. We supposed that the red function was f(x) and that it corresponded
to the function f(x) = arctan(x), restricted to an interval.

3. By di�erentiating it, we noticed that the blue function intuitively corre-

sponds [to] f ′(x) =
1

1 + x2
. This hypothesis was validated through the

calculation of limits and maximum/minimum points: in f(x) there were
no maximum point; in f ′(x) the maximum point had value (0; 1).

4. Finally, we calculated f ′′(x) =
−2

(1 + x2)2
: we noticed that its character-

istics were correspondent to those of the green graph. [MAX(− 1√
3

; y′)
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MIN(
1√
3

; y′). limx→∞ f
′′(x) = 0]"

Figure 5.3.39(b) - Solution to Problem 1 and its justifications by group
F (verso).

The students of group F do not exploit the global potentiality of the given graphs,
although indirectly the expression and the formulas they use are universal pointwise.
Actually, they do not get to grasp any property of the represented functions, and they do
not formulate any relation between the properties of the graphs. Their algebraic method



249

entails the activation of several semiotic resources. Beside the graphs, they use symbolic
expressions, symbols, sketches and schemes. To justify their solution, this group trusts
in algebraic calculations. The fact of using the di�erentiation formulas and of studying
the derivative sign is their warrant of correctness. Unfortunately, as they realize with the
second problem, there exists very few cases in which this technique can be used. In very
few cases, indeed, you are able to recognize the analytic expression of a curve under the
form y = f(x). Moreover, you have to guess the starting function, otherwise lots of your
calculations go wasted. Also the risk to commit computation errors or to make confusion
among the analytic expressions is really high. Further, the students can automatically
follow this method, thanks to the con�dence given by algebraic formulas, without being
actually capable to interpret what they �nd. In conclusion, this technique does not
really lead the students to adopt a certain perspective on the involved functions. Not
even a universal pointwise perspective is e�ectively activated, because it usually remains
implicit in the algebraic calculations.

In�uences of V.'s praxeology

The presence of the tangent method is not a case. Indeed, V. has given a great importance
to the tangent line de�nition within the praxeology developed in the classroom. The
relation between the derivative concept and the tangent gradient has not been simply
presented as a property. It has been the starting point for constructing the technique to
�nd the derivative of a function (see the subparagraph "Construction of the technological-
theoretical block for Tmtg" in Paragraph 4.5.2).
The local perspective that the teacher has introduced in the previous lessons seems not
to be very strong in the students' productions. Only group D, using the tangent as a tool,
seems to implicitly exploit a local perspective on the function they want to di�erentiate.
But such an approach does not become a way to explicitly highlight local properties on
this function. Also in solving Problem 2, which has been especially designed to foster a
local perspective, only group C bases on some local remarks.

5.4 Activity 2

Activity 2 is speci�cally designed around the condition of tangency and its algebraic
translation.

5.4.1 Description

As the �rst proposed activity, also activity 2 lasts one hour. It is composed of two
problems. The students are required to solve them and to give a written justi�cation of
their reasoning.
The �rst problem is given in two possible versions, A and B, whereas the second problem
is the same for all (see "Scheda A" and "Scheda B" in Appendix D). Problem 1 is based
on the following type of task: determining the equation of a function that intersects x-
axis in two given points, knowing the tangent lines in these two points. This type of task
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is proposed in two di�erent formulations: graphical (version A) and symbolic (version
B). In Problem 2, instead, the students are supposed to �nd the algebraic condition for
the tangency of two curves. More precisely, they have to determine the exact value of
a real parameter k for which a function g, whose equation depends on k, is tangent to
another given function f , and then �nd the coordinates of the tangency point. These are
two types of task and the second depends on the �rst one.
General prerequisites are

• functions, in particular in the algebraic register of representation;

• pointwise properties of functions, especially the zeros;

• elementary functions y = mx+ q, y = ax2 and y = lnx and related properties;

• parameters and study of their variation.

Speci�c prerequisites are

• the concept of derivative of a function in a point;

• the equation of the tangent to a function in a point;

• local properties of functions, such as the continuity and the di�erentiability in a
point.

5.4.2 A priori analysis

As for the activity 1, our analysis is based on the three lenses:

1. the praxeologies adopted in order to solve the proposed problems;

2. the perspectives assumed on the involved functions;

3. the semiotic resources activated in order to solve the activity.

These three great components in�uence the design of both the problems. They are
grounded on the de�nition of derivative as the gradient of the tangent line:

f ′(x0) = mtg in x0 . (5.1)

The relation (5.1) is local on f and, at the same time, pointwise on f ′. Thus, it is a l-p
relation. This shift of perspectives by passing from a function to another may represent
a di�culty. Another delicate fact may be that students are usually asked to calculate
the derivative of a given f in a certain point x0 in order to �nd the gradient (and then
the equation) of the tangent line in that point. Here, the type of task is somehow the
dual one: known the gradient of the tangent in x0, �nding f ′(x0) (and then the analytic
expression of f).
In this activity, we are interested in the algebraic formulation and use of the relation
(5.1). Therefore, on the contrary of activity 1, we do expect an algebraic work on the
involved functions.
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Problem 1

About the function f you know that its
graph
- passes through the points A and B;
- is tangent in A to the straight line r and
in B to the straight line s.
Write a possible equation y = f(x) for this
function.

About the function f you know that
- x1 = −2 and x2 = 0 are among its zeros;
- the curve whose equation is y = f(x)
is tangent in x1 to the straight line r :
x+y+ 2 = 0 and in x2 to the straight line
s : 3x− y = 0.
Write a possible equation y = f(x) for this
function.

This problem is inspired by some similar problems which are proposed on Sasso's
textbook (Sasso, 2012). Some pointwise information (about the zeros) and local infor-
mation (about the slope) are given on an unknown function f . Version A of Problem 1
provides these information in the graphical register: in a Cartesian reference system, two
points A and B are detected on x-axis and two straight lines r and s are drawn through
these points. A grid is visible and the scale is speci�ed on the axis. In the text all the
indications have a descriptive role, in the natural language register, with reference to the
�gure. Thus, the semiotic resources used in version A are the graphical drawing together
with a written explication. Version B of Problem 1 uses the symbolic resource to give
the information about f : two zeros of f are written in symbols "xi = value" and the
equations of the two tangent lines r and s are given in the form ax+ by + c = 0.
Nonetheless, the same semiotic resource is expected in the solving process. It essentially
consists of algebraic symbols in order to

1. �nd a generic analytic expression of f : f(x) = ax3 + bx2 + cx+ d, with a, b, c and
d ∈ R;

2. write the given conditions

f(−2) = 0 and f(0) = 0

mr = f ′(−2) = −1 and ms = f ′(0) = 3;

3. �nd the generic analytic expression of the derivative of f ′: f ′(x) = 3ax2 + 2bx+ c;
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4. exploit the given conditions and solve the system among them
0 = −8a+ 4b− 2c+ d
0 = d
−1 = 12a− 4b+ c

3 = c


a = 1/2
b = 5/2
c = 3
d = 0

5. express the �nal result: the analytic expression for the involved function y =
1

2
x3 +

5

2
x2 + 3x.

We chose this problem because it stimulates the shift from a local information on
f (the gradient of the tangents mr = −1, ms = 3) to a pointwise information on f ′

(f ′(−2) = −1 and f ′(0) = 3). Notice that the use of the relation (5.1) is not indicated or
evident in the statement. It certainly represents a great cognitive jump, which is essential
to solve the problem.
Therefore, let us come to the reason why we proposed two versions of this problem.
The question we posed was: is there a semiotic resource that best helps this shift in
perspectives, by passing from f to f ′? On the one hand, the graphical drawing resource
may help the students imagining what kind of function may satisfy the given conditions.
We expect that they easily exclude the parabola (see step 1), for example. The students
are also easily fostered to trace a graph for this function. The fact of drawing the
graph so that it is tangent to some drawn lines may help the students activating the
l-p relation (5.1)? On the other hand, the symbolic resource may foster the students
to think more "algebraically". It might be immediately clear for them that a solution
in the symbolic register is needed. Nevertheless, within this context, is the l-p relation
(5.1) more immediate? We are interested in investigating these questions at all levels,
so the two versions of Problem 1 has been given in a uniform way to high-level groups,
medium-level groups, low-level groups.

Expected praxeologies in solving Problem 1

The type of task "determining the equation of a function that intersects x-axis in two
given points, knowing the tangent lines in these two points" is given in two di�erent
formulations. However, the technique for solving it is the same: it consists in the steps
1-5 which are summarized above.
The di�erence occurs at the technological level, namely in step 2. Let us explain the
technology step by step. First of all, only two zeros of the function f are given. Never-
theless, f can not be a parabola in the form y = ax2 + bx + c, because at the points A
and B, which would be symmetrical with respect to the vertical axis, the tangent lines
r and s are not symmetrical. For this reason, we need a function of at least third order.
It will have another zero x3, though it is not given among the data.
We expect two di�erent justi�cations in the second step, at the level of interpretation
and algebraic conversion of the given conditions. The students who have version A are
expected to do some graphical work to �nd the coordinates of the points A and B, and
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the gradient of the straight lines r and s. Since A and B belong to the graph of f , with a
conversion from the graphical to the algebraic register, the students obtain f(xA) = yA
and f(xB) = yB. To graphically determining the gradient of r and s, they have to choose
two points on each of them. Since on r they have already A and on s they have already
B, it is enough to choose a second point on each straight line, by using the grid and the

scale on the axis. Then, by applying the formula m =
∆y

∆x
, they �nally �nd mr and ms.

Instead, with version B, students are expected to give to the symbolic condition "xi is a
zero of f" an algebraic interpretation as f(xi) = 0. Then, to know the gradient of r and
s, it is su�cient to �nd the explicit form y = mx+ q of their equations.
Following di�erent ways, the students get the four algebraic conditions: f(−2) = 0,
f(0) = 0, mr = −1, ms = 3. By recalling the relation (5.1), they can �nally interpret
mr = −1 and ms = 3 as f ′(−2) = −1 and f ′(0) = 3.
Further, the di�erentiation formula for the elementary function x→ xn and the theorem
on the sum of derivatives guarantee the calculation of the derivative f ′ in step 3.
Then, among all the functions with the generic analytic expression of f (see step 1), the
one that satis�es simultaneously all the conditions (see step 2) will be the function we
are searching for. This is the reason why we impose and solve the system in step 4.
This system has a unique solution, since it is composed of four equations in four param-
eters a, b, c and d. This is the justi�cation for obtaining, by replacement in the generic
analytic expression of f (step 5), a unique equation y = f(x).
The supporting theory is quite wide. We have polynomial functions theory, analytic
geometry (e.g. coordinates and straight lines), the de�nition of the derivative in a point
as the gradient of the tangent line to the function in that point (relation (5.1)), di�eren-
tiation formulas and theorems (with proof), systems theory.

Notice that the solution to this problem is not unique and that no condition about
continuity or di�erentiability is given about f in the text. Thus, also other resolution
processes are possible. For example, it is possible to de�ne a piecewise function, which
can be continuous or not. The banal example is the piecewise function composed of
the two given straight lines. A more articulated answer involves a piecewise function
composed of two parabolas in the form y = ax2 + bx+ c respectively tangent to the two
given straight lines at the two given points.

Problem 2

We say that two curves are tangent in one of their common point if and only if they
have the same tangent line in that point. Establish for which exact value of the real
parameter k > 0, the curves with equations

f(x) = kx2 and g(x) = lnx

are tangent. What are the coordinates of the tangency point?

This problem is inspired by french researches, namely Gueudet and Vandebrouck's
study about technologies and evolution of teachers' practices (Gueudet & Vandebrouck,
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2011). A �rst remark is that the students have not studied the tangency between two
curves yet (see Table 5.1). Thus, the geometrical de�nition is given as introduction to
the problem. By solving this task, the students are supposed to carry out, on their own,
the algebraic tangency condition.
The data consist of a family of parabolas, with vertex in the origin f(x) = (fk(x)) = kx2,
and the function y = lnx. The index k for the family of functions does not appear to
avoid further complications. The �rst question is determining the exact value of k for
which the curves having the given equations are tangent. The word "exact" is under-
lined because the students know the bisection process for approximating the abscissa of
an intersection point. The adjective exact should foster them to think about another
way that allows them to �nd the value of k without any uncertainty.
Notice that it is necessary to move from a geometrical frame to a functional frame. This
change may be supported by the availability of the analytic expressions of the functions
f and g that represent the curves. The l-p relation (5.1) has to be applied on each
representative function, f and g. Further, the two obtained information must be put
together, �nding a unique pointwise relation, which depends only on the derivatives of
these functions in the abscissa of tangency x0. While determining k, one gets also x0.
So, the second question consists simply of �nding the related ordinate.
From a semiotic point of view, the symbols resource prevails both in the statement and
in the solution.
We chose this problem because of the interesting shift in perspectives we have just de-
scribed above. The important fact is that the students have to do this shift alone, without
the teacher's help, but with all the knowledge and competences that the teacher has built
in the classroom.

Expected praxeologies in solving Problem 2

The types of task are two: determining the exact value of the parameter k for which a
function f , whose equation depends on k, is tangent to a given function g; �nding the
coordinates of the tangency point. The technique is based on the combined use of the
relation (5.1) on both f and g. First of all, it is needed to express the algebraic conditions
for which the two curves

1. pass through the same point of abscissa x0:

f(x0) = g(x0)⇒ kx20 = lnx0;

2. are tangent at x0:

f ′(x0) = mtg in x0 = g′(x0)⇒ 2kx0 =
1

x0

Then, by imposing and solving the system between the conditions (1) and (2), one obtains

k =
1

2e
and x0 = +

√
1

2k
=
√
e. By replacing x0 =

√
e in the analytic expression of f or
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g, one gets the ordinate of the tangency point y0 =
1

2
.

The technology behind the condition (1) relies on the fact that two functions pass through
the same point P (x0, y0) if and only if P belongs to both their graphs. Thus, f(x0) = y0
and g(x0) = y0. For the transitive property, one obtains the condition (1): f(x0) = g(x0).
The warrant for the condition (2) is the combined recall and application of the relation
(5.1) with the de�nition given in the text for two tangent curves. The tangent in x0 has
to be the same for both the functions. In particular, the gradient mtg in x0 is the same.
It means that f ′(x0) = mtg in x0 and g′(x0) = mtg in x0 . For the transitive property,
one obtains the condition (2): f ′(x0) = g′(x0). It is necessary to di�erentiate the power
function x→ x2 and the logarithmic one x→ lnx and then to replace x with x0. With
two equations in two unknowns (k and x0) the system is determinate and it allows to
�nd at the same time the exact value of the parameter and the abscissa of the tangency
point.
The theory of Problem 2 includes some elements of analytic geometry (e.g. coordinates
and straight lines), the de�nition of the derivative in a point as the gradient of the tangent
line to the function in that point (relation (5.1)), di�erentiation formulas, systems theory.

5.4.3 A posteriori analysis

Let us explain how the a posteriori analysis is conducted. First of all, we focus on the
activated praxeologies and in particular on the justifying discourse that accompanies the
implemented method. We are interested in how the students make the cognitive jump in
recalling and applying the relation f ′(x0) = mtg in x0 (5.1). Although we ask the students
to write down their justi�cations, they usually delegate the justifying role to symbolic
manipulations and computations. In the written data at our disposal, the warrant for
the problem solution are the algebraic symbolic steps themselves. Therefore, we prefer
to analyse the videotaped groups, since we have access to the justifying speech which
arises from the discussion.
In the videos analysis, we focus on the perspectives activated by the students, especially
when they have to use the l-p relation (5.1). Moreover, we are interested in the semiotic
resources the students use to support their perspectives. In particular, do the di�erent
semiotic resource used in the �rst problem have some in�uences in how the students
activate the l-p relation (5.1)?
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M.'s students

Table 5.6 provides a general overlook on the work done by the groups A, B, C, D, E, F,
G and H.

Use of the relation (5.1) Semiotic resources

Problem 1
system A,B,D,E,F,G,H graph, symbols

C symbols
piecewise f

Problem 2 system
A,B,G graph, symbols

C,D,E,F,H symbols

Table 5.6 - M.'s students and activity 2.

Notice that all the groups manage to use the relation f ′(x0) = mtg in x0 (5.1) to solve
Problem 1. They all impose it as a condition of a system of 4 equations in 4 unknowns.
Only two groups over eight make a �rst attempt with a non-cubic function. Group A
tries with a parabola, whereas group H tries with a homographic function making it pass
through A and B and be tangent to r and s.
As far as the semiotic resources are concerned, the four groups having the graphical
version of Problem 1 (D, E, F and G) do not seem to make any attempt of drawing a
function in the given graphical situation. They do not seem to exploit this graphical
resource. On the contrary, groups A, B and H having the symbolic version of Problem
1 �nd it useful to draw the situation in a graphical environment. Within the resolution
of Problem 2, where the students are left free, only three groups over eight try to give a
graphical representation on the proposed task.
M.'s students seem to be used to work in a symbolic register without necessarily resorting
the graph. The presence or the absence of the graph in the text does not lead to really
di�erent reasoning processes.

We are going to analyse the two videotaped groups (A and G), and in particular
the moment of recalling and application of the relation (5.1). We are interested in the
involved perspectives and the semiotic resources which help its activation. To refer to
each component of the groups, we keep using the same students' names (S1, S2 and S3)
of Activity 1 (see the subparagraph "M.'s students" in Paragraph 5.3.3).

The medium-level group A works on the symbolic version of Problem 1. They ap-
proach its resolution by tracing the Cartesian axis, but actually they do not draw anything
in this plane. They immediately move on to algebraically translate the given conditions,
and they start from the tangency ones "the curve whose equation is y = f(x) is tangent
in x1 to the straight line r : x+ y + 2 = 0 and in x2 to the straight line s : 3x− y = 0".
Students S1 and S2 collaborate in the algebraic formulation of these two tangency con-
ditions. Let us analyse a brief extract from the video.
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What the students say and do Perspectives Semiotic

resources

on f ,
f ′

1 S2: "It's su�cient to do the derivative and
to impose it equal to −1 so that we get the
angular coe�cient."

2 S1: "Wait..."

3 S2: "The derivative in x." (He points his
left index downwards, as in Fig. 5.4.1)

pointwise speech
indicators
+ gesture

f ′

4 S1: "Exactly. So y′ in... what is the point?
It would be: �rst derivative in the point
must be equal to angular coe�cient."

pointwise speech
indicators
+ symbols

f ′

5 S2: "x2 is equal to 0 and the angular coef-
�cient will be... 3." (S1 writes "y′(−2) =
−1" and "y′(0) = 3", see Fig. 5.4.2)

pointwise symbols f ′

F
ig
ur
es

Figure 5.4.1 - S2's pointwise gesture to
accompany the words "the derivative in x"
[3 ].

Figure 5.4.2 - S1 writes in
symbols the given tangency
conditions.

In this �rst part of the discussion about Problem 1, S2 immediately proposes the
technique: to di�erentiate and then to impose the derivative equal to the gradient of the
given tangent line [1 ]. Then, he adds "in x" [3 ] and speci�es his pointwise perspective on
f ′ with a pointwise pointing gesture (Fig. 5.4.1). It recalls M.'s gesture for the derivative
in x0, when she distinguished a particular x0 from the generic x.
The algebraic translation of the tangency conditions comes quickly (Fig. 5.4.2), but how
and on what function applying them require a more deep re�ection from the group.
When they wonder of what function y = f(x) taking into account, S1 sketches the sit-
uation in the Cartesian plane. She writes y = x(x + 2), but S3 suggests to consider a
generic function, so she writes y = ax2 + bx + c. After a general remark I made about
the text with all the students, namely that x1 and x2 are f zeros but not the only ones,
they restart the calculations with a cubic function y = ax3 + bx2 + cx+ d.
We can notice that they consider a graphical situation, but they do not really exploit it.
The main activated semiotic resource is the symbolic writing.

It happens also in approaching Problem 2: S1 draws the given functions in a Cartesian
plane (Fig. 5.4.3), but then they solve the task only through symbolic steps.
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In particular, it is S1 that after having drawing the graphs opens the discussion on the
tangency condition for two curves.

Figure 5.4.3 - Group A's graphical conversion of Problem 2.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

6 S1: "Practically, their �rst derivatives must
have the same value in the point. Because
they must have the same tangent line. But
we do not know in what point they meet
each other, since it depends on how k
changes. [...] In a point that we do not
know yet... it is their intersection point."

pointwise speech
indicators

f ′, g′,
f and
g

7 S2: "You have to know the tangency
point..."

8 S1: "We have to �nd their common point,
and then to impose that in that point the
tangent is the same."

pointwise speech
indicators

f and
g

9 S2: [...] "The coe�cients" (he points to the
derivatives S1 has found, Fig. 5.4.4) "have
to be equal for a point."

pointwise speech
indicators

f ′

and
g′

10 S1: "Well, let's start imposing them equal

in x." (She writes 2kx =
1

x
, then 2kx2−1 =

0) "So this is the �rst condition. The other
one is this." (She writes kx2 − lnx = 0)

global(=univ.
pointwise)

speech
indicators
+ symbols

f ′,
g′,f
and g

F
ig
ur
es

Figure 5.4.4 - Extract from group A's solution and justification to Problem
2.
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The group works directly via symbols on the expression in x of the functions and the
derivative functions. They make some pointwise considerations about the fact that they
do not know the abscissa of the common point of f and g [6-9 ]. S1 proposes a universal
pointwise perspective on the involved functions and on their derivatives [10 ]. Indeed, she
suggests to start using their algebraic expressions in x.
We can observe that not even in this second problem the students need to resume a local
perspective on the involved functions. All passes through algebraic symbols.
They �nd kx2 = 1/2 from the �rst condition and substitute it in the second one. They

correctly obtain the coordinates of the common point (
√
e,

1

2
) and S1 checks if it is pos-

sible on the graph. So the graph is used by this group with a role of control.

High-level group G works on the graphical version of Problem 1. It allows them to
say immediately that the solution cannot be a parabola. S2 says "It cannot be a parabola,
otherwise they [the straight lines r and s] would have the same...the same thing... if it
was a parabola.". He supports his words by posing his hands symmetrically on the sheet
(see Fig. 5.4.5).

Figure 5.4.5 - S2's symmetrical gesture
of the hands to justify why the solution
cannot be a parabola.

Then, the group concentrates on the meaning of the given conditions. They come to
�nd the relation (5.1).

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

1 S1: "We have that here the derivative is
−1...−x..." (He points to A)

pointwise gesture f ′

2 S2: "−1."

3 S1: "And here" (he generally points to the
straight line s) "is −3, no! +3."

4 S3: "Here where? What do you indicate
with "here"?"
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5 S2: "The angular coe�cient is this one" (S1
and S2 retraces simultaneously s, as in Fig.
5.4.6) "so the derivative in that point is 3."

pointwise
pointwise

gesture
speech
indicators

f
f ′

6 S2: "So we said that the derivative in A is
−x" (he writes "y′(A) = −x") "Let's write
1? The number?"

global(=univ.
pointwise)

symbols f ′

7 S1: "There you have to put −1." pointwise symbols f ′

8 S2: "Let's do so. Let's write D..." (he
writes "D′(A) = −1" and "D′(B) = +3",
see Fig. 5.4.7)

pointwise symbols f ′

F
ig
ur
es

Figure 5.4.6 - S1 and S2's common gesture
on the tangent line s.

Figure 5.4.7 - Symbolic ex-
pression of the relation (5.1).

The group perspective on the involved function is pointwise, without any local im-
plication, since the tangency condition is immediately translated in terms of derivative
[1 ]. The algebraic conditions on the derivative function gets a pointwise connotation for
the students [6-8 ] (Fig. 5.4.7).
In order to exploit these algebraic conditions (Fig. 5.4.7), S2 proposes to use the incre-
mental ratio. Thus, they impose the system in Fig. 5.4.8.

Figure 5.4.8 - S2's system using the limit of the incremental ratio.

We can notice that the perspective of S2 is still universal pointwise, as in his comment
[6 ]. The incremental ratio indeed are calculated in the generic abscissa x. This way leads
them in a more and more intricate and meaningless manipulation of symbols.
S1 �nally proposes to write the function as y = ax3 + bx2 + cx since it must pass through
the origin. Then they impose the pointwise condition on f , by making it pass through
the point (−2, 0), and the pointwise constraint on the derivative, by imposing f ′(0)



261

equal to 3. However, instead of imposing the forth pointwise condition on the derivative,
namely f ′(−2) = −1, they suppose that the function has an in�ection point in (−2, 0).
They impose that the �rst derivative has a maximum. They are locally reasoning on the
function f and on its derivative f ′, but they do not get the real behaviour of the function
in the neighbourhood of −2.
The teacher, who is following the group's reasoning, expresses a doubt [9 ].

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

9 T: "There is a thing that doesn't convince
me. You have decided to have an in�ection
point here, but it is an in�ection point that
not necessarily..." (She retraces the tangent
with her �nger) "You haven't imposed that
this in�ection point has necessarily this tan-
gent."

local gesture f

10 S1: "No, I haven't imposed it. It must be
f ′(−2)..."

pointwise symbols f ′

11 T: "If you obtain −1, you got it. But I'm
not so sure..."

pointwise symbols f ′

It is the teacher who makes the students notice that their local reasoning on f in
the neighbourhood of −2 is not the required one [9-11 ]. When the students verify if the
obtained function satis�es the local condition on f , through the pointwise condition on
f ′, namely f ′(−2) = −1, they �nd an incongruity.
Afterwards, they correctly solve the problem by imposing a system of only pointwise
conditions on f and its derivative.

Also in Problem 2, group G has the capability to get very quickly to the algebraic
condition to apply, but they get lost in algebraic calculations, which are often useless
and meaningless. In this case, they immediately say that "the derivatives of lnx and
of kx2 must be equal" and establish a �rst relation between k and x: 2kx2 = 1. Then,
they notice that they "have to �nd the point in which they meet each other [...] the
intersection between them". They write this constraint as lnx = kx2. Nevertheless, they
try to solve this equation both algebraically, introducing an exponential, and graphically
(see the extracts in Fig. 5.4.9). S1 surrenders because he is not able to obtain x.
The group manages to solve the task thanks to another teacher's intervention. She makes
them aware that they already have the two required conditions and that it is enough to
put them together.
The example of high-level group G shows us that often it is not su�cient adopting
the right perspective on the involved functions. Moreover, it is not enough converting
correctly a pointwise, global or local information in an algebraic form. It is necessary
developing a good dialectics among the arisen perspectives to give a global sense to the
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obtained algebraic conditions.

Figure 5.4.9 - Extracts from group G's solution and justification
to Problem 2.

In�uences of M.'s praxeology

M.'s students do not need any local consideration on f to activate on the derivative
function both a universal pointwise and a pointwise perspective. We notice that often,
when they algebraically write an equality in x using the analytic expressions of the
involved functions and their derivatives, they can see x both as a universal pointwise
sign or as a pointwise sign, according to their goal. They use other semiotic resources
to specify if x is actually a special x. For example, group A uses a gesture which recalls
M.'s gesture to indicate a speci�c point x0. Group G refers to the graph in order to
specify that the values of x in which they are calculating the derivative are particular
values, even if they continue to use the sign x. It might be due to the way in which M.
has introduced the shift from the pointwise sign x0 to the generic sign x, talking about
derivative function (see subparagraph "Elaboration of the algebraic technique, starting
from the technological speech" in Paragraph 4.3.3). It was a matter of syntactical writing,
for convenience. The students seems to have internalized the capability of moving from
a particular x or a generic x depending on what they are searching for.
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M.G.'s students

Table 5.7 provides a general overlook on the work done by the groups A, B, C, D and E.

Use of the relation (5.1) Semiotic resources

Problem 1
system A,B,C,E graph, symbols

D symbols
piecewise f

Problem 2 system
∼B graph

∼C,D,E symbols

Table 5.7 - M.G.'s students and activity 2. The sign ∼ denotes that the
corresponding technique/resource has been partially used by the group
to solve the problem.

All the students have solved Problem 1, but only the two high-level groups D and E
have completed the solution of Problem 2. The technique used by every group for solving
the �rst task consists of the system. The symbolic version of Problem 1 was given to
groups A, C and D. Only group D relies exclusively on symbols, whereas groups A and
C draw the graphical situation. Thus, there is no real di�erence between those who have
had the graphical version and those who have had the symbolic one. Almost all feel the
need for supporting their reasoning with a graphical resource.
The three low- and medium-level groups A, B and C have �rstly approached Problem
1 through a parabola. High-level groups D and E have directly started with a cubic
function.
As for the second problem, group B has only explored it graphically, group C has sym-
bolically sketched it out correctly, and groups D and E have symbolically solved it. The
symbolic resolution prevails for this second problem.

We are going to analyse group A that is the one we could videotape. They work
on the symbolic version of Problem 1. They �nd some di�culties in solving it, so they
do not manage to approach Problem 2. S1, S2, S3 and S4 denote the same students as
before in Activity 1 (see the subparagraph "M.G.'s students" in Paragraph 5.3.3).

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

1 S1: "If it is tangent it means that it
touches..." (He generally points to the
straight line r)

2 S2: "In that point it touches the straight
line." (She points to x1 on x-axis, Fig.
5.4.10)

pointwise speech
indicators
+ pointing
gesture

f

3 S1: "In this point? Are we sure?" (S2 reads
again the text)

pointwise speech
indicators

f
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4 S2: "So it must pass through both x1 and
x2."

pointwise speech
indicators
+ symbols

f

5 S2: "Exactly."

6 S1: "The curve is tangent in that point to
the two straight lines. So it means that it
cannot do... it cannot pass through... Then
it probably does so..." (He imagines to trace
f tangent to r, Fig. 5.4.11)

pointwise

local

speech
indicators
gesture on
graph

f

F
ig
ur
es

Figure 5.4.10 - S2's pointing gesture on
the graph.

Figure 5.4.11 - S1 tries to locally trace an imaginary curve which is tangent
to r in x1.

The students deduce from the given data the pointwise information for f : it has to
cut x-axis in the given abscissas [1-5 ]. They also put the data in a graphical frame. With
a local gesture (Fig. 5.4.11), S1 imagines how the curve could pass through x1. He starts
to wonder what the tangency condition means. This local gesture is made without any
accompanying speech that make the perspective explicit. It occurs also later [18 ], when
the teacher intervenes in the group discussion about a possible parabola respecting the
given conditions.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

7 T: "You have supposed that..."

8 S2: "The curve is a parabola, and we are
searching for the parameters."
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9 T: "Ok. So you have a parabola that
passes through two points. Try to draw it."

pointwise

global

speech
indicators
graph

f

10 S1: "Very ugly eh! However, it has to be
tangent in that point... so... It is horrible!"
(He sketches it, see Fig. 5.4.12)

global graph f

11 T: "Do you feel uncomfortable while draw-
ing?"

12 S1: "In what sense?"

13 S2: "No."

14 T: "No?"

15 S1: "Is it yes?"

16 S2: "No, if you don't feel so."

17 S1: "Because, well... We know that it is
tangent."

18 T: "Let me see how you move
your hand." (He retraces the curve
as in Fig. 5.4.11) "You try to
�atten yourself on the tangency..."

local gesture
+ speech
indicators

f

19 S1: "Do you feel any unease in doing it with
your hand? You have two tangent lines a
little bit crooked. [...] Where it would be
the vertex, if the parabola passes through −2
and 0?"

20 S1: "In x = −1."

21 T: "And how can you make a vertex in −1
there?"

pointwise graph +
speech
indicators

f

22 S1: "Yes... it's true."
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F
ig
ur
es

Figure 5.4.12 - S1's global sketch of the parabola.

The teacher wants them to draw the parabola in order to make them aware of its
asymmetry [9 ]. However, the graphical work does not reveal to the students what she
expects. S1 draws a parabola with vertical axis tangent to s in the origin, but not tan-
gent in the same way to r in (−2, 0) [10 ] (see Fig. 5.4.12). Nonetheless, they do not
feel uncomfortable in drawing it [11-16 ]. S1 traces it again locally in a neighbourhood
of x1. At the same time, the teacher locally comments "you try to �atten yourself "
[18 ]. Despite this local incongruity, the students do not really see any problem. Thus
the teacher uses a pointwise consideration about the vertex in order to make them aware
that this parabola does not �t with the given conditions [19-22 ].
Finally, the group chooses a cubic function and they impose the pointwise conditions
making it pass through (−2, 0) and (0, 0). As for the tangency condition, they take their
notes to revise the lesson about m-tangent. I read with them the sentence "m-tangent
is the derivative of the function in x0" they found on their notes. I �nally help them in
algebraically translating, within the example, this sentence "m-tangent is the derivative
of the function f(x) in the abscissa x of the tangency point."

Let us show you also the case of high-level group E whom written production is
interesting because of the given justi�cations. They work on the graphical version of
Problem 1. We can deduce from their written solution that they start supposing y =
ax3 + bx2 + cx+ d and they impose the system. There is no further argumentation, only
the algebraic computations and manipulations. The interesting fact is that, after all the

calculation, in order to show and to verify that y =
1

2
x3 +

5

2
x2 + 3x is the correct answer

to the problem, they graphically study it. Thus, this group uses the graphical resource
they have in the text with the role of control. They actually study only the domain, the
zeros and the sign of f(x) (see Fig. 5.4.13) and they put all the information on the graph
given in the text, in order to see if their solution is compatible with the given situation
(see Fig. 5.4.14).
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Figure 5.4.13 - Extract from group E's justification to Problem 1.

Figure 5.4.14 - Extract from group E's justification to Problem 1.

The perspectives they adopt on the function are then pointwise and global. The global
perspective is activated in the sense of universal pointwise within the system calculation
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and in the sense of global on intervals within the graphical veri�cation.
It does not occur the same for Problem 2, where the students do not resort the graph,
but work directly in a symbolic way. Nonetheless, they give a verbal explanation of their
solving process (see Fig. 5.4.15). They write:

"By imposing the system between the 2 functions we found their common
point.
By imposing the system between the 2 derivatives we �nd the tangency point,
which we imposed to be equal to the common point.
From this, we got x and we replaced [it]."

Figure 5.4.15 - Extract from group E's solution and justification to Problem
2.

From the symbols in the left part of the text, we can deduce a starting universal
pointwise perspective on the involved functions and on their derivatives. Thanks to the
written argumentation, however, we can detect a pointwise way to read the obtained
symbolic relation, in particular the second one which is the l-p relation (5.1). In their
words, x is a particular abscissa: the abscissa of the common point and at the same time
of the tangency point. The relation is read only in a pointwise perspective. No local
consideration on f and g seems to have helped �nding the relation.

In�uences of M.G.'s praxeology

M.G.'s low-level students seem to have di�culties in recalling and applying the relation
(5.1). We think that their disorientation could be due to the fact of having seen m-
tangent within di�erent contexts, with di�erent and apparently sequential expressions.
Nonetheless, they try to make local considerations on the function, accompanied by
gestures on the graph they have drawn to analyse the given symbolic situation. But
such an implicit local perspective does not make them recall the praxeology seen in
classroom onm-tangent. With high-level students, instead, who have grasped the relation
(5.1), correctly recalled and applied it, it results a capability of writing the formula in
a universal pointwise way, but then to read it in a pointwise perspective. The universal
pointwise sign x in the symbolic equation involving the derivative becomes the particular
wanted abscissa. It is the abscissa of the common point and at the same time of the
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tangency point. It may be an in�uence of M.G.'s praxeology when she speaks about
derivative function (see subparagraph "The algebraic technique is shown on an example"
in Paragraph 4.4.3). Indeed, she has stressed the fact that the calculation of the derivative
in a generic point x gives a function of x, an expression depending on x. Nevertheless,
she has also highlighted that this expression depending on x can be "measured" on a
speci�c value of x, by substitution. Another M.G.'s in�uence that seems relevant involves
the graphical method chosen by group E students to verify their solution. Indeed, M.G.
has given a great importance to the graphical di�erentiation and study of function in the
previous lessons (see subparagraph "The graphical technique is shown on an example"
in Paragraph 4.4.3).

V.'s students

In the table below (Table 5.8), we give a general overlook on the work done by the
di�erent groups (A, B, C, D, E and F).

Use of the relation (5.1) Semiotic resources

Problem 1
system A,B,E,F

graph, symbols
piecewise f C,D

Problem 2 system
A,B,C,D graph, symbols

F symbols

Table 5.8 - V.'s students and activity 2.

We can notice that all the groups manage to employ the relation f ′(x0) = mtg in x0

(5.1) for solving Problem 1. Two of them de�ne a piecewise function: they are two high-
level groups. Group C's solution is the composition of an exponential decreasing function
and a parabola, whereas group D provides the composition of the two given straight lines
as a solution. All the groups, except for group C, make a �rst attempt with a parabola
passing through A and B and tangent to r and s.
The di�erence between the two statements (graphical or symbolical) does not lead to
really di�erent reasoning processes. Indeed, those who have not the graph �nd it useful
to draw it as a �rst step in solving the problem. So all the groups use graphs and symbols
as semiotic resources to solve the problem.
As for Problem 2, instead, there is a group who does not use the graph as a support,
but only the symbols. The resolution of this problem turns to be quicker than that of
Problem 1, probably because the students have already mobilized the relation (5.1) in
solving Problem 1 and they have only to adapt it.

We are going to analyse the two videotaped groups (A and F), in order to have in-
sights in their justifying arguments. We are particularly interested in the moment of
recalling and application of the relation (5.1), and in the involved perspectives and semi-
otic resources which help its activation. To refer to each component of the groups, we
keep using the same students' names (S1, S2 and S3) of Activity 1 (see the subparagraph
"V.'s students" in Paragraph 5.3.3).
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High-level group A works on the graphical version ("Scheda A") of Problem 1. They
�rstly approach it through a parabola, although one of the students notices that the four
given conditions are too many for �nding the three parameters a, b and c. They consider
the algebraic translation of the tangency conditions. They evaluate the ∆ = 0 technique
and they even propose to impose the distance between the point and the function equal
to zero. Such suggestions derive from the conics-related praxeology.
After a brief discussion (of about seven minutes) S2 makes another proposal, which
involves the derivative. Let us examine their speech.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

1 S2: "Let's do as if it was its derivative
in the point." (He points to A, referring to
the tangent, Fig. 5.4.16)

pointwise

pointwise

speech
indicators
+ pointing
gesture

f ′

f

2 S3: "Mm... Eh!... It can work, it's true!
We are not sure that it is a parabola, but it
can work. Because, you have to say: "the
function passes through that...and the �rst
derivative of that stu� is...""

3 S2: "At the point -2 the derivative..." pointwise speech
indicators

f ′

4 S3: "At the point -2 the derivative is equal
to..."

pointwise speech
indicators

f ′

5 S2: "-1."

6 S3: "Yes. Because we know it. Well, it can
work."

7 S1: "The derivative at -2 of the function?"
(He retraces a segment of the tangent with
his pen)

pointwise

local

speech
indicators +
continuous
gesture

f ′

f

8 S3: "Yes. It's -1."

9 S2: [...] "I was wondering about the deriva-
tive... Because one could say: "f ′(−2)
equal to −1"... "f ′(0) equal to 3""

pointwise oral sym-
bols

f ′

10 S3: "Yes."

11 S1: [...] "You are talking about the deriva-
tive here, right?" (He traces with his pen an
hypothetical piece of function that is locally
tangent to the straight line s, Fig. 5.4.17)

local iconic ges-
ture

f
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12 S3: "Yes."

13 S1: "And you are saying that the deriva-
tive of the function" (with his pen, he traces
again an hypothetical piece of function tan-
gent to s, Fig. 5.4.17) "is equal to this
straight line more or less." (He retraces s)

local iconic ges-
tures

f

14 S3: "Yes, exactly. At the point." pointwise speech
indicators

f ′

15 S2: "So, I would have written "f ′(−2) =
−1" and "f ′(0) = 3"." (He writes down the
two symbolic equivalences, Fig. 5.4.18) "If
I remember correctly."

pointwise written
symbols

f ′

F
ig
ur
es

Figure 5.4.16 - S2's pointwise pointing gesture which
helps recalling the relation (5.1)

Figure 5.4.17 - S1's local iconic gesture on an hypothetical f .

Figure 5.4.18 - S2 writes down the relation (5.1) in symbols.

As we can notice, it is S2's pointwise pointing gesture on the given graph (Fig. 5.4.16)
that helps the relation (5.1) to emerge [1-5 ]. Thus, at this stage, this l-p relation is re-
called in a pointwise perspective. Then, S1's local gesture, retracing a segment of the
tangent, introduces a certain local perspective on f [7 ]. Even when S2 starts to express
into symbols the relation (5.1) [9 ], it's always S1 that stresses the local character on
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f [10 and 13 ]. This local perspective is implicit in the iconic gesture he makes on an
hypothetical function f (Fig. 5.4.17) tangent to the given straight line. To this implicit
local perspective on f , S3 relates the pointwise perspective on f ′, by adding "at the
point" [14 ]. This dialectics of perspectives leads S2 to write the relation (5.1) in symbols
[15 ] (Fig. 5.4.18). We can conclude that this group has managed the l-p relation (5.1)
by adopting the right perspectives to read and apply it. Their justifying speech has
been implicitly local on f and explicitly pointwise on f ′. Moreover, the given graph has
been exploited as a support to locally imagine how the function f could behave in the
neighbourhood of the tangency point.
We can make another remark on S2's utterance: "If I remember correctly" [15 ]. It results
evident that S2 is trying to recall the relation (5.1) as if it has been taught during the
previous V.'s lessons (see Paragraph 4.5.2).
Another moment in which the in�uence of the praxeology constructed in the classroom is
particularly strong is a S2's further utterance: "Be careful that we said that the tangency
is only local". He says so by making a circle around point A with his �nger. With his
statement, S2 wants to stress the fact that, on the left of point A, the function f "could
do what it wants". By discussing on S2's a�rmation, the students realize that f is not
necessarily a parabola. So, they try with a cubic function and solve the system of four
equations in four unknowns. They made some errors in computation and, each time,
they use a graphical application on their smartphones to check if their solution respects
the given conditions. It is the teacher that in the end helps them to �nd the error in the
system computation.

The resolution of Problem 2, instead, requires them less time, probably because they
have just recalled and applied the relation (5.1). They immediately know how adapt it
to the new problem [16 ], but its symbolic application is not so immediate [17-27 ].

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

16 S1: "Let's calculate the derivatives of both
and impose them to be equal, so that they
have the same tangent line. So, you cal-
culate the derivative of f(x) that is 2kx,
right?" (He writes D[f(x)] = 2kx, see Fig.
5.4.19 on the left)

global(=univ.
pointwise)

symbols f ′

17 S3: "Yes."

18 S1: "The derivative of the second one, that
is g(x), is equal to 1 over x." (He writes

D[g(x)] =
1

x
, see Fig. 5.4.19 on the left)

"And then 2kx =
1

x
." (He �nds k, see Fig.

5.4.19 on the left)

global(=univ.
pointwise)

symbols f ′, g′
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19 S1 draws f and g in a Cartesian reference
system (see Fig. 5.4.19 on the right)

global graph f , g

20 S3 (reading again the text of the prob-
lem): "You have to impose it [the condition]
in that point."

pointwise speech
indicators

f ′, g′

21 S3: "Our error is here. We impose the
derivatives to be always equal. So, whether
they have the same variation or..."

global speech
indicators

f ′, g′

f , g

22 S3: "In a point that belongs to both of
them."

pointwise speech
indicators

f , g

23 S1: "Yes, but how can we do the
intersection between kx2 and lnx?"

pointwise speech
indicators

f , g

24 S3: "We have to �nd this point, because
after we can say that the derivative of
f(x) in that point and the derivative of g(x)
in that point are equal. Otherwise, it makes
no sense."

pointwise speech
indicators

f ′, g′

25 S1: "Yes, you should do kx2 = lnx." (He
writes it down) "But I do not know how to
solve it."

global(=univ.
pointwise)

symbols f , g

26 S2: [...] "What about imposing the system
between the two?" (S1 writes and solve the
system of the two conditions, Fig. 5.4.20)

27 S3: [...] "So, you are solving the system
between what we said, namely they must
have a common point, and the fact that the
derivatives must be equal in that point?"

pointwise speech
indicators

f , g,
f ′, g′

28 S1, S2: "Yes."

F
ig
ur
es
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Figure 5.4.19 - Group A imposes the
tangency condition and traces a graph.

Figure 5.4.20 - Group A imposes
and solves the system between the
two conditions.

The tangency condition involving derivatives is immediately proposed by S1 in words
[16 ]. Also its translation into symbols is not di�cult for the students [17-18 ] (see Fig.
5.4.19 on the left). What blocks them is the realization that they have found k as a
function of x. S1 draws the two functions in a Cartesian reference system [19 ] (Fig.
5.4.19 on the right), but this global perspective does not help them. It is S3 that makes
the attention of the group shift to a pointwise perspective on the point of contact [20 ].

The equivalence between the derivatives they have expressed into symbols, 2kx =
1

x
,

is globally conceived as universal pointwise, namely as something that is valid for all
x. S3 makes it explicit by saying "we impose the derivatives to be always equal" [21 ].
Moreover, he adds a global consideration: "whether they have the same variation or..."
[21 ]. But he stresses that what they need is a di�erent pointwise perspective in order
to �nd the common point between the curves [22 and 24 ]. S1 interprets, in a pointwise
way, what S3 wants to �nd as the "intersection" between f and g [23 ]. Nevertheless, the
symbolic expression he writes, kx2 = lnx, still has a universal pointwise character [25 ]
for him. The situation is unblocked by S2's proposal to establish the system between the
two conditions [26 ]. The technique is �nally summed up in words by S3 who adopts a
pointwise perspective on all the involved functions [27 ]. The group succeeds in establish-
ing a pointwise technique, which involves the derivatives, for solving the problem of the
tangency between two curves. Without passing through local considerations on the given
curves, they immediately transfer the justifying role to the symbolic expressions. They
�nally succeeds in overcoming the universal pointwise view that the symbolic expressions
and algebraic manipulations usually and implicitly convey.

Medium-level group F works on the symbolic version of Problem 1. Immediately
after having read the text, the student S2 proposes to draw the graphical situation.
Every student draws the situation in a Cartesian reference system on his proper sheet
(Fig. 5.4.21). Thus, also these students' reasoning eventually relies on the graph. As for
group A, their initial approach bases on a parabola, in spite of S1's remark that the two
tangents are not symmetrical.
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Figure 5.4.21 - Graphical drawings by S1, S2 and S3.

The group discusses about how to express the tangency condition and they upfront
involve the derivative of f .

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

1 S1: "If I have a function" (he makes a
generic gesture in the air) "that is tangent to
a straight line" (he points to B, Fig. 5.4.22)
"It means that m is the angular coe�cient
of this straight line."

pointwise pointing
gesture

f

2 S2: "Yes, and m is the derivative."

3 S1: "So, 3 will be the derivative... and −1
the derivative in the second point."

4 S1: [...] (after having read the text
again) "It means that the derivative of f(x)
is equal to a function... How did we do to
�nd it in a point? Derivative in the point."

global →
pointwise

speech
indicators

f ′

f

5 S2: "It's a mess to write."

6 S1: "For example, if I have f(x) = x2

its derivative is 2x, right?" (He writes
"D[f(x)] = 2x")

global(=univ.
pointwise)

symbols f ′

7 S2: "Yes."

8 S1: "But in what point is this?" (He points
to 2x) "I don't remember this thing... But to
me, we need to have it in the point... which
are −2 and 0."

pointwise speech
indicators

f ′

9 S1: [...] "We have to impose the system
between derivative of f(x) equal to 3 and
derivative of f(x) equal to −1." (He writes
"D[f(x)] = 3" and "D[f(x)] = −1", as in
Fig. 5.4.23)

global(=univ.
pointwise)

symbols f ′
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10 S2: "Yes, but we have only one derivative." global(=univ.
pointwise)

speech f ′

11 S2: "Ah! Wait! We have to write like this:
derivative of f of −2 is equal to −1 and
derivative of f of 0 is equal to 3." (She
writes "D[f(−2)] = −1" and "D[f(0)] =
3", as in Fig. 5.4.24)

pointwise symbols f ′

12 S1: "It's not stupid at all!"

13 S2: "We have to �nd a function which sat-
is�es that."

F
ig
ur
es

Figure 5.4.22 - S1's pointwise pointing gesture to speak about the tangency
condition.

Figure 5.4.23 - S1's relation (5.1) in
symbols.

Figure 5.4.24 - S2's relation (5.1)
in symbols.

After four minutes of discussion, S1 starts to re�ect aloud about the tangency con-
dition [1 ]. His words do not actually add anything to what it's obvious for the group
and have no e�ective link with the tangency condition. However, he focus the group
attention on the angular coe�cient of the given straight lines. Indeed, S2 recalls that m
is related to the derivative of f [2-3 ]. S1 wants to write in symbols the property they are
stating, but he realizes that the derivative of the function f is a function itself [4 ]. So, he
has a global object, and he wants it to become pointwise. He makes the example of the
parabola y = x2 whose derivative is the function 2x [6 ]. This is exactly the example the
teacher made in the previous lessons to speak about the derivative function. Thus, we
can observe that the students are trying to recall that technological part of the previously
constructed praxeology. S1 proposes two di�erent symbolic equivalences for D[f(x)] [9 ]
(see Fig. 5.4.23). In a universal pointwise perspective, they seem incongruous for the
students [10 ]. It is S2 that suddenly realizes how they can indicate the dependence on
the tangency point. She replaces x with the values −2 and 0 [11 ] (see Fig. 5.4.24), and
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the two conditions appear now compatible [12-13 ].
The group F makes no local consideration about the function f , but gets to the l-p re-
lation (5.1) with a symbolic work on the derivative function f ′ that is �rstly universal
pointwise (for each x) and then pointwise (at the tangency point).

They initially try to apply the found relation to a generic parabola y = ax2 + bx+ c.
Then, they think of a composition of two parabolas, but they do not succeed in manag-
ing the relation (5.1). Afterwards, S1 uses a graphical application on his smartphone in
order to check if a cubic function can satisfy the given conditions. He inserts a random
equation y = −(x3 + 2x2) + 2 that looks compatible, with proper adaptations, to the
requests. They start modifying the coe�cients by trial and error. At this moment, the
teacher intervenes to make them notice that the software has given them an idea, but it
is better to think how to exploit it than empirically trying. She gives the input to count
how many conditions they have and what do they allow them to �nd. S1 proposes to use
ax3 + bx2 + cx+ d = y. Imposing the system and solving it turns out to be very simple
for the students. Once they have the solution, S1 draws it with his application together
with the given straight lines. It gives them a con�rmation of their computations.

As for group A, Problem 2 requires less time to be solved. The students do not even
need to have a graphical support. It follows the transcription of what they say.

What the students say and do Perspectives Semiotic

resources

on f ,
f ′

14 S1: "Well, derivative of lnx that is equal to
1

x
, derivative of kx2 that is equal to 2kx.

Now, I impose them to be equal."

global(=univ.
pointwise)

symbols f ′, g′

15 S2: "Yes, you impose the derivatives to be
equal, and then?"

16 S1, S3: "2kx2 = 1, k =
1

2x2
." (S2 writes it

down)

global(=univ.
pointwise)

symbols f ′, g′

17 S1: "And now you have to �nd x in order
to �nd the correct k. So you have to �nd x
of the intersection point. Stop, let's do the
intersection point."

pointwise speech
indicators

f , g

Again the students starts from a universal pointwise perspective on the derivatives of
the involved functions [14 and 16 ]. Then they move on to consider them in a pointwise
perspective [17 ] for searching for the point of tangency. After, the students �nd k as
a function of x also from the equivalence kx2 = lnx. They impose the two expressions
found for k to be equal and they get x (see Fig. 5.4.25).
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Figure 5.4.25 - Group F's solution to Problem 2.

In�uences of V.'s praxeology

V.'s students seem to well manage the conception of the derivative as a function of x.
They show to have a global perspective on algebraic writing such as "D[f(x)] = 3" or
"D[f(x)] = 2kx", by reading them under a universal pointwise lens. They seem to have
internalized the idea of derivative function as derivative "in any x", "for all x". It can be
a consequence of the fact that V. has introduced it giving immediately to x0 a universal
pointwise role (see subparagraph "Elaboration of an algebraic technique" in Paragraph
4.5.3). As for the local perspective on f , some students, as those of group A, recall that
the tangency is a local property. It helps them in drawing pieces of function in such a
way that they are tangent to the given straight lines. Thus, the local perspective on f
mainly shows through gestures on the graph (given or not by the text).



Chapter 6

Conclusions and implications

The main aim of this thesis was to investigate the presence and the role of the local
perspective on functions in the secondary teaching of Calculus concepts. In particular,
we chose to investigate the practices related to the notion of derivative. Indeed, this
is one of the �rst concepts that make the local perspective intervene in the study of a
function. Moreover, di�erentiating a function one obtains the derivative function, and
also working on it involves pointwise, global and local properties.
We presented and discussed the local de�nitions of di�erentiable function given at the uni-
versity, within the scholarly mathematics (Chapter 1, see particularly Paragraph 1.2.2).
Framing our study in the Chevallard's Anthropological Theory of the Didactic, we focused
on the didactic transposition of the derivative notion in the secondary school teaching.
We outlined our theoretical framework by coordinating three theoretical tools (Chap-
ter 2): the praxeology (Chevallard, 1999), the perspectives on functions (Vandebrouck,
2011a, 2011b), the semiotic bundle (Arzarello, 2006). Through this networked frame-
work, we analysed how the derivative notion is didactically transposed in the Italian
intended, implemented and attained curricula. As for the intended curriculum (Chapter
3), we took into account the national guidelines, two of the most widespread textbooks
and one recent �nal examination in mathematics, with speci�c regard to scienti�c high
schools. As for the implemented curriculum (Chapter 4), we observed three case studies
of three teachers introducing the derivative concept and the derivative function in their
grade 13 classrooms. To have a small insight in the e�ect of the implemented curriculum
on the attained one (Chapter 5), we proposed and analysed two activities for the students
of the three observed classrooms.
We recall that our methodology bases on case studies (three teachers and three class-
rooms), so on qualitative data. Thus, also our conclusions are of qualitative kind.

With the aim of studying the presence and the role of the local perspective on func-
tions in the didactic transposition of the derivative notion in the secondary teaching, our
research problem has been built around the following research question:

(RQ) How does the local perspective intervene in the development of derivative-related

279
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praxeologies in the secondary school?

Thus, within all the di�erent contexts (e.g., guidelines, textbooks, �nal examination,
teachers and students in classroom), our main concern has constantly been to identify
the intervention of the local perspective and to stress how it works in dialectic with the
other perspectives and through the used semiotic resources. The heterogeneous data we
have analysed have so acquired a common factor. In certain situations we found that
the local perspective on functions is absent or not hinted. In other contexts instead it is
present, sometimes implicitly, some others explicitly.

In this chapter, we will try to answer question (RQ) through a comparison and discus-
sion of the results obtained from the analysis (Chapters 3-4-5). To make this, we will be
guided by our research sub-questions:

(RQ.1) What role is given to the local perspective on functions in the secondary teaching
of the derivative?

(RQ.2) How do teachers construct the derivative-related praxeologies with and for their
students?

(RQ.1+2) What role do teachers give to the local perspective on functions in the con-
struction of such derivative-related praxeologies?

(RQ.3) In which ways di�erent praxeologies developed in classroom can a�ect the stu-
dents' praxeologies, in terms of local perspective?

Through the discussion of the results, we will try not only to answer our research
questions, but also to evaluate our networked theoretical framework as an analysis tool
and to provide some useful implications on teaching.

6.1 Answering to our research questions

From the analysis of the intended and implemented curricula, we can make some con-
clusive remarks about the importance and the activation of the local perspective in the
teaching practices involving the derivative concept. In Paragraph 6.1.1, we address the
question RQ.1, while in Paragraph 6.1.2 the questions RQ.1 and RQ.1+2.

6.1.1 The local perspective on functions in the intended curriculum

The national guidelines for scienti�c high schools give few indications about how to teach
the derivative notion. First of all, they specify what concept can be anticipated in grade
11-12, namely that of speed of variation. Then, for grade 13 they list the di�erentia-
bility along with other important properties of in�nitesimal calculus, such as continuity
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and integrability. Finally, they cover further concepts in which the derivative intervene,
especially the di�erential equations. These are all regulations about which notions to
deal with and when to teach them, rather than how to do it. The only methodological
indication concerns to avoid a particular training in computational techniques or very
articulated exercises. A further recommendation is to give to in�nitesimal calculus the
role of fundamental conceptual tool in describing and modelling phenomena. Therefore,
the local perspective, whose activation on functions can be enhanced by the work with
the derivative, is neither mentioned nor hinted.

The analysed textbooks (Sasso, 2012; Bergamini et al., 2013) propose to approach the
derivative notion as the limit of the incremental ratio of the function, for the increment
h of the independent variable tending to 0. This is the didactic transposition of the
Def. 1, given and discussed within the scholarly mathematics in Paragraph 1.2.2. More
precisely, the transposition consists in the following phases.

a. Introducing the problem of the tangent to a generic curve in a point, with possible
recall of the techniques used for the conics.

b. Illustrating, usually with a graphical support, a new dynamical idea on a generic
curve: considering two points on it, the secant line passing through them and
making the distance between the points become smaller and smaller.

c. De�ning the derivative as the gradient of the tangent line, obtained in the way
illustrated at point b.

d. Operationally, increasing the abscissa of the tangency point of h, making the ratio
between the consequent increment of the dependent variable over h, and �nally
establishing the limit as h goes to zero.

Thus, the formal de�nition of the derivative of a function in a point comes to be de�ned
as the gradient of the tangent, that in turn is de�ned as the "limit of secants". The local
perspective on the function represented by the generic curve intervenes in the phases b
and d. In phase b, the employed semiotic resources are graph and words, and the local di-
mension is implicitly conveyed through terms of movement, in particular of approaching
(e.g., "getting closer and closer", "moving towards") or change (e.g., "becoming smaller
and smaller", "getting tangent"). The local dimension remains implicit in the terms used
to describe a static supporting graph. Normally, the technique consists of drawing two
points on the graph of the function, but, even though they are chosen closer and closer
- in di�erent juxtaposed drawings or in the same drawing but with progressive index
- it is di�cult to convey a local perspective on the involved function. Indeed, the two
points appear as two distinct and rather distant points on the curve, anyhow separated
by a non-negligible interval. Thus, the pointwise and global perspectives on the func-
tion are enhanced by the graphical resource, while the written description invites the
reader to imagine the two points getting closer and the interval between them getting
smaller. Then, the adoption of a local perspective on the function is left to the capability
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of the reader to establish and interpret the relationships between the di�erent semiotic
resources composing the semiotic bundle words+graph. The last phase (phase d) forces
the local dimension in a sudden way, in the sense that, after having resorted a pointwise
and global perspective on the function, the symbol lim

h→0
is introduced, and the semiotic

bundle therefore becomes words+graph+symbols. This semiotic bundle potentially, but
rather implicitly, contains the elements to activate a local perspective.

As for the introduction of the derivative function, the symbol lim
h→0

implicitly continues

to retain a local dimension on the function. It is thanks to the graphical resource (es-
pecially in the proposed exercises) that the work on the derivative function can activate
a local perspective. The local dimension is e�ciently conveyed by the semiotic bundle
words+graph, provided that the verbal resource gives a local interpretation of the graph
(e.g., at a maximum/minimum or in�ection point, at a non-di�erentiable point) through
its reading in a neighbourhood of the point (i.e., on the left/right of it). In this case, the
local perspective on the function becomes explicit.

In the �nal examination we analysed, we have to recognize that the curricular recom-
mendation of making the derivative work not only as an object but particularly as a tool
(in the sense of Douady, 1986) is fully respected. However, to solve the proposed tasks
involving the derivative, it is not required any particular local consideration on the given
functions. Actually, the local character of the di�erentiability property is not evaluated.
Nevertheless, we noticed that the integral concept makes it intervene in the resolution of
a task.

We can conclude that, within the intended curriculum, the local feature of the dif-
ferentiability property is implicitly recognized, little worked, but sometimes required in
the tasks the student is expected to be able to solve. The local perspective on functions
is potentially activable by a subject who avails of this material. Nonetheless, we think
that it might be di�cult for a low or medium-level student to fully activate it alone,
without any kind of mediation. The textbooks, for example, propose to intertwine some
semiotic resources for approaching the derivative, but the relationships between them are
left to the reader. In presence of local properties, such as di�erentiability, we can detect
a sort of gap between the system of knowledge that the student has previously acquired,
basically made of pointwise and global techniques (and sometimes technologies) and the
adoption of a local perspective to properly understand those local properties. The role of
the teacher, then, reveals essential to bridge the gap. She can set the stage as the text-
books do, but in addition she can make the potential activation of the local perspective
become actual.

6.1.2 The local perspective on functions in the implemented curricu-
lum

From the analysis of the three case studies observed in classroom (teachers M., M.G. and
V.), we can distinguish two di�erent didactic transpositions of the derivative concept.
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We refer to the type of task Ttangent: determining the equation of the tangent line to a
generic function in a point. M. and M.G. worked out a process which is very similar to the
textbooks' one (they use Sasso, 2012). We will denote it DT1, which stands for Didactic
Transposition 1. On the contrary, V. elaborated a personal didactic transposition of the
concept which detaches from the textbooks' one (she has adopted Bergamini et al., 2013).
The latter can be seen as a direct didactic transposition of the scholarly mathematics.
We will denote it DT2, which stands for Didactic Transposition 2. In Table 6.1 we brie�y
summarize DT1 and DT2 main phases and detect in what they di�er, in terms of local
perspective activation.

Table 6.1 - DT1 and DT2 main phases and the local perspective activation.

The DT1 consists in the teacher's didactic transposition of the approach proposed
by Sasso's textbook, according to the "scholar" Def. 1 of di�erentiable function (see
Paragraph 1.2.2). Thus, the derivative of a function in a point is the gradient of the
tangent line, de�ned as the limit of a sequence of secants to the function. The initial
phase of DT1 is pointwise and global, with a forced passage through the secant line. The
technological speech is centred on the secant, its di�erent positions and its slope mPQ.
In such a context, the local symbol of limit does not come spontaneously, but it has to
be suggested and introduced in a guided way by the teacher. The justi�cation is made
of expressions which convey an idea of approaching (e.g., "getting closer and closer",
"approaching more and more"). The teachers can use di�erent semiotic resources to
express this idea: besides graph and words, also gestures. Continuous movements of the
hand or the arm can express, better than a static image could do, the approaching of
the two points on the curve, or the changing of the secant into the tangent. Anyway,
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the teachers �nd themselves in the same situation provided by the textbook. The local
nature of the tangent is really accomplished only with the introduction in the semiotic
bundle of the symbol of limit. Once reached the symbolic writing limh→0, the graph and
the terms of approaching are suddenly abandoned. However, the symbolic work alone
can not support a durable local perspective on the function. Often, it may happen that
students make a �awless symbolic work on a function through limit calculation, �nding
local interesting outcomes, but without knowing or noticing it. An explanation of this
recurring lack of interpretation can lie in the fact that generally, within the DT1, the
local reading of a function is only quickly hinted in the de�nition of its derivative, and the
local perspective is almost immediately delegated to symbols, remaining implicit in them.

The DT2, instead, is the product of a direct didactic transposition made by the
teacher of the "scholar" Def. 2', as it is explained on some university textbooks (e.g.,
Geymonat, 1981). The derivative of a function in a point is the gradient of the tangent
line, de�ned as the best linear approximation of the function in a neighbourhood of the
point. The notion of approximation is conveyed by the idea of zooming the function till
�nding a straight line. Given this concept image and concept de�nition of the tangent,
the technological speech remains centred on the tangent line and on its local character.
Graphs are used with the idea of magnifying them in a neighbourhood of a point (ex-
amples in GeoGebra can also be provided) and words and gestures support this idea.
We noticed a predominance of expressions such as "best approximates", "asymptotically
equivalent", "in a neighbourhood of the point" and gestures to "limit the zone". Such a
semiotic bundle speech+graph+gestures makes explicitly activate a local perspective on
the function. The passage to mathematical symbols, namely the introduction of the limit
sign, comes gradually. In particular, it occurs thanks to the recall and the embedding of
another praxeology, that we have denoted asOMasymptotic equivalence (see Table 4.18). This
praxeology has already been developed for solving a local type of task, namely the solu-

tion of remarkable limits such as lim
x→0

sinx

x
. The whole praxeology OMasymptotic equivalence

enters the developing praxeology for Ttangent on the technological-theoretical plane. This
embedding both allows to shift the focus of attention on the symbolic formulation of the
type of task and suggests the symbolic technique for accomplishing it. In such a tech-
nique the limit sign is already involved. Indeed, saying that two in�nitesimal functions
are asymptotically equivalent means setting the limit of their ratio equal to one. The
introduction of the limit sign, therefore, comes more spontaneously in this didactic trans-
position. It is borrowed from a previous praxeology which is already local and which is
based on the same idea of approximating and magnifying the function. It is not by chance
indeed that the introduction of the limit is proposed by a student, in the case of V.. The
only adaptation to do is a vertical translation of the x-axis so that the two quantities to
compare are in�nitesimal, and here the role of the teacher is extremely important. The
symbolic work is strictly intertwined with the graphical one. The semiotic bundle which
has supported the construction of the technological-theoretical block of the praxeology
for Ttangent keeps accompanying the re�nement of a proper technique.
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Comparing the two didactic transpositions, we can remark that the praxeological
structure of DT2 is characterized by a strong local component, explicitly conveyed
through the semiotic resources of speech, graph, gestures and symbols, e�ciently com-
bined together to express the idea of approximation. There is no need to force any
arti�cial movement, or to introduce any intermediary (e.g., the symbol h).
Behind both the techniques used in DT1 and DT2, we can recognize the Basic Metaphor
of In�nity introduced by Lako� and Núñez (2000) as "a single general conceptual metaphor
in which processes that go on inde�nitely are conceptualized as having an end and an
ultimate result" (Lako� & Núñez, 2000, p. 158). More precisely, DT1 technique involves
an in�nite sequence of secants that, to in�nity, ends with the tangent. In DT2, instead,
we �nd the process of inde�nitely zooming the curve until obtaining, to in�nity, the
segment tangent to it. In both didactic transpositions the Basic Metaphor of In�nity
is eventually incorporated in the symbol of limit. However, we have noticed that the
passage to the limit comes to be somehow forced in DT1, and more spontaneous in DT2.
This di�erence leads us to conclude that DT2 seems to prompt more naturally towards
the tangent as an ultimate end of an in�nite process. As a consequence, DT2 seems to
be more e�cient in introducing the local perspective on a function, allowing to bridge
the gap we perceived between the previous pointwise and global knowledge and local
properties such as di�erentiability.

Concerning the type of task Ttangent, we want to underline a further point at the
level of the didactic praxeology. Indeed, it determines the teacher's didactic transposi-
tion process to achieve DT2 as a product in the classroom. Our further remark concerns
the way V. has implemented DT2 with her students. She has given a great importance
to the de�nition of tangent, by devoting an entire lesson to discuss this topic. Such a
didactic choice has entailed bene�ts for the students' understanding and for the strength
of the developed mathematical praxeology. The collective discussion of the properties
that characterize a tangent line to a generic curve has allowed the students to free them-
selves from pointwise and global considerations and so to "open their eyes" toward a
local perspective. The theoretical component of the mathematical praxeology turns out
to be �rmly grounded on a local de�nition of tangent that the students have formulated
by themselves and internalized.

Let us consider the second type of task we analysed: Tf ′ , that is representing the
derivative function. As far as the perspectives are concerned, in this case, on the
derivative function f ′ of f it is needed a shift from the pointwise de�nition of f ′(x0) as

lim
h→0

f(x0 + h)− f(x0)

h
to the global de�nition of f ′(x) as a function. This shift usually

occurs �rstly in the algebraic-symbolic register, with the syntactic technique of replacing
x0 with x, and secondly in the graphical register.
Within the algebraic technique, the perspective on the derivative function changes from
pointwise to global, in the sense of universal pointwise. This technique does not require

any further local consideration on the starting function. The writing lim
h→0

f(x+ h)− f(x)

h



286

retains the limit sign which implicitly conveys a local involvement of f .
Instead, by working on a graphical technique to represent the derivative function, some
local implications on the starting function have been highlighted by the teachers in class-
room. For instance, establishing a relationship between the zeros of f ′ and the stationary
points of f has permitted to locally correct some inaccuracies of the graph of f . Or even,
relating the in�ection points of f to the stationary points of f ′ has led to correctly posi-
tion the abscissa of maximum/minimum points of the derivative f ′. Therefore, the work
on the graph of the derivative has fostered the local reading of the graph of the starting
function in the neighbourhood of some remarkable points (e.g., maximum/minimum and
in�ection points, corners).
Hence, among all the activable semiotic resources, the one that seems fundamental to
support the adoption of a local perspective on functions is the graph, provided that it is
accompanied by a suitable combination of speech and gestures. In this case, the resulting
semiotic bundle speech+graph+gestures is really aimed to teach the students how to "re-
gard locally" a graph, fostering in an e�cient way a local perspective on the represented
function.

6.2 Evaluation of the analysis tool

The theoretical framework of this thesis is the result of the coordination of three elements
coming from three di�erent theoretical approaches (see Section 2.2). The macro-lens is
provided by the construct of praxeology from ATD (Chevallard, 1999). Moreover, a
micro-analysis is based on the intertwine of the (pointwise, global, local) perspectives ac-
tivated on functions (Vandebrouck, 2011a, 2011b), and the employed semiotic resources
along with their mutual relationships, that form the semiotic bundle (Arzarello, 2006).
In particular the coordination of the last ones is due to our initial assumption that the
actual adopted perspective on a function f is revealed by all the semiotic resources used
to state a certain property about f (see the sub-paragraph "The semiotic bundle and
the perspectives" in Paragraph 2.2.4). This is e�ectively what we �nd in analysing the
lessons. In order to detect if the teacher was trying to stress a particular perspective,
we needed not only the speech, so the transcription of what she said, but especially all
the other semiotic resources that she activated simultaneously for conveying that per-
spective. Sometimes it has been interesting to notice that not all the semiotic resources
were concordant in expressing the same perspective. Emblematic, for our research, are
some cases in which the teacher wants to stress a local property: she claims it, but at the
same time her gestures, her drawings or the symbols she writes are enhancing a speci�c
element involved in the statement of the property, which is pointwise or global. For
instance, saying "I distance myself a little bit" and simultaneously making a quite wide
gesture with the hands. Or talking about the approaching of two points on a curve using
a supporting drawing, and then writing the symbol ∆x → 0 without having shown ∆x
decreasing on the graph.

To deal with these situations, we can introduce the idea of "perspective potential",
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as the degree of suitability to activate a certain perspective1.
A particular technique can have a perspective potential. Both the techniques used

in DT1 and in DT2 have a local potential. Speci�cally, the technique of approaching
a point on a curve with a sequence of other points on it and the technique of zooming
a graph have mainly a local potential. This is because they can both trigger a local
perspective on the curve. As we have noticed in Paragraph 6.1.2, the zooming technique
reveals more suitable than the other to convey a local perspective, because it avoids the
arti�cial introduction of the secant as a sort of deus ex machina.

In order to activate the perspective potential of a certain technique, and consequently
to foster the adoption of that perspective on the involved function, the teacher uses
certain semiotic resources. Even a semiotic resource can have a perspective potential, as
far as it is suitable to activate that perspective on the function. To make an example,
the graph has mainly a global potential. Indeed, drawing the graph of a function entails
necessarily to draw a portion of graph that has certain properties on the chosen interval
(be the choice conscious or not). Concerning gestures, we can make other examples. A
pointing gesture has mainly a pointwise potential, a continuous gesture has mainly a
global potential, while a small circular sign or gesture has mainly a local potential.

Now, drawing on the theory of the semiotic bundle, we know that the semiotic sets do
not live isolated, but in mutual relationship with other semiotic sets. In all the examples
above a given semiotic resource as a certain perspective potential. We can be sure of the
activation of such a potential, and so of the associated perspective, only if this semiotic
resource is combined with other semiotic resources that enhance the same perspective.
To make an example, the graph has a global potential, but it gets active only if another
resource exalting the global aspect is e�ciently combined with the graph. It can be a
speech indicator (e.g., "the whole function", "for all x", "always") or perhaps it can be
a continuous gesture along the graph. In a similar way, if the property one wants to
stress on a graph is pointwise, he could just indicate an interesting point on it, with
a pointing gesture which activates a pointwise potential, and consequently a pointwise
perspective on the function. Therefore, the perspective potential of a semiotic resource
is activable only thanks to the coordination of at least another resource exalting that
particular perspective.

Using the idea of the "perspective potential" of a semiotic resource, we can better
reformulate our initial idea, recalled at the beginning of this paragraph. It consists in
our belief that a (written or uttered) claim alone may not be su�cient to detect with
certainty what perspective is adopted on a function. By reformulating it in other words,
the speech as a semiotic resource can have di�erent perspective potentials, according
to the use of speci�c speech indicators. The most interesting examples entail the local
perspective. For instance, the claim "the function is non-di�erentiable in the point x0"
has a local potential. However, we can a�rm that the local perspective on the function
is really active only taking into account the other semiotic resources that the subject

1In particular, we will refer to pointwise, global and especially local potential, in order to stress the
perspective that can potentially be enacted.
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employs to support his/her speech. For instance, if the claim is accompanied by symbols
like x+0 and x−0 , then we can conclude that it really detects a local aspect of the function.
On the contrary, if the claim is accompanied by a pointing gesture to indicate the single
point x0 on the graph, we would say that its local potential is not made explicit and
remains implicit in the speech.

6.3 Implications of our research on teaching

From the analysis of the students' activities, we do not manage to �nd signi�cant an-
swers to our very deep question RQ.3. Perhaps, a di�erent approach is needed with the
students, in order to get really insights into their acquirement of the local perspective
on functions. It opens a new direction that the research may follow in the future (see
Section 6.4). Nevertheless, we select some examples from the students' productions (see
the right column of the table above). Drawing on them, we detect some implications on
teaching related to our previous conclusions.

The teachers should discourage the students
from adopting the perspectives on functions
in an isolated way while they are solving a
task. Therefore, it is important that the
teachers get the students used tomanage all

the existing perspectives on functions.

Example 1: [lines 1-10] Group A of V.'s
students, in Paragraph 5.3.3.
The high-level group A is solving the Prob-
lem 1 proposed in Activity 1. The stu-
dents relate in a pointwise way the max-
imum/minimum points of a graph to the
zeros of another one, deducing erroneously
that the latter is the derivative of the for-
mer. All the semiotic resources, namely
pointing gestures and speech indicators,
they use on the graph are pointwise. A
student makes a continuous gesture along
one of the graphs, which has a great global
potential, but he does not manage to make
any global consideration.
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There is a gap between the classroom's previ-
ously acquired knowledge and the local prop-
erties of Calculus. Thus, it is advisable to
gradually introduce the local perspec-

tive, bridging the gap. Indeed, to obtain a
durable local perspective on functions, it is
necessary to educate students to it.
In particular, the notion of tangent has been
often studied and discussed in Mathematics
Education. It is a concept that makes more
evident the gap between the old techniques
and perspectives and the new local Calculus
ones. This is because students have already
met it in a geometrical context, with algebraic
techniques developing pointwise and global
perspectives on the conics. Thus, when Cal-
culus is approached, it reveals important not
to give for granted the tangent de�ni-

tion.

Example 2: [lines 1-18] Group A of M.G.'s
students, in Paragraph 5.4.3.
The low-level group A is trying to solve
Problem 1 of Activity 2. They attempt
to make a parabola tangent to the two
crooked straight lines given. This is be-
cause they recall the de�nition of tangent
given with conics: a parabola touches a
tangent and does not pass through it. The
teacher intervenes to ask if in drawing such
a parabola they feel somehow uncomfort-
able. However, despite the way the graph
touches the two given tangents is locally
very di�erent, the students do not see any
problem in it.

Recalling or introducing the symbol of limit
often does not have the e�ect to introduce
a local perspective, but more frequently the
result is fostering the students towards tricky
algebraic calculations.

Example 3: [lines 1-8] and Fig. 5.4.8
Group G of M.'s students, in Paragraph
5.4.3.
The high-level group G is solving Prob-
lem 1 of Activity 2. They algebraically
express the given tangency conditions as
D′(A) = −1 and D′(B) = +3, but they
initially discuss if the derivative in A has
to be −x or −1 (since the tangent in A
is y = −x − 2). Then, in order to ex-
ploit the found algebraic conditions, they
impose the system in Fig. 5.4.8, where
for both D′(A) and D′(B) they write

lim
h→0

f(x+ h)− f(x)

h
. Then, they tried to

make some simpli�cation of this writing
but it does not lead anywhere.



290

Teachers stand in front of students with their
whole persons. They teach mathematics not
only speaking or writing. More or less con-
sciously, they use a great number of semi-
otic resources in a multimodal way. It is rec-
ommendable then to pay attention to all

the engaged semiotic resources, written
signs on the blackboard, sketches, gestures
and drawings included. Indeed, the students
base on all these supporting signs to grasp the
concept and to form a personal image of it.

Example 4: Fig. 5.3.17-23 Group C of
M.G.'s students, in Paragraph 5.3.3.
In the solution of Problem 1 of Activ-
ity 1, Group C reproduces exactly the
same graphic-symbolic scheme given by the
teacher in order to draw the graph of the
derivative function (see lines [10-26], in
Paragraph 4.4.3).
Example 5: Fig. 5.3.35 Group D of V.'s
students, in Paragraph 5.3.3.
In their technique to solve the problems
of Activity 1, Group D reproduces on the
given graphs the same gesture the teacher
has made with the stick shadow on the
graph of the parabola x2 (see Fig. 4.5.23).
Example 6: [1-13] Group F of V.'s stu-
dents, in Paragraph 5.4.3.
In solving Problem 1 of Activity 2, Group
F is trying to remember how they have ex-
pressed with the teacher the derivative in
a point. One of the students reconstructs
the graphic-symbolic example the teacher
has proposed in classroom, namely the tan-
gent to the parabola x2 (see lines [15-19],
in Paragraph 4.5.3).

Moreover, the graph has shown a good potential to convey the local perspective on
functions (local potential). However, its activation has to be properly guided by the
teacher, possibly through the coordination of other semiotic resources. Speci�cally, the
students have to be guided to reason on a graph within the neighbourhood of a point.
The idea of "perspective potential", elaborated in the previous paragraph, can be
useful to a teacher for a double aim. On the one hand, for choosing the most suitable
semiotic resources to introduce the local perspective on functions. On the other hand,
for recognizing if a student has internalized a local perspective and if he is using it.

As a �nal remark, we would add that, even though they have been subjected to
DT2, V.'s students have not shown a particularly strong local perspective on functions
as we could expect. The education to local perspective needs time and work within
di�erent contexts and di�erent types of task. To see the e�ects in students' reasoning,
its introduction must occur before the derivative concept, starting with the limit notion
and permeating all the teaching of Calculus.

6.4 Possible future developments of the research

In the case of V. we want to remind that, from the preliminary interview, a transposition
like DT2 was not in her planning. Normally, she had always implemented DT1, with
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an initial discussion on the tangent, especially to make the students aware that none of
the previous ideas and techniques was adaptable in the context of a generic curve. Her
intention was to come out with a dynamical idea to solve the problem.
However, maybe due to the fact of joining a research about the teaching practices with
the derivative concept, and to the students' unexpected reaction in classroom, she tries
an experimental implementation of DT2. Thus, we can say that the interaction from
one side with researchers in Mathematics Education, and from the other side with the
students, prepares the ground for a meta-didactic transposition process (see Paragraph
2.3.2). In particular, we have discussed with V. about the lens of perspectives after the
observation and the activities in her classroom. If at the beginning V. was not so con-
vinced about the pointwise/global/local analysis we made of the lessons, after having
discussed it in more detail, we started noticing that the teacher herself began to use
expressions like "introducing the local dimension" or "to better stress the local aspect".
In the last months, fostered by the fact of having another class attending the last year of
scienti�c high school, she has revealed us her desire of rewriting her notes for the lessons.
Her intention is structuring a new approach to Calculus teaching, starting from the con-
tinuity and the limits, moving on to the derivative and the integrals, that enhances the
local aspect of these concepts and properties.
In the light of the meta-didactic transposition model, we can recognize that in V.'s prax-
eologies it is going to occur an evolution. This change has been triggered by the entrance
of the local perspective as an analysis tool in Mathematics Education in the re�ections
about her own praxeologies. Before the observation in classroom, the local perspective as
a theoretical tool was internal only to the group of researchers, but in the last meetings
it has become also internal to the teacher's praxeology.
This dynamics from external to internal component has led to a �rst step toward a change
in the professional development of the teacher. Such an unexpected result of our study
could be certainly deepened in a natural future development of this research.

Furthermore, the focus of this research has been on the teachers and their praxeolo-
gies, with a small insight in the students' understanding and internalization of them. An
interesting point to develop in the future could be to study in more details the meaning
that the students build of the local aspect of the concepts and the properties of Calculus.
Such a complementary study would consider in deep detail the cognitive implications of
the adoption of the local perspective on functions.

Our research has also been presented to teachers and researchers who are or intend to
become teachers educators. Indeed, we hope that our outcomes could be used to foster
among mathematics teachers a deeper awareness of the local feature that the work on
functions has to assume in the teaching of Calculus. Moreover, since the new Italian
curriculum gives teachers a great freedom in choosing how to approach the various con-
cepts, our desire is that they could think of possible di�erent patterns to teach Calculus.
In the case of the derivative, the didactic transposition DT2 we studied in this thesis
could be, with appropriate re�nement, a challenging but also powerful alternative to the
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traditional scheme, whose processes are sometimes obscure or arti�cial for students.
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Pag.  1/2 Sessione ordinaria 2013  

 Seconda prova scritta  
  
 
 
 

Ministero dell’Istruzione, dell’ Università e della Ricerca 

 

Y557 – ESAME DI STATO DI LICEO SCIENTIFICO 
 

CORSO SPERIMENTALE 
 

Indirizzo: PIANO NAZIONALE INFORMATICA 
 

Tema di: MATEMATICA 
 

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. 
 

PROBLEMA 1 

Una funzione )(xf  è definita e derivabile, insieme alle sue derivate prima e seconda, in [ [  ,0 ∞+  
e nella figura sono disegnati i grafici Γ e Λ di )(xf  e della sua derivata seconda )('' xf . La tangente 

a Γ nel suo punto di flesso, di coordinate )4 ;2( , passa per ( )0 ;0 , mentre le rette 8=y  e 0=y  sono 
asintoti orizzontali per Γ e Λ, rispettivamente. 

1) Si dimostri che la funzione )(' xf , ovvero la derivata 
prima di )(xf , ha un massimo e se ne determinino le 
coordinate. Sapendo che per ogni x  del dominio è: 

)()(')('' xfxfxf ≤≤ , qual è un possibile andamento 
di )(' xf ? 

2) Si supponga che )(xf  costituisca, ovviamente in 
opportune unità di misura, il modello di crescita di un 
certo tipo di popolazione. Quali informazioni sulla sua 
evoluzione si possono dedurre dai grafici in figura e in 
particolare dal fatto che Γ presenta un asintoto 
orizzontale e un punto di flesso? 

3) Se Γ è il grafico della funzione 
xbe

a
xf −+

=
1

)(  , si provi che 8=a  e 2=b . 

4) Nell’ipotesi del punto 3), si calcoli l’area della regione di piano delimitata da Λ e dall’asse x  
sull’intervallo [ ]2 ,0 . 

 

PROBLEMA 2 

Sia f  la funzione definita per tutti gli x  positivi da xxxf ln)( 3= . 

1. Si studi f  e si tracci il suo grafico γ su un piano riferito ad un sistema di assi cartesiani 
ortogonali e monometrici Oxy; accertato che γ presenta sia un punto di flesso che un punto di 
minimo se ne calcolino, con l’aiuto di una calcolatrice, le ascisse arrotondate alla terza cifra 
decimale. 

2. Sia P il punto in cui γ interseca l’asse x. Si trovi l’equazione della parabola, con asse parallelo 
all’asse y , passante per l’origine e tangente a γ in P. 

3. Sia R la regione delimitata da γ e dall’asse x  sull’intervallo aperto a sinistra ] ]1 ,0 . Si calcoli 

l’area di R, illustrando il ragionamento seguito, e la si esprima in mm2 avendo supposto l’unità 
di misura lineare pari a 1 decimetro. 

4. Si disegni la curva simmetrica di γ rispetto all’asse y  e se ne scriva altresì l’equazione. 

Similmente si faccia per la curva simmetrica di γ rispetto alla retta 1−=y . 
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Pag.  2/2 Sessione ordinaria 2013  

 Seconda prova scritta  
  
 
 
 

Ministero dell’Istruzione, dell’ Università e della Ricerca 

 

Y557 – ESAME DI STATO DI LICEO SCIENTIFICO 
 

CORSO SPERIMENTALE 
 

Indirizzo: PIANO NAZIONALE INFORMATICA 
 

Tema di: MATEMATICA 
 

QUESTIONARIO 
1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? Si 

giustifichi la risposta. 

2. Se la funzione )2()( xfxf −  ha derivata 5 in 1=x  e derivata 7 in 2=x , qual è la derivata di 
)4()( xfxf −  in 1=x ? 

3. Si considerino, nel piano cartesiano, i punti ( )1 ;2 −A  e ( )8 ;6 −−B . Si determini l’equazione 
della retta passante per B e avente distanza massima da A. 

4. Di un tronco di piramide retta a base quadrata si conoscono l’altezza h e i lati a e b delle due 
basi. Si esprima il volume V del tronco in funzione di a, b e h, illustrando il ragionamento 
seguito. 

5. In un libro si legge: “se per la dilatazione corrispondente a un certo aumento della 
temperatura un corpo si allunga (in tutte le direzioni) di una certa percentuale (p.es. 0,38%), 
esso si accresce in volume in proporzione tripla (cioè dell’1,14%), mentre la sua superficie si 
accresce in proporzione doppia (cioè di 0,76%)”. È così? Si motivi esaurientemente la risposta. 

6. Con le cifre da 1 a 7 è possibile formare 5040 !7 =  numeri corrispondenti alle permutazioni 
delle 7 cifre. Ad esempio i numeri 1234567 e 3546712 corrispondono a due di queste 
permutazioni. Se i 5040 numeri ottenuti dalle permutazioni si dispongono in ordine crescente 
qual è il numero che occupa la 5036-esima posizione e quale quello che occupa la 1441-esima 
posizione? 

7. In un gruppo di 10 persone il 60% ha occhi azzurri. Dal gruppo si selezionano a caso due 
persone. Quale è la probabilità che nessuna di esse abbia occhi azzurri? 

8. Si mostri, senza utilizzare il teorema di l’Hôpital, che: 

1lim −=
−
−

→ π

π

π x

ee sensenx

x
 

9. Tre amici discutono animatamente di numeri reali. Anna afferma che sia i numeri razionali che 
gli irrazionali sono infiniti e dunque i razionali sono tanti quanti gli irrazionali. Paolo sostiene 
che gli irrazionali costituiscono dei casi eccezionali, ovvero che la maggior parte dei numeri 
reali sono razionali. Luisa afferma, invece, il contrario: sia i numeri razionali che gli irrazionali 
sono infiniti, ma esistono più numeri irrazionali che razionali. Chi ha ragione? Si motivi 
esaurientemente la risposta. 

10. Si stabilisca per quali valori Rk ∈  l’equazione ( ) kxx =−32  ammette due soluzioni distinte 

appartenenti all’intervallo [ ]3 ,0 . Posto 3=k , si approssimi con due cifre decimali la maggiore 
di tali soluzioni, applicando uno dei metodi iterativi studiati. 

____________________________ 
Durata massima della prova: 6 ore. 
È consentito l’uso della calcolatrice non programmabile. 
È consentito l’uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana. 
Non è consentito lasciare l’Istituto prima che siano trascorse 3 ore dalla dettatura del tema. 
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Appendix C

Activity 1
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SCHEDA 1         Nomi: 

 
Mentre studiavano per l’esame di maturità, Lorenzo e Francesca si sono imbattuti nel seguente problema, 
trovato in un libro di testo. 
 

       Problema 

       Il disegno qui sotto mostra i grafici di tre funzioni. 
       Individua tra di essi la giusta combinazione: 

 una funzione 𝑓 

 𝑓′  : la derivata di 𝑓 

 𝑓′′ : la derivata di 𝑓′ 
 
 

 
 

Scrivete una breve lettera a Lorenzo e Francesca, in cui fornite e giustificate la vostra soluzione del 
problema. 

𝑥 

 

𝑦 
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SCHEDA 2       Nomi: 

 

Ecco la risposta di Lorenzo e Francesca alla vostra lettera. 

 

Grazie mille, ragazzi! 

Siete stati gentilissimi, ma abbiamo ancora dei dubbi… 
Nelle pagine successive, infatti, abbiamo trovato un altro problema di questo tipo. 
Ci sembra un po’ più difficile del primo e non siamo d’accordo sulla soluzione. 
Ne riportiamo il testo qui sotto e vorremmo sapere come lo risolvereste voi. 
Per evitare di disturbarvi ogni volta, abbiamo anche pensato che ci servirebbe un “metodo 
generale” che funzioni per tutti i problemi di questo tipo. Ci spieghiamo meglio: voi sapreste 
indicarci, in generale, quali proprietà di una funzione e della sua derivata dobbiamo considerare e 
come le dobbiamo mettere in relazione tra loro?  

Grazie ancora! 
Lollo e Fra 
 

       Problema 2 

       Il disegno qui sotto mostra i grafici di tre funzioni. 
       Individua tra di essi la giusta combinazione: 

 una funzione 𝑓 

 𝑓′ : la derivata di 𝑓 

 𝑓′′ : la derivata di 𝑓′ 
 

 

𝑥 
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SCHEDA 3        Nomi: 

 
Allegate alla vostra  risposta a Lorenzo e Francesca un ipotetico Problema 3, per il quale il vostro “metodo 
generale” funzioni e spiegate brevemente come avete ragionato per costruire i grafici del problema. 
 
 
       Problema 3 
       Il disegno qui sotto mostra i grafici di tre funzioni. 
       Individua tra di essi la giusta combinazione: 

 una funzione 𝑓 

 𝑓′ : la derivata di 𝑓 

 𝑓′′ : la derivata di 𝑓′ 
 
 

 

 

𝑦 

𝑥 
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SCHEDA A 

Nomi:       
 

 
Risolvete i seguenti problemi. Giustificate le vostre risposte, specificando il ragionamento che avete 
seguito. 
 
 
Problema 1. Della funzione   si sa che il suo grafico 

 passa per i punti A e B 

 è tangente in A alla retta   e in B alla retta  . 
Scrivi una possibile equazione        per questa funzione. 
 

 
 

 
 
Problema 2. Due curve si definiscono tangenti in un loro punto comune se e solo se hanno in 
questo punto la stessa retta tangente. Stabilisci per quale valore esatto del parametro reale    , 
le curve di equazione 

             e              

risultano tangenti. Quali sono le coordinate del punto di tangenza? 
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SCHEDA B 

Nomi:       
 
 
Risolvete i seguenti problemi. Giustificate le vostre risposte, specificando il ragionamento che avete 
seguito. 
 
 
Problema 1. Della funzione   si sa che 

       e      sono suoi zeri 

 la curva di equazione        è tangente in    alla retta           e in    alla retta 
        . 

Scrivi una possibile equazione        per questa funzione. 
 
 
 
Problema 2. Due curve si definiscono tangenti in un loro punto comune se e solo se hanno in 
questo punto la stessa retta tangente. Stabilisci per quale valore esatto del parametro reale    , 
le curve di equazione 

             e              

risultano tangenti. Quali sono le coordinate del punto di tangenza? 
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