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The time variation of contacts in a networked system may fundamentally alter the properties of
spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic
threshold. Despite the great interest in the problem for the physics, applied mathematics, computer
science, and epidemiology communities, a full theoretical understanding is still missing and currently
limited to the cases where the time-scale separation holds between spreading and network dynamics
or to specific temporal network models. We consider a Markov chain description of the susceptible-
infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective,
we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of
a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is
confirmed on a set of temporal models and empirical networks and against numerical results.
In addition, we explore how the threshold changes when varying the overall time of observation
of the temporal network, so as to provide insights on the optimal time window for data collection
of empirical temporal networked systems. Our framework is of both fundamental and practical
interest, as it offers novel understanding of the interplay between temporal networks and spreading
dynamics.
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I. INTRODUCTION

A wide range of physical, social, and biological phe-
nomena can be expressed in terms of spreading processes
on interconnected substrates. Notable examples include the
spread of directly transmitted infectious diseases through
host-to-host contacts [1], the spatial propagation of epi-
demics driven by the hosts’ mobility network [1–3], the
spread of cyber viruses along computer connections [4], or
the diffusion of ideas mediated by social interactions [5,6].
These phenomena are the result of a complex interplay
between the properties of the spreading dynamics and the
network’s structural and temporal features, hindering their
full understanding.

A fundamental issue characterizing spreading processes
is the identification of the critical condition for the wide-
spreading regime, encoded in the epidemic threshold
parameter. This issue is of critical importance for epidemic
containment [1], as well as for control of the diffusion of
information [7] and cyber viruses [4]. Extensive studies
have characterized this parameter in the time-scale sepa-
ration approximation, i.e., when the time scales of the
spreading process and network evolution strongly differ.
This includes the two limiting regimes, quenched and
annealed [4,8–15]. In the first case, the network is regarded
as static, as it evolves on much slower time scales than the
ones characterizing the spreading process. The epidemic
threshold in this case is computed from the adjacency
matrix describing the network connectivity pattern [8,9].
In the second case, the underlying network evolves so
rapidly with respect to the dynamical process that only its
time-averaged properties are relevant to the spreading
dynamics. Approaches like the heterogeneous mean field
[4], the generating function [11], and percolation theory
[10] provide, in this regime, estimates of the threshold in
the infinite size limit.

*Corresponding author.
vittoria.colizza@inserm.fr
http://www.epicx-lab.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 5, 021005 (2015)

2160-3308=15=5(2)=021005(9) 021005-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.5.021005
http://dx.doi.org/10.1103/PhysRevX.5.021005
http://dx.doi.org/10.1103/PhysRevX.5.021005
http://dx.doi.org/10.1103/PhysRevX.5.021005
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Recently, the extensive empirical characterization
of social interactions at different scales and settings
[16–22] has shown that networks often display non-
Poissonian and non-Markovian temporal evolutions
unfolding at time scales similar to the ones of many
spreading processes of interest, stressing the need for novel
theoretical tools able to overcome current limitations. Much
research has focused on spreading processes occurring on
time-varying networks [16,17,21,23–31], modeled either as
a discrete-time sequence of networks [16,28] or as con-
tinuous-time dynamics of links [17,26]; however, so far,
only a few studies have provided an analytical calculation
of the epidemic threshold in specific cases [24,27–32].
These are all based on models for time-varying networks
integrating the microscopical laws governing the network
evolution, under context-specific assumptions. An analyti-
cal framework for the computation of the epidemic thresh-
old for an arbitrary time-varying network is still missing. To
fill such a gap, we present here a novel approach that, by
reinterpreting the tensor formalism of multilayer networks
[33,34], extends the Markov chain approach adopted
for static networks [8,9] to their temporal counterpart.
The approach is applied to discrete time-varying network
models and empirical networks to highlight the role of
different dynamical features on the spreading potential.
The role of the observation time window is then analyzed
in depth in order to provide indications on how this factor
alters the estimated epidemic threshold.

II. DERIVATIONOF THEEPIDEMIC THRESHOLD

We consider the susceptible-infected-susceptible (SIS)
model [1] in discrete time, where individuals (i.e., the nodes
of the network) can be in one of two mutually exclusive
states—susceptible or infectious. At each time step, infec-
tious individuals may transmit the infection to susceptible
neighbors with probability λ along each contact, and they
recover spontaneously with probability μ becoming sus-
ceptible once again. We consider the temporal network
forming the substrate of the spreading process to be a
sequence of undirected and unweighted static networks.
The generalization of the following treatment to the
directed and weighted case is outlined in Ref. [35].
In order to describe the spreading dynamics on such a

substrate, we extend the Markov chain approach for static
networks [8,9] to the case of temporal networks. The
SIS propagation on a generic network with N nodes and
adjacency matrix A is given by

pðtÞ
i ¼ 1 −

h
1 − ð1 − μÞpðt−1Þ

i

iY
j

h
1 − λAjip

ðt−1Þ
j

i
; ð1Þ

where pðtÞ
i is the probability for the node i to be in the

infectious state at time t. The Markovian model of Eq. (1),
widely adopted in different fields [12,36], is based on
the mean-field assumption of the absence of dynamical

correlations among the states of neighboring nodes [37].
For both directed and undirected networks [38,39], the
study of the asymptotic state yields the derivation of
the epidemic threshold ðλ=μÞ ¼ 1=ρðA†Þ, where ρðA†Þ is
the spectral radius of the transposed adjacency matrix A†

[8,9]. This is known to be a lower bound estimate of the
real epidemic threshold, approaching the real value with
surprisingly high accuracy given the simplicity of the
expression and its derivation [37,40].
We extend this paradigm to a temporal network by

letting the adjacency matrix in Eq. (1) depend on time:

pðtÞ
i ¼ 1−

h
1− ð1− μÞpðt−1Þ

i

iY
j

h
1− λAðt−1Þ

ji pðt−1Þ
j

i
: ð2Þ

Here, AðtÞ is the adjacency matrix associated with the tth
snapshot of the evolving network. In order to ensure the
asymptotic solution of the SIS process in a generic temporal
network, we assume periodic boundary conditions for the
network dynamics. With T being the total number of
network time snapshots, we impose AðTþ1Þ ≡ Að1Þ. This
does not imply any loss of generality given that T may be
completely arbitrary.We notice that, as a consequence of the
assumed periodic temporal dynamics ofAðtÞ, the asymptotic
solution of Eq. (2) is, in principle, periodic, with period T.
We now define a more convenient representation of the

coupled dynamics adopting the multilayer approach intro-
duced in Ref. [33]. We map the temporal network to the
tensor space RN ⊗ RT , where each node is identified by
the pair of indices ði; tÞ, corresponding to the node label i
and the time frame t, respectively. A multilayer represen-
tation of the temporal network can be introduced through
the following rules:

(i) Each node, at time t, is connected to its future self
at tþ 1.

(ii) If i is connected to j at time t, then we connect i at
time t to j at time tþ 1, and j at time t to i at
time tþ 1.

The second rule is termed “nondiagonal coupling” in the
multilayer-network framework [34]. The first rule is
consistent with the ordinal coupling in such a framework
[34,41], but unlike in that representation, no links are
found connecting nodes on the same layer since layers
cease to correspond to the adjacency matrices of the
temporal snapshots. The so-defined network is therefore
multipartite since only pairs of nodes belonging to differ-
ent layers are linked together (see Fig. 1 for a schematic
illustration of this transformation). While formally falling
into a specific subcase of the classification introduced
in Ref. [42], the proposed mapping from the network
temporal sequence to a multilayer object provides a novel
representation of the temporal network that preserves the
information relevant for the spreading process. The tensor
representation of the obtained multilayer network is the
following:
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Att0
ij ¼ δt;t

0þ1½δij þ AðtÞ
ij �: ð3Þ

Analogously to the definition of A, we can also write,
in this representation, the tensor associated with the SIS
dynamics of Eq. (2), coupling together contagion and
network dynamics:

Mtt0
ij ¼ δt;t

0þ1½ð1 − μÞδij þ λAðtÞ
ij �: ð4Þ

The multilayer representation and the definition of the
tensor M introduce a simplified expression for Eq. (2).
The tensor space can be represented in single-index
notation through the isomorphism RN ⊗ RT ≃RNT .
In other words, similarly to the definition of the supra-
adjacency matrix in Refs. [33,43,44], we can mask the
tensorial origin of the space through the map
ði; tÞ → α ¼ Ntþ i, with α running in f1;…; NTg,
allowing us to write the network tensor M in matrix form:

M ¼

0
BBBBBBBBBB@

0 1 − μþ λAð1Þ 0 � � � 0

0 0 1 − μþ λAð2Þ � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 1 − μþ λAðT−1Þ

1 − μþ λAðTÞ 0 0 � � � 0

1
CCCCCCCCCCA
:

M provides a network representation of the topological
and temporal dimensions underlying the dynamics of
Eq. (2), which are interrelated and flattened here. Its
directed nature preserves the causality of the process,
while its weights account for the SIS transition proba-
bilities. The Markov process is now described by a
trajectory in RNT where the state vector p̂αðτÞ represents
the probability of each node to be infected at each time
step t included in the interval ½τT; ðτ þ 1ÞT�. Consis-
tently, Eq. (2) becomes

p̂αðτÞ ¼ 1 −Y
β

½1 −Mβαp̂βðτ − 1Þ�: ð5Þ

Given that vector p̂ encodes a one-period configuration,
the T-periodic asymptotic state of the SIS process is now
mapped into the steady state p̂αðτÞ ¼ p̂αðτ − 1Þ. The
latter can be recovered as a solution of the equilibrium
equation:

p̂α ¼ 1 −Y
β

ð1 −Mβαp̂βÞ; ð6Þ

which is formally the same as the stationary condition
imposed in Eq. (1) for the static network case, and it is
similar to the Markov chain approaches used to solve

contagion processes in multiplex and interconnected
networks [43–45]. We can then follow Refs. [8,9] and
linearize Eq. (6), recovering the necessary and sufficient
condition for the asymptotically stable zero solution,
ρðM†Þ < 1 [46]. Considering that the uniform zero
solution in the RNT representation is mapped to a
uniform zero solution in the original RN representation,
this yields the threshold condition

ρðM†Þ ¼ 1 ð7Þ
for the critical values of λ and μ above which the
transmission becomes epidemic [8,9,43–45].
The spectral radius of M can be simplified with the

following relation (see Appendix A):

ρðMÞ ¼ ρðPÞ1=T; ð8Þ

where P ¼ Q
T
t¼1 ð1 − μþ λAðT−tÞÞ represents a weighted

version of the accessibility matrix [47], having connectivity
weighted by λ and waiting timeweighted by 1 − μ. This last
passage ensures a simplification of the numerical compu-
tation of the epidemic threshold, allowing an execution
time scaling as ∼TN5=2 (see Ref. [48] for an analysis of the
numerical performance of our approach).
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FIG. 1. Schematic example of the supra-adjacency matrix of
the multilayer representation of the temporal network. For
simplicity, we consider a network of two nodes i; j, and
two time steps. The left panel represents the network as a
sequence of static adjacency matrices. This is translated into
a multilayer representation (right panel), where each node
points to itself in the future and to the future image of its
present neighbors.
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The quenched and annealed regimes can be recovered
within this general framework as particular limiting
solutions. In the first case, it is to be noted that the
sequence of temporal snapshots naturally defines the
minimum time scale of the process. In order to consider
contagion dynamics that are much faster than the time-
varying process of the network, we thus rely on the
commonly adopted assumption regarding the temporal
network as static, so AðtÞ ≡ A. In this particular case,
P ¼ ð1 − μþ λAÞT . Therefore, ρðMÞ ¼ ρð1 − μþ λAÞ ¼
1 − μþ λρðAÞ. The requirement ρðM†Þ ¼ 1 thus recovers
the expression known for the quenched case.
The study of the annealed regime is less trivial. In the

assumption that λ and μ are very small, corresponding to a
very slow disease dynamics with respect to the time scale of
the network evolution, it is possible to replace P with its
linear expansion in λ=ð1 − μÞ, yielding

Pslow ¼ ð1 − μÞT
�
1þ λ

1 − μ
A
�
;

where A ¼ P
t A

ðtÞ is a weighted static representation of
the network, formed by the sum of all the snapshots.
Temporal correlations are lost, and edges count for the
number of times they are active during the whole period
T. Equation (7) for the epidemic threshold thus simplifies
to ðλ=μÞc;slow ¼ T=ρðAÞ [49], and the aggregated matrix
contains all the relevant information for spreading
dynamics.

III. VALIDATION AND COMPARISON WITH
STOCHASTIC SIMULATIONS

In the following, we validate the analytical method and
compare its predictions with the behavior of a simulated
SIS spreading process. For this purpose, we consider
six networks, three of which are built from models for
time-varying networks; the other three are obtained from
empirical measures. The first network, ER, is formed by a
sequence of random Erdős-Rényi graphs [50] with a given
number of nodes and edges. It represents a simple and
completely uncorrelated example of a temporal network.
The second network, ACTIVITY, is a realization of the
activity-driven model [28] where each node is assigned
an activity potential, representing the probability of being
active in a certain snapshot. Once activated, the node
establishes a fixed number of connections that are renewed
at each snapshot. We consider a heterogeneous activity
distribution so that the obtained networks are characterized
by a temporally uncorrelated sequence of snapshots with a
heterogeneous aggregated degree distribution. BURSTY is
built from the model introduced in Ref. [23] and accounts
for a heterogeneous activation pattern describing a
sequence of homogeneous networks where the intercontact
time is power-law distributed. Size and period are chosen
arbitrarily for all these networks since the choice of these
parameters does not impact the method validation, as

discussed in more detail in the following section. As
examples of real time-varying networks, we choose data
sets describing different kinds of human contact: HT09 is
the network of face-to-face proximity during a 2.5-day
scientific conference [16]; SEX is a 1-year network of sexual
contacts between prostitutes and their clients [18]; SCHOOL
is a contact network describing one day in a high school
[51]. Size, period, and topological properties are con-
strained by the measurements and are very diverse.
Further information about the six networks can be found
in Appendix B and in Table I.
To verify the validity of the proposed analytical expres-

sion, we numerically solve the Markov equation (2). For
given λ and μ, we iterate the equation until the periodic state
is reached and compute the average prevalence over
a period hiMCi ¼

P
i;t p

ðtÞ
i =ðTNÞ. Predictions are then also

compared with the threshold behavior obtained from
numerical simulations of the stochastic and microscopic
SIS dynamics on the evolving networks. We use the
quasistationary state method [52] (see Appendix C) to
measure the average prevalence hisimi over the time series
for different values of λ, after an initial transient time is
discarded.
Figure 2 shows hiMCi and hisimi as functions of λ for two

different values of μ (μ ¼ 0.2 and μ ¼ 0.5) for all networks
under study. The average prevalence displays the expected
transition behavior. The solution of the Markov chain
equation hiMCi is equal to zero for small values of λ until
the critical value of λ is reached, after which a rapid growth
is observed signaling an epidemic affecting a finite fraction
of the network. The transition is well predicted by the
analytical expression of Eq. (7). The threshold behavior
obtained from numerical simulations is also very similar to
the mean-field prediction. The two curves of hiMCi and
hisimi are nearly superimposed, showing that the mean-field
approximation in Eq. (2) is valid in all conditions of

TABLE I. Temporal networks considered for the validation.
The first three networks are single realizations obtained from
synthetic models for time-varying networks; the other three are
empirical networks. The ER model is a sequence of random
graphs with 500 nodes and 750 edges, so hki ¼ 3. The ACTIVITY

model is a sequence of snapshots built with parameter values:
Δt ¼ 1, m ¼ 2, η ¼ 10, γ ¼ 2.8, ϵ ¼ 3 × 10−2, in the notation
of Ref. [28]. The BURSTY network is built with a power-law
distributed interactivation time, with exponent −2, and cutoff
equal to the period of the network. For the real networks, the
collection time is the total time considered in the data set.

Network Number of nodes Period T Aggregating window

ER [50] 500 13 � � �
ACTIVITY [28] 1000 20 � � �
BURSTY [23] 500 50 � � �
HT09 [16] 113 30 1 hour
SCHOOL [51] 787 42 10 mins
SEX [18] 6866 13 28 days

VALDANO et al. PHYS. REV. X 5, 021005 (2015)

021005-4



network size and average connectivity here considered.
The presence of correlations shows its effects in proximity
to the transition, which is smoother for hisimi with respect
to hiMCi. This is particularly evident for the network
HT09 and is a consequence of its small size (N ¼ 113).
In Ref. [53], we report the analysis of the dynamical
correlations.
The good agreement between the computed epidemic

threshold, the solution of the Markov chain equation, and
the numerical simulation results is thus maintained under a
range of different temporal network properties (presence or
absence of temporal correlations, heterogeneous vs homo-
geneous distributions characterizing temporal and struc-
tural observables, and the possible presence of community
structure as in the case of school) and sizes (from
approximately 102 nodes to 104). It is important to mention
that periodic boundary conditions in the case of real
networks may, in principle, induce nonexisting phenomena
(such as, for example, temporal paths [54]) that could
alter the threshold estimation by influencing the spreading
process. We analyze the effect of our technical assumption
of adopting periodic constraints in the following section,
also in relation to data availability and collection.

IV. OPTIMAL DATA COLLECTION TIME

Available data sets characterizing empirical networks
only account for a portion of the real contact process, and

the extent of the recording time window may affect the
prediction of the epidemic threshold. One may expect that,
when the data-collection period is long enough, the data
would represent an approximately complete reconstruction
of the temporal network properties, thus leading to an
accurate estimate of the epidemic threshold. Given the
resources needed for the setup of data-collection deploy-
ments, here we explore the role of the period T aimed at
identifying a minimum length of observation of the contact
process that is optimal in providing a reliable characteri-
zation of the spreading potential.
We thus compute the epidemic threshold from Eq. (8) for

increasingly larger values of the period T up to the entire
data-collection time window, for the three empirical net-
works under study. Figure 3 shows a saturation behavior for
λc, indicating that the data-collection period is long enough
to characterize the epidemic dynamics. Such behavior and
its associated relaxation time strongly depend on the
network’s typical time scale and on the temporal variability
of its structure. Inmore detail, a simple structural measure—
the variation of the average degree along the period—is
shown to strongly impact the predicted λc (Fig. 3 and
Ref. [55]). This is particularly evident in the SCHOOL

network, where the daily activity of students determines
considerable variations in the average degree and induces
marked oscillations in the resulting threshold. In addition to
the empirical networks, we also consider the BURSTY net-
work model as it includes nontrivial temporal correlations.
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FIG. 2. Validation of the analytical method and comparison with microscopic numerical simulations. Top panel: Network models.
Bottom panel: Empirical networks. Cross symbols represent hiMCi as a function of λ for two different values of μ (μ ¼ 0.2 in blue and
μ ¼ 0.5 in red), i.e., the average prevalence obtained from the numerical solution of the Markov chain, Eq. (2). Circles represent hisimi,
i.e., the average prevalence obtained from stochastic microscopic numerical simulations of the SIS process, for the same values of μ. The
arrows indicate the analytical predictions of the threshold from Eq. (8) (one single realization of the network models is considered in
each panel).
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In this case, the critical transmission probability λc rapidly
saturates to a constant value (Fig. 3), and an even more
rapid saturation is observed for the other two network
models (see Ref. [56]). The average degree is indeed
relatively stable, so small temporal windows are enough
to fully characterize λc.
Different values of the recovery probability μ lead, in

general, to similar behaviors of λc towards saturation,
differing essentially by a scaling factor. The effect of μ on
saturation time is instead visible for the BURSTY network. In
this case, when the period length is smaller than the average
duration of the infection, the truncation in the intercontact
time distribution clearly alters the estimation of the threshold.
These results indicate that it is possible to identify a

minimum length of the observation window of a real
system for contact data collection, highlighting the pres-
ence of well-defined properties and patterns characterizing
the system that can be captured in a finite time.

V. CONCLUSION

Being able to provide a reliable and accurate estimation
of the epidemic threshold for a spreading process taking
place on a given networked system is of the utmost
importance, as it allows predictions of the likelihood of
a wide-spreading event and identification of containment
measures (crucial for infectious disease epidemics) or
strategies for enhancing the propagation (desired in the

case of information diffusion). While analytical approaches
have so far targeted only specific contexts, our framework
allows the analytical computation of the epidemic threshold
on an arbitrary temporal network, requiring no assumption
about the network topology or time variation. The proposed
approach is based on the spectral decomposition of the
flattened matrix representation of the topological and
temporal structure of the network, extending the Markov
chain model introduced for the static network case to its
temporal counterpart. The predicted epidemic threshold,
validated against the numerical solution of the model, also
reproduces the behavior observed in stochastic microscopic
numerical simulations of the spreading process with high
accuracy.
The technical requirement of periodic conditions does

not limit the general applicability of our approach, as the
method is valid for an arbitrary period length. Moreover,
this feature allows us to inform data-collection endeavors
on the time period of observation of the system required
to fully characterize its spreading properties. Our focus on
the discrete time formulation of the process is prompted by
the study of several empirical networks for which time is
naturally discrete, the time step being dictated by the
resolution of the data-collection procedure. Extensions to
the continuous-time case would be needed when the
continuous-time description is more appropriate, as for
example with some modeling approaches.
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FIG. 3. Epidemic threshold estimated from different period lengths. λcðTÞ is the epidemic threshold computed by considering only the
first T snapshots of the network. For each panel, the blue (red) curve corresponds to μ ¼ 0.2 (μ ¼ 0.5), and its scale is reported on the
left (right) side of the plot. The gray bar chart shows the mean network degree associated with the snapshot at time T. Bar charts are in
linear scale, and min and max values are placed on the corresponding bars. For the empirical networks, the measure of the real time is
also reported.
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Our framework thus introduces a multilayer formulation
of spreading phenomena on time-varying networks that
opens the path to new theoretical understandings of the
complex interplay between the two temporal processes,
disentangling the role of the network’s dynamical features,
such as activation rate, temporal correlations, and temporal
resolution.
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APPENDIX A: PROOF OF EQ. (8)

Computing the eigenvalues of M† means solving the
equation det ðx −M†Þ ¼ 0, where the determinant is com-
puted on the RNT space (detNT). Given that x −M† is
composed of T2 blocks of size N × N, we can use the
findings in Ref. [57] to reduce the dimensionality of the
problem, i.e., detNT → detN . Moreover, given that several
blocks of x −M† are zero, the general result in Ref. [57]
simplifies to detNTðx −M†Þ ¼ ð−1ÞNTdetNðxT − PÞ.
Equation (8) immediately follows.

APPENDIX B: NETWORKS CONSIDERED
FOR VALIDATION

In this section, we provide the details of the six networks
used for the validation of the threshold expression.

ER: The network is formed by a sequence of random
Erdős-Rényi graphs [50] with 500 nodes and 750 edges,
so hki ¼ 3.

ACTIVITY: In the activity-driven model by Perra et al.
[28], nodes that are active in a certain snapshot establish a
fixed number of connections (in our case, 2) with other
nodes picked at random (both active and inactive). All links
are renewed after every snapshot. The activity potential is
assigned by sampling numbers x ∈ ½ϵ; 1� from a power-law
distribution (in our case, with exponent 2.8 and
ϵ ¼ 3 × 10−2) and then converting them to activity poten-
tials a ¼ 1 − e−ηx. η is a free parameter used to tune the
average degree; here, η ¼ 10.

BURSTY: The network is built from the model introduced
by Rocha et al. [23], where a node becomes active at time t
with a probability that depends on the time it was last

active, t0. If active, it then forms a link with another active
node. All links are removed before proceeding to the
following snapshots. To enforce a BURSTY interevent time
distribution, the probability of becoming active is sampled
with the distribution ðt − t0Þ−α1e−α2ðt−t0Þ, with α1 ¼ 2 and
α2 ¼ 5 × 10−4.

HT09: The data set was collected by the Sociopatterns
group [16], and it records the interactions among partic-
ipants at a scientific conference. Links represent face-to-
face proximity recorded by wearable radio-frequency
identification (RFID) tags. Time resolution of the signal
is 20 sec. Each tag emits wave packets that may be recorded
by other tags, thus signaling proximity. Tags were
embedded in conference badges; their signal intensity
was set to be detectable at a maximum distance of 1 m
and completely shielded by the human body. With these
settings in effect, only close proximity in a face-to-face
position resulted in interaction [58].

SEX: This is a network of sexual contacts between female
prostitutes and their male clients as inferred from posts on a
Brazilian online escort forum where customers could rate
their experience with a certain sex worker. The date of
the post was taken as a proxy for the time of the sexual
intercourse. The (anonymized) data set can be found in
Ref. [18].

SCHOOL: This network represents the face-to-face prox-
imity interactions during a day in a high school [51].
Students and staff were given wearable RFID sensors,
and proximity was recorded in a similar fashion as for
HT09 [59].

APPENDIX C: ESTIMATION OF THE EPIDEMIC
THRESHOLD FROM NUMERICAL

SIMULATIONS

The computation of hisimi in proximity to the transition is
difficult because surviving configurations are rare and a
very large number of realizations of the process is needed
to collect substantial statistics. We use the quasistationary
state (QS) method [52,60] to overcome this difficulty and
increase our computational efficiency. The QS method is
based on the idea of constraining the system in an active
state. Every time the absorbing state (i.e., no infected) is
reached by the system, it is substituted with an active
configuration that is randomly taken from the history of the
simulation. In particular, 50 active configurations for each
network snapshot are kept in memory. Whenever an active
configuration is reached, it replaces one of the 50 with
probability 0.2. When the absorbing state is reached, an
active configuration is chosen among these 50 of that
particular snapshot. For each simulation, after a relaxation
time of 3 × 103 time steps, statistics are collected during
105 time steps. The method produces a time series that is
long enough to accurately compute the observables hisimi.
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