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Editor summary: 

A Novel Strategy  for Treating Colon Cancer 
In most patients, colon cancer arises from a mutation in the gene encoding APC, which results in 
constitutive activation of the β-catenin pathway. Inhibition of this pathway interferes with the continuous 
renewal of the epithelial cells that line the intestinal tract and therefore may confer only limited 
therapeutic benefit. Phesse et al. discovered that the signaling pathway involving the receptor gp130, the 
associated Jak kinases, and the transcription factor Stat3 enhanced the growth of intestinal tumors in 
mice. Conversely, genetic or pharmacological inhibition of this pathway reduced tumor growth by 
increasing the expression of genes encoding the p21 and p16 proteins that halt cell division, via a cell 
intrinsic mechanism. Thus, drugs targeting the Jak-Stat3 pathway, which are currently in clinical trials for 
the treatment of haematological malignancies, may also be useful for treating colon cancer.  
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ABSTRACT 
 

Most colon cancers arise from somatic mutations in the tumor suppressor gene APC and these 

mutations cause constitutive activation of the Wnt to β-catenin pathway in the intestinal 

epithelium. Because Wnt-β-catenin signaling is required for homeostasis and regeneration of the 

adult intestinal epithelium, therapeutic targeting of the Wnt pathway is challenging. We found 

that genetic activation of the cytokine-stimulated pathway mediated by the receptor gp130, the 

associated Jak kinases, and the transcription factor Stat3, was required for intestinal regeneration 

in response to irradiation-induced damage in wild-type mice and for tumorigenesis in Apc-

mutant mice. Systemic pharmacological or partial genetic inhibition of gp130-Jak-Stat3 

signaling suppressed intestinal regeneration, the growth of tumors in Apc-mutant mice, and the 

growth of colon cancer xenografts. Mechanistically, the growth of Apc-mutant tumors depended 

on gp130-Jak-Stat3 signaling for induction of the polycomb repressor Bmi-1, and the associated 

repression of genes encoding the cell cycle inhibitors p16 and p21. However, suppression of 

gp130-Jak-Stat3 signaling did not affect Wnt-β-catenin signaling or homeostasis in the intestine. 

Thus, these data not only suggest a molecular mechanism for how the gp130-Jak-Stat3 pathway 

can promote cancer, but also provide a rationale for therapeutic inhibition of Jak in colon cancer. 

 

 

 
ONE SENTENCE SUMMARY 

Partial suppression of the gp130-Jak-Stat pathway inhibits intestinal tumor growth.  
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INTRODUCTION   
 
The lining of the mammalian intestine comprises a rapidly proliferating epithelial monolayer that 

undergoes continuous renewal (1). It provides two vital functions absorbing nutrients and water, 

and serving as a physical barrier that separates the immune system from luminal bacteria, 

antigens, and toxins.  Tissue homeostasis of the adult intestinal epithelium depends on cellular 

plasticity to enable self-renewal, proliferation and apoptosis, and to ensure effective wound 

healing without promoting malignant outgrowth. These processes are regulated in part through 

Wnt-β-catenin signaling (2, 3), which promotes proliferation of the epithelial stem cell 

compartment at the base of the intestinal crypt and is required for intestinal regeneration (4). Wnt 

ligands are secreted glycoproteins that activate the Frizzled family of G-protein coupled 

receptors and the co-receptors Lrp5 and Lrp6. Activation of Wnt receptor complexes leads to 

inhibition of a protein complex, which includes the tumor suppressor protein APC (adenomatous 

polyposis coli) and prevents ubiquitin-mediated degradation of the transcriptional co-activator β-

catenin (5). In greater than 80% of sporadic and familial colorectal cancers (CRC), mutations 

causing premature stop codons in APC induce constitutive accumulation and activation of β-

catenin in the nucleus and drive tumor formation (6, 7). 

 

Transcriptional regulation of many Wnt-β-catenin target genes, including the stem cell regulator 

Lgr5, is mediated through c-Myc (7). Systemic suppression of c-Myc in mice impairs 

homeostatic renewal of the intestinal epithelium (8), whereas ablation of c-Myc in intestinal 

epithelial cells (IECs) triggers repopulation from intestinal stem cells (3). Likewise, c-Myc is 

required for regeneration of intestinal crypts after γ-irradiation (4) and for intestinal hyperplasia 

in mice with conditional deletion of Apc in IECs (7). Therefore, therapies designed to interfere 
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with the Wnt-β-catenin pathway in CRC are likely to impact on homeostasis of the intestine, 

leading to dose-limiting toxicities and possibly limited clinical utility.  

 

The gp130-Jak-Stat signaling pathway contributes to intestinal homeostasis, wound healing 

response and cancer (9).  Binding to cytokines, including interleukin (IL) 6 or IL11, via their 

ligand specific receptor α-subunits causes homodimerization of the transmembrane receptor β-

subunit gp130 and activation of Janus kinases (Jak1, Jak2, or Tyk2), which are constitutively 

associated with gp130. Jaks phosphorylate tyrosines in gp130 that then provide docking sites for 

the latent transcription factor Stat3, and also to some extent for Stat1. Subsequent tyrosine-

phosphorylation of Stat3 by Jaks results in dimerization, nuclear translocation, and activation of 

Stat3-target genes, including Socs3 and Ccnd1 (10).  IL11-dependent engagement of gp130-Jak-

Stat3 pathway enables the intestine to respond to inflammatory stimuli that result from disruption 

of the protective epithelial monolayer (11). Accordingly, impairment of gp130-specific Stat3 

activation in gp130ΔStat/ΔStat mice, in which the Stat3-binding region in gp130 is deleted, increases 

susceptibility to experimentally induced colitis (12). Conversely, activation of Stat3 confers 

resistance to colitis in gp130F/F mice, which contain a homozygous mutation that results in a 

Y757F amino acid substitution in gp130 that prevents binding of Socs3, a negative regulator of 

gp130-Jak-Stat3 signaling (12). Furthermore, excessive activation of Stat3 promotes colitis-

associated colon cancer (13). Phosphorylation of Stat3 also occurs during the adenoma-to-

carcinoma transition of in human colorectal cancer (14) and localizes to the invasive fronts of 

CRC tumors (11). 
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Here, we investigated the functional interaction between gp130-Jak-Stat and Wnt-β-catenin 

signaling pathways in CRC. We found that partial inhibition of the gp130-Jak-Stat3 pathway did 

not affect normal intestinal homeostasis but impaired regeneration of the intestinal epithelium in 

response to irradiation and slowed down the growth of tumors in Apc-mutant mice and mice with 

xenografts of human APC-mutant CRC cells. Manipulation of gp130-Jak-Stat3 signaling did not 

affect the expression of Wnt target genes in tumors, but increased the expression of the gene 

encoding the polycomb repressor Bmi-1. Similar to inhibition of gp130-Jak-Stat3 signaling, 

heterozygous knockout of Bmi-1 in Apc-mutant mice reduced tumor growth and increased the 

abundance of the cell cycle inhibitors p16 (also known as Ink4a and encoded by Cdkn2a) and 

p21 (also known as Waf1 or Cip1 and encoded by Cdkn1a). Thus, the gp130-Jak-Stat3 pathway 

may serve as a “rheostat” to fine-tune the proliferative response of the intestinal epithelium 

during excessive activation of the Wnt-β-catenin pathway and therefore, may be amenable as a 

therapeutic target for APC-mutant CRC. 
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RESULTS 

gp130-Jak-Stat3 signaling is required for intestinal regeneration in response to irradiation 

We asked whether regeneration of the intestinal epithelium in response to radiation-induced 

damage required gp130-Jak-Stat3 signaling. We used immunohistochemistry for proliferating 

cell nuclear antigen (PCNA) to visualize proliferating IECs in regenerating intestinal crypts of 

mice 72 hours after 14Gy of whole body γ-irradiation (4). We examined mice with a 

heterozygous deletion that eliminates the Stat3-binding region of gp130 (gp130ΔStat/+ mice) (12) 

or heterozygous deletion of Stat3 (Stat3+/-) (15). We found significantly fewer regenerating 

crypts in irradiated gp130ΔStat/+ or Stat3+/- mice compared to irradiated wild-type mice (Fig. 1A).  

We also asked whether pharmacological inhibition of Jak-Stat signaling could affect 

regeneration buy using AZD1480, an ATP-competitive kinase inhibitor with specificity for Jak1 

and Jak2 (16). We found that irradiated wild-type mice, which were gavaged daily with 

AZD1480 for the 3 days prior to irradiation and during the 72h follow-up period, displayed 

reduced epithelial regeneration compared to vehicle-treated, irradiated wild-type mice (Fig. 1A).    

 

Wnt-β-catenin signaling is required for the regeneration of IECs after irradiation (4); thus, we 

examined whether Stat3 signaling was required for Wnt signaling in this context.  Consistent 

with the presence of active Wnt-β-catenin signaling (4), we found that c-Myc and β-catenin 

accumulated in the nuclei of cells at the base of regenerating crypts in irradiated wild-type mice 

(Fig. 1B). We also detected nuclear c-Myc and β-catenin in cells of the stunted, nonregenerating 

crypts of irradiated gp130ΔStat/+ mice (Fig. 1B). Likewise, expression of the β-catenin target 

genes Lgr5, Fzd7, Axin2, Ccnd2, Cd44, and c-Myc (17) was comparable between IECs of 

irradiated wild-type and gp130ΔStat/+ mice (Fig. 1C).  In contrast, irradiation-induced expression 
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of Ccnd1, which encodes the cell cycle regulatory protein cyclin D1 and is a target of both Wnt-

β-catenin and gp130-Jak-Stat3 signaling, was reduced in irradiated gp130ΔStat/+ mice compared to 

irradiated wild-type mice (Fig. 1C).   

 

To assess whether Stat3 signaling was required in IECs for crypt formation, we analyzed the 

formation of organoids in three dimensional cell cultures established from isolated crypts of the 

small intestine and the colon (18). Organoids established from wild-type mice, and grown in 

media with the Stat3 inhibitor S3I-201 (19) or the Jak inhibitor AZD1480 had fewer crypt-like 

outgrowths than those grown in vehicle-containing medium (Figs. 1D and S1A and B).  In 

contrast, organoids established from gp130F/F mice, or those from wild-type mice grown in 

media containing IL11, had more crypt-like outgrowths than organoids established from wild-

type mice and grown in control media (Figs. 1D and S1A and B).  Thus, gp130-dependent Stat3 

signaling facilitates regeneration of IECs in parallel to Wnt-β-catenin signaling, and this is likely 

to occur by an IEC-autonomous mechanism.   

 

gp130-Jak-Stat3 signaling is required for intestinal tumorigenesis caused by loss of Apc  

Stat3 promotes colitis-associated colon cancer (13). We investigated whether gp130-Jak-Stat3 

signaling was also required for intestinal tumorigenesis in the absence of overt colitis. We used 

mice heterozygous for the ApcMin allele (ApcMin/+ mice), which encodes a non-functional Apc 

protein similar to that found in human familial adenomatous polyposis. ApcMin/+ mice undergo 

spontaneous somatic loss of the wild-type allele of Apc resulting in constitutive activation of β-

catenin that leads to the formation of multiple tumors in the small intestine and colon (20). We 

found that genetic reduction of gp130-dependent Stat3 activation reduced the number and size of 
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tumors in the small and large intestines of ApcMin/+; gp130ΔStat/+ mice compared to ApcMin/+ mice 

at 150 days of age (Fig. 2A).  The few, small tumors that arose in ApcMin/+; gp130ΔStat/+ mice by 

150 days of age were tubular adenomas (Fig. S1C) and did not progress to the invasive 

adenocarcinomas reported for mice with complete lack of Stat3 expression in IECs (21). 

 

We also analyzed whether gp130-Jak-Stat3 signaling affected early stages of tumor formation by 

staining the colon of 100 day old ApcMin/+ mice with methylene blue (22).  ApcMin/+; Stat3+/- mice 

had fewer methylene blue-positive foci than ApcMin/+ mice (Fig. 2B and C). To assess whether 

activation of gp130-Jak-Stat3 signaling affected tumorigenesis in ApcMin/+ mice, we used mice 

homozygous for the gp130 mutation that results in the Y757F substitution in gp130 and prevents 

its negative regulation by Socs3 (gp130F/F mice) (12). We found that the colons of ApcMin/+; 

gp130F/F mice had more and larger methylene blue-positive foci than ApcMin/+ mice at 100 days 

of age (Fig. 2B and C). We confirmed that genetic manipulation of gp130-Jak-Stat3 signaling 

affected expression of the Stat3 target gene Socs3 but the expression of the Wnt-β-catenin target 

gene c-Myc was comparable in intestinal tumors of ApcMin/+; gp130F/F, ApcMin/+; Stat3+/- , and 

ApcMin/+ mice (Fig. S1D).  We also assessed whether the increased tumor burden in ApcMin/+; 

gp130F/F mice was a consequence of impaired MAPK signaling, which occurs in cells of 

gp130F/F mice as a consequence of the Y757F substitution mutation and prevents engagement of 

the Shp2-Erk signaling cascade (12). However, the phosphorylation of Thr202/Tyr204 of p42/44 

MAPK was comparable in intestinal tumors of ApcMin/+; gp130F/F and ApcMin/+ mice (Fig. S1E). 

Thus, gp130-Jak-Stat signaling rather than gp130-dependent MAPK signaling was required for 

intestinal tumor initiation and growth in ApcMin/+ mice. 
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gp130-Jak-Stat3 signaling affects tumor burden in ApcMin mice independent of loss of Apc 

heterozygosity 

Sustained activation of Stat3 can enable cells to overcome the DNA replication checkpoint 

response (23), leaving open the possibility that aberrant chromosome segregation in cells with 

altered gp130-Jak-Stat3 signaling could modify the kinetics of loss of heterozygosity of Apc in 

ApcMin/+ mice. Therefore, we assessed the role of gp130-Jak-Stat3 signaling in tumorigenesis in 

mice with simultaneous inactivation of both alleles of Apc in intestinal stem cells. We expressed 

tamoxifen-inducible Cre-recombinase under the control of the intestinal stem cell marker Lgr5 in 

mice with homozygous floxed alleles of Apc (Lgr5CreERT2; Apcfl/fl mice) (24). We found that 35 

days after tamoxifen injection, adult Lgr5CreERT2; Apcfl/fl mice had tumors widespread throughout 

the small intestine and colon (Fig. 3A and fig. S2A). In contrast, tumours in both the small 

intestine and colon were significantly smaller when gp130-Jak-Stat3 signaling was reduced in 

Lgr5CreERT2; Apcfl/fl; gp130ΔStat/+ mice (Fig. 3A and fig. S2A).    

 

IEC-specific gp130-Jak-Stat3 signaling is required for the growth of Apc mutant intestinal 

tumors  

In mice, immune cell-specific gp130-Jak-Stat3 signaling can enable anti-tumor immunity (25), 

while IEC-specific Stat3 facilitates colitis-associated colon cancer (13). To assess whether Stat3 

was required cell autonomously in IECs for tumor growth, we selectively inhibited Stat3 

expression in IECs using Lgr5CreERT2 and a heterozygous floxed allele of Stat3. The small 

intestines and colons of Lgr5CreERT2; Apcfl/fl; Stat3fl/+ mice were almost free of adenomas (Fig. 3A 

and S2A), and the few tumors that developed were tubular adenomas similar to those found in 

ApcMin/+; gp130ΔStat/+ mice (Fig. S1C). This is in stark contrast to the invasive behaviour of 
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tumors in ApcMin/+ mice comprised of IECs with conditional homozygous deletion of Stat3 (21). 

The latter had been attributed to compensatory increase in Stat1 abundance, which we also 

observed in tumors of Lgr5CreERT2; Apcfl/fl; Stat3fl/fl mice, when compared to tumors of 

Lgr5CreERT2; Apcfl/fl; Stat3fl/+ or of Lgr5CreERT2; Apcfl/fl mice (Fig. S4B).  Collectively, this data 

suggests that partial inhibition of the gp130-Jak-Stat3 pathway impaired intestinal tumorigenesis 

through an epithelial cell intrinsic mechanism without changing the cellular behavior of the 

tumor cells. 

 

Inhibition of gp130-Jak-Stat3 signaling does not affect the accumulation of β-catenin in 

Apc-mutant tumors 

To explore the functional consequences of simultaneous activation of β-catenin and reduction of 

gp130-Jak-Stat3 signaling, we assessed the colocalization of nuclear β-catenin and PCNA (24) 

by immunohistochemistry. All tumors in Lgr5CreERT2; Apcfl/fl mice, and the few small emerging 

tumors in Lgr5CreERT2;Apcfl/fl; gp130ΔStat/+ mice, labelled robustly for nuclear β-catenin  (Fig. 3B) 

suggesting that high Wnt-β-catenin signaling persisted despite impaired gp130-Jak-Stat signaling. 

However, tumors in Lgr5CreERT2; Apcfl/fl; gp130ΔStat/+ mice had significantly fewer cells that were 

positive for both nuclear β-catenin and PCNA than those from Lgr5CreERT2; Apcfl/fl mice (Fig. 3B), 

indicating that high Wnt-β-catenin signaling was not sufficient to effectively promote cell 

proliferation in tumors with partially impaired gp130-Jak-Stat3 signaling.  

 

 

Pharmacological inhibition of gp130-Jak-Stat3 signaling inhibits tumor initiation and 

growth 
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Various small molecules that target the catalytic activity of Jak are in clinical development as 

therapies for haematological malignancies (26). Therefore, we explored whether 

pharmacological inhibition of Jak kinases could replicate the benefit conferred by genetic 

reduction of gp130-Jak-Stat3 signaling. Oral daily gavage of AZD1480 reduced tumor burden in 

Lgr5CreERT2; Apcfl/fl mice when assessed 35 days after administration of tamoxifen (Figs. 4A and 

S2A). Furthermore, in ApcMin/+ mice, administration of AZD1480 from 6 to 12 weeks of age 

reduced the number of tumors and decreased tumor size compared to those from mice treated 

with vehicle alone (Fig. 4B), suggesting that Jak inhibition prevented the formation of new 

tumors and blocked the growth of existing ones. These data suggest that pharmacological 

inhibition of Jak may be relevant for the treatment of human CRC. 

 

Inhibition of the gp130-Jak-Stat3 pathway causes growth arrest in human CRC cells with 

mutation in the Apc-β-catenin pathway 

We asked if co-activation of Stat3 and β-catenin occurs in human CRC and is required for the 

growth of established human CRC tumors. We evaluated gene expression in two independent 

cDNA microarray data sets from CRC patients (27, 28). We observed a marked increase of target 

genes for the Wnt-β-catenin (17, 29) and Stat3 signaling pathways (30, 31) in human CRC 

samples when compared to matched normal colons (Fig. S3).  

 

In order to assess whether inhibition of Jak activity conferred therapeutic benefits to advanced-

stage human CRC xenografts in mice, we administered AZD1480 to immune-compromised mice 

(BALB/c-nude) carrying CRC cell line xenografts of SW480 (mutant for APC, KRAS, TP53), 

DLD1 (mutant for APC, TP53, PIK3CA), LIM1899 (mutant for CTNNB1 encoding β-catenin, 
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KRAS), or RKO (mutant for PIK3CA, BRAF) cells. AZD1480 inhibited the growth of xenografts 

from all cell lines with mutations in the Apc-β-catenin pathway, but not from RKO cells (Fig. 5A 

and S4A). Complete ablation of Stat3 in mouse embryo fibroblasts can induce a compensatory 

increase in Stat1, thereby skewing the IL6 response towards a Stat1-interferon-γ-dependent 

pathway and associated anti-tumour immune response (32). However, the abundance of Stat1 

(Fig S4B) and the expression of the prototypic interferon-γ-Stat1 pathway target gene IP-10 (32) 

were unaffected in SW480 xenografts of AZD1480-treated mice when compared to vehicle-

treated mice (Fig. S4C). Since the BALB/c-nude host mice are also immune compromised, these 

results collectively support the notion that inhibition of gp130-Jak-Stat3 signaling limits tumor 

growth through mechanisms independent of restoring the adaptive anti-tumor immune response 

(25).  

 

The observation that AZD1480 did not inhibit the growth of RKO xenografts suggested that the 

gp130-Jak-Stat3 pathway may be rate limiting only in CRC cells with mutations that confer 

constitutive activation of β-catenin. To directly test this hypothesis, we used an isogenic pair of 

CRC cell lines comprising parental SW480 cells, which express only mutated APC, and 

SW480APC cells, which are engineered to re-express wild-type APC (33). Compared to parental 

SW480 cells, SW480APC cells had reduced abundance of total and nuclear β-catenin and 

consequently reduced ability to activate a Wnt reporter (TOPFLASH) (Fig. S5A and B). When 

exposed to IL11, a gp130-activating cytokine that plays a major role in the gastrointestinal 

epithelium (11), SW480 and SW480APC cells showed a similar increase in Tyr705 phosphorylated 

Stat3, which was abrogated by simultaneous exposure to AZD1480 (Figs. S5C and D). However, 

exposing SW480 or SW480APC cells to AZD1480 or IL11 did not alter the abundance or 
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localization of β-catenin or the activity of TOPFLASH (Fig. S5A, C and E). Meanwhile addition 

of AZD1480 or S3I-201 impaired colony formation in soft agar of SW480, but not of SW480APC 

cells (Figs. 5B), despite reducing the expression of SOCS3 in both cell lines (Fig. S5F). Exposure 

to IL11 increased colony formation of both SW480 and SW480APC cells (Fig. 5B), suggesting 

that gp130-Jak-Stat3 signaling can stimulate IEC proliferation irrespective of APC mutational 

status. Exposing SW480 or SW480APC cells to an inhibitor of the epidermal growth factor 

receptor, which is frequently overexpressed in CRC (34) and may mediate Stat3 activation 

during epithelial regeneration of the midgut in flies (35), did not affect colony formation (Fig. 5B) 

or SOCS3 expression (Fig. S5F). Thus, Jak-mediated activation of Stat3 was rate-limiting for the 

proliferative response of SW480 cells with constitutive activation of β-catenin, suggesting a 

specific role of gp130-Jak-Stat3 signaling in tumor cells with aberrant β-catenin signaling. 

   

Inhibition of gp130-Jak-Stat3 signaling does not affect intestinal homeostasis 

We observed that gp130-Jak-Stat3 signaling regulated intestinal regeneration without altering 

expression of Wnt-β-catenin target genes (Fig. 1B and C). To investigate whether inhibition of 

gp130-Jak-Stat signaling impaired tumor formation also without affecting the high aberrant Wnt-

β-catenin signaling observed in Apc-mutant CRC xenografts, we monitored gene expression. As 

expected, we observed that SW480 tumors from AZD1480-treated mice had reduced expression 

of the STAT3 target genes SOCS3 and CCND1, but not of the Wnt-β-catenin target genes MYC 

and LGR5 compared to vehicle-treated mice (Fig. 6A). Likewise, immunohistochemical analysis 

revealed similar amounts of β-catenin and the protein encoded by the Wnt-β-catenin target gene 

CD44 in SW480 xenografts from AZD1480-treated and vehicle-treated mice (Fig. S7B).  

 



16 
 

Stat3 is essential for survival of intestinal stem cells (36), and therefore, inhibition of gp130-Jak-

Stat3 signaling could affect normal intestinal homeostasis. We analysed non-cancerous regions 

of the small intestines and colons of BALB/c-nude mice carrying  SW480 xenografts, which 

were injected with 5-bromo-2'-deoxyuridine (BrdU) and gavaged daily with AZD1480 or vehicle 

control for 14 days.  In addition, we labelled sections of these intestines with the periodic acid-

Schiff (PAS) method to detect mucins (37) and with antibodies to detect lysozyme, a marker of 

Paneth cells (38). This analysis revealed a comparable size of the proliferative and differentiated 

IEC compartments in the small intestines of AZD1480- and vehicle-treated mice (Fig. S6A). 

Moreover, the positioning of Paneth cells, which is disrupted by excessive Wnt-β-catenin 

signaling (17), was similar in AZD1480- and vehicle-treated mice (Fig. S6A). Consistent with 

this observation, the expression of Wnt-β-catenin target genes was similar in IECs isolated from 

AZD1480- and vehicle-treated mice (Fig. S6B). Disruption of intestinal homeostasis can lead to 

loss of body weight; however, up to two weeks of AZD1480 administration did not affect total 

body weight in these mice (Fig. S6C). Thus, partial systemic inhibition of gp130-Jak-Stat3 

signaling had no overt effects on intestinal homeostasis, and is likely to be well tolerated.  

 

gp130-Jak-Stat3 signaling suppresses cell cycle inhibition by p16 and p21 upregulation via 
the corepressor Bmi-1 

We hypothesized that inhibition gp130-Jak-Stat3 activation may induce growth arrest in Apc-

mutant cells. Intestinal tumors of Lgr5CreERT2; Apcfl/fl; gp130ΔStat/+ mice had increased abundance 

of the cell cycle inhibitor p21 compared to tumors in Lgr5CreERT2; Apcfl/fl mice (Fig. S7A). 

Likewise, tumors in ApcMin/+; gp130ΔStat/+ mice had increased abundance of p16 (Fig. 6B) and 

p21 (Fig. 6C) compared to tumors in ApcMin/+ littermates. Similarly, SW480 xenografts from 
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AZD1480-treated mice had increased abundance of p21 (Fig. 6D) and expression of CDKN1A, 

the mRNA encoding p21 (Fig. 6A) than tumors in vehicle-treated mice.  

Because the polycomb-group protein Bmi-1 transcriptionally represses Cdkn1a and Cdkn2a, 

which encodes p16 (39), we investigated whether gp130-Jak-Stat3 signaling affects the amount 

of Bmi-1. Expression of Bmi1 was increased in IECs isolated from gp130F/F mice compared to 

those from wild-type mice (Fig. S7C). Injection of IL11 also increased the expression of Socs3 

and Bmi1 in IECs isolated from gp130F/F mice (Fig. S7D). In contrast, the Bmi-1 mRNA (Fig. 

6A) and protein (Fig. S7B) were reduced in SW480 xenografts from AZD1480-treated mice 

compared to vehicle-treated mice.  

 

We analyzed whether Bmi-1 was a direct target of Stat3. Sequence analysis of Bmi1 identified a 

putative Stat3-binding site in intron 1 starting at nucleotide position 4077 (Fig. S7E), and which 

was similar to the Stat3 consensus binding motif CTCNNNGAG (40). Moreover, exposing 

SW480 cells to IL11 increased chromatin immunoprecipitation (ChIP) of a region of intron 1 of 

BMI1 using an antibody for Stat3 (Fig. 6E). We created a luciferase reporter construct containing 

a region (base pairs 18681328-18681883; chr 2 of intron 1 of Bmi1. Exposing human embryonic 

kidney (HEK)293T cells to Hyper-IL6, a designer fusion protein comprising IL6 and the soluble 

part of the IL6Rα (41)  significantly increased the activity of this reporter (Fig. S7F) to a similar 

degree as other reporters with single intronic Stat3-binding sites (42). Thus, these data support 

the conclusion that Stat3 directly binds to Bmi1 and induces its transcription in a gp130-Jak-Stat3 

signaling-dependent manner. 
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We directly tested whether Bmi1was required for intestinal tumor growth in mice. Heterozygous 

knockout of Bmi-1 (Bmi1+/-) decreased the size of tumors (Fig. 6F) and increased the abundance 

of p21 and p16 in tumors (Figs. 6B and C) in the small intestine when crossed on to a ApcMin/+ 

mutant background. Collectively, these data suggest that gp130-Jak-Stat3 signaling is rate-

limiting for the growth of Apc-mutant intestinal tumors by repressing expression of the cell cycle 

inhibitors p21 and p16 through induction of the transcription of Bmi1 (Figure summary).  
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DISCUSSION 

 

Wnt-β-catenin signaling is required for the homeostasis and regeneration of the intestinal 

epithelium (4, 5) and is an etiological factor for the progression of intestinal tumors (43). Here, 

we found that inhibition of the gp130-Jak-Stat3 pathway limits the proliferative response of IECs 

during intestinal regeneration and tumorigenesis. 

 

Excess activation of Stat3 in IECs due to the release of inflammatory cytokines by infiltrating 

myeloid cells suppresses apoptosis and promotes proliferation in mouse models of colitis-

associated CRC (13). Here, we found that genetic activation of the gp130-Jak-Stat3 pathway 

promotes the formation of intestinal tumors in the absence of overt inflammation and is required 

for regeneration of intestinal epithelia in response to γ-irradiation. Systemic reduction of Stat3 

expression or suppression of gp130-mediated activation of Stat3 reduced the number and size of 

tumors and impaired regeneration in the intestine. Likewise, IEC-specific reduction of Stat3 

expression also reduced tumorigenesis that resulted from Apc gene inactivation. Furthermore, the 

growth of xenografts of human APC-mutant CRC cell lines in immune-compromised mice was 

impaired by systemic administration of AZD1480. Human CRC cells, irrespective of their APC 

status, had basal STAT3 activity, which was modulated in response to inhibition or IL11-

mediated stimulation of gp130-Jak activity. Furthermore, our data using epithelial organoid 

cultures suggest that at least a subset of IECs have paracrine or autocrine feed-forward 

mechanisms to produce and respond to one or more gp130-activating cytokines (11). Thus, our 

results suggest that the anti-tumor effect of Stat3 suppression was mediated by IEC-intrinsic 
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mechanisms and not the adaptive immune response, which can be reactivated in myeloid, 

dendritic, and natural killer cells in mice with systemic inhibition Stat3 (44).  

 

Because the gp130-Jak-Stat3 and Wnt-β-catenin pathways promote the expression of common 

target genes, including MYC and CCND1 (45, 46), it is possible that these pathways cooperate in 

tumor cells to induce transcription of these genes above a threshold required for cell proliferation. 

However, genetic or pharmacological inhibition of Stat3 did not reduce the accumulation of 

nuclear β-catenin or the expression of β-catenin target genes (7).  

 

Our data suggested that Bmi-1 plays a role in controlling cell proliferation in intestinal cells with 

increased activation of β-catenin. Bmi1 is overexpressed in various solid cancers (47, 48), 

including CRC (49), where increased Bmi1 expression correlates with poor prognosis (50).  Bmi-

1 is a regulatory subunit of the polycomb repressor complex-1. In embryonic fibroblasts cells, 

BMI-1 represses transcription of CDKN2A, which encodes the cell cycle inhibitory proteins p16 

and p14Arf (39). In mouse neural stem cells, Bmi-1 also represses expression of Cdkn1A, 

encoding the cell cycle inhibitor p21 (51).  Knockdown of Bmi-1 causes cell cycle exit of 

cultured CRC cells with high Wnt-β-catenin signalling, but does not reduce the expression of 

Wnt-β-catenin target genes in these cells (52).  Likewise, activation of β-catenin in Bmi1 

haploinsufficient mice only results in small intestinal adenomas (53).  The latter observation is 

functionally compatible with a role of Bmi-1 in self-renewal of Lgr5+ intestinal stem cells 

(reviewed in (54). 
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Linking the proliferative capacity of intestinal crypts to a “gp130/Stat3 rheostat” appears 

phylogenetically conserved, as it is also required for regeneration of the fly mid-gut (35).  In 

mammals, this enables the intestine to confine rapid mucosal regeneration to sites of greatest 

damage and hence greatest inflammation (55).  This mechanism is reinforced by the capacity of 

the inflamed stroma to convert IEC through a NF-κB dependent mechanism to intestinal stem 

cells (56). Accordingly, homozygous gp130ΔStat mice display prolonged wounding of the 

intestinal mucosa and associated ulceration (57).  Conversely, when the regenerative process is 

hijacked by APC- or β-catenin mutant cells, and irrespective of additional compounding 

mutations (e.g. KRAS, TP53), excessive STAT3 activity fuels the growth of the corresponding 

tumors. Accordingly, excessive STAT3 signaling is observed in a majority of human CRC (58). 

Here we provide comprehensive evidence that partial suppression of systemic gp130-Jak-Stat3 

signaling is sufficient to limit tumor growth by reducing Bmi-1 dependent repression of p21 and 

p16 in models of familial inherited and sporadic CRC (Fig. 6G). Consistent with this model, 

intestinal tumorigenesis in fully gp130-Jak-Stat3 signaling-proficient Apc-mutant mice remains 

unaffected after ablation of p21 (59), because here we showed that in these situations p21 

expression is already repressed through a Bmi-1-dependent mechanism.  	
  

 

A major obstacle to targeting Wnt-β-catenin signaling in cancer is the reliance of the intestinal 

epithelium on this pathway for renewal and regeneration. Tankyrase inhibitors, which promote 

degradation of β-catenin, have limited clinical utility for cancer because of toxicity associated 

with inhibition of IEC homeostasis (60). Other recent strategies have focused on mTorc1 (61), 

Notch (62), and components of other pathways that are not mutated in CRC but are rate-limiting 

for CRC proliferation. Clinical trials with gamma-secretase inhibitors, which block Notch 
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signaling, reveal gastrointestinal toxicity (63), whereas single agent therapies targeting the 

mTOR pathway conferred limited benefit (64). Here, we found that partial inhibition of gp130-

Jak-Stat3 signaling selectively blocked proliferation of intestinal tumors driven by APC-

mutations without perturbing intestinal homeostasis or causing the side-effects common in 

models using complete Stat3 ablation (36, 65). Therefore, our findings in mice provide proof of 

concept for the development of existing gp130-Jak-Stat3 pathway inhibitors as therapeutic 

modalities for CRC. 
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MATERIAL AND METHODS 

 

Mice 

All procedures involving animals were approved by the Ludwig Institute for Cancer Research 

Department of Surgery Animal Ethics Committee and the Walter and Eliza Hall Institute Animal 

Ethics Committee. The gp130F/F, gp130ΔStat/+, Stat3+/-, ApcMin/+ and Lgr5CreERT2; Apcfl/fl mice have 

been descried previously (12, 15, 57) and compound ApcMin/+; gp130F/F, Lgr5CreERT2; Apcfl/fl; 

gp130ΔStat/+ and ApcMin/+; gp130ΔStat/+ strains were derived from corresponding inter-crossings. 

Lgr5CreERT2; Apcfl/fl; Stat3fl/+ and ApcMin/+; Bmi1+/- mice were generated from Stat3fl/fl (66) and 

Bmi1+/- mice (67), respectively. All mice were co-housed and unless indicated, all mice were on 

an inbred C57BL/6 genetic background using appropriate littermates as controls. A single daily 

Tamoxifen injection occurred over 4 consecutive days with 3mg/mouse on day 1 and 2mg/mouse 

during the following days. 

 

Irradiation induced regeneration 

Adult mice were irradiated with a single dose of 14 Gy of γ-irradiation (0.414 Gy/min) and 

intestines were collected 72 hours later (4).  

 

Tumor xenografts  

Female BALB/c-nude mice were injected subcutaneously with 2x106 SW480 cells, or 5x106 

DLD1, LIM1899 (51) and RKO cells. Cells were resuspended in Matrigel (BD Biosciences)/ 

PBS (1:1) to a final volume of 200 µl.  Once tumors became palpable (>100 mm3) approximately 

5 days later, AZD1480 (30 mg/kg, Astra-Zeneca) was administered by daily oral gavage (16). 

BrdU was injected i.p. at 50mg/kg, 2h prior to tissue collection. 
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Histology 

Mouse tissue collection and processing was carried out as previously detailed (4). Hematoxilin 

and Eosin-stained sections were scanned using an Aperio ScanScope XT (Aperio, USA) 

pathology slide scanner with a 20x PlanApo NA 0.6 objective and areas of interest were 

extracted using Aperio ImageScope software v11.1.2.760. Periodic Acid/Schiff stain was 

performed as described (7). Tumor burden was estimated by measuring the area covered by 

adenomas on histological cross-sections of rolled intestines using MetaMorph software v7.7.7, 

and then normalized to the length of the intestinal section on that slide (24). 

 

Organoid Culture 

Intestinal crypts from small intestines were harvested, washed and resuspended at 2000 crypts 

per ml of Matrigel (BD Biosciences) and 50 µl was then dispensed in each well of a 24-well 

plate. Once the Matrigel had set, serum-free culture medium was added, and the organoids were 

cultured for seven days as described (18). Organoid cultures were imaged on a Nikon Ti-E 

microscope using DIC contrast with a 10x PlanApo NA 0.3 objective. A focal stack of images 

was collected 10 µm apart and processed through the “Best Focus” function of MetaMorph 

v7.7.7 (Molecular Devices, USA) to generate the final image of individual organoids.   

 

Tissue Culture and Soft Agar Colony Growth Assay 

SW480 and SW480APC cells (33) were seeded in 2 ml of RPMI media supplemented with 10 % 

FBS and 1 % penicillin/streptomycin in 35 mm culture dishes at a density of 2x105 cells per dish.  

Three days later cultures were exposed to AZD1480 (2 µM) for 30 min. Co-immunofluorescence 

was then performed with antibodies to rabbit phospho-Stat3 (Tyr705, Santa Cruz #9134s, 1:200 

dilution) and mouse β-catenin (Transduction Laboratories, 1:400).  
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Colony formation assays of SW480 cells in soft agar were performed as described (33) in the 

presence of methylcellulose (vehicle control), AZD1480 (2 µM), the Stat3 inhibitor S3I-201 

(Biovision, 50 µM), epithelial growth factor receptor (EGFR) inhibitor AG1478 (Cell Signaling, 

1µM), or recombinant human IL11 (Genetics Institute, 10 ng/ml) for 10 days.  

 

Immunohistochemistry and Immunofluorescence  

Tissues were fixed and immunohistochemistry performed as described previously (7).  Primary 

antibodies used were rabbit phosphorylated Tyr705 Stat3 (Santa Cruz #9134s, 1:150), rabbit 

Thr202/Tyr204 p42/44 MAPK (Cell Signaling #9101, 1:150), mouse β-catenin (Transduction 

Laboratories, 1:300), mouse BrdU (BD Biosciences, 1:300), rabbit PCNA (Santa Cruz #7907, 

1:100), rabbit c-Myc (Santa Cruz #C1309, 1:200), rabbit Lysozyme (Neomarkers RB-372, 

1:100) and goat p21 (Santa Cruz #Sc-397-G; 1:100). To assess the distribution of PCNA and β-

catenin, we co-stained sections of mouse intestine using primary antibodies detailed above and 

fluorescent secondaries (rabbit IgG Alexa-488 for PCNA and mouse IgG Alexa-546 for β-

catenin).  Slides were tile scanned on a Nikon Ti-E microscope using a 10x PlanApo NA0.3 

objective. The area of tumors was outlined manually to generate binary masks used to measure 

area, average intensity, shape factor, and intensity standard deviation of nuclei with MetaMorph 

v7.7.7. These values were assembled in Microsoft Excel and analysed with FlowJo . 

 

Biochemical analysis 

Gene expression analysis by reverse transcription and quantitative polymerase chain reaction 

(RT-qPCR) was performed using the SybrGreen method (ABI) as described (17). For RT-pPCR 

primer sequences please see Table S1.  Fold change was calculated using the 2-ΔΔCT method (68).  
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Protein lysates were separated by SDS-PAGE and transferred to nitrocellulose. For Western blot 

analysis membranes were blocked in 5 % non-fat milk powder in PBS + 0.05% Tween-20 buffer 

and probed overnight with antibodies detecting p16 (Santa Cruz; #sc-467), Bmi-1 (Millipore; 

#05-637), Actin (Sigma; #A2066) or Gapdh (Santa Cruz; #sc-69778). All primary antibodies 

were diluted 1:1000 in 5% BSA (w/v) or 5% non-fat milk powder(w/v) in PBS + 0.05% Tween-

20 buffer. Membranes were then incubated with an appropriate HRP-conjugated secondary 

antibody diluted at 1:3,000 in PBS + 0.05% Tween-20, for 2 hours at room temperature. Signals 

were visualized with a Chemidoc XRS+ (BioRad, Hercules, CA) chemiluminescence detection 

system. 

 

For ChIP assays, 1 × 107 SW480 or SW480APC cells were stimulated with IL11 (0.5 µg/ml) for 

30 minutes. Chromatin was cross-linked with 1% formaldehyde for 10 minutes and sonicated to 

an average size of 400 base pairs using the Bioruptor Plus (Diagenode, Denville, USA). 

Immunoprecipitation was performed using Protein A Dynabeads (Life Technologies, Mulgrave, 

Australia).  Each sample contained 10 µg of phosphorylated-STAT3 antibody (sc-482X, Santa 

Cruz Biotechnology, CA) or rabbit IgG (#02-6102, Life Technologies, Mulgrave, Australia). The 

crosslinks were reversed in 0.2 M NaCl in the presence of RNaseA (Life Technologies 

Mulgrave, Australia) at 65°C, over night. DNA fragments were purified using phenol chloroform 

extraction and ethanol precipitation. The immunopreciptated DNA was amplified by quantitative 

PCR using primers specific for intron1 of the BMI-1 gene (forward: 5'-GCT GGA GGA CAA 

ATG GAA GA-3'; reverse: 5'-TGG GCT GTC CTA ACG TTT CT-3') and the GAPDH promoter 

(forward: 5'-TAC TAG CGG TTT TAC GGG CG-3'; reverse: 5'- TCG AAC AGG AGG AGC 

AGA GAG CGA-3').  
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Luciferase Reporter Assay 

A 555 bp region around the predicted Stat3 binding site in the first intron of the murine Bmi-1 

gene (40) was amplified from genomic DNA using the forward primer 5'-AAG CTC GAG AGG 

GTT TAA GCA CCT TG-3' and reverse primer 5'-AAG TCT CCC AAA CCT GCA GCA ACT 

AT-3' and subcloned into pGL4_23 [luc2/minP] (Promega) to yield the pBmi-1:luc reporter 

plasmid. HEK293T cells were seeded in DMEM supplemented with 10 % FBS in 96 well plates 

at 1x104 cells/well the day before transfection.  The pBmi-1:luc and pCMV-renilla plasmids were 

co-transfected at a ratio of 40:1 using FuGENE 6 (Roche). Twenty-four hours later, cells were 

stimulated with the indicated concentrations of Hyper IL-6 (gift from S. Rose-John, Kiel, 

Germany) (41) for 4 hours. Luciferase activity was detected using the Dual-Luciferase Reporter 

Assay (Promega) and measured with a Lumistar Galaxy luminometer (Dynatech Laboratories). 

Luciferase assays using TOPFLASH were performed as described (41). Cells were treated with 

vehicle (DMSO), AZD1480 (2µM) or IL11 (10ng/ml) for 30 minutes before cell lysates were 

collected.  
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Supplementary Materials 
 

Fig. S1  gp130-Jak-Stat3 signaling regulates intestinal regeneration and tumorigenesis. 

Fig. S2  gp130-Jak-Stat3 signaling limits induced colonic tumorigenesis in in Lgr5CreERT2; 

Apcfl/fl mice and human CRC xenografts. 

Fig. S3  Gene signature for Wnt and gp130-Jak-Stat3 signaling co-exist in human colorectal 

cancers. 

Fig S4  Xenograft growth is supressed by partial inhibition of the gp130-Jak-Stat3 pathway 

without effecting Stat1. 

Fig. S5  Stimulation of gp130-Jak-Stat3 signaling does not affect aberrant Wnt-β-catenin 

signalling in the SW480 human CRC cell line. 

Fig. S6  Inhibition of gp130-Jak-Stat3 signaling does not affect intestinal homeostasis. 

Fig. S7 Inhibition of gp130-Jak-Stat3 signaling relieves Bmi1-mediated repression of the 

gene encoding p21 intestinal tumors. 

Table S1 Primer sequences used for RT-qPRC 
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FIGURE LEGENDS 

 

Fig. 1.   Impaired gp130-Jak-Stat3 signaling supresses intestinal regeneration in response 

to irradiation and the growth of crypts in organoid culture.  

A Immunohistochemical analysis for the proliferation marker PCNA on sections of small 

intestines collected 72h after γ-irradiation of mice of the indicated genotypes gavaged daily 

with AZD1480 (30 mg/kg) for 3 days prior to and 3 days after irradiation. Scale bar = 100 

µm. The graph shows the quantification of intact, PCNA-positive crypts in cross sections 

from the proximal small intestine. Data are mean ± S.E.M of 3 mice per cohort. * p < 0.04. 

Mann-Whitney U-test. WT = wild-type. 

B Immunohistochemical analysis for c-Myc and β-catenin on sections of small intestines 

from mice of the indicated genotype 72h after γ-irradiation.  Regenerating crypts (black 

arrows) and non-regenerating epithelium (red arrows) are marked.  Scale bar = 50 µm. 

Images are representative of 3 mice per cohort. 

C Graph of the relative mRNA abundance for β-catenin target genes in IECs isolated from 

small intestines of wild-type and gp130ΔStat/+ mice 72 h after γ-irradiation. Data are mean ± 

S.E.M. of 3 mice per cohort. * p < 0.04. Mann-Whitney U-test. 

D Representative organoids grown from crypts of the small intestines of gp130F/F or WT mice 

or from WT mice and cultured in the presence of the Stat3 inhibitor S3I-201 (Stat3i, 7.5 

µM) from day 3 after seeding.  Arrows point to budding crypt-like structures. Scale bar = 

50 µm. The graph shows the quantification of budding crypt-like structures on individual 
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organoids. Crypts per organoid were counted for every organoid in a 10x field of view over 

a 5 day period.  Data are mean ± SD. N=2.  

 

Fig. 2. gp130-Jak-Stat3 signaling is rate-limiting during spontaneous intestinal 

tumorigenesis in ApcMin/+ mice.  

A  Quantification of number and size of tumors in the small intestines and colon of 150 day 

old ApcMin/+ and ApcMin/+; gp130ΔStat/+ mice. Data are mean ± S.E.M. of 8 mice per cohort. * 

p < 0.002. Mann-Whitney U-test. 

B Representative images of emerging colonic tumors labelled with methylene blue in 100 

day old mice of the indicated genotypes.  Scale bar = 500 µm. The graphs show 

quantification of the number and area of intestinal tumors. Data are mean ± S.E.M. of 5 

mice per cohort. *  p < 0.02. Mann-Whitney U-test.  

C Quantification of the number and area of intestinal tumors in mice of the indicated 

genotypes. Data are mean ± S.E.M. of 5 mice per cohort. *  p < 0.02. Mann-Whitney U-

test.  

 

Fig. 3. gp130-Jak-Stat3 signaling is rate-limiting during induced intestinal tumorigenesis in 

Lgr5CreERT2; Apcfl/fl mice. 

A     Representative images of haematoxylin- and eosin-stained cross-sections of small intestines 

from mice of the indicated genotypes and collected 35 days after tamoxifen administration. 

Neoplastic foci (microadenoma) are indicated by arrowheads and tubular adenomas are 

indicated by arrows. Scale bars = 1mm. The graphs show the quantification of the cross-

sectional area of intestinal tumors. Data were normalized for the length of the intestine on 
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the section analysed and represent the mean ± S.E.M. of 3 mice per cohort. * p < 0.04. 

Mann-Whitney U-test.     

B Immunofluorescence staining for β-catenin and PCNA in sections of intestinal tumors from 

adult mice of the indicated genotype 35 days after tamoxifen administration.  Scale bar = 

50 µm.  The graph shows the quantification of β-catenin and PCNA labelled epithelial cells 

in tumors. Data were normalized for the total number of tumor-associated IECs using 

DAPI-stained nuclei as reference and represent the mean ± S.E.M. of 3 mice per cohort. * 

p < 0.04. Mann-Whitney U-test. 

 

Fig. 4. AZD1480 limits intestinal tumorigenesis in in Lgr5CreERT2; Apcfl/fl and ApcMin mice. 

A     Representative images of haematoxylin- and eosin-stained cross-sections of small intestine 

from Lgr5CreERT2; Apcfl/fl mice and collected 35 days after tamoxifen administration and 

daily gavages with AZD1480 (30 mg/kg) or vehicle. Neoplastic foci (microadenoma) are 

indicated by arrowheads and tubular adenomas are indicated by arrows. Scale bars = 1mm. 

The graphs show the quantification of the cross-sectional area of intestinal tumors. Data 

were normalized for the length of the intestine on the section analysed and represent the 

mean ± S.E.M. of 3 mice per cohort. * p < 0.04. Mann-Whitney U-test.     

B Enumeration of total number and size of intestinal tumors in individual ApcMin mice at 6 

weeks of age and 12 weeks of age following treatment with daily gavages of AZD1480 (30 

mg/kg) or vehicle for the last 6 weeks. NSD = not significantly different. Data represent 

the mean ± S.E.M. of 3 mice per cohort. * p < 0.04. Mann-Whitney U-test. 
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Fig. 5. Inhibition of gp130-Jak-Stat3 signaling blocks tumor growth in human CRC cells 

with activating mutations in the Wnt-β-catenin pathway. 

A Graphs of the volume of tumor xenografts in BALB/c-nude mice injected subcutaneously 

with the indicated human CRC cell lines and gavaged daily with AZD1480 (30 mg/kg, 

daily) or vehicle starting on the 5th day after cell injection. Data are mean ± S.E.M. of 8 

tumors per condition. * p < 0.039. Student's t-test. NSD = not significantly different. 

B Representative photograph of SW480 and SW480APC CRC cells grown for 10 days under 

colony forming conditions in soft agar in the presence of AZD1480 (2 µM) or vehicle.  

Scale bar = 200 µm. The graph shows the quantification of normalized number of colonies 

containing >50 cells. Data are mean ± S.E.M. of triplicate cultures from 3 independent 

experiments. * p < 0.04. Mann-Whitney U-test.  

 

Fig. 6. Inhibition of gp130-Jak-Stat3 signaling promotes cell cycle inhibition through Bmi1. 

A Graph of the relative mRNA abundance for the indicated genes in SW480 xenografts from 

mice that were gavaged daily for 35 days with AZD1480 (30mg/kg, daily) or vehicle 

control. Data are mean ± S.E.M. of 3 mice per condition. * p<0.04. Mann-Whitney U-test. 

B Western blot analysis for p16 in intestinal tumors of 18 week old mice of the indicated 

genotypes. Gapdh was used as loading control. Each lane represents an individual mouse. 

C Immunohistochemical analysis of p21 in intestinal tumors of 18 week old mice of the 

indicated genotypes. Scale bar = 100µm. Images are representative of 3 mice per genotype. 

D Immunohistochemical analysis of p21 in SW480 CRC xenografts resected from mice that 

were gavaged daily for 35 days with AZD1480 (30mg/kg, daily) or vehicle control.  Scale 

bar = 100µm. Images are representative of 3 mice. 



35 
 

E Graph of the relative enrichment of the indicated loci using ChIP with antibodies targeting 

IgG or phosphorylated Tyr205 Stat3 and lysates from SW480 cells exposed to IL11 

(500ng/ml) or PBS for 30 minutes. Data are mean ± S.E.M. of 3 independent experiments. 

*  p < 0.04. Student’s t-test.       

F Quantification of the number of tumors in the small intestine of 18 week old ApcMin/+ or 

ApcMin/+; Bmi1+/- mice. Data are mean ± S.E.M. of 3 mice per cohort. * p < 0.04. Mann-

Whitney U-test. 

G Schematic representation showing how the gp130-Jak-Stat3-Bmi-1 pathway acts as a 

rheostat to regulate Wnt-β-catenin activated cell proliferation (Apc* = mutated Apc).  
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Fig. S1   gp130-Jak-Stat3 signaling regulates intestinal regeneration and tumorigenesis. 

Fig. S2  gp130-Jak-Stat3 signaling limits induced colonic tumorigenesis in in Lgr5
CreERT2

; Apc
fl/fl 

mice 

and human CRC xenografts. 

Fig. S3   Gene signature for Wnt and gp130-Jak-Stat3 signaling co-exist in human colorectal cancers. 

Fig S4  Xenograft growth is supressed by partial inhibition of the gp130/Jak/Stat3 pathway without 

effecting Stat1. 

Fig. S5  Stimulation of gp130-Jak-Stat3 signaling does not affect aberrant Wnt-β-catenin signalling 

in the SW480 human CRC cell line. 

Fig. S6   Inhibition of gp130-Jak-Stat3 signaling does not affect intestinal homeostasis. 

Fig. S7 Inhibition of gp130-Jak-Stat3 signaling relieves Bmi1-mediated repression of the gene 

encoding p21 intestinal tumors. 

Table S1  Primer sequences used for RT-qPRC 

 

  



 

Figure S1. gp130-Jak-Stat3 signaling is required for intestinal regeneration and tumorigenesis.  

(A) Photomicrographs of organoids grown from crypts from the colon or small intestine of wild-type mice exposed 

to vehicle (DMSO), AZD1480 (2µM) or IL-11 (10ng/ml) for 7 days. Scale bar = 100 μm. (B) Quantification of 

organoid size from cultures depicted in (A). Data are mean ± SEM of duplicate cultures from 2 independent 

experiments. * p < 0.04. Mann-Whitney U-test. (C) Photomicrographs of haematoxylin- and eosin-stained sections 

of intestinal tumors of 150 day old Apc
Min/+

 and Apc
Min/+

;gp130
F/F

 , or of Lgr5Cre
ERT2/+

;Apc
fl/fl

;Stat3
fl/+ 

36d after 

tamoxifen are non-invasive and display characteristics of tubular adenomas.  Scale bar = 100 μm. Images are 

representative of 3mice. (D) Relative abundance of the mRNA for the Stat3 target gene Socs3 and for the Wnt-β-

catenin target gene c-Myc in intestinal tumors of 100 day old mice of the indicated genotypes. Data are mean ± SEM 

of 3 mice per cohort. * p < 0.04. Mann Whitney U-test. NSD = not significantly different. (E) Immunohistochemical 

staining for phosphorylated MAPK (Erk1/2) Thr202/Tyr204 MAPK in intestinal tumours of mice of the indicated 

genotypes. Images are representative of 3 mice.  
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Figure S2.  gp130-Jak-Stat3 signaling limits colon tumorigenesis in Lgr5
CreERT2

; Apc
fl/fl 

mice and human CRC 

xenografts. (A) Haematoxylin- and eosin-stained cross-sections of colons from mice of the indicated genotypes 

collected 35 days after tamoxifen administration. Some mice also received 35 days of daily gavage of AZD1480 

(30mg/kg, daily) or vehicle. Neoplastic foci (arrowhead) and tubular adenomas (arrows) are indicated. Scale bar = 

1mm. 
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Fig. S3. Gene signature for Wnt and gp130-Jak-Stat3 signaling co-exist in human colorectal cancers.  

Heatmaps of the Z-scores representing the relative abundance of mRNAs of β-catenin and Stat3 target genes in CRC 

and normal colon biopsies.  Oncomine (http://oncomine.org) was used to extract data from 12 normal and 70 CRC 

samples from Hong et al. [GSE9348; (27)] and from 24 normal and 36 CRC samples from Skrzypczak et al. 

[GSE20916; (28) ]. Z-scores were calculated by subtracting the mean for the corresponding gene probe and dividing 

by the standard deviation. Individual samples are aligned vertically and ordered according to the average Z-score 

across samples. Fold change (FC) was calculated as the mean of CRC samples divided by the mean of control 

samples for each gene. p < 0.001 comparing normal to CRC samples for each gene. Mann-Whitney U test.  

 

  

A

4.87

5.93

6.43

2.81

4.36

4.13

2.31

6.77

5.24

FC

FC

2.25

3.39

4.87

2.36

2.09

14.8

2.20

12.61

3.53

Figure 4

S
ta

t3
 p

a
th

w
a
y

S
ta

t3
 p

a
th

w
a
y

W
n
t
p

a
th

w
a
y

W
n
t
p

a
th

w
a
y

SOCS3

REG3A

ICAM1

SPP1

CCND1

CD44

LGR5

AXIN2

SOX9

Normal
colon Colon cancer

SOCS3

REG3A

ICAM1

SPP1

CCND1

CD44

LGR5

AXIN2

SOX9

Colon cancerNormal colon

Hong et al. 2010

Skrzypczak et al. 2010

http://oncomine.org/


 

Fig S4. Xenograft growth is supressed by partial inhibition of the gp130-Jak-Stat3 pathway without effecting 

Stat1. (A) Tumor xenografts resected from BALB/c-nude mice injected subcutaneously with human SW480 or 

LIM1899 CRC cell lines and gavaged daily with AZD1480 (30 mg/kg) or vehicle starting on the 5
th

 day after cell 

injection. Photograph of representative tumors were taken 40 (SW480 cells) or 30 (LIM1899 cells) days after cell 

injection. Scale bar = 1 cm (B) Immunohistochemical analysis for Stat1 in intestinal tumours from mice of the 

indicated genotype 36 days after tamoxifen administration. Images are representative of 3 mice. (C) Quantification 

of the relative mRNA abundance for the interferon-γ-Stat1 target gene IP-10 in xenografts resected from AZD1480 

and vehicle-treated mice from Fig. 5A (n = 3 mice).   
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Figure S5. Stimulation of gp130-Jak-Stat3 signaling does not affect aberrant Wnt-β-catenin signalling in the 

SW480 human CRC cell line. (A) Immunofluorescence staining for β-catenin or phosphorylated Tyr
205

 Stat3 (P-

Stat3) in SW480 and SW480
APC

 cells after exposure to vehicle (DMSO) or AZD1480 (2μM). Scale bar = 20 μm. (B) 

TOPFLASH-reporter activity in SW480 and SW480
APC

 cells.  Luciferase activity was normalized to Renilla 

luciferase. Data are mean ± SEM of triplicates from 3 independent experiments. *p = 0.04; Mann-Whitney U-test. 

(C and D) Western blot analysis for phosphorylated Tyr
205

 Stat3 (P- Stat3), total Stat3 (Stat3) and β-catenin in 

SW480 or SW480
APC

 cells after 30 min exposure to the indicated amount of IL11 and AZD1480. Actin was used as 

a loading control. (E) TOPFLASH-reporter activity in SW480 and SW480
APC

 cells exposed to AZD1480 (2μM) or 

IL11 (50ng/ml) for 30 min. Data are mean ± SEM of triplicates from 3 independent experiments. NSD = not 

significantly different. Mann-Whitney U-test. (F) Quantification of the relative mRNA abundance of the Stat3 target 

gene Socs3 in SW480 and SW480
APC

 cells grown for 10 days under colony forming conditions in soft agar in the 

presence of AZD1480 (2μM), Stat3 inhibitor S3I-201 (50μM), IL11 (10ng/ml), EGFR inhibitor AG1478 (1μM), or 

vehicle (DMSO). Data are normalized to the vehicle-treated SW480 cells arbitrarily set as 1 and represent the mean 

± SEM of triplicates from 3 independent experiments. * p < 0.04. Mann-Whitney U-test.  
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Figure S6. Inhibition of gp130-Jak-Stat3 signaling does not affect intestinal homeostasis.  

(A) Immunohistochemical analysis of cell proliferation (BrdU), goblet cells (periodic acid-Schiff, PAS), and Paneth 

cells (lysozyme) in the small intestines of BALB/c-nude mice gavaged daily with AZD1480 (30mg/kg) or vehicle 

from day 5 to 21 after SW480 cell xenograft injection. Scale bar = 50 μm. Images are representative of 6 mice. (B) 

Quantification of the relative mRNA abundance for Wnt/β-catenin target genes, and Socs3, in IECs isolated from 

BALB/c-nude mice shown in Fig. 5A, or (C) body weight of the same mice. Data are mean ± SEM of at least 5 mice 

per cohort. * p < 0.04. Mann-Whitney U-test.  
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Figure S7. Inhibition of gp130-Jak-Stat3 signaling relieves Bmi1-mediated repression of the gene encoding 

p21 intestinal tumors. (A) Immunohistochemical analysis for p21 on intestinal tumors from with the indicated 

genotypes 36 days after tamoxifen administration. Images are representative of 6 mice. (B) Immunohistochemical 

analysis of sections of SW480 tumor xenografts from Balb/C nude mice gavaged daily for 40 days with AZD1480 

or vehicle from Fig. 5A. Images are representative of 6 mice. (C) Western blot analysis for Bmi-1 in lysates of IECs 

isolated from wild-type (WT) and gp130
F/F 

mice.  β-actin was used as a loading control. Each lane represents an 

individual mouse. (D) Quantification of the relative mRNA abundance for Socs3 and Bmi-1 in IECs isolated from 

gp130
F/F 

mice 30 minutes after a single intraperitoneal injection of recombinant IL11 (5µg). Fold changes was 

calculated by comparing mRNA from IEC isolated from unijected mice. Data are mean ± SEM of 3 mice per 

condition. * p < 0.04. Mann-Whitney U-test. (E) Schematic outline of the position of the putative Stat3 binding site 

(red line) in intron 1 of the murine Bmi-1 gene. A 555 base pair fragment encompassing this sequence was amplified 

to construct the pBmi1:luc Luciferase reporter. The open box denotes non-coding exon 1, black boxes indicate 

coding exons 2 and 3. (F) Relative luciferase activity in HEK293T cells transfected with pBmi1:luc and pCMV-

Renilla after 24h exposure to the indicated concentrations of Hyper IL6.  pBmi1:luc activation was normalized to 

Renilla luciferase activity. Data are mean ± S.E.M. of triplicates from 3 independent experiments. * p<0.05. 

Student’s t-test. 
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CD44/for: 5’ - GTC TGC ATC GCG GTC AAT AG - 3’ 

CD44/rev: 5’ - GGT CTC TGA TGG TTC CTT GTT C - 3’ 

Cmyc/for: 5’ - TAG TGC TGC ATG AGG AGA CA - 3’ 

Cmyc/rev: 5’ - GGT TTG CCT CTT CTC CAC AG - 3’ 

CyclinD1/for: 5’ - GCA CAA CGC ACT TTC TTT CCA - 3’ 

CyclinD1/rev: 5’ - CGC AGG CTT GAC TCC AGA AG - 3’ 

Gapdh/for: 5' - CAA CTC ACT CAA GAT TGT CAG CAA - 3' 

Gapdh/rev: 5' - TAC TTG GCA GGT TTC TCC AGG C - 3' 

Socs3/for: 5' - GCG GGC ACC TTT CTT ATC C - 3' 

Socs3/rev: 5' - TCC CCG ACT GGG TCT TGA C - 3' 

Bmi1/forw: 5' - CAA AAC CAG ACC ACT CCT GAA - 3' 

Bmi1/rev: 5' - TCT TCT TCT CTT CAT CTC ATT TTT GA - 3'  

Axin2/forw: 5'- CCA TGA CGG ACA GTA GCG TA - 3'  

Axin2/rev: 5' - GCC ATT GGC CTT CAC ACT - 3' 

CyclinD2/forw: 5' - CAC CGA CAA CTC TGT GAA GC - 3' 

CyclinD2/rev: 5' - TCC ACT TCA GCT TAC CCA ACA - 3'  

Fzd7/forw: 5' - CGT CTT CAG CGT GCT CTA CA - 3'  

Fzd7/rev: 5' - TCA TAA AAG TAG CAG GCC AAC A - 3' 

Lgr5/forw: 5' - CTT CAC TCG GTG CAG TGC T - 3' 

Lgr5/rev: 5' - GAT CAG CCA GCT ACC AAA TAG G - 3' 

SOCS3/forw: 5' - GAC TTC GAT TCG GGA CCA G - 3'  

SOCS3/rev: 5' - AAC TTG CTG TGG GTG ACC AT - 3'  

CDKN1A/forw: 5' - TGC GTT CAC AGG TGT TTC TG - 3' 

CDKN1A/rev: 5' - AGC TGC TCG CTG TCC ACT - 3' 

BMI1/forw: 5' - CCA TTG AAT TCT TTG ACC AGA A - 3' 

BMI1/rev: 5' - CTG CTG GGC ATC GTA AGT ATC - 3' 

CCND1/forw: 5' - GCC GAG AAG CTG TGC ATC - 3' 



CCDN1/rev: 5' - CCA CTT GAG CTT GTT CAC CA - 3' 

CMYC/forw: 5' - GCT GCT TAG ACG CTG GAT TT - 3' 

CMYC/rev: 5' - TAA CGT TGA GGG GCA TCG - 3' 

LGR5/forw: 5' - ACC AGA CTA TGC CTT TGG AAA C - 3' 

LGR5/rev: 5' - TTC CCA GGG AGT GGA TTC TAT - 3' 

CXCL10/forw: 5' - GAA AGC AGT TAG CAA GGA AAG GT - 3' 

CXCL10/rev: 5' - GAC ATA TAC TCC ATG TAG GGA AGT GA - 3' 

GAPDH/forw: 5' - CCC CGG TTT CTA TAA ATT GAG C - 3' 

GAPDH/rev: 5' - CAC CTT CCC CAT GGT GTC T - 3' 

 

Table S1. Primer sequences used for RT-qPRC. 
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