AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Asymptotic expansions for Hörmander symbol classes in the calculus of pseudo-differential operators.

This is the author's manuscript
Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/151600
since

Published version:
DOI:10.1007/s11868-013-0086-9
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

UNIVERSITÀ DEGLI STUDI DI TORINO

The final publication is available at Springer via http://dx.doi.org/10.1007/s11868-013-0086-9

ASYMPTOTIC EXPANSIONS FOR HÖRMANDER SYMBOL CLASSES IN THE CALCULUS OF PSEUDO-DIFFERENTIAL OPERATORS

SANDRO CORIASCO AND JOACHIM TOFT

Abstract

We establish formulas for asymptotic expansions for $S(m, g)$, the Hörmander class parameterized by the metric g and weight function m, defined on the phase space. By choosing m and g in appropriate ways, we cover some classical results on expansions for symbol classes of the form $S_{\rho, \delta}^{\tau}$, and by choosing m and g in other ways we obtain asymptotic expansions for (generalized) SG classes.

0 . Introduction

An important property in the theory of pseudo-differential operators concerns asymptotic expansions. For the classical Hörmander symbols $S_{1,0}^{\tau}$, several of such expansions can be related to Proposition 18.1.3 in [7], which is equivalent to the following:
Let $\tau_{j}, j=1,2, \ldots$, tend to $-\infty$ as j tends to ∞ and $a_{j} \in S_{1,0}^{\tau_{j}}$, Then there is an element $a \in S_{1,0}^{\tau_{1}}$ such that

$$
\begin{equation*}
a-\sum_{k<j} a_{k} \in S_{1,0}^{\tau_{j}}, \tag{1}
\end{equation*}
$$

for every k. The element a is uniquely determined modulo $S_{1,0}^{-\infty}$, and can be chosen such that $\operatorname{supp} a \subseteq \cup_{j \geq 1} \operatorname{supp} a_{j}$.

Here the uniqueness assertion means that if a is as above and (1) holds after a has been replaced by $b \in S_{1,0}^{\tau_{1}}$, then $a-b$ belongs to $S_{1,0}^{-\infty}$. See also Proposition 23.1 in [8] for similar results for the Shubin classes.

The previous result can be considered as a result on existence, since it ensures that the element a with convenient asserted properties exists. An other useful type of results related to the previous one can be considered as imposing types. For example, in Proposition 18.1.4 in [7] it is assumed that a here above exists, with certain relaxed assumptions. It is then proved that a possess similar properties as in the previous result. More precisely, Proposition 18.1.4 in [7] is equivalent to the following proposition. (See also [8, Prop. 23.2] for corresponding result

[^0]for the Shubin classes.) Here and in what follows we write $A \lesssim B$ when $A \leq c B$ for a suitable constant $c>0$.

Proposition 0. Let $P_{j}, \tau_{j} \in \mathbf{R}, j=1,2, \ldots$, be such that

$$
P_{j}=\sup _{k \geq j} \tau_{k} \quad \text { and } \quad \lim _{j \rightarrow \infty} \tau_{j}=-\infty,
$$

and let $a \in C^{\infty}\left(\mathbf{R}^{2 d}\right)$ be such that for every α and β, there are constants $C_{\alpha, \beta}$ and $\mu=\mu(\alpha, \beta)$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{\mu} .
$$

Also let $a_{j} \in S_{1,0}^{\tau_{j}}\left(\mathbf{R}^{2 d}\right), j \geq 1$, be a sequence. If

$$
\left|a-\sum_{k<j} a_{k}\right| \lesssim\langle\xi\rangle^{P_{j}}
$$

holds for every j, then $a \in S_{1,0}^{P_{1}}\left(\mathbf{R}^{2 d}\right)$.
By the uniqueness property for asymptotic expansions it follows that a in Proposition 0 is the asymptotic expansion (modulo $S_{1,0}^{-\infty}$) of the sequence a_{j}.

In this paper we extend such type of results to symbol classes of the form $S(m, g)$, introduced by Hörmander in [7]. (Cf. Theorems 7, 8 and 9.) Here m is an appropriate weight, and g is an appropriate Riemannian metric on the phase space $W \simeq \mathbf{R}^{2 d}$. By choosing m and g in appropriate ways we cover the classical results presented here above (cf. Propositions 18.1.3 and 18.1.4 in [7], and the related results, Propositions 23.1 and 23.2 in [8]).

The conditions on our metric g is that it should be slowly varying and its Planck's constant h_{g} should be bounded. We do not require that it should be σ-temperate, a property which is strongly needed in order for the symbolic calculus should in $S(m, g)$ classes work properly. Therefore our results can be applied also in the absence of needed prerequisites in the calculus. For example, we permit symbol classes which behaves like $S_{1,0}^{\tau_{1}}$ in some directions and like $S_{1,1}^{\tau_{2}}$ in other directions.

The key steps in our proofs are similar to those in the proof of Propositions 18.1.3 and 18.1.4 in [7] and corresponding results in [8]. On the other hand, in order to manage the general situation when dealing with symbols of the form $S(m, g)$, we need some additional arguments.

Finally, in the last section (Section 3) we apply our results on some important types of symbol classes. Especially we consider SG classes. In fact, the original motivation to consider questions on asymptotic expansions on such general level, was to find a common platform for results on asymptotic expansions for the SG classes, and the symbol classes in $[7,8]$. Note here that the classical results in $[7,8]$ do not cover the case of SG symbols.

1. Preliminaries

In this section we recall the definition and some basic facts for the involved symbol classes. (See Sections 18.4-18.6 in [7] and Section 2 in [9].)

Let $N \in \mathbf{N}, W \simeq \mathbf{R}^{2 d}$ be the phase space of dimension $2 d, a \in$ $C^{N}(W), g$ be an arbitrary Riemannian metric on W, and let $m>0$ be a measurable function on W. For each $k=0, \ldots, N$, let

$$
\begin{equation*}
|a|_{k}^{g}(X)=\sup \left|a^{(k)}\left(X ; Y_{1}, \ldots, Y_{k}\right)\right| \tag{2}
\end{equation*}
$$

where the supremum is taken over all $Y_{1}, \ldots, Y_{k} \in W$ such that $g_{X}\left(Y_{j}\right) \leq$ 1 for $j=1, \ldots, k$. Also set

$$
\begin{equation*}
\|a\|_{m, N}^{g} \equiv \sum_{k=0}^{N} \sup _{X \in W}\left(|a|_{k}^{g}(X) / m(X)\right), \tag{3}
\end{equation*}
$$

let $S_{N}(m, g)$ be the set of all $a \in C^{N}(W)$ such that $\|a\|_{m, N}^{g}<\infty$, and let

$$
S(m, g) \equiv \bigcap_{N \geq 0} S_{N}(m, g)
$$

Next we recall some properties for the metric g on W (cf. [6, 7, 9]). It follows from Section 18.6 in [7] that for each $X \in W$, there are symplectic coordinates $Z=\sum_{j=1}^{d}\left(z_{j} e_{j}+\zeta_{j} \varepsilon_{j}\right)$ which diagonalize g_{X}, i. e. g_{X} takes the form

$$
\begin{equation*}
g_{X}(Z)=\sum_{j=1}^{d} \lambda_{j}(X)\left(z_{j}^{2}+\zeta_{j}^{2}\right), \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{1}(X) \geq \lambda_{2}(X) \geq \cdots \geq \lambda_{d}(X)>0 \tag{5}
\end{equation*}
$$

only depend on g_{X} and are independent of the choice of symplectic coordinates which diagonalize g_{X}. Here $e_{1}, \ldots, e_{d}, \varepsilon_{1}, \ldots, \varepsilon_{d}$ is a symplectic basis for W.

The dual metric g^{σ} and Planck's function h_{g} with respect to g and the symplectic form σ, are defined by

$$
g_{X}^{\sigma}(Z) \equiv \sup _{Y \neq 0} \frac{\sigma(Y, Z)^{2}}{g_{X}(Y)} \quad \text { and } \quad h_{g}(X)=\sup _{Z \neq 0}\left(\frac{g_{X}(Z)}{g_{X}^{\sigma}(Z)}\right)^{1 / 2}
$$

respectively. It follows that if (4) and (5) are fulfilled, then $h_{g}(X)=$ $\lambda_{1}(X)$ and

$$
\begin{equation*}
g_{X}^{\sigma}(Z)=\sum_{j=1}^{d} \lambda_{j}(X)^{-1}\left(z_{j}^{2}+\zeta_{j}^{2}\right) \tag{4}
\end{equation*}
$$

In most of the applications we have that $h_{g}(X) \leq 1$ everywhere, i.e. the uncertainly principle holds.

The metric g is called symplectic if $g_{X}=g_{X}^{\sigma}$ for every $X \in W$. It follows that g is symplectic if and only if $\lambda_{1}(X)=\cdots=\lambda_{d}(X)=1$ in (4).

There are several investigations which have been done for metrics which occur in the symbolic calculi. (see e. g. [4, 9]). For exaple, in [9] it is proved that for every $t \in \mathbf{R}$ there is a symplectically invariant defined Riemannian metric $g^{(t)}$ which takes the form

$$
\begin{equation*}
g_{X}^{(t)}(Z)=\sum_{j=1}^{d} \lambda_{j}(X)^{t}\left(z_{j}^{2}+\zeta_{j}^{2}\right), \tag{4}
\end{equation*}
$$

when (4) holds. We note that $g^{\left(t_{1}\right)}=g$ and $g^{\left(t_{2}\right)}=g^{\sigma}$, when $t_{1}=1$ and $t_{2}=-1$, and that the dual metric for $g^{(t)}$ is given by $g^{(-t)}$. Furthermore, $g^{(0)}$ agrees with the symplectic metric g^{0}, given by

$$
g_{X}^{0}(Z)=\sum_{j=1}^{d}\left(z_{j}^{2}+\zeta_{j}^{2}\right)
$$

when (4) holds.
The Riemannian metric g on W is called slowly varying if there are positive constants c and C such that

$$
\begin{equation*}
g_{X}(Y-X) \leq c \quad \Longrightarrow \quad C^{-1} g_{Y} \leq g_{X} \leq C g_{Y} \tag{6}
\end{equation*}
$$

and the positive function m on W is called g-continuous if there are constants c and C such that

$$
\begin{equation*}
g_{X}(Y-X) \leq c \quad \Longrightarrow \quad C^{-1} m(Y) \leq m(X) \leq C m(Y) \tag{7}
\end{equation*}
$$

We observe that if g is slowly varying, $N \geq 0$ is an integer and m is g-continuous, then $S_{N}(m, g)$ is a Banach space when the topology is defined by the norm (3). Moreover, $S(m, g)$ is a Frechét space under the topology defined by the norms (3) for all $N \geq 0$.

Let g and G be Riemannian metrics on W. Then G is called (σ, g) temperate, if there is an integer $N \geq 0$ such that

$$
\begin{align*}
& G_{Y}(Z) \lesssim G_{X}(Z)\left(1+g_{Y}^{\sigma}(X-Y)\right)^{N}, \\
& G_{Y}(Z) \lesssim G_{X}(Z)\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}, \quad \text { for all } X, Y, Z \in W \tag{8}
\end{align*}
$$

The metric g is called σ-temperate, if g is (σ, g)-temperate.
Let g be a Riemannian metric on W. The function m on W is called (σ, g)-temperate if m is positive everywhere and there is a constant N such that

$$
\begin{align*}
& m(X) \lesssim m(Y)\left(1+g_{X}^{\sigma}(X-Y)\right)^{N}, \\
& m(X) \lesssim m(Y)\left(1+g_{Y}^{\sigma}(X-Y)\right)^{N}, \quad \text { for all } X, Y, Z \in W \tag{9}
\end{align*}
$$

If g is σ-temperate, then only one of the conditions in (8) and in (9) are needed.

The following restatement of Proposition 1.2 in [6] shows that the functions λ_{j} posses appropriate symplectic invariance properties and appropriate continuity properties related to the metric g. We omit the proof since it can be found in [6]. Here we set

$$
\begin{equation*}
\Lambda_{g}(X)=\lambda_{1}(X) \cdots \lambda_{d}(X) \tag{10}
\end{equation*}
$$

when g_{X} is given by (4).
Proposition 1. Assume that g is a Riemannian metric on W, and that $X \in W$ is fixed. Also assume that the symplectic coordinates are chosen such that (4) holds. Then the following is true:
(1) λ_{j} for $1 \leq j \leq d$ and Λ_{g} are symplectically invariantly defined;
(2) if in addition g is slowly varying, then λ_{j} for $1 \leq j \leq d$ and Λ_{g} are g-continuous;
(3) if in addition g is σ-temperate, then λ_{j} for $1 \leq j \leq d$ and Λ_{g} are (σ, g)-temperate.

The following definition is motivated by the general theory of Weyl calculus. (See e.g. [6, 9], and Section 18.4-18.6 in [7].)
Definition 2. Assume that g is a Riemannian metric on W. Then g is called
(i) feasible if g is slowly varying and $h_{g} \leq 1$ everywhere;
(ii) strongly feasible if g is feasible and σ-temperate.

If g is feasible and m is g-continuous, then $S\left(h_{g}^{r} m, g\right)$ decreases with respect to r. For conveniency we set

$$
S\left(h_{g}^{\infty} m, g\right) \equiv \bigcap_{r \geq 0} S\left(h_{g}^{r} m, g\right),
$$

in this situation.
Note that feasible and strongly feasible metrics are not standard terminology. In the literature it is common to use the term 'Hörmander metric' or 'admissible metric' instead of 'strongly feasible' for metrics which satisfy (ii) in Definition 2. (See [1-5].) An important reason for us to follow $[6,9]$ concerning this terminology is that we permit metrics which are not admissible in the sense of [1-5], and that we prefer similar names for metrics which satisfy (i) or (ii) in Definition 2.

It is obvious that $g^{\left(t_{1}\right)} \leq g^{\left(t_{2}\right)}$ when $t_{1} \leq t_{2}$ and $h_{g} \leq 1$. In particular, $g \leq g^{(t)} \leq g^{\sigma}$ when $-1 \leq t \leq 1$ and $h_{g} \leq 1$. In the following proposition we list some important properties for strongly feasible metrics. The proof is omitted since the result can be found in [9].

Proposition 3. Let g be a strongly feasible metric on W, G be a Riemannian metric on W, and let $t_{1}, t_{2} \in[-1,1]$ be such that $t_{2}>-1$. If G is (σ, g)-temperate, then $G^{\left(t_{1}\right)}$ is $\left(\sigma, g^{\left(t_{2}\right)}\right)$-temperate.

In particular, $g^{\left(t_{1}\right)}$ is $\left(\sigma, g^{\left(t_{2}\right)}\right)$-temperate, and if $t \in[0,1]$, then $g^{(t)}$ is strongly feasible.
Remark 4. Assume that g is slowly varying on W and let c be the same constant as in (6). Then it follows from Theorem 1.4.10 in [7] that there is a constant $\varepsilon_{0}>0$, an integer $N_{0} \geq 0$ and a sequence $\left\{X_{j}\right\}_{j \in \mathbf{N}}$ in W such that the following is true:
(1) there is a positive number ε such that $g_{X_{j}}\left(X_{j}-X_{k}\right) \geq \varepsilon_{0}$ for every $j, k \in \mathbf{N}$ such that $j \neq k$;
(2) $W=\bigcup_{j \in \mathbf{N}} U_{j}$, where U_{j} is the $g_{X_{j}}$-ball $\left\{X ; g_{X_{j}}\left(X-X_{j}\right)<c\right\}$;
(3) the intersection of more than N_{0} balls U_{j} is empty.

Remark 5. It follows from Section 1.4 and Section 18.4 in [7] that if g is a slowly varying metric on W, and (1)-(3) in Remark 4 holds, then there is a sequence $\left\{\varphi_{j}\right\}_{j \in \mathbf{N}}$ in $C_{0}^{\infty}(W)$ such that the following is true:
(1) $0 \leq \varphi_{j} \in C_{0}^{\infty}\left(U_{j}\right)$ for every $j \in \mathbf{N}$;
(2) $\sup _{j \in \mathbf{N}}\left\|\varphi_{j}\right\|_{1, N}^{g_{X_{j}}}<\infty$ for every integer $N \geq 0$ (i. e. $\left\{\varphi_{j}\right\}_{j \in \mathbf{N}}$ is a bounded sequence in $S(1, g)$);
(3) $\sum_{j \in \mathbf{N}} \varphi_{j}=1$ on W.
1.1. An important family of symbol classes. A broad family of symbol classes concerns the following extended family of SG symbol classes. Let $t, \tau, r_{l}, \rho_{l} \in \mathbf{R}$ for $l=1,2$. Then the (generalized) SG class $\mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{t, \tau}\left(\mathbf{R}^{2 d}\right), l=1,2$, consists of all $a \in C^{\infty}\left(\mathbf{R}^{2 d}\right)$ such that for every multi-indices α, β, there is a constant $C_{\alpha, \beta}$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle x\rangle^{t-r_{1}|\alpha|+r_{2}|\beta|}\langle\xi\rangle^{\tau+\rho_{1}|\alpha|-\rho_{2}|\beta|} .
$$

If m and g are given by $m(x, \xi)=\langle x\rangle^{t}\langle\xi\rangle^{\tau}$ and

$$
\begin{equation*}
g_{(x, \xi)}(y, \eta)=\langle x\rangle^{-2 r_{1}}\langle\xi\rangle^{2 \rho_{1}}|y|^{2}+\langle x\rangle^{2 r_{2}}\langle\xi\rangle^{-2 \rho_{2}}|\eta|^{2}, \tag{11}
\end{equation*}
$$

respectively, then it follows that $S(m, g)=\mathrm{SG}_{\left(r_{j}, \rho_{j}\right)}^{t, \tau}\left(\mathbf{R}^{2 d}\right)$. If

$$
0 \leq r_{2} \leq r_{1} \leq 1 \quad \text { and } \quad 0 \leq \rho_{1} \leq \rho_{2} \leq 1
$$

then g is feasible and m is g-continuous in this case. If in addition $r_{2}, \rho_{1}<1$, then g is strongly feasible. (Cf. [7].)

The dual metric and Planck's constant are given by

$$
\begin{aligned}
g_{(x, \xi)}^{\sigma}(y, \eta) & =\langle x\rangle^{-2 r_{2}}\langle\xi\rangle^{2 \rho_{2}}|y|^{2}+\langle x\rangle^{2 r_{1}}\langle\xi\rangle^{-2 \rho_{1}}|\eta|^{2}, \\
h_{g}(x, \xi) & =\langle x\rangle^{-\left(r_{1}-r_{2}\right)}\langle\xi\rangle^{-\left(\rho_{2}-\rho_{1}\right)}, \\
g_{(x, \xi)}^{0}(y, \eta) & =\langle x\rangle^{-\left(r_{2}+r_{1}\right)}\langle\xi\rangle^{\rho_{1}+\rho_{2}}|y|^{2}+\langle x\rangle^{r_{1}+r_{2}}\langle\xi\rangle^{-\left(\rho_{1}+\rho_{2}\right)}|\eta|^{2} .
\end{aligned}
$$

For future references we note that

$$
S\left(m, h_{g}^{-N} g\right)=\mathrm{SG}_{\substack{\left(r_{l}-N, \rho_{l}-N\right) \\ t, \tau}}\left(\mathbf{R}^{2 d}\right), \quad l=1,2
$$

In particular it follows that if $S(m, g)$ is a symbol class of the form $\mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{t, \tau}$, then the same is true for $S\left(m, g^{\sigma}\right), S\left(m, g^{0}\right)$ and $S\left(m, h_{g}^{-N} g\right)$.

We have the following two important special cases of the symbol classes here above.
(1) If $r_{2}=\rho_{1}=0, r_{1}=r$ and $\rho_{2}=\rho$, then $\mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{t, \tau}\left(\mathbf{R}^{2 d}\right)$ agrees with the classical SG class $\mathrm{SG}_{r, \rho}^{t, \tau}\left(\mathbf{R}^{2 d}\right)$. In particular, in contrast to the extended family of SG symbol classes, the classical SG classes are in general not stable under replacements of the metric g in $S(m, g)$ here above, by g^{σ}, g^{0} or $h_{g}^{-N} g$.
(2) If $t=r_{1}=r_{2}=0, \rho_{1}=\delta$ and $\rho_{2}=\rho$, here above, then $S(m, g)$ agrees with the Hörmander class $S_{\rho, \delta}^{\tau}\left(\mathbf{R}^{2 d}\right)$, which consists of all $a \in C^{\infty}\left(\mathbf{R}^{2 d}\right)$ such that for every multi-indices α, β, there is a constant $C_{\alpha, \beta}$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{\tau-\rho|\beta|+\delta|\alpha|} .
$$

More generally, we have the following extended family of SG classes. Here a weight m on $\mathbf{R}^{2 d}$ is called an SG weight on $\mathbf{R}^{2 d}$ of order (r_{l}, ρ_{l}), $l=1,2$, if $0<m \in \operatorname{SG}_{\left(r_{l}, \rho_{l}\right)}^{t_{0}, \tau_{0}}\left(\mathbf{R}^{2 d}\right)$ for some $t_{0}, \tau_{0} \in \mathbf{R}$, and

$$
\begin{equation*}
m(x+y, \xi+\eta) \lesssim m(x, \xi)\langle(y, \eta)\rangle^{N}, \tag{12}
\end{equation*}
$$

for some constant N.
Definition 6. Let $t_{0}, \tau_{0}, r_{l}, \rho_{l} \in \mathbf{R}$ and let m be an SG weight on $\mathbf{R}^{2 d}$ of order $\left(r_{l}, \rho_{l}\right), l=1,2$. Then $\mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{(m)}\left(\mathbf{R}^{2 d}\right), j=1,2$, is the set of all $a \in C^{\infty}\left(\mathbf{R}^{2 d}\right)$ such that for every pairs of multi-indices α and β, it holds

$$
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta} m(x, \xi)\langle x\rangle^{-r_{1}|\alpha|+r_{2}|\beta|}\langle\xi\rangle^{\rho_{1}|\alpha|-\rho_{2}|\beta|}
$$

where the constants $C_{\alpha, \beta}$ only depends on α and β.
Let g be given by (11). Then it follows by straight-forward computations that $S(m, g)=\operatorname{SG}_{\left(r_{l}, \rho_{l}\right)}^{(m)}\left(\mathbf{R}^{2 d}\right)$. Furthermore, we have

$$
\begin{aligned}
S\left(m, g^{\sigma}\right)= & \mathrm{SG}_{\left(p_{j}, \pi_{j}\right)}^{(m)}\left(\mathbf{R}^{2 d}\right), \text { when } \\
& \left(p_{1}, p_{2}, \pi_{1}, \pi_{2}\right)=\left(r_{2}, r_{1}, \rho_{2}, \rho_{1}\right), \\
S\left(m, g^{0}\right)= & \mathrm{SG}_{\left(p_{j}, \pi_{j}\right)}^{(m)}\left(\mathbf{R}^{2 d}\right), \quad \text { when } \\
& \left(p_{1}, p_{2}, \pi_{1}, \pi_{2}\right)=\left(r_{1}+r_{2}, r_{1}+r_{2}, \rho_{1}+\rho_{2}, \rho_{1}+\rho_{2}\right) / 2,
\end{aligned}
$$

and

$$
\begin{aligned}
S\left(m, h_{g}^{-2 N} g\right)= & \mathrm{SG}_{\left(p_{j}, \pi_{j}\right)}^{(m)}\left(\mathbf{R}^{2 d}\right), \\
& \quad \text { when } \\
& \left(p_{1}, p_{2}, \pi_{1}, \pi_{2}\right)=\left(r_{1}-N, r_{2}-N, \rho_{1}-N, \rho_{2}-N\right) .
\end{aligned}
$$

2. Asymptotic expansions

In this section we establish asymptotic expansion results for elements in the symbol class $S(m, g)$.

Let g be a feasible metric, and let m be g-continuous. Then the following proposition shows that $S(m, g)$ fulfills convenient asymptotic expansion properties.

Theorem 7. Let g be feasible and let m be g-continuous. If $0 \leq r_{j} \in \mathbf{R}$, $j \geq 1$, is strictly increasing and satisfies

$$
\lim _{j \rightarrow \infty} r_{j}=\infty,
$$

and $a_{j} \in S\left(h_{g}^{r_{j}} m, g\right)$, then there is an element $a \in S\left(h_{g}^{r_{1}} m, g\right)$ such that

$$
\begin{equation*}
a-\sum_{k<j} a_{k} \in S\left(h_{g}^{r_{j}} m, g\right), \quad \text { for every } \quad j \geq 1 . \tag{13}
\end{equation*}
$$

The element a is uniquely determined modulo $S\left(h_{g}^{\infty} m, g\right)$, and can be chosen such that $\operatorname{supp} a \subseteq \cup_{j \geq 1} \operatorname{supp} a_{j}$.
Proof. Let U_{j} and φ_{j} be the same as in Remarks 4 and 5. For any integer $k \geq 1$, let J_{k} be the set of all $l \geq 1$ such that

$$
\begin{equation*}
\left|a_{k} \varphi_{l}\right|_{n}^{g}(X) \leq 2^{-k} h_{g}^{r_{k-1}}(X) m(X), \quad n \leq k, X \in W, \tag{14}
\end{equation*}
$$

and let $\psi_{k}=\sum_{i \in J_{k}} \varphi_{i}$. We also let $b_{1}=a_{1}$, and define inductively

$$
b_{k+1}=b_{k}+\psi_{k+1} a_{k+1}, \quad k \geq 1 .
$$

We claim that
(1) $b \equiv \lim _{k \rightarrow \infty} b_{k}$ exists and defines an element in $S(m, g)$. Furthermore, $\lim _{k \rightarrow \infty}\left\|b-b_{k}\right\|_{N, h_{g}^{r} m}^{g}=0$, for any $r>0$ and $N \geq 0$;
(2) $b-\sum_{j<k} a_{j} \in S\left(h_{g}^{r_{k}} m, g\right)$.

In fact, by the definitions and Weierstrass theorem it follows that b exists in $S(m, g)$, and that for N fixed, then $\lim _{k \rightarrow \infty}\left\|b-b_{k}\right\|_{N, h_{g}^{r m}}^{g}=0$, for every fixed $r>0$. This gives (1) in the claim.

Next we prove (2). We have

$$
b-\sum_{j<k} a_{j}=u_{1}+u_{2},
$$

where

$$
u_{1}=\sum_{j=2}^{k-1}\left(\psi_{j}-1\right) a_{j} \quad \text { and } \quad u_{2}=\sum_{j=k}^{\infty} \psi_{j} a_{j} .
$$

The result follows if we prove that $u_{1} \in S\left(h_{g}^{r} m, g\right)$ and $u_{2} \in S\left(h_{g}^{r_{k}} m, g\right)$ for every $r>0$.

Let $K_{j}=\complement J_{j}=\mathbf{Z}_{+} \backslash J_{j}$. We have

$$
u_{1}=-\sum_{j=2}^{k-1} v_{j},
$$

where

$$
v_{j}=\sum_{i \in K_{j}} \varphi_{i} a_{j},
$$

and we shall investigate the terms v_{j} separately. First let $c_{0}>0$ be fixed and let $K_{1, j}$ be the set of all $i \in K_{j}$ such that $h_{g}(X) \geq c_{0}$ when $X \in U_{i}$. Also let $K_{2, j}=K_{j} \backslash K_{1, j}$, and let $\Omega_{k, j}=\cup_{i \in K_{k, j}} U_{i}$. Then $v_{j}=v_{1, j}+v_{2, j}$, where

$$
v_{k, j}=\sum_{i \in K_{k, j}} \varphi_{i} a_{j} .
$$

Since $h_{g} \geq c_{0}$ on $\Omega_{1, j}$, it follows that if $r \geq 0$ and v is smooth on W with support in $\Omega_{1, j}$, then

$$
v \in S\left(h_{g}^{r} m, g\right) \quad \Longleftrightarrow \quad v \in S(m, g)
$$

In particular, $v_{1, j} \in S\left(h_{g}^{r_{k}} m, g\right)$.
Next we consider $v_{2, j}$. From the fact that (14) is violated for some $n \in[0, j], a_{j} \in S\left(h_{g}^{r_{j}} m, g\right), r_{j-1}<r_{j}$ and $h_{g}(X)<C c_{0}$ when $X \in$ $\cup_{i \in K_{2, j}} U_{i}$, it follows that $K_{2, j}$ is a finite set, provided c_{0} was chosen small enough. Here C is the same as in (6). This implies that

$$
v_{2, j} \in C_{0}^{\infty} \subseteq S\left(h_{g}^{r_{k}} m, g\right) .
$$

Consequently, $v_{2, j}$, and thereby u_{1} belong to $S\left(h_{g}^{\infty} m, g\right)$.
It remains to consider u_{2}. We have $u_{2}=b-b_{k-1}$ and $\psi_{j} a_{j} \in$ $S\left(h_{g}^{r_{j}} m, g\right) \subseteq S\left(h_{g}^{r_{k}} m, g\right)$ when $j \geq k$. Since $\left\|b-b_{k-1}\right\|_{N, h_{g}^{r} m} \rightarrow 0$ when $k \rightarrow \infty$, for every fixed $r>0$, it follows that $u_{2} \in S\left(h_{g}^{r_{k}} m, g\right)$. This gives (13) with $a=b$. Furthermore, due to the construction we also have $\operatorname{supp} a \subseteq \cup_{j \geq 1} \operatorname{supp} a_{j}$.

The uniqueness follows from the uniqueness of the next result.
We also have the following extension of the previous result.
Theorem 8. Let g be feasible and m be g-continuous. If $r_{j}, R_{j} \in \mathbf{R}$, $j \geq 1$, satisfy

$$
\lim _{j \rightarrow \infty} r_{j}=\infty \quad \text { and } \quad R_{j}=\min _{k \geq j} r_{k},
$$

and $a_{j} \in S\left(h_{g}^{r_{j}} m, g\right)$, then there is an element $a \in S\left(h_{g}^{R_{1}} m, g\right)$ such that

$$
\begin{equation*}
a-\sum_{k<j} a_{k} \in S\left(h_{g}^{R_{j}} m, g\right), \quad \text { for every } \quad j \geq 1 \tag{15}
\end{equation*}
$$

The element a is uniquely determined modulo $S\left(h_{g}^{\infty} m, g\right)$, and can be chosen such that $\operatorname{supp} a \subseteq \cup_{j \geq 1} \operatorname{supp} a_{j}$.

Let m, g, r_{j} and R_{j} be the same as in Theorem 8. Then we write

$$
\begin{equation*}
a \sim \sum a_{j} \tag{15}
\end{equation*}
$$

(with respect to the weight m and the metric g), when (15) holds.
Proof. Let n be the largest number such that $r_{n}<0$. By replacing a with

$$
a-\sum_{j \leq n} a_{j},
$$

it follows that we may assume that $R_{1} \geq 0$. Since $r_{j} \geq R_{j}$, it follows that $S\left(h_{g}^{r_{j}} m, g\right) \subseteq S\left(h_{g}^{R_{j}} m, g\right)$. Hence it is no restriction to assume that $r_{j}=R_{j}$, which in particular implies that r_{j} increases with j. Finally, by letting

$$
b_{k}=\sum_{r_{j}=r_{k}} a_{j},
$$

and considering the sequence $\left\{b_{k}\right\}$ instead of $\left\{a_{j}\right\}$, we reduce ourself to the case that $r_{j} \geq 0$ are strictly increasing. The expansion (15) is now an immediate consequence of Theorem 7 .

If $b \in S\left(h_{g}^{r} m, g\right)$ satisfies $b \sim \sum a_{j}$, then it follows from (15) that $a-b \in S\left(h_{g}^{\infty} m, g\right)$. This gives the asserted uniqueness, and the result follows.

We have now the following proposition.
Theorem 9. Let g be a feasible metric on W, and let m and $m_{j}, j \geq 0$, be g-continuous weights such that

$$
m_{j} \leq C h_{g}^{-s_{j}} m
$$

for some real numbers s_{j}, and let r_{j}, R_{j} be the same as in Theorem 8. Also let $a \in C^{\infty}\left(\mathbf{R}^{2 d}\right)$ be such that

$$
\|a\|_{m_{j}, j}^{g}<\infty
$$

for every $j \geq 0$, and let $a_{j} \in S\left(h_{g}^{r_{j}} m, g\right), j \geq 1$, be a sequence. If

$$
\left|a-\sum_{k<j} a_{k}\right| \lesssim h_{g}^{R_{j}} m
$$

holds for every $j \geq 1$, then $a \in S\left(h_{g}^{R_{1}} m, g\right)$, and (15)' holds.
Proof. We shall use the same framework as in the proof of Proposition 18.1.4 in [7]. We may assume that $s_{j} \leq R_{j}$.

By Theorem 8, there is an element $b \in S\left(h_{g}^{R_{1}} m, g\right)$ such that $b \sim$ $\sum a_{k}$. Let $u=a-b$. Then it follows from the assumptions that
$\|u\|_{m_{1}, 1}^{g}<\infty,\|u\|_{m_{2}, 2}^{g}<\infty \quad$ and $\quad|u| \lesssim h_{g}^{2 N+2 s_{2}} m, \quad$ for every $N \geq 0$.
The result follows if we prove that $u \in S\left(h_{g}^{\infty} m, g\right)$.

Let c be chosen such that (6) holds, $N \geq 0$ and $\varepsilon \in(0,1)$, and let $X, Y \in W$ be fixed such that $g_{X}(Y)<c$. By Taylor's formula we have

$$
\left|u(X+\varepsilon Y)-u(X)-\varepsilon\left(\partial_{Y} u\right)(X)\right| \leq 2^{-1} \varepsilon^{2}\left|\left(\partial_{Y, Y}^{2} u\right)(X+\theta Y)\right|,
$$

for some $\theta \in[0, \varepsilon]$. This gives

$$
\begin{aligned}
& \left|\left(\partial_{Y} u\right)(X)\right| \leq \varepsilon^{-1}(|u(X+Y)|+|u(X)|)+2^{-1} \varepsilon\left|\left(\partial_{Y, Y}^{2} u\right)(X+\theta Y)\right| \\
& \leq C_{1}\left(\varepsilon^{-1}\left(h_{g}^{2 N+2 s_{2}}(X+Y) m(X+Y)+h_{g}^{2 N+2 s_{2}}(X) m(X)\right)\right. \\
& \left.\quad+\varepsilon h_{g}^{-2 s_{2}}(X+\theta Y) m(X+\theta Y)\right) \\
& \quad \leq C_{2}\left(\varepsilon^{-1} h_{g}^{2 N+2 s_{2}}(X)+\varepsilon h_{g}^{-2 s_{2}}(X)\right) m(X)
\end{aligned}
$$

for some constants C_{1} and C_{2} which only depend on m_{2}, N, the constants in (6) and (7), and $\|a\|_{m_{2}, 2}^{g}$. In the last step we have used the fact that m is g-continuous, $g_{X}(Y)<c$ and $g_{X}(\theta Y)<c$.

By taking the supremum of the left-hand side over all possible Y and choosing $\varepsilon=h_{g}^{N+2 s_{2}}(X)$, we obtain

$$
\sqrt{c}|u|_{1}^{g}(X) \leq C_{3} h_{g}(X)^{N} m(X),
$$

which gives $\|u\|_{h_{g}^{N} m, 1}^{g}<\infty$.
By induction, using similar arguments after u has been replaced by $\left(\partial_{Y_{1}} \cdots \partial_{Y_{k}}\right) u$, we get $\|u\|_{h_{g}^{N} m, k}^{g}<\infty$ for all $k \geq 0$ and $N \geq 0$. That is $u \in S\left(h_{g}^{\infty} m, g\right)$, and the proof is complete.

Remark 10. Let $t \in(-1,1]$, and assume that λ_{j} in (4) satisfy $\lambda_{1} \lesssim$ $h_{g}^{-M} \lambda_{d}$, for some constant $M \geq 0$. These conditions are usually fulfilled, e.g. they are fulfilled for any of the symbol classes in Subsection 1.1. Since the metric $G \equiv g^{(t)}$ is g-continuous, it follows from Proposition 3 that Theorem 9 in this case remains the same after the condition $\|a\|_{m_{j}, j}^{g}<\infty$ has been replaced by the weaker condition $\|a\|_{m_{j}, j}^{G}<\infty$.

3. Applications to more specific types of symbol classes

In this section we apply the results in the previous section to symbol classes of the form $\mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{(m)}, l=1,2$, where

$$
\begin{equation*}
0 \leq r_{2} \leq r_{1} \leq 1 \quad \text { and } \quad 0 \leq \rho_{1} \leq \rho_{2} \leq 1 . \tag{16}
\end{equation*}
$$

(Cf. Subsection 1.1.)

The following results are immediate consequences of the listed properties in Subsection 1.1, and Theorems 8 and 9. Here and in what follows we let

$$
\begin{gather*}
m_{t, \tau}(x, \xi)=m(x, \xi)\langle x\rangle^{t}\langle\xi\rangle^{\tau}, \tag{17}\\
\mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{t-\infty}\right)} \equiv \bigcap_{j=0}^{\infty} \mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{t,-j}\right)} \quad \text { and } \quad \mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{-\infty}\right)} \equiv \bigcap_{j=0}^{\infty} \mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{-j, \tau}\right)},
\end{gather*}
$$

and observe that

$$
\bigcap_{j_{1}, j_{2}=0}^{\infty} \mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{-j_{1},-j_{2}}\right)}=\mathscr{S} .
$$

Theorem 11. Let $t_{j}, \tau_{j}, R_{j}, P_{j}, r_{l}, \rho_{l} \in \mathbf{R}, l=1,2$, be such that (16) holds,

$$
R_{j}=\max _{k \geq j} t_{k}, \quad P_{j}=\max _{k \geq j} \tau_{k}, \quad \text { and } \quad \lim _{j \rightarrow \infty} t_{j}=\lim _{j \rightarrow \infty} \tau_{j}=-\infty,
$$

$l=1,2, \ldots$. Also let m be an SG weight on $\mathbf{R}^{2 d}$ of order $\left(r_{l}, \rho_{l}\right), l=1,2$ and let $m_{t, \tau}$ be given by (17). If $a_{j} \in \mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{t_{j}}, \tau_{j}\right)}\left(\mathbf{R}^{2 d}\right)$, then there is an element $a \in \mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{R_{1}}, P_{1}\right)}\left(\mathbf{R}^{2 d}\right)$ such that

$$
a-\sum_{k<j} a_{k} \in \mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{R_{j}, P_{j}}\right)}\left(\mathbf{R}^{2 d}\right) .
$$

Furthermore,
(1) if $r_{2}<r_{1}$, then a is uniquely determined modulo $\mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{-\infty}, P_{1}\right)}\left(\mathbf{R}^{2 d}\right)$;
(2) if $\rho_{1}<\rho_{2}$, then a is uniquely determined modulo $\mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{R_{1}}\right)}\left(\mathbf{R}^{2 d}\right)$;
(3) if $r_{2}<r_{1}$ and $\rho_{1}<\rho_{2}$, then a is uniquely determined modulo $\mathscr{S}\left(\mathbf{R}^{2 d}\right)$.
The element a and can be chosen such that $\operatorname{supp} a \subseteq \cup_{j \geq 1} \operatorname{supp} a_{j}$.
Theorem 12. Let $t_{j}, \tau_{j}, R_{j}, P_{j}, r_{l}, \rho_{l} \in \mathbf{R}, j=1,2, \ldots, l=1,2$, and $m_{t, \tau}$ be the same as in Theorem 11. Also let $a \in C^{\infty}\left(\mathbf{R}^{2 d}\right)$ be such that for every α and β there are constants $\mu=\mu(\alpha, \beta)$ and $C_{\alpha, \beta}$ such that

$$
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi)\right| \lesssim m(x, \xi)\langle x\rangle^{\left(r_{1}-r_{2}\right) \mu}\langle\xi\rangle^{\left(\rho_{2}-\rho_{1}\right) \mu}
$$

and let $a_{j} \in \mathrm{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{t_{j}}, \tau_{j}\right)}\left(\mathbf{R}^{2 d}\right), j \geq 1$, be a sequence. If

$$
\left|a-\sum_{k<j} a_{k}\right| \lesssim m(x, \xi)\langle x\rangle^{-R_{j}}\langle\xi\rangle^{-P_{j}}
$$

holds for every $j \geq 1$, then $a \in \operatorname{SG}_{\left(r_{l}, \rho_{l}\right)}^{\left(m_{R_{1}}, P_{1}\right)}\left(\mathbf{R}^{2 d}\right)$ and (15) holds.
The following results are immediate consequences of the previous theorems. Here the second corollary is a slight extension of Proposition 0 in the introduction.

Corollary 13. Let $P_{j}, \tau_{j}, \rho, \delta \in \mathbf{R}$ be such that $0 \leq \delta<\rho \leq 1$,

$$
P_{j}=\min _{k \geq j} \tau_{k} \quad \text { and } \quad \lim _{j \rightarrow \infty} \tau_{j}=-\infty,
$$

$j=1,2, \ldots$. If $a_{j} \in S_{\rho, \delta}^{\tau_{j}}\left(\mathbf{R}^{2 d}\right)$, then there is an element $a \in S_{\rho, \delta}^{P_{1}}\left(\mathbf{R}^{2 d}\right)$ such that

$$
a-\sum_{k<j} a_{k} \in S_{\rho, \delta}^{P_{j}}\left(\mathbf{R}^{2 d}\right) .
$$

The element a is uniquely determined modulo $S_{\rho, \delta}^{-\infty}\left(\mathbf{R}^{2 d}\right)$, and can be chosen such that $\operatorname{supp} a \subseteq \cup_{j \geq 1} \operatorname{supp} a_{j}$.

Corollary 14. Let $P_{j}, \tau_{j}, \rho, \delta \in \mathbf{R}$ be the same as in Corollary 13. Also let $a \in C^{\infty}\left(\mathbf{R}^{2 d}\right)$ be such that for every multi-indices α and β, there is a constant $\mu=\mu(\alpha, \beta)$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \lesssim\langle\xi\rangle^{\mu},
$$

and let $a_{j} \in S_{\rho, \delta}^{\tau_{j}}\left(\mathbf{R}^{2 d}\right), j \geq 1$, be a sequence. If

$$
\left|a-\sum_{k<j} a_{k}\right| \lesssim\langle\xi\rangle^{P_{j}}
$$

holds for every $j \geq 1$, then $a \in S_{\rho, \delta}^{P_{1}}\left(\mathbf{R}^{2 d}\right)$ and (15)' holds.
The corresponding results for the SG classes are the following.
Corollary 15. Let $t_{j}, \tau_{j}, R_{j}, P_{j}, r, \rho \in \mathbf{R}$ be such that $r, \rho \geq 0$,

$$
R_{j}=\min _{k \geq j} t_{k}, \quad P_{j}=\min _{k \geq j} \tau_{k}, \quad \text { and } \quad \lim _{j \rightarrow \infty} t_{j}=\lim _{j \rightarrow \infty} \tau_{j}=-\infty,
$$

$j=1,2, \ldots$. Also let m be an SG weight on $\mathbf{R}^{2 d}$ of order (r, ρ), and let $m_{t, \tau}$ be given by (17). If $a_{j} \in \mathrm{SG}_{\rho_{1}, \rho_{2}}^{\left(m_{t_{j}, \tau_{j}}\right)}\left(\mathbf{R}^{2 d}\right)$, then there is an element $a \in \mathrm{SG}_{r, \rho}^{\left(m_{R_{1}, P_{1}}\right)}\left(\mathbf{R}^{2 d}\right)$ such that

$$
a-\sum_{k<j} a_{k} \in \mathrm{SG}_{r, \rho}^{\left(m_{R_{j}, P_{j}}\right)}\left(\mathbf{R}^{2 d}\right) .
$$

If $r, \rho>0$, then the element a is uniquely determined modulo $\mathscr{S}\left(\mathbf{R}^{2 d}\right)$, and can be chosen such that $\operatorname{supp} a \subseteq \cup_{j \geq 1} \operatorname{supp} a_{j}$.

Corollary 16. Let $t_{j}, \tau_{j}, R_{j}, P_{j} \in \mathbf{R}$ and $m_{t, \tau}$ be the same as in Corollary 15, $r, \rho>0$. Also let $a \in C^{\infty}\left(\mathbf{R}^{2 d}\right)$ be such that for every multiindices α and β, there is a constant $\mu=\mu(\alpha, \beta)$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \lesssim m(x, \xi)\langle x\rangle^{\mu}\langle\xi\rangle^{\mu},
$$

and let $a_{j} \in \mathrm{SG}_{r, p}^{\left(m_{t_{j}}, \tau_{j}\right)}\left(\mathbf{R}^{2 d}\right), j \geq 1$, be a sequence. If

$$
\left|a-\sum_{k<j} a_{k}\right| \lesssim m(x, \xi)\langle x\rangle^{-R_{j}}\langle\xi\rangle^{-P_{j}}
$$

holds for every $j \geq 1$, then $a \in \mathrm{SG}_{r, \rho}^{\left(m_{R_{1}}, P_{1}\right)}\left(\mathbf{R}^{2 d}\right)$ and (15)' holds.
The function m in the previous corollary satisfies

$$
m(x, \xi) \lesssim\langle x\rangle^{\mu_{0}}\langle\xi\rangle^{\mu_{0}},
$$

for some μ_{0}. Hence the result does not change if the conditions on the derivatives of a are replaced by

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \lesssim\langle x\rangle^{\mu}\langle\xi\rangle^{\mu} .
$$

Finally we remark that if the metric g is chosen as

$$
g_{(x, \xi)}(y, \eta)=\frac{|y|^{2}+|\eta|^{2}}{1+|x|^{2}+|\xi|^{2}},
$$

and the weight functions are given by

$$
m(x, \xi)=\left(1+|x|^{2}+|\xi|^{2}\right)^{\tau / 2} \quad \text { and } \quad m_{j}(x, \xi)=\left(1+|x|^{2}+|\xi|^{2}\right)^{\tau_{j} / 2}
$$

then Theorems 8 and 9 give Propositions 23.1 and 23.2 in [8].

References

[1] J. M. Bony Caractérisations des Opérateurs Pseudo-Différentiels in: Séminaire sur les Équations aux Dérivées Partielles, 1996-1997, Exp. No. XXIII, Sémin. École Polytech., Palaiseau, 1997.
[2] J. M. Bony Sur l'Inégalité de Fefferman-Phong in: Séminaire sur les Équations aux Dérivées Partielles, 1998-1999, Exp. No. III, Sémin. École Polytech., Palaiseau, 1999.
[3] J. M. Bony, J. Y. Chemin Espaces Fonctionnels Associés au Calcul de WeylHörmander, Bull. Soc. math. France 122 (1994), 77-118.
[4] J. M. Bony, N. Lerner, Quantification Asymptotique et Microlocalisations d’Ordre Supérieur I, Ann. Scient. Éc. Norm. Sup., 22 (1989, 377-433.
[5] E. Buzano, N. Nicola, Pseudo-differential Operators and Schatten-von Neumann Classes, in: P. Boggiatto, R. Ashino, M. W. Wong (eds), Advances in Pseudo-Differential Operators, Proceedings of the Fourth ISAAC Congress, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 2004.
[6] E. Buzano, J. Toft Schatten-von Neumann properties in the Weyl calculus, J. Funct. Anal. 259 (2010), 3080-3114.
[7] L. Hörmander The Analysis of Linear Partial Differential Operators, vol I-III, Springer-Verlag, Berlin Heidelberg NewYork Tokyo, 1983, 1985.
[8] M A. Shubin, Pseudodifferential operators and spectral theory, SpringerVerlag, 2001.
[9] J. Toft Schatten-von Neumann properties in the Weyl calculus, and calculus of metrics on symplectic vector spaces, Ann. Glob. Anal. and Geom. 30 (2006), 169-209.

Dipartimento di Matematica "G. Peano",
Universitá degli Studi di Torino, Torino, Italy
E-mail address: sandro.coriasco@unito.it
Department of Mathematics, LinnÆus University, Växjö, Sweden
E-mail address: joachim.toft@lnu.se

[^0]: 2010 Mathematics Subject Classification. 35S05, 34E05, 34D05, 41A60.
 Key words and phrases. Weyl calculus, Asymptotic expansions, SG classes.

