



UNIVERSITÀ DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

# Herbs and spices: Characterization and quantitation ofbiologically-active markers for routine quality control by multipleheadspace solid-phase microextraction combined with separative or non-separative analysis

| This is the autho | r's manuscript |
|-------------------|----------------|
|-------------------|----------------|

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/152493

since 2016-11-21T21:49:16Z

Published version:

DOI:10.1016/j.chroma.2014.12.007

Terms of use:

**Open Access** 

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)



# UNIVERSITÀ DEGLI STUDI DI TORINO

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in [Journal of Chromatography A Volume 2015 Jan 9;1376:9-17. doi: 10.1016/j.chroma.2014.12.007.].

You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions:

(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license.

(2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en), [http://dx.doi.org/10.1016/j.chroma.2014.12.007]

Herbs and spices: characterization and quantitation of biologically-active markers for routine
 quality control by multiple headspace solid-phase microextraction combined with separative
 or non-separative analysis.

- 4
- 5 Barbara Sgorbini, Carlo Bicchi\*, Cecilia Cagliero, Chiara Cordero, Erica Liberto, Patrizia Rubiolo
- 6 Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via P. Giuria
- 7 9, I-10125 Torino, Italy
- 8
- 9 \*Corresponding author:
- 10 Prof. Dr. Carlo Bicchi
- 11 e-mail: <u>carlo.bicchi@unito.it</u>
- 12 Tel. +39 011 6707662
- 13 Fax +39 011 6707857

# 15 Abstract

16 Herbs and spices are used worldwide as food flavoring, thus determination of their identity, origin, 17 and quality is mandatory for safe human consumption. An analysis strategy based on separative 18 (HS-SPME-GC-MS) and non-separative (HS-SPME-MS) approaches is proposed for the volatile 19 fraction of herbs and spices, for quality control and to quantify the aromatic markers with a single 20 analysis directly on the plant material as such. Eight-to-ten lots of each of the following 21 herbs/spices were considered: cloves (Syzygium aromaticum (L.) Merr. & Perry), American 22 peppertree (Schinus molle L.), black pepper and white pepper (Piper nigrum L.), rosemary 23 (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.). Homogeneity, origin, and chemotypes of the investigated lots of each herb/spice were defined by 24 25 fingerprinting, through statistical elaboration with Principal Component Analysis (PCA). 26 Characterizing aromatic markers were directly quantified on the solid matrix through multiple 27 headspace extraction-HS-SPME (MHS-SPME). Reliable results were obtained with both separative 28 and non-separative methods (where the latter were applicable); the two were in full agreement, 29 RSD% ranging from 1.8 to 7.7% for eugenol in cloves, 2.2-18.4% for carvacrol+thymol in thyme, 30 and 3.1-16.8% for thujones in sage.

31

32 KEYWORDS: Herbs, Spices, Fingerprinting, Marker Quantitation, Separative method (Multiple
 33 Head Space-Solid Phase MicroExtraction-Gas Chromatography-Mass Spectrometry), Non 34 separative method (Multiple Head Space-Solid Phase MicroExtraction-Mass Spectrometry)

35

36

# 37 1. Introduction

Spices and herbs, as such or ground, alone or blended, are widely used for food flavoring. Many volatiles characterizing spices possess relevant biological activities in addition to their flavor (antibacterial, antiviral, antifungal, or toxic) **[1,2]**. Plant species for use as spices, as such or in 41 blends, must be submitted to quali- and quantitative controls to authenticate them and define their 42 quality and flavor profile; strict chemical and microbiological controls are also mandatory to 43 exclude contamination. Quali-quantitative analysis is an indispensable complement to botanical 44 identification, providing reliable definition of a plant's biological activity.

45 Conventional methods for volatile analysis very often entail isolation of the essential oil by hydrodistillation, or solvent extraction followed by gas-chromatographic analysis; these are 46 47 effective but time-consuming for routine quality control. Moreover, although representative and 48 universally accepted, these two procedures frequently fail to recover the markers exhaustively from 49 the aromatic plant. Solvent extraction, when applied to a set of different-polarity analytes, may 50 discriminate between them thus altering recovery. Conversely, recovery of an analyte by isolating 51 the essential oil from the plant is closely conditioned by the analyte's water solubility: a recent 52 study in the authors' laboratory found that only 70-90% of the main components were recovered in 53 essential oil obtained by hydrodillation, the remainder being solubilized in the residual water [3]; 54 these results will be the object of a forthcoming publication.

55 For the above reasons, rapid, inexpensive, easily-automated and solventless analytical methods, 56 applicable directly to plant material, are needed for characterization, quality control and quantitation 57 of the biologically-active components of spices and herbs. For volatile markers, headspace sampling 58 (HS) meets these requirements in full, in particular when HS is carried out with high concentration 59 capacity techniques such as solid phase microextraction (SPME) [4]. Headspace sampling is also 60 ideal because it can be combined directly with MS in the so-called non-separative systems (perhaps 61 better known as MS-nose) that produce diagnostic MS profiles. However, quantitation with HS 62 techniques is quite complex, in particular when applied to solid matrices, as is the case of most 63 spices: the technique is conditioned by matrix effects, in other words matrix composition and 64 texture influence analyte release. HS quantitation of analytes in solid samples can be run either on 65 the matrix as such, or after suspending it in a liquid that, under the analysis conditions adopted, is 66 not volatilized (often water). The principal advantages of the latter approach are its greater 67 sensitivity for analytes that are poorly soluble in the suspension liquid, and the homogeneous 68 distribution of the internal standard. Conversely, direct quantitation on the solid sample is 69 indispensable if markers react with or are soluble in the suspension medium; however, it suffers 69 from two crucial drawbacks: the distribution of the internal standard within the matrix is non-70 homogeneous and non-repeatable, and the internal standard interacts physico-chemically and 72 physically at the surface of the solid sample.

73 Multiple Headspace Extraction (MHE) is a possible approach to quantitation in solid samples; it 74 enables the matrix effect to be overcome. This quantitation approach was first proposed by Suzuky 75 et al. [5] and McAuliffe et al. [6] in the late 1960s, then developed by Kolb et al. [7] and recently 76 extended to include solid-phase microextraction (MHS-SPME) [8-13]. Ezquerro et al. [8] first 77 applied MHE to the quantitative determination of volatiles in multilayer packaging. MHS-SPME 78 was subsequently applied to quantify volatiles in antioxidant rosemary extracts [9] and in dry 79 fermented sausages [10], to determine haloanisoles and volatile phenols in wines [11], and aroma 80 components in tomato samples [12] and, more recently, in coffee [14], mushrooms [15,16] and 81 hazelnuts [17]. MHE is a stepwise quantitative approach based on dynamic gas extraction; it 82 enables the total peak area of an analyte in a matrix to be determined, excluding the matrix effect. 83 Despite this important advantage, this approach is not widely used because it is erroneously 84 considered to be complex and time-consuming.

85 This study aimed to meet the ever-increasing demand for routine control analyses to authenticate 86 and classify a group of spices through fingerprinting and profiling. In particular, seven aromatic plants widely used as spices were investigated, i.e. cloves (Syzygium aromaticum (L.) Merr. & 87 88 Perry), American peppertree (Schinus molle L.), black pepper and white pepper (Piper nigrum L.), 89 rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.). 90 The main goal was to investigate the possibility of applying the above two approaches to routine 91 quality control, while significantly reducing total analysis time. Spice characterization was done in 92 a single analysis, by 1) fingerprinting it through its volatile fraction, by separative (HS-SPME-GC-

MS) and non-separative (HS-SPME-MS) methods in combination with Principal Component Analysis (PCA), applied directly to solid matrices as such, and 2) quantitation through MHE of selected key-markers known to be responsible for the flavor, and/or taxonomic classification, and/or biological activity of the investigated spice, again by separative and, when possible, non-separative methods.

98

# 99 2. Experimental

# 100 2.1. Materials and Reagents

101 Spice samples from lots of different geographical origins were kindly supplied by Cannamela (Zola 102 Predosa (BO), Italy), in particular ten samples of black pepper, white pepper (Piper nigrum L.), 103 and American peppertree (Schinus molle L.), and nine samples of thyme (Thymus vulgaris L.), 104 rosemary (Rosmarinus officinalis L.), and cloves (Syzygium aromaticum (L.) Merr. & Perry). Eight 105 samples of sage (Salvia officinalis L.) were purchased in different local supermarkets, being from 106 different origins according to the labels (1 from East Turkey, 3 from Central Turkey, and 4 from 107 Italy). Table 1 lists the matrices analyzed and the target ions of the selected markers. Pure standard 108 samples of borneol, bornyl acetate,  $\Delta$ -3-carene, carvacrol,  $\beta$ -caryophyllene, eugenol,  $\alpha$ -humulene, 109 limonene, linalool,  $\alpha$ -phellandrene,  $\alpha$ -pinene,  $\alpha$ -terpineol, thymol,  $\alpha$ - and  $\beta$ - thujone were from 110 Sigma Aldrich (Milan, Italy). Solvents were all HPLC-grade from Sigma Aldrich (Milan, Italy).

111

#### 112 **2.2. SPME fibers**

Polydimethylsiloxane (PDMS) and carboxen/divinylbenzene/PDMS (CAR/DVB/PDMS) SPME fibers (1 cm long) were from Supelco Co. (Bellafonte, PA, USA). PDMS coating was used for thyme, CAR/DVB/PDMS for all other matrices. Before use, all fibers were conditioned as recommended by the manufacturer. Consistency of fiber performance was periodically checked through in-fiber external standardization, by analyzing a standard aqueous solution containing some of the selected markers (5  $\mu$ L of a 2 mg mL<sup>-1</sup> solution sampled for 30 minutes at 50°C) [**18**, **19**]

#### 120 **2.3. Sample preparation**

#### 121 2.3.1. Sampling conditions

A series of experiments were run to determine the optimal HS-SPME sampling conditions: fiber coating (PDMS,CAR-PDMS-DVB, PDMS-DVB), sampling time (15, 30, 45, 60 minutes) and temperature (30, 50, 60°C), and vial volume (10 and 20mL).

125 Appropriate amounts (1-20 mg depending on the matrix) of thyme, rosemary, black pepper, white 126 pepper, cloves, and sage in a 20 mL headspace vial were submitted to HS-SPME sampling for 30 127 minutes at 60°C. A known amount of cloves (1g) was diluted with an inert solid support (Celite® 128 545, Fluka) in a 1:20 ratio to obtain a mother sample, from which 2 mg samples containing 0.1 mg 129 of cloves were weighed out. Each sample was submitted to MHS-SPME three times, for a total of 130 nine extractions for each matrix. Blank runs were done, without detecting any carry-over effects. 131 After sampling, the fiber was automatically removed from the vapor phase, and inserted into the GC 132 injection port to desorb the sampled analytes thermally on-line into the GC column.

Fingerprints were normalized by in-fiber external standardization: 1  $\mu$ L of a 1000  $\mu$ g mL<sup>-1</sup> solution of nonane in dibutylphtalate was sampled for 20 minutes at 60°C [**17**].

135

#### 136 2.3.2. Analysis conditions

137 Analyses were carried out with a MPS-2 multipurpose sampler (Gerstel, Mülheim a/d Ruhr, 138 Germany) installed on an Agilent 6890 GC unit coupled to an Agilent 5973N MSD (Agilent, Little 139 Falls, DE, USA). For the non-separative analyses, the GC injection port was connected directly to 140 the MS system through a length of deactivated fused silica tubing.

Separative GC-MS method: injector temperature: 230°C, injection mode: split, ratio: 1/20; liner:
Inlet Liner SPME Type (Sigma Aldrich); carrier gas: helium, flow rate: 1 mL min<sup>-1</sup>; fiber
desorption and reconditioning time: 5 min; column: MEGAWAX 20M (df 0.20 μm, dc 0.20 mm,
length 50 m) (Mega, Legnano (Milan), Italy). Temperature programs: for thyme and cloves, from

145 100°C (0 min) to 230°C (5 min) at 3°C min<sup>-1</sup>; for white and black pepper, rosemary, American 146 peppertree, and sage, from 50°C (1 min) to 230°C (5 min) at 3°C min<sup>-1</sup>. Markers were identified by 147 comparing their mass spectra and retention indices to those of authentic standards, or available in 148 commercial or home-made libraries, or reported in the literature.

*Non-separative MS method*: injector temperature: 250°C, injection mode: split, ratio: 1/20; carrier
gas: helium, flow rate: 0.4 mL min<sup>-1</sup>; fiber desorption time and reconditioning: 5 min; transfer
column: deactivated fused silica tubing (dc 0.10 mm, length 6.70 m) (Mega, Legnano (Milan),
Italy); GC oven temperature: 250°C.

MSD conditions: MS operated in EI mode (70 eV), scan range: 35 to 350 amu; selected target ions
for quantitation are in Table 1; dwell time 40 ms, ion source temperature: 230°C; quadrupole
temperature: 150°C; transfer line temperature: 280°C.

156

# 157 **2.4. Quantitation**

Stock standard mixtures of the markers selected for each matrix were prepared by adding an aliquot of pure standard to an appropriate volume of cyclohexane. Initial concentrations were 60 mg mL<sup>-1</sup>, with the exception of  $\Delta$ -3-carene and  $\alpha$ -humulene (70 mg mL<sup>-1</sup>) and  $\alpha$ -phellandrene (90 mg mL<sup>-1</sup>). Suitable dilutions (5-7) of each stock standard mixture in cyclohexane were then prepared in the concentration range (0.002-90 mg mL<sup>-1</sup>) reported in Table 3SM. The resulting solutions (stock and diluted) were stored at 0°C and renewed weekly. Each calibration solution was analyzed in triplicate by total vaporization MHS-SPME, under the conditions reported in paragraph 2.3.1.

165

# 166 2.5. Method repeatability and intermediate precision, LOD and LOQ, method accuracy

All matrices were analyzed three times on the same day by MHS-SPME to evaluate repeatability.
Intermediate precision was determined for each matrix, by analyzing it every four weeks over a
period of three months.

The LOD and LOQ values were determined experimentally by analyzing decreasing amounts of the real-world samples diluted with an inert solid support (Celite® 545, Fluka). The LOD of each analyte was calculated from the average area of the investigated marker divided by the average "peak to peak" noise value, sampled in its region of elution in the chromatogram, with a coverage factor of 3. LOQ was the lowest concentration forwhich the error in peak integration area determination (assignment) was  $\leq 20\%$ .

The accuracy of the methods was evaluated by quantifying each marker in two samples, for each spice and aromatic plant from different lots, in solid phase with the internal standard addition approach, because of the lack of certified reference standard samples, and of methods exhaustively recovering the markers investigated.

180

# 181 **2.6 Data processing**

Principal Component Analysis (PCA) was run with XLStat 2013 (Addinsoft, Paris, France). Data
for PCA and regression analysis were pre-treated by autoscaling.

184

#### 185 **3. Results and discussion**

Quality control of aromatic plants used in the medicinal or food fields is a mandatory and crucial step, which requires highly reliable, but at the same time simple and easily-automated, methods. Recently, including in the plant field, non-separative methods have attracted considerable interest alongside conventional separative methods, in particular when large numbers of samples are to be analyzed.

In this connection, modern analysis strategies offer two complementary and related options: fingerprinting and profiling. Fingerprinting generally involves untargeted methods: the sample profile, a unique diagnostic parameter, is used to classify it within a set of samples, based on the degree of similarity of their analytical patterns. Profiling involves targeted methods, in which a sample is characterized and discriminated by the quantitative distribution of a number of known target analytes, often descriptive of the sample's required characteristics. In this study, profilingonly involved quantitating the characterizing markers in terms of flavor [1,2].

198

# 199 **3.1 Sample discrimination by fingerprinting**

200 As said above, the fingerprinting approach entails defining a diagnostic profile, while analytes need 201 not be identified; samples are discriminated (evaluation of quality or origin) by processing the 202 analytical results with multivariate statistical analysis. The combination HS/GC-MS/multivariate 203 analysis is an established tool for aromatic plant classification [3, 20, 21, 22], whereas non-204 separative methods (HS-SPME/MS/multivariate analysis) are little used, if at all [23]. In this study, 205 ten lots for cloves, American peppertree, black pepper, and white pepper, nine for rosemary and 206 thyme, and eight for sage were analyzed by both HS-SPME-GC-MS and HS-SPME-MS, under 207 rigorously standardized conditions: the resulting profiles were submitted to Principal Component 208 Analysis (PCA). PCA with conventional HS-SPME-GC-MS was run on the normalized area of all 209 peaks characterizing each spice/herb investigated (Table 1 SM). The list of volatile fraction 210 components of each spice/herb considered for PCA elaboration is reported in Table 1SM 211 (Supplementary Material). Figure 1 reports the HS-SPME GC-MS (1a) profile of a sage sample of 212 Italian origin (A4). Figure 1SM gives the HS-SPME-GC-MS patterns of the spices/herbs 213 investigated. Figure 2 reports the PCA scores of HS-SPME-GC-MS patterns of sage (2a) and thyme 214 (2c) samples.

The same plant samples from the same lots were then submitted to HS-SPME-MS analysis. **Figure 1** also reports TIC and MS pattern (1b and 1c) of the sage sample in Figure 1a, analyzed by HS-SPME-MS. Again, the absolute intensity of all ions, diagnostic of the selected markers in the MS profiles of each spice/herb, were considered for PCA (Table 1). **Figure 2** also gives the PCA plot of HS-SPME-MS patterns of the same set of sage (2b) and thyme (2d) samples. The PCA results were very similar with both separative and non-separative methods, and with both techniques successfully classified the lots of each herb: the ten clove lots were divided into two groups (6 and 4 lots) corresponding to their geographical origins; American pepper, black pepper and white pepper likewise produced a relatively uniform group, plus 2 or 3 outliers; rosemary lots were relatively uniform, with only one outlier; sage lots were distributed across the statistical plane with one outlier, as expected, because of their declared differing origins; lastly, thyme lots were in two main groups, corresponding to the species' two well-known chemotypes (i.e. thymol and carvacrol).

A series of non-equilibrium HS-SPME experiments at ever decreasing sampling times (20, 10, 5 minutes) was also run, to speed up discriminative control. The PCA results were fully comparable to those described above (data not reported).

Fingerprinting with non-separative methods, in combination with multivariate statistical analysis, was found to give results that were fully comparable to those obtained with separative methods. Both approaches can be equally useful to check homogeneity, and to classify lots and samples; the presence of different chemotypes, as in the case of rosemary and thyme, can very quickly be detected. The unquestioned advantage of non-separative methods is that analysis time is limited to the time required for sample preparation, and is thus markedly reduced compared to that required for separative methods.

237

# 238 **3.2 Sample characterization by marker quantitation**

239 The approach described gave useful indications concerning the homogeneity and classification of 240 the lots investigated, in agreement with the available information. In cases where the results can be 241 compared to reference results, i.eif a reference data collection for each spice/herb is available, the 242 results might also provide information about the quality and economic value of the spices/herbs 243 investigated. To characterize a spice/herb fully, however, the volatile markers of sensory quality, 244 and/or taxonomy, and/or biological activity must be quantified directly on the plant material. The 245 volatile markers characterizing the investigated spices/herbs are known from the literature [1]; in 246 particular thymol and carvacrol for thyme;  $\alpha$ -pinene,  $\Delta$ -3-carene,  $\alpha$ -phellandrene and limonene for 247 American peppertree; eugenol for clove; linalool, bornyl acetate,  $\alpha$ -terpineol and borneol for

248 rosemary;  $\alpha$ -phellandrene, limonene,  $\alpha$ -humulene and  $\beta$ -caryophyllene for white pepper;  $\Delta$ -3-249 carene, limonene,  $\alpha$ -humulene and  $\beta$ -caryophyllene for black pepper; and  $\alpha$ - and  $\beta$ - thujone for 250 sage. Headspace sampling was used not only because it is quick and easily automated, but also 251 because it has been proved to provide quantitative results closer to the true content of plant markers 252 than any other technique (hydrodistillation, solvent extraction, etc.); this is because the reduced 253 number of sample treatments reduces losses or artifact formation. MHS-SPME was selected 254 because it is considered to be the most appropriate approach for volatile component quantitation in 255 solid matrices. Its theoretical foundations derive from the model developed by Kolb et al. for MHE-256 static HS [7]. Both MHS-SPME and MHE are based on stepwise dynamic gas extraction of the 257 investigated analyte from a single sample: the analyte peak area decays exponentially with the 258 number of extractions, and the sum of the areas from each extraction corresponds to the amount 259 present initially in a given matrix. The total area of the analyte(s) under investigation for 260 quantitation is determined through equation 1:

261

- 262
- 263 (Eq. 1)

264

$$A_T = \sum_{i=1}^{\infty} A_i = \frac{A_1}{(1 - e^{-q})} = A_1 / (1 - Q)$$

 $\sim$ 

265

where  $A_1$  is the analyte area after the first extraction,  $A_T$  is the total analyte area; Q: e<sup>-q</sup>, -q is a constant that can be calculated from the following linear regression analysis equation:

268

269 
$$\ln A_i = -q (i-1) + \ln A_1$$
 (Eq. 2)

where A<sub>i</sub> is the peak area obtained from the i<sup>th</sup> extraction. In everyday practice, extractions need not be continued until all the analyte has been removed from the sample: a small number of extractions (generally 3-5) are sufficient to obtain a reliable exponential equation describing analyte decay, from which the total area of the analyte in the sample can be extrapolated. The extrapolated analyte area can then be quantified by an external standard approach, by submitting mixtures of selected markers at different concentrations to MHS-SPME.

277 MHS-SPME can also be carried out under non-equilibrium conditions [13], provided that sampling 278 parameters are rigorously standardized. The main advantage of this method is that several analytes 279 can be quantified simultaneously, without requiring the addition of internal standards and without 280 requiring recovery determination; this provides the analyte absolute total area in the investigated 281 sample, and is not affected by the matrix effect. The limitations of MHS-SPME under non-282 equilibrium conditions are that i) correctly determined Q value(s) must be used and, ideally, ii) a Q 283 value for each sample should be measured. The second drawback can be overcome with sets of 284 homogeneous samples of the same matrix [14, 17] (see 3.2.1). Figure 3 shows the GC-MS extracted 285 ion chromatograms for eugenol (m/z=164) in a clove sample, corresponding to three consecutive 286 extractions (A), and its linear decay diagram (B).

287

288

#### 289 **3.2.1. Determination of Q values**

In previous work [14, 17] the authors showed that, with samples possessing similar matrix effects (e.g. ground roasted coffee, and roasted hazelnuts) the Q value for a given analyte tends to be constant, thus making it possible to adopt an average Q to quantify an analyte in a single analysis. In this study, the first step aimed to verify whether the average Q value can also be applied to matrices that are less "standardized" than roasted coffee or roasted hazelnuts, and that are characterized by relatively low homogeneity, be it due to their different origins, different growing or storage conditions, or to the soft technological process to which they are submitted. In this study, 297 Q values for each spice/herb in terms of RSD% were very satisfactory, ranging from 2.6% for  $\Delta$ -3-298 carene in black pepper to 10.0% for  $\beta$ -thujone in sage. **Table 1** reports the average Q and its RSD% 299 for each selected marker, together with the decay correlation coefficients (r) (eq. 2), for all samples 300 of all spices/herbs investigated. The results show that the Q values for the markers of each of the six 301 spices/herbs investigated fell within a very narrow range; this means that an average Q value can be 302 adopted for routine marker quantitation also for herbs and spices (Table 2 SM); in particular, 303 RSD% values for markers belonging to different classes of secondary metabolites from different 304 plants were very satisfactory; in no case did they exceed 5% for the markers of thyme and 305 American peppertree, and 10% for those of rosemary, cloves, black and white pepper, and sage. 306 These results are especially significant because each of the samples came from a different 307 commercial lot.

308 The reliability of the Q value was also confirmed by the correlation coefficients for all markers: all 309 were above 0.9977 (i.e. limonene in black pepper), and several above 0.999 (Table 1). These results 310 confirm that the total area of the investigated markers can be determined from a single 311 sampling/extraction, provided that marker concentration is in the range across which the average Q 312 value has been calculated. As a general consideration, the possibility, in routine analyses, to 313 quantify several markers in the same run, whileadopting the average Q value for each of them 314 within the same matrix, markedly reduces the total number of analyses and, as a consequence, the 315 analysis time. This is particularly true for solid matrices, and makes MHS-SPME highly 316 competitive with other approaches usually adopted (i.e. standard addition and Stable Isotope 317 Dilution Assay, SIDA).

318

# 319 **3.3. Quantitative analysis by separative method**

320 The selected markers were initially quantified by applying both sample-specific and average Q 321 values, in order to determine the manner in which they may be applied correctly to all samples of a 322 given plant species. **Table 2** reports the average concentrations (expressed as mg  $g^{-1}$ ) of selected 323 thyme and American peppertree markers, calculated with both specific and average Q values. The 324 results show that the amount of a marker in a matrix, calculated by MHS-SPME with average Q, is 325 either identical or very close to the amount calculated applying the specific Q value. Similar results 326 were obtained for the other spices and herbs investigated. The possibility to quantify a marker with 327 a single peak area makes MHS-SPME a very rapid approach, suitable for application in routine quality control [7]. Table 2 also reports the average concentrations (expressed as mg  $g^{-1}$ ) of the 328 329 selected markers of cloves, white pepper and black pepper, rosemary and sage, calculated with the 330 average Q values.

331 Moreover, as was pointed out by Kolb et al. [7], MHE can further be speeded-up, because the 332 investigated markers can be quantified via a single-point calibration; this avoids the need to create a 333 calibration curve, which of course can only be applied within the range of linearity across which the 334 analyte has to be quantified. The linearity of the recoveries was here demonstrated by submitting 335 standard mixtures of each marker to MHS-SPME, within the operative range of concentrations 336 across which they are almost always present in the plant material. The linear regression equations 337 and their correlation coefficients are in **Table 3SM**. The r values are all very high (all above 0.9987 338 for  $\alpha$ -pinene in American peppertree), thus making the single-point calibration method applicable. 339 The accuracy of the reported results was confirmed by analyzing the same analytes quantitatively,

on two samples for each lot investigated, by the standard addition method. These results are in line
with those obtained with roasted coffee suspended in water [14] and with roasted hazelnuts as such
[17].

343

### 344 **3.4.** Quantitative analysis by non-separative methods

Whether or not non-separative methods may be applied depends on both the chemical composition of the matrix under investigation, and the nature of its markers. Simple matrices containing markers characterized by specific diagnostic m/z fragments are suitable for quantitative non-separative analysis. Conversely, to quantify markers in matrices with volatile fractions having a complex 349 chemical composition, such as spices and aromatic plants, non-separative methods are more 350 complex than separative methods. Pepper and rosemary, for instance, contain several monoterpene 351 hydrocarbon isomers, all characterized by very similar fragmentation patterns (e.g. m/z = 93); this 352 impedes quantitation of one isomer, unless the contribution of each isomer to the total target ion 353 intensity is known, and a correction factor can be determined [14]. In the present study, three of the 354 spices/herbs investigated could be analyzed by non-separative methods, since they presented 355 sufficiently specific diagnostic ions to quantify their markers or pairs of them, i.e. eugenol (m/z 356 164) in clove samples, the sum of thymol and carvacrol in thyme (m/z 135) and the sum of  $\alpha$ - and  $\beta$ -thujones (m/z 110) in sage. Table 3 reports the average concentrations (mg g<sup>-1</sup>) of eugenol, 357 358 thujones, and thymol and carvacrol, in clove, sage and thyme, respectively, quantified by a non-359 separative MHS-SPME-MS approach without applying any correction factor; the results are 360 compared to those obtained with separative MHS-SPME-GC-MS, and the relative standard 361 deviation (RSD%) between the two methods is given. The results are in general satisfactory since 362 RSD% of more than 60% of the samples is below 10%. In all cases, those above 10%, comprise the 363 sum of two analytes, and never exceed18%. These examples are briefly discussed below, to 364 comment on the possibilities and limits of this approach.

365 The determination of eugenol in cloves was affected by the contribution made by eugenyl acetate to 366 its target ion intensity (see figure 3); a correction factors was therefore determined in the attempt to 367 improve between quantitative results of non-separative and separative methods. The percentage of 368 interference by eugenvl acetate in the intensity of the eugenol target ion was determined as follows: 369 the 10 samples of cloves were analyzed by the separative method, with MS in Selected Ion 370 Monitoring; the average contribution of eugenyl acetate to the total intensity of the eugenol target 371 ion at 164 m/z was 15.9%. Adoption of this correction factor, markedly improved agreement 372 between quantitative data, since the RSD% versus the separative method dropped to 7.7%, as shown in **Table 3**. 373

374 The situation was different for thyme: the relative abundance of thymol and carvacrol varies in what 375 appears to be a random manner, depending on the analyzed chemotype and, within a single 376 chemotype, depending on origin (par. 3.2). Thymol and carvacrol are isomers with very similar 377 mass spectra. It is thus not possible to calculate the average contribution of one of them to the target 378 ion intensity, but only to quantify the sum of the two markers. In sage samples too, the contribution 379 of  $\alpha$ - and  $\beta$ - thujone to the target ion cannot be distinguished, although no interference from other 380 compounds was observed. In this case, however, no correction factor was necessary; quantitative 381 discrimination between  $\alpha$ - and  $\beta$ - thujone is not required under EU law, restrictions due to the 382 compounds' toxicity concerning the total amount and not each isomer.

383 These results also show that correct quantitation of the markers of a complex matrix with a non-384 separative HS-SPME-MS method can successfully be guided by preliminary fingerprinting 385 analysis, which helps to define plant chemotype, quality, and origin as an indication of the quali-386 quantitative chemical composition.

387

# 388 3.3. Method repeatability, intermediate precision, LOD and LOQ

The repeatability of the method was evaluated by analyzing all samples of the spices/herbs investigated, three times on the same day, by MHS-SPME-GC-MS. Intermediate precision was determined by submitting all samples to MHS-SPME-GC-MS every four weeks for a period of three months. **Table 4SM** reports the relative standard deviations (RSD%) of the markers of the volatile fraction of thyme and American pepper. Repeatability and intermediate precision were highly satisfactory, RSD% never exceeding 11% and 15%, respectively, for the two species. The results were similar for all other matrices.

Repeatability and intermediate precision with non-separative MHS-SPME-MS was determined on the total area of the TIC profile, in the same way as for the separative method. In this case, too, the results were highly satisfactory, RSD% never exceeding 13% and 18%, respectively.

In consideration of the very small amount of plant material processed (1-5 mg) both repeatability and intermediate precision should be considered very satisfactory, in particular for the non separative HS-SPME-MS method, in which data are obtained via the TIC profile.

402 LOD values ranged from 20 ppb (ng/g) for limonene to 800 ppb for carvacrol; LOQ values were
403 slightly higher, ranging from 60 ppb for phellandrene to 3 ppm (µg/g) for carvacrol.

404

#### 405 **4. Conclusions**

The results of this study show that MHS–SPME, combined with either separative (GC-MS) or nonseparative (MS) techniques, is an effective Total Analysis System [24, 25] for the reliable qualiquantitative characterization of spices and aromatic plants. Both separative and non-separative methods, in a single step, enable the analyst a) to discriminate between qualities, origins, and chemotypes, since they provide diagnostic sample fingerprinting for correct sample classification in combination with PCA, and b) to quantify the aromatic markers characteristic of the plant's flavor directly on the solid matrix, by MHS-SPME.

413 The results also enhance the reliability of MHE when used to quantify volatile markers directly in 414 solid matrices, by showing that an average Q value may be used to quantify one or more analytes 415 with one automatic extraction (experiment) for each sample. This is particularly significant when a 416 large number of samples of the same homogeneous matrix are to be analyzed. In addition, MHE is 417 also confirmed as a time-competitive approach for routine analysis compared to other HS 418 quantitation methods, again when the number of analyses is large, and the time necessary to 419 determine a significant average Q value is compensated by the higher analysis throughput. MHS-420 SPME can also be successfully combined with non-separative methods (MHS-SPME-MS) to speed 421 up control analysis when one or more markers from solid matrices must be quantified, provided that 422 they present specific diagnostic ion(s) in the total MS fingerprint. Separative and non-separative 423 approaches are closely complementary; they can be carried out with the same instrumentation and

424 adopted impartially, since they produce fully comparable qualitative results and, where MHS425 SPME-MS is applicable, highly compatible quantitative results.

426 More in general, the consistency between separative and non-separative methods, combined with 427 the complementarity of the results on fingerprinting and marker quantitation, show that the 428 proposed MHS-SPME-GC-MS or MHS-SPME-MS method can be adopted as a routine strategy of 429 choice to characterize aromatic plants and spices, directly and as such, in a single analytical step.

430

# 431 Acknowledgments

This study was carried out within the project "*Studio di metaboliti secondari biologicamente attivi da matrici di origine vegetale*" financially supported by Ricerca Locale (Ex60%2013) of Turin
University, Turin (Italy).

The authors are indebted to Cannamela-Bonomelli SpA (Zola Predosa (BO), Italy)) for supplying
controlled lots of herbs and spices.

437

#### 438 **References**

- 439 [1] J. Bruneton, Pharmacognosie, Phytochimie, plantes medicinales 4<sup>th</sup>ed. 2009 Lavoisier ed.
- 440 [2] H.J.D. Dorman, S.G. Deans, Antimicrobial agents from plants: antibacterial activity of plant
- 441 volatile oils, J. Appl. Microb. 88 (2000) 308-316.
- 442 [3] B Sgorbini, M. Sganzerla, C. Cagliero, L. Boggia, C. Bicchi, P. Rubiolo, Exhaustive evaluation
- 443 of volatiles in plants: two case studies menthol in peppermint (Mentha x piperita L.) and eugenol in
- 444 clove (*Syzygium aromaticum* (L.) Merrill & Perry), submitted to Phytochemistry.
- 445 [4] C Bicchi, C Cordero, E Liberto, B Sgorbini, and P Rubiolo, Headspace Sampling in Flavor and
- 446 Fragrance Field, in: J. Pawliszyn, L. Mondello, P. Dugo, (Eds), Comprehensive Sampling and Sample
- 447 Preparation, Volume 4; Elsevier, Academic Press: Oxford, UK, 2012, pp 1–25.
- 448 [5] M. Suzuki, S. Tsuge, and T. Takeuki, Gas chromatographic estimation of occluded solvents in
- adhesive tape by periodic introduction method, Anal Chem 72 (1970) 1705.

- [6] C. Mc Aucliffe, GC determination of solutes by multiple phase equilibration, Chem. Technol. 1(1971) 46.
- 452 [7] B. Kolb, L.S. Ettre, "Static Headspace-Gas Chromatography, Theory and Practice", Wiley –
  453 VCH, New York, 1997.
- [8] O. Ezquerro, B. Pons, M. T. Tena, Multiple headspace solid-phase microextraction for the
  quantitative determination of volatile organic compounds in multilayer packagings, J. Chromatogr.
  A 999 (2003) 155-164.
- 457 [9] J.D. Carrillo, M.T. Tena, Determination of volatile compounds in antioxidant rosemary extracts
  458 by multiple headspace solid-phase microextraction and gas chromatography, Flav. Fragr. J. 21
  459 (2006) 626-633.
- [10] M. Flores, D. Hernandez, Optimization of multiple headspace solid-phase microextraction for
  the quantification of volatile compounds in dry fermented sausages ,J. Agric. Food Chem. 55 (2007)
  8688-8695.
- [11] C. Pizarro, N. Perez-del-Notaro, J. M. Gonzàles-Sàiz, Multiple headspace solid-phase
  microextraction for eliminating matrix effect in the simultaneous determination of haloanisoles and
  volatile phenols in wines ,J. Chromatogr. A 1165 (2007) 1-8.
- 466 [12] E. Serrano, J. Beltràn, F. Hernandez, Application of multiple headspace-solid-phase
  467 microextraction followed by gas chromatography-mass spectrometry to quantitative analysis of
  468 tomato aroma components, J. Chromatogr. A 1216 (2009) 127-133.
- 469 [13] O. Ezquerro, G. Ortiz, B. Pons, M. T. Tena, Determination of benzene, toluene, ethylbenzene
  470 and xylenes in soils by multiple headspace solid-phase microextraction, J. Chromatogr. A 1035
  471 (2004) 17-22.
- [14] C. Bicchi, M.R. Ruosi, C. Cagliero, C. Cordero, E. Liberto, P. Rubiolo, B. Sgorbini,
  Quantitative analysis of volatiles from solid matrices of vegetable origin by high concentration
  capacity headspace techniques: Determination of furan in roasted coffee, J. Chromatogr. A 1218
  (2011) 753-762.

- [15] R. Costa, L. Tedone, S. De Grazia, P. Dugo, L. Mondello, Multiple headspace-solid-phase
  microextraction: An application to quantification of mushroom volatiles, Anal. Chim. Acta 770
  (2013) 1–6.
- [16] I. San Román, M.L. Alonso, L. Bartolomé, R.M. Alonso, R. Fañanás, Analytical strategies
  based on multiple headspace extraction for the quantitative analysis of aroma components in
  mushrooms, Talanta 123 (2014) 207–217.
- [17] L. Nicolotti, C. Cordero, C. Bicchi, P. Rubiolo, B. Sgorbini, E. Liberto. Volatile profiling of
  high quality hazelnuts (*Corylus avellana* L.): chemical indices of roasting, Food Chem. 138 (2013)
  1723-1733.
- [18] Y. Wang, J. O'Reilly, Y. Chen, J. Pawliszyn, Equilibrium in-fibre standardisation technique
  for solid-phase microextraction, J. Chromatogr. A 1072 (2005) 13-17.
- [19] C. Bicchi, C. Cordero, E. Liberto, B. Sgorbini, P. Rubiolo, Reliability of fibres in Solid Phase
  Microextraction for routine analysis of the headspace of aromatic and medicinal plants, J.
  Chromatogr. A, 1152 (2007) 138-149.
- 490 [20] P. Rubiolo, B. Sgorbini, E. Liberto, C. Cordero, C. Bicchi, Analysis of the plant volatile
- 491 fraction, in A. Herrmann (Ed), The Chemistry and Biology of Volatiles, 2010, Chapter 3, 50-93.
- 492 [21] B Sgorbini, C Bicchi, C. Cagliero, C Cordero, E Liberto, P. Rubiolo, Headspace sampling and
- 493 gaschromatography: A successful combination to study the composition of a plant volatile fraction,
- 494 in: K. Hostettmann, H. Stuppner, A. Marston, S. Chen (Eds), Handbook of Chemical and Biological
- 495 Plant Analytical Methods, , First Edition, 2014, Chapter 10.
- 496 [22] C. Cagliero, B Sgorbini, C Cordero, E Liberto, C Bicchi, P. Rubiolo, Analytical strategies for
- 497 multipurpose studies of a plant volatile fraction, in: K. Hostettmann, H. Stuppner, A. Marston, S.
- Chen (Eds), Handbook of Chemical and Biological Plant Analytical Methods, First Edition, 2014,
  Chapter 20.

- 500 [23] E. Liberto, M.R. Ruosi, C. Cordero, P. Rubiolo, C. Bicchi, B. Sgorbini, Non-separative
  501 headspace solid phase microextraction-mass spectrometry profile as a marker to monitor coffee
  502 roasting degree, J. Agric. Food Chemistry 61 (2003) 1652-1660.
- 503 [24] P.S. Dittrich, K. Tachikawa, A. Manz, Micro total analysis systems. Latest advancements and
  504 trends, Anal. Chem. 78 (2006) 3887-3907.
- 505 [25] A. Manz, N. Graber, H.M. Widmer, Miniaturized Total Chemical-Analysis Systems a Novel
- 506 Concept for Chemical Sensing, Sensors Actuat. B-Chem. 1 (1990) 244-248.

| 508 | Captions | to | figures |
|-----|----------|----|---------|
|     | 1        |    |         |

| 509 | Figure 1 Sage sample of Italian origin (A4): (a) HS-SPME GC-MS profile, (b) HS-SPME-TIC-MS |
|-----|--------------------------------------------------------------------------------------------|
| 510 | pattern, and (c) MS pattern.                                                               |

- 511 Peak identification: 1) α-pinene, 2) camphene, 3) β-pinene, 4) myrcene, 5) α-terpinene, 6) p-
- 512 cymene, 7) limonene, 8) 1,8-cineole, 9) γ-terpinene, 10) α-terpinolene, 11) α-thujone, 12) β-
- 513 thujone, 13) camphor, 14) borneol, 15) 4-terpineol, 16)  $\beta$ -bourbonene, 17)  $\beta$ -caryophyllene, 18)
- aromadendrene, 19) α-humulene, 20) δ-cadinene, 21) caryophyllene oxide, 22) viridiflorol.

- 516 Figure 2 PCA scores of the HS-SPME-GC-MS patterns of the set of sage (2a) and thyme (2c)
- 517 samples and of HS-SPME-MS patterns of the same set of sage (2b) and thyme (2d) samples.

518

519 Figure 3 GC-MS extracted ion chromatograms of eugenol (m/z=164) in a clove sample from three 520 consecutive extractions (a) together with its linear decay diagram (b).

521

Figure 1SM HSSPME-GC-MS patterns of black pepper and white pepper (a and b), American
peppertree (c), rosemary (d), thyme (e) and cloves (f).

Table 1. List of the investigated matrices together with target ion (in bold) and qualifier ions of the selected markers. For each marker the average Q values with their RSD% and r coefficients are reported. Legend of acronyms. Thyme: *Thymus vulgaris* L.; Amer. Pep.: American peppertree, *Schinus molle* L.; Cloves: *Syzygium aromaticum* (L.) Merr. & Perry; Rosem.: rosemary, *Rosmarinus officinalis* L.; White pep. and Black pep.: pepper, *Piper nigrum* L.; Sage: *Salvia officinalis* L.

|                 | m/z                |                     |                                 | Amor                  |                       |                       | W/hito                | Black                 |                        |
|-----------------|--------------------|---------------------|---------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|
|                 | fragments          |                     | Thyme                           | pep.                  | Cloves                | Rosem                 | pep.                  | рер.                  | Sage                   |
| Thymol          | <b>135</b> ,150,91 | Aver Q<br>RSD%      | 0.81<br>3.2                     |                       |                       |                       |                       |                       |                        |
| Carvacrol       | <b>135</b> ,150,91 | Aver Q<br>RSD%<br>r | 0.9997<br>0.82<br>3.0<br>0.9997 |                       |                       |                       |                       |                       |                        |
| α-Pinene        | <b>93</b> ,79,136  | Aver Q<br>RSD%<br>r |                                 | 0.83<br>3.1<br>0.9992 |                       |                       |                       |                       |                        |
| ∆-3-carene      | <b>93</b> ,91,136  | Aver Q<br>RSD%<br>r |                                 | 0.78<br>4.5<br>0.9998 |                       |                       |                       | 0.89<br>2.6<br>0.9988 |                        |
| α-Phellandrene  | <b>93</b> ,91,136  | Aver Q<br>RSD%<br>r |                                 | 0.80<br>3.6<br>0.9999 |                       |                       | 0.88<br>3.9<br>0.9983 |                       |                        |
| Limonene        | <b>68</b> ,93,136  | Aver Q<br>RSD%<br>r |                                 | 0.77<br>5.8<br>0.9999 |                       |                       | 0.74<br>9.5<br>0.9985 | 0.74<br>7.5<br>0.9977 |                        |
| α-Humulene      | <b>93</b> ,121,204 | Aver Q<br>RSD%<br>r |                                 |                       |                       |                       | 0.25<br>9.6<br>0.9990 | 0.41<br>9.9<br>0.9993 |                        |
| Eugenol         | <b>164</b> ,149,77 | Aver Q<br>RSD%<br>r |                                 |                       | 0.32<br>5.6<br>0.9989 |                       |                       |                       |                        |
| Linalool        | <b>71</b> ,121,136 | Aver Q<br>RSD%<br>r |                                 |                       |                       | 0.56<br>9.8<br>0.9993 |                       |                       |                        |
| Bornyl acetate  | <b>95</b> ,136,154 | Aver Q<br>RSD%<br>r |                                 |                       |                       | 0.57<br>9.0<br>0.9980 |                       |                       |                        |
| α-Terpineol     | <b>59</b> ,121,136 | Aver Q<br>RSD%<br>r |                                 |                       |                       | 0.63<br>8.1<br>0.9993 |                       |                       |                        |
| Borneol         | <b>95</b> ,67,139  | Aver Q<br>RSD%<br>r |                                 |                       |                       | 0.75<br>5.8<br>0.9980 |                       |                       |                        |
| β-Caryophyllene | <b>93</b> ,133,204 | Aver Q<br>RSD%<br>r |                                 |                       |                       |                       | 0.46<br>8.5<br>0.9980 | 0.45<br>8.4<br>0.9985 |                        |
| α-Thujone       | <b>81</b> ,110,152 | Aver Q<br>RSD%<br>r |                                 |                       |                       |                       |                       |                       | 0.71<br>9.7<br>0.9999  |
| β-Thujone       | <b>81</b> ,110,152 | Aver Q<br>RSD%<br>r |                                 |                       |                       |                       |                       |                       | 0.71<br>10.0<br>0.9999 |

|              |   | 0    |      | •                        | 1    | 2         |                         |      | -      | · • •    |               | ,             |          | 0 /     |      |
|--------------|---|------|------|--------------------------|------|-----------|-------------------------|------|--------|----------|---------------|---------------|----------|---------|------|
|              |   |      | Thym | ie (mg g <sup>-1</sup> ) |      | _         |                         |      | Americ | can pepp | <u>pert</u> r | <u>ee (</u> 1 | mg g⁻¹)  |         |      |
|              |   | Ca   | arv  | Th                       | y    |           | α-F                     | Pin  | Δ-3-   | -Car     |               | α-P           | hel      | L       | im   |
|              | # | Sp Q | Av C | 2 Sp Q                   | Av Q | #         | Sp Q                    | Av Q | Sp Q   | Av Q     | Sp            | Q             | Av Q     | Sp Q    | Av Q |
|              | 1 | 6.2  | 6.0  | 0.33                     | 0.32 | 1         | 4.4                     | 4.4  | 2.9    | 2.8      | 11            | 1.5           | 11.0     | 1.3     | 1.3  |
|              | 2 | 5.7  | 5.8  | 0.39                     | 0.40 | 2         | 4.4                     | 4.4  | 3.9    | 3.8      | 11            | 1.1           | 10.8     | 1.3     | 1.2  |
|              | 3 | 3.6  | 3.7  | 0.61                     | 0.63 | 3         | 5.1                     | 5.0  | 3.1    | 3.0      | 15            | 5.3           | 14.9     | 1.5     | 1.4  |
|              | 4 | 6.3  | 6.5  | 0.54                     | 0.56 | 4         | 4.1                     | 4.0  | 2.1    | 2.1      | 13            | 3.7           | 13.3     | 1.3     | 1.2  |
|              | 5 | 3.3  | 3.3  | 0.78                     | 0.78 | 5         | 3.3                     | 3.4  | 6.3    | 6.5      | 11            | .5            | 11.8     | 6.7     | 6.9  |
|              | 6 | 0.58 | 0.56 | 3.9                      | 3.7  | 6         | 1.4                     | 1.4  | 12.7   | 12.7     | 7             | .7            | 7.4      | 5.4     | 5.2  |
|              | 7 | 0.39 | 0.38 | 8.2                      | 7.9  | 7         | 1.4                     | 1.4  | 9.8    | 9.8      | 6             | .7            | 6.6      | 4.7     | 4.5  |
|              | 8 | 1.2  | 1.2  | 7.5                      | 7.5  | 8         | 3.0                     | 3.0  | 12.8   | 13.2     | 11            | .6            | 11.9     | 10.0    | 10.4 |
|              | 9 | 17   | 16   | 0.71                     | 0.69 | 9         | 2.4                     | 2.5  | 5.1    | 5.3      | 16            | 5.9           | 17.3     | 10.8    | 11.2 |
|              |   |      |      |                          |      | 10        | 3.8                     | 3.8  | 4.2    | 4.3      | 13            | 8.8           | 14.1     | 5.3     | 5.5  |
| 534          |   |      |      |                          | F    | Rosemar   | y (mg g-1)              |      |        |          |               | S             | Sage (mo | g g⁻¹)  |      |
| 535          |   | _    | #    | Lin                      | В    | orAc      | α-Ter                   |      | Bor    |          | #             |               | Thuj     |         |      |
|              |   | _    | 1    | 0.035                    | 0    | .034      | 1.5                     |      | 0.30   |          | 1             |               | 2.4      |         |      |
| 536          |   | _    | 2    | 0.069                    | 0    | .045      | 1.7                     |      | 0.37   |          | 2             |               | 1.9      |         |      |
|              |   | _    | 3    | 0.005                    | 0    | .007      | 0.33                    |      | 0.044  |          | 3             |               | 1.8      |         |      |
| 537          |   | _    | 4    | 0.031                    | 0    | .025      | 1.4                     |      | 0.24   |          | 4             |               | 0.39     |         |      |
|              |   | _    | 5    | 0.022                    | 0    | .020      | 1.1                     |      | 0.24   |          | 5             |               | 2.6      |         |      |
| 538          |   | _    | 6    | 0.020                    | 0    | .037      | 1.1                     |      | 0.22   |          | 6             |               | 0.47     |         |      |
|              |   | _    | 7    | 0.077                    | 0    | .051      | 1.9                     |      | 0.35   |          | 7             |               | 0.54     |         |      |
| 539          |   | _    | 8    | 0.052                    | 0    | .032      | 1.5                     |      | 0.29   |          | 8             |               | 3.3      |         |      |
|              |   | _    | 9    | 0.036                    | 0    | .046      | 1.7                     |      | 0.33   |          |               |               |          |         |      |
| 540          |   |      |      |                          |      |           |                         |      |        |          |               |               |          |         |      |
| 0.0          |   |      |      |                          | W    | nite pepp | per (mg g <sup>-1</sup> | )    |        |          |               | CI            | oves (m  | lg g⁻¹) |      |
| 541          |   |      | #    | α-Phel                   |      | Car       | Lim                     | C    | x-Hum  |          | #             |               | Eug      |         |      |
| 511          |   |      | 1    | 0.023                    |      | 4.6       | 0.11                    |      | 0.40   |          | 1             |               | 149      |         |      |
| 542          |   |      | 2    | 0.019                    |      | 5.3       | 0.10                    |      | 0.49   |          | 2             |               | 142      |         |      |
| 542          |   |      | 3    | 0.034                    |      | 4.3       | 0.11                    |      | 0.44   |          | 3             |               | 313      |         |      |
| 512          |   | _    | 4    | 0.12                     |      | 4.8       | 0.16                    |      | 0.42   |          | 4             |               | 347      |         |      |
| 343          |   |      | 5    | 0.063                    |      | 5.8       | 0.26                    |      | 0.49   |          | 5             |               | 240      |         |      |
| <b>5</b> 4 4 |   | _    | 6    | 0.36                     |      | 2.7       | 0.77                    |      | 0.23   |          | 6             |               | 150      |         |      |
| 544          |   | _    | 7    | 0.16                     | (    | ).94      | 0.26                    |      | 0.08   |          | 7             |               | 261      |         |      |
|              |   | _    | 8    | 0.059                    | -    | 10.4      | 0.22                    |      | 0.81   |          | 8             |               | 283      |         |      |
| 545          |   | _    | 9    | 0.025                    |      | 6.0       | 0.13                    |      | 0.48   |          | 9             |               | 162      |         |      |
|              |   | _    | 10   | 0.011                    |      | 3.5       | 0.09                    |      | 0.28   |          | 10            |               | 108      |         |      |
| 546          |   |      | i    |                          |      |           |                         |      |        | 1        |               |               |          |         |      |
|              |   |      |      |                          |      | Black     | pepper                  |      |        |          |               |               |          |         |      |
| 547          |   | _    | #    | ∆-3-Car                  |      | Car       | Lim                     | C    | χ-Hum  |          |               |               |          |         |      |
|              |   | _    | 1    | 2.3                      |      | 3.5       | 3.0                     |      | 0.27   |          |               |               |          |         |      |
| 548          |   | _    | 2    | 2.1                      |      | 3.9       | 2.6                     |      | 0.32   |          |               |               |          |         |      |
|              |   | _    | 3    | 2.0                      |      | 5.2       | 0.93                    |      | 0.37   |          |               |               |          |         |      |
| 549          |   | _    | 4    | 1.7                      |      | 6.2       | 0.59                    |      | 0.43   |          |               |               |          |         |      |
|              |   | _    | 5    | 1.2                      |      | 5.1       | 0.60                    |      | 0.36   |          |               |               |          |         |      |
| 550          |   | _    | 6    | 1.1                      |      | 4.1       | 0.38                    |      | 0.32   |          |               |               |          |         |      |
|              |   |      | 7    | 2.0                      |      | 6.4       | 1.3                     |      | 0.41   |          |               |               |          |         |      |
| 551          |   |      | 8    | 0.84                     |      | 7.3       | 1.5                     |      | 0.49   |          |               |               |          |         |      |
| 551          |   |      | 9    | 0.75                     |      | 4.9       | 0.90                    |      | 0.38   |          |               |               |          |         |      |
| 550          |   | _    | 10   | 2.3                      |      | 5.8       | 1.2                     |      | 0.39   |          |               |               |          |         |      |
| JJZ          |   |      | -    | -                        | -    |           | -                       | -    |        |          |               |               |          |         |      |

Table 2. Average concentration (mg  $g^{-1}$ ) of selected markers in spices and aromatic plants investigated. If not specified quantity is calculated with Av Q. (Sp: specific; Av: average)

Table 3. Average concentration (mg g<sup>-1</sup>) of eugenol, thujones and thymol and carvacrol in clove, sage and thyme respectively quantified with separative (MHS-SPME-GC-MS) and non-separative (MHS-SPME- MS) approaches, together with RSD% between the two methods. For cloves, RSD% is calculated for both non-separative and corrected non-separative methods *versus* separative method.

| Cloves (eugenol) |                                      |                                            |          |                                                     | Th       | yme (thyn | nol + carva                          | icrol)                                     |          | Sage | (thujones)                           |                                            |          |
|------------------|--------------------------------------|--------------------------------------------|----------|-----------------------------------------------------|----------|-----------|--------------------------------------|--------------------------------------------|----------|------|--------------------------------------|--------------------------------------------|----------|
| #                | Sep<br>Meth<br>(mg g <sup>-1</sup> ) | Non-sep<br>Method<br>(mg g <sup>-1</sup> ) | RSD<br>% | Corr.<br>Non-sep<br>Method<br>(mg g <sup>-1</sup> ) | RSD<br>% | #         | Sep<br>Meth<br>(mg g <sup>-1</sup> ) | Non-sep<br>Method<br>(mg g <sup>-1</sup> ) | RSD<br>% | #    | Sep<br>Meth<br>(mg g <sup>-1</sup> ) | Non-sep<br>Method<br>(mg g <sup>-1</sup> ) | RSD<br>% |
| 1                | 149                                  | 180                                        | 13.5     | 155                                                 | 2.8      | 1         | 6.5                                  | 5,6                                        | 10.8     | 1    | 2,4                                  | 2.5                                        | 3.8      |
| 2                | 142                                  | 153                                        | 5.5      | 132                                                 | 5.2      | 2         | 6.1                                  | 5.9                                        | 2.2      | 2    | 1.9                                  | 1.5                                        | 16.8     |
| 3                | 313                                  | 353                                        | 8.6      | 305                                                 | 1.8      | 3         | 4.2                                  | 5.1                                        | 13.5     | 3    | 1.8                                  | 1.7                                        | 4.7      |
| 4                | 347                                  | 391                                        | 8.4      | 337                                                 | 2.1      | 4         | 6.8                                  | 8.8                                        | 17.7     | 4    | 0.4                                  | 0.42                                       | 13.0     |
| 5                | 240                                  | 290                                        | 13.3     | 250                                                 | 2.9      | 5         | 4.1                                  | 5.2                                        | 17.1     | 5    | 2.7                                  | 2.4                                        | 15.8     |
| 6                | 150                                  | 194                                        | 14.8     | 167                                                 | 7.6      | 6         | 4.5                                  | 4.9                                        | 6.3      | 6    | 0.5                                  | 0.49                                       | 3.1      |
| 7                | 261                                  | 337                                        | 18.0     | 291                                                 | 7.7      | 7         | 8.6                                  | 9.4                                        | 6.4      | 7    | 0.5                                  | 0.47                                       | 10.1     |
| 8                | 283                                  | 313                                        | 7.2      | 270                                                 | 3.3      | 8         | 8.7                                  | 10.8                                       | 15.2     | 8    | 3.3                                  | 3                                          | 7.4      |
| 9                | 162                                  | 180                                        | 7.3      | 155                                                 | 3.1      | 9         | 17.7                                 | 23                                         | 18.4     |      |                                      |                                            |          |
| 10               | 108                                  | 137                                        | 16.8     | 118                                                 | 6.3      |           |                                      |                                            |          |      |                                      |                                            |          |

559 560

Table 1SM. List of the identified components for each investigated spice together with experimental and tabulated linear retention indices  $(I^{T})$  on a 5% phenyl polymethylsiloxane column.

|                                                                                                                                                                                                                                                                                                                     | White pepper                                                                                                                                              |                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound                                                                                                                                                                                                                                                                                                            | Exp. $I^{\mathrm{T}}$                                                                                                                                     | Tab. $I^{\mathrm{T}}$                                                                                                                                  |
| α-Pinene                                                                                                                                                                                                                                                                                                            | 939                                                                                                                                                       | 939                                                                                                                                                    |
| β-Pinene                                                                                                                                                                                                                                                                                                            | 980                                                                                                                                                       | 979                                                                                                                                                    |
| Myrcene                                                                                                                                                                                                                                                                                                             | 991                                                                                                                                                       | 991                                                                                                                                                    |
| $\alpha$ -Phellandrene                                                                                                                                                                                                                                                                                              | 1005                                                                                                                                                      | 1003                                                                                                                                                   |
| $\Delta$ -3-Carene                                                                                                                                                                                                                                                                                                  | 1011                                                                                                                                                      | 1012                                                                                                                                                   |
| Limonene                                                                                                                                                                                                                                                                                                            | 1031                                                                                                                                                      | 1029                                                                                                                                                   |
| γ-Terpinene                                                                                                                                                                                                                                                                                                         | 1062                                                                                                                                                      | 1060                                                                                                                                                   |
| $\alpha$ -Terpinolene                                                                                                                                                                                                                                                                                               | 1088                                                                                                                                                      | 1089                                                                                                                                                   |
| Linalool                                                                                                                                                                                                                                                                                                            | 1098                                                                                                                                                      | 1097                                                                                                                                                   |
| p-Mentha-1,5-dien-8-ol                                                                                                                                                                                                                                                                                              | 1166                                                                                                                                                      | 1170                                                                                                                                                   |
| <i>p</i> -Cymen-8-ol                                                                                                                                                                                                                                                                                                | 1183                                                                                                                                                      | 1183                                                                                                                                                   |
| Linalyl propionate                                                                                                                                                                                                                                                                                                  | 1192                                                                                                                                                      | /                                                                                                                                                      |
| δ-Elemene                                                                                                                                                                                                                                                                                                           | 1339                                                                                                                                                      | 1338                                                                                                                                                   |
| Eugenol                                                                                                                                                                                                                                                                                                             | 1356                                                                                                                                                      | 1359                                                                                                                                                   |
| α-Copaene                                                                                                                                                                                                                                                                                                           | 1376                                                                                                                                                      | 1377                                                                                                                                                   |
| β-Elemene                                                                                                                                                                                                                                                                                                           | 1391                                                                                                                                                      | 1391                                                                                                                                                   |
| <i>t</i> -β-Caryophyllene                                                                                                                                                                                                                                                                                           | 1418                                                                                                                                                      | 1419                                                                                                                                                   |
| α-Humulene                                                                                                                                                                                                                                                                                                          | 1454                                                                                                                                                      | 1455                                                                                                                                                   |
| δ-Cadinene                                                                                                                                                                                                                                                                                                          | 1524                                                                                                                                                      | 1523                                                                                                                                                   |
| Caryophyllene oxide                                                                                                                                                                                                                                                                                                 | 1581                                                                                                                                                      | 1583                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                     | Black pepper                                                                                                                                              |                                                                                                                                                        |
| α-Thujene                                                                                                                                                                                                                                                                                                           | 931                                                                                                                                                       | 930                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                        |
| α-Pinene                                                                                                                                                                                                                                                                                                            | 939                                                                                                                                                       | 939                                                                                                                                                    |
| α-Pinene<br>Sabinene                                                                                                                                                                                                                                                                                                | 939<br>976                                                                                                                                                | 939<br>975                                                                                                                                             |
| α-Pinene<br>Sabinene<br>Myrcene                                                                                                                                                                                                                                                                                     | 939<br>976<br>991                                                                                                                                         | 939<br>975<br>991                                                                                                                                      |
| α-Pinene<br>Sabinene<br>Myrcene<br>α-Phellandrene                                                                                                                                                                                                                                                                   | 939<br>976<br>991<br>1005                                                                                                                                 | 939<br>975<br>991<br>1003                                                                                                                              |
| α-Pinene<br>Sabinene<br>Myrcene<br>α-Phellandrene<br>Δ-3-Carene                                                                                                                                                                                                                                                     | 939<br>976<br>991<br>1005<br>1011                                                                                                                         | 939<br>975<br>991<br>1003<br>1012                                                                                                                      |
| α-Pinene<br>Sabinene<br>Myrcene<br>α-Phellandrene<br>Δ-3-Carene<br>Limonene                                                                                                                                                                                                                                         | 939<br>976<br>991<br>1005<br>1011<br>1031                                                                                                                 | 939<br>975<br>991<br>1003<br>1012<br>1029                                                                                                              |
| α-Pinene<br>Sabinene<br>Myrcene<br>α-Phellandrene<br>Δ-3-Carene<br>Limonene<br>t- $β$ -Ocimene                                                                                                                                                                                                                      | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050                                                                                                         | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050                                                                                                      |
| α-Pinene<br>Sabinene<br>Myrcene<br>α-Phellandrene<br>Δ-3-Carene<br>Limonene<br>t- $β$ -Ocimene<br>γ-Terpinene                                                                                                                                                                                                       | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062                                                                                                 | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060                                                                                              |
| α-Pinene<br>Sabinene<br>Myrcene<br>α-Phellandrene<br>Δ-3-Carene<br>Limonene<br>t- $β$ -Ocimene<br>$\gamma$ -Terpinene<br><i>cis</i> -Sabinene hydrate                                                                                                                                                               | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068                                                                                         | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070                                                                                      |
| α-Pinene<br>Sabinene<br>Myrcene<br>α-Phellandrene<br>Δ-3-Carene<br>Limonene<br>t- $β$ -Ocimene<br>$\gamma$ -Terpinene<br>cis-Sabinene hydrate<br>α-Terpinolene                                                                                                                                                      | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088                                                                                 | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089                                                                              |
| $\alpha$ -PineneSabineneMyrcene $\alpha$ -Phellandrene $\Delta$ -3-CareneLimonene $t$ - $\beta$ -Ocimene $\gamma$ -Terpinene $cis$ -Sabinene hydrate $\alpha$ -TerpinoleneLinalool                                                                                                                                  | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098                                                                         | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097                                                                      |
| $\alpha$ -PineneSabineneMyrcene $\alpha$ -Phellandrene $\Delta$ -3-CareneLimonene $t$ - $\beta$ -Ocimene $\gamma$ -Terpinene $cis$ -Sabinene hydrate $\alpha$ -TerpinoleneLinalool4-Terpineol                                                                                                                       | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098<br>1162                                                                 | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176                                                              |
| $\alpha$ -PineneSabineneMyrcene $\alpha$ -Phellandrene $\Delta$ -3-CareneLimonene $t$ - $\beta$ -Ocimene $\gamma$ -Terpinene $cis$ -Sabinene hydrate $\alpha$ -TerpinoleneLinalool4-TerpineolLinalyl propionate                                                                                                     | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098<br>1162<br>1192                                                         | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176<br>/                                                         |
| α-Pinene<br>Sabinene<br>Myrcene<br>α-Phellandrene<br>Δ-3-Carene<br>Limonene<br>t-β-Ocimene<br>γ-Terpinene<br>cis-Sabinene hydrate<br>α-Terpinolene<br>Linalool<br>4-Terpineol<br>Linalyl propionate<br>δ-Elemene                                                                                                    | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098<br>1162<br>1192<br>1339                                                 | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176<br>/<br>1338                                                 |
| $\alpha$ -PineneSabineneMyrcene $\alpha$ -Phellandrene $\Delta$ -3-CareneLimonene $t$ - $\beta$ -Ocimene $\gamma$ -Terpinene $cis$ -Sabinene hydrate $\alpha$ -TerpinoleneLinalool4-TerpineolLinalyl propionate $\delta$ -ElemeneEugenol                                                                            | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098<br>1162<br>1192<br>1339<br>1356                                         | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176<br>/<br>1338<br>1359                                         |
| α-PineneSabineneMyrcene $\alpha$ -Phellandrene $\Delta$ -3-CareneLimonene $t$ - $\beta$ -Ocimene $\gamma$ -Terpinene $cis$ -Sabinene hydrate $\alpha$ -TerpinoleneLinalool4-TerpineolLinalyl propionate $\delta$ -ElemeneEugenol $\alpha$ -Copaene                                                                  | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1068<br>1088<br>1098<br>1162<br>1192<br>1339<br>1356<br>1376                         | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176<br>/<br>1338<br>1359<br>1377                                 |
| α-PineneSabineneMyrcene $\alpha$ -Phellandrene $\Delta$ -3-CareneLimonene $t$ - $\beta$ -Ocimene $\gamma$ -Terpinene $\alpha$ -TerpinoleneLinalool4-TerpineolLinalyl propionate $\delta$ -ElemeneEugenol $\alpha$ -Copaene $\beta$ -Elemene                                                                         | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098<br>1162<br>1192<br>1339<br>1356<br>1376<br>1391                         | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176<br>/<br>1338<br>1359<br>1377<br>1391                         |
|                                                                                                                                                                                                                                                                                                                     | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098<br>1162<br>1192<br>1339<br>1356<br>1376<br>1391<br>1418                 | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176<br>/<br>1338<br>1359<br>1377<br>1391<br>1419                 |
| α-PineneSabineneMyrcene $\alpha$ -Phellandrene $\Delta$ -3-CareneLimonene $t$ - $\beta$ -Ocimene $\gamma$ -Terpinene $cis$ -Sabinene hydrate $\alpha$ -TerpinoleneLinalool4-TerpineolLinalyl propionate $\delta$ -ElemeneEugenol $\alpha$ -Copaene $\beta$ -Elemene $t$ - $\beta$ -Caryophyllene $\alpha$ -Humulene | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098<br>1162<br>1192<br>1339<br>1356<br>1376<br>1391<br>1418<br>1454         | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176<br>/<br>1338<br>1359<br>1377<br>1391<br>1419<br>1455         |
|                                                                                                                                                                                                                                                                                                                     | 939<br>976<br>991<br>1005<br>1011<br>1031<br>1050<br>1062<br>1068<br>1088<br>1098<br>1162<br>1192<br>1339<br>1356<br>1376<br>1391<br>1418<br>1454<br>1454 | 939<br>975<br>991<br>1003<br>1012<br>1029<br>1050<br>1060<br>1070<br>1089<br>1097<br>1176<br>/<br>1338<br>1359<br>1377<br>1391<br>1419<br>1455<br>1457 |

| α-Selinene                   | 1494               | 1498 |
|------------------------------|--------------------|------|
| ß-Bisabolene                 | 1509               | 1506 |
| δ-Cadinene                   | 1524               | 1523 |
| Elemol                       | 1549               | 1550 |
| Nerolidol                    | 1564               | 1563 |
|                              | 1001               | 1000 |
| Ar                           | nerican peppertree |      |
| α-Thujene                    | 931                | 930  |
| α-Pinene                     | 939                | 939  |
| Camphene                     | 953                | 954  |
| Sabinene                     | 976                | 979  |
| β-Pinene                     | 980                | 981  |
| ,<br>Myrcene                 | 991                | 991  |
| $\alpha$ -Phellandrene       | 1005               | 1003 |
| $\Lambda$ -3-Carene          | 1011               | 1012 |
| B-Phellandrene +             | 1031               | 1030 |
| limonene                     | 1001               | 1050 |
| t-B-Ocimene                  | 1050               | 1050 |
| v-Terninene                  | 1062               | 1060 |
| y-Terpinellene               | 1082               | 1089 |
| Sobinol                      | 1140               | 1142 |
| Sadinoi<br>S Elemene         | 1140               | 1145 |
| O-Elemene                    | 1339               | 1330 |
| Citronellyl acetate          | 1354               | 1353 |
| Eugenoi                      | 1330               | 1339 |
| α-Copaene                    | 1370               | 13// |
| β-Elemene                    | 1391               | 1391 |
| $t$ - $\beta$ -Caryophyllene | 1418               | 1419 |
| Germacrene D                 | 1480               | 1485 |
| Bicyclogermacrene            | 1494               | 1500 |
| α-Farnesene                  | 1508               | 1506 |
| δ-Cadinene                   | 1524               | 1523 |
| Elemol                       | 1549               | 1550 |
|                              | Rosemary           |      |
| α-Pinene                     | 939                | 939  |
| Camphene                     | 953                | 954  |
| β-Pinene                     | 980                | 981  |
| Myrcene                      | 991                | 991  |
| <i>n</i> -Cymene             | 1026               | 1025 |
| 1.8-Cineole                  | 1023               | 1025 |
| Linalool                     | 1098               | 1097 |
| Camphor                      | 1143               | 1146 |
| Borneol                      | 1165               | 1169 |
| 4-Terpineol                  | 1177               | 1176 |
| Linalyl propionate           | 1192               | /    |
| Verbenone                    | 1204               | 1205 |
| Bornyl acetate               | 1285               | 1289 |
| Eugenol                      | 1356               | 1359 |
| a-Consene                    | 1376               | 1377 |
| t & Carvonhullono            | 1/18               | 1/10 |
| <i>i</i> -p-Caryophynene     | 1410               | 1417 |

| -Cadinene         1524         1523           Thyme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | α-Humulene                | 1454         | 1455         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|--------------|
| Thyme           imonene         1031         1029           inalool         1098         1097           Camphor         1143         1146           Sorneol         1165         1169           -Terpineol         1177         1176           inalyl propionate         1192         /           Bornyl formate         1233         1239           Carvacrol methyl ether         1244         1245           Bornyl acetate         1290         1290           Carvacrol         1298         1299           Digenol         1356         1359           -β-Caryophyllene         1418         1419           Cloves         1581         1583           Cloves         1356         1359           -β-Caryophyllene         1418         1419           c-topaene         1376         1377           -β-Caryophyllene         1418         1419           c-topaene         1506         1506           Garmacrene D         1480         1485           t-Farnesene         1508         1506           -Cadinene         1524         1523           Digenyl acetate         1525                                                                                         | δ-Cadinene                | 1524         | 1523         |
| Limonene         1031         1029           Linalool         1098         1097           Camphor         1143         1146           Borneol         1165         1169           -Terpineol         1177         1176           Linalyl propionate         1192         /           -Bornyl formate         1233         1239           Carvacrol methyl ether         1244         1245           Bornyl acetate         1298         1299           Cloves         1298         1299           Clarvacrol         1298         1299           Cloves         1356         1359           -β-Caryophyllene         1418         1419           Caryophyllene oxide         1581         1583           Cogeane         1376         1377           -β-Caryophyllene         1418         1419           t-Humulene         14454         1455           Germacrene D         1480         1485           t-Farnesene         1508         1506           -Cadinene         1525         /           Caryophyllene oxide         1581         1583           Demene         939         939                                                                                      |                           | Thyme        |              |
| inalool       1098       1097         Camphor       1143       1146         Borneol       1165       1169         -Terpineol       1177       1176         inalyl propionate       1192       /         Bornyl formate       1233       1239         Carvacrol methyl ether       1244       1245         bornyl acetate       1290       1290         Carvacrol       1298       1299         bugenol       1356       1359         -B-Caryophyllene       1418       1419         Caryophyllene oxide       1581       1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limonene                  | 1031         | 1029         |
| Camphor         1143         1146           Borneol         1165         1169           -Terpineol         1177         1176           inalyl propionate         1192         /           Bornyl formate         1233         1239           Carvacrol methyl ether         1244         1245           Bornyl acetate         1285         1289           Tymol         1290         1290           Carvacrol         1298         1299           Bugenol         1356         1359           β-Caryophyllene         1418         1419           Carvacrol         1298         1299           Carvacrol         1298         1299           Carvacrol         1298         1356           Bornyl lene oxide         1581         1583           Copaene         1376         1377           β-Caryophyllene         1418         1419           t-Humulene         1454         1455           termacrene D         1480         1485           t-Farnesene         1508         1506           -Cadinene         1524         1523           ugenyl acetate         1525         /                                                                                            | Linalool                  | 1098         | 1097         |
| Borneol         1165         1169           -Terpineol         1177         1176           inalyl propionate         1192         /           Bornyl formate         1233         1239           Carvacrol methyl ether         1244         1245           Sornyl acetate         1285         1289           'hymol         1290         1290           Carvacrol         1298         1299           bugenol         1356         1359           β-Caryophyllene         1418         1419           Carvacrol         1356         1359           β-Caryophyllene oxide         1581         1583            1377           β-Caryophyllene         1418         1419           t-Humulene         1454         1455           Germacrene D         1480         1485           t-Farnesene         1508         1506           -Cadinene         1524         1523           uegenyl acetate         1525         /           Caryophyllene oxide         1581         1583           -Terpinene         939         939           Caryophyllene         1623         1017                                                                                                   | Camphor                   | 1143         | 1146         |
| -Terpineol       1177       1176         .inalyl propionate       1192       /         Bornyl formate       1233       1239         Carvacrol methyl ether       1244       1245         Sornyl acetate       1285       1289         Chymol       1290       1290         Carvacrol       1298       1299         Sugenol       1356       1359         -β-Caryophyllene       1418       1419         Caryophyllene oxide       1581       1583         -Copeane       1376       1377         -β-Caryophyllene       1418       1419         t-Copaene       1376       1377         -β-Caryophyllene       1418       1419         t-Humulene       1454       1455         ermacrene D       1480       1485         t-Farnesene       1508       1506         -Cadinene       1524       1523         -Zaryophyllene oxide       1581       1583         -Cadinene       939       939         -Cadinene       1524       1525         -Vinene       991       991         -Pinene       939       939         Camphene                                                                                                                                                     | Borneol                   | 1165         | 1169         |
| Linalyl propionate       1192       /         Bornyl formate       1233       1239         Carvacrol methyl ether       1244       1245         Bornyl acetate       1285       1289         Thymol       1290       1290         Carvacrol       1298       1299         Sarvacrol       1298       1299         Sugenol       1356       1359 $\beta$ -Caryophyllene       1418       1419         Caryophyllene oxide       1581       1583         Cloves         Sugenol       1356       1359 $\beta$ -Caryophyllene       1418       1419         t-Copaene       1376       1377 $\beta$ -Caryophyllene       1418       1419         t-Humulene       1454       1455         Germacrene D       1480       1485         t-Farnesene       1508       1506         -Cadinene       1524       1523         Cugenyl acetate       1525       /         Caryophyllene oxide       1581       1583         t-Pinene       939       939         Camphene       953       954         -Pinene       939       93                                                                                                                                                             | 4-Terpineol               | 1177         | 1176         |
| Bornyl formate         1233         1239           Carvacrol methyl ether         1244         1245           Bornyl acetate         1285         1289           Chymol         1290         1290           Carvacrol         1298         1299           Carvacrol         1298         1299           Gugenol         1356         1359           β-Caryophyllene         1418         1419           Carvacrophyllene         1418         1419           t-Farnesene         1508         1506           -Cadinene         1524         1523           Caryophyllene oxide         1581         1583           -Cadinene         1525         /           Carvacrophyllene oxide         1581         1583           -Cadinene         939         939           Carpophyllene oxide         1581         1583           -Carpophyllene         101                                                  | Linalyl propionate        | 1192         | /            |
| Carvacrol methyl ether         1244         1245           Bornyl acetate         1285         1289           hymol         1290         1290           Carvacrol         1298         1299           Gugenol         1356         1359           β-Caryophyllene         1418         1419           Carvophyllene oxide         1581         1583           Cloves         Cloves         Cloves           Cugenol         1356         1359           t-Copaene         1376         1377           β-Caryophyllene         1418         1419           t-Humulene         1454         1455           iermacrene D         1480         1485           t-Farnesene         1508         1506           -Cadinene         1525         /           Caryophyllene oxide         1581         1583           Usenyl acetate         1525         /           Caryophyllene oxide         1581         1583           Usenyl acetate         1525         /           Caryophyllene oxide         1581         1583           Usenyl acetate         1525         /           Caryophylene         1018         1017 <td><i>i</i>-Bornyl formate</td> <td>1233</td> <td>1239</td> | <i>i</i> -Bornyl formate  | 1233         | 1239         |
| Bornyl acetate12851289Thymol12901290Larvacrol12981299Barvacrol13561359-β-Caryophyllene14181419Caryophyllene oxide15811583ClovesClovesEugenol13561359t-Copaene13761377-β-Caryophyllene14181419t-Humulene14541455Germacrene D14801485t-Farnesene15081506-Cadinene15241523Caryophyllene oxide15811583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carvacrol methyl ether    | 1244         | 1245         |
| hymol12901290Carvacrol12981299Eugenol13561359β-Caryophyllene oxide15811583ClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesClovesSageClovesSageCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bornyl acetate            | 1285         | 1289         |
| Carvacrol         1298         1299           Bugenol         1356         1359           β-Caryophyllene         1418         1419           Caryophyllene oxide         1581         1583           Cloves           Sugenol         1356         1359           t-Copaene         1376         1377           β-Caryophyllene         1418         1419           t-Humulene         1454         1455           Germacrene D         1480         1485           t-Farnesene         1508         1506           -Cadinene         1524         1523           Dugenyl acetate         1525         /           Caryophyllene oxide         1581         1583           Terpinene         939         939           Gamphene         953         954           t-Pinene         980         979           Myrcene         991         991           t-Terpinene         10026         1025           imonene         1033         1031           -Terpinolene         1088         1089           t-Thujone         1113         1114           Samphor         1143                                                                                                          | Thymol                    | 1290         | 1290         |
| Eugenol13561359β-Caryophyllene14181419Caryophyllene oxide15811583ClovesEugenol13561359t-Copaene13761377β-Caryophyllene14181419t-Humulene14541455Germacrene D14801485t-Farnesene15081506-Cadinene15241523Dugenyl acetate1525/Caryophyllene oxide158115835821581158315831017-Cymene1026102510311029,8-Cineole10331031-Terpinene10621060t-Terpinolene10881089t-Thujone111311142amphor11431146Sorneol11651169-Terpinele10881089t-Thujone111771176-Bourbonene13841388β-Caryophyllene14181419vromadendrene13841388β-Caryophyllene14181419vromadendrene14391441t-Humulene14541455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carvacrol                 | 1298         | 1299         |
| β-Caryophyllene       1418       1419         Caryophyllene oxide       1581       1583         Cloves         Gugenol       1356       1359         t-Copaene       1376       1377         β-Caryophyllene       1418       1419         t-Humulene       1454       1455         Germacrene D       1480       1485         t-Farnesene       1508       1506         -Cadinene       1524       1523         Gugenyl acetate       1525       /         Caryophyllene oxide       1581       1583         Sage         t-Pinene       939       939         Camphene       953       954         i-Pinene       980       979         Ayrcene       991       991         t-Terpinene       1018       1017         -Cymene       1026       1025         imonene       1031       1029         i-Cineole       1033       1031         -Terpinene       1062       1060         t-Terpinolene       1088       1089         t-Thujone       1113       1114         Camphor       1143                                                                                                                                                                                       | Eugenol                   | 1356         | 1359         |
| Caryophyllene oxide         1581         1583           Cloves         Cloves         Cloves           Gugenol         1356         1359           t-Copaene         1376         1377 $\beta$ -Caryophyllene         1418         1419           t-Humulene         1454         1455           Germacrene D         1480         1485           t-Farnesene         1508         1506           -Cadinene         1524         1523           Gugenyl acetate         1525         /           Caryophyllene oxide         1581         1583           f-Pinene         939         939           Sage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>t</i> -β-Caryophyllene | 1418         | 1419         |
| Cloves           Eugenol         1356         1359           t-Copaene         1376         1377 $\beta$ -Caryophyllene         1418         1419           t-Humulene         1454         1455           Germacrene D         1480         1485           t-Farnesene         1508         1506           -Cadinene         1524         1523           Gugenyl acetate         1525         /           Caryophyllene oxide         1581         1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Caryophyllene oxide       | 1581         | 1583         |
| Eugenol13561359t-Copaene13761377-β-Caryophyllene14181419t-Humulene14541455Germacrene D14801485t-Farnesene15081506-Cadinene15241523Caryophyllene oxide15811583-Cadinene1525/Caryophyllene oxide15811583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Cloves       |              |
| t-Copaene13761377-β-Caryophyllene14181419t-Humulene14541455Germacrene D14801485t-Farnesene15081506-Cadinene15241523Eugenyl acetate1525/Caryophyllene oxide15811583Saget-Pinene9399392amphene953954-Pinene980979Ayrcene991991t-Terpinene10181017-Cymene10261025.imonene10311029,8-Cineole10331031-Terpinene10621060t-Terpinolene10881089t-Thujone11131114Camphor11431146Sorneol11651169-Terpineol11771176-Bourbonene13841388-β-Caryophyllene14181419t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eugenol                   | 1356         | 1359         |
| β-Caryophyllene14181419 $-β$ -Caryophyllene14181415β-Caryophyllene14541455Germacrene D14801485 $t$ -Farnesene15081506 $t$ -Cadinene15241523Gugenyl acetate1525/Caryophyllene oxide15811583Sage $t$ -Pinene939939Camphene953954 $t$ -Pinene980979Ayrcene991991 $t$ -Terpinene10181017 $t$ -Cymene10261025Limonene10311029 $s$ -Cineole10331031 $-Terpinene10621060t-Terpinolene10881089t-Thujone11131114Camphor11431146Sorneol11651169-Terpineol11771176s-Bourbonene13841388(\beta-Caryophyllene14181419t-Humulene14541455-Cadinene15241523$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α-Copaene                 | 1376         | 1377         |
| p Curry opnyment113113 $a$ -Humulene14541455Germacrene D14801485 $a$ -Farnesene15081506 $a$ -Cadinene15241523Eugenyl acetate1525/Caryophyllene oxide15811583 $a$ -Pinene939939Camphene953954 $a$ -Pinene980979 $A$ yrcene991991 $a$ -Pinene10181017 $a$ -Cymene10261025 $a$ -imonene10311029 $a$ -Cineole10331031 $-Terpinene10621060a-Terpinolene11011102a-Thujone11131114a-Thujone11651169-Terpineol11771176a-Bourbonene13841388\beta-Caryophyllene14181419a-Thujone11431441a-Thujene14391441a-Thujene14541455-Cadinene14541455-Cadinene15241523$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t-B-Carvonhyllene         | 1418         | 1419         |
| Germacrene D       1480       1485         Germacrene D       1480       1485 $4$ -Farnesene       1508       1506         Germacrene D       1524       1523         Gugenyl acetate       1525       /         Caryophyllene oxide       1581       1583 $-$ Caryophyllene oxide       1581       1583 $-$ Caryophyllene oxide       939       939         Caryophyllene       953       954 $-$ Pinene       980       979         Ayrcene       991       991 $-$ Pinene       980       979         Ayrcene       1026       1025         Limonene       1031       1029 $, 8$ -Cineole       1033       1031 $-$ Terpinene       1062       1060         t-Terpinolene       1088       1089         t-Thujone       1113       1114         Camphor       1143       146         Korneol       1165       1169         -Terpineol       1177       1176         -Bourbonene       1384       1388 $, \beta$ -Caryophyllene       1418       1419         vromadendrene <td>α-Humulene</td> <td>1454</td> <td>1455</td>                                                                                                                                                     | α-Humulene                | 1454         | 1455         |
| A-Farnesene15081403 $a$ -Farnesene15081506 $-Cadinene$ 15241523 $Bugenyl acetate$ 1525/ $-Caryophyllene oxide$ 15811583 $-Erinene$ 939939 $-Pinene$ 953954 $-Pinene$ 980979 $-Pinene$ 991991 $-Pinene$ 991991 $-Pinene$ 901991 $-Pinene$ 10181017 $-Cymene$ 10261025 $-imonene$ 10311029 $,8$ -Cineole10331031 $-Terpinene$ 10621060 $t$ -Terpinolene10881089 $t$ -Thujone11131114 $2amphor$ 11431146 $8orneol$ 11651169 $-Terpineol$ 11771176 $-Bourbonene$ 13841388 $\beta$ -Caryophyllene14181419 $441$ 14541455 $-Cadinene$ 15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Germacrene D              | 1480         | 1485         |
| Calinesence15001500Garantesence15241523Gugenyl acetate1525/Caryophyllene oxide15811583 $-Pinene$ 939939Camphene953954 $-Pinene$ 980979Ayrcene991991 $4$ -Pinene10181017 $-Cymene$ 10261025 $amonene$ 10311029 $a$ -Cineole10331031 $-Terpinene$ 10621060 $t$ -Terpinene10621060 $t$ -Terpinene10621060 $t$ -Terpinene10621060 $t$ -Terpinene10621060 $t$ -Terpinene10621060 $t$ -Terpinolene11331114Camphor11431146Sorneol11651169 $-Terpineol$ 11771176 $i$ -Bourbonene13841388 $\beta$ -Caryophyllene14181419Aromadendrene14391441 $t$ -Humulene14541455 $-Cadinene15241523$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a Earnasana               | 1508         | 1506         |
| Califience15241525Sugenyl acetate1525/Caryophyllene oxide15811583Camphene939939Camphene953954Si-Pinene980979Ayrcene991991 $t$ -Terpinene10181017-Cymene10261025Limonene10311029 $s$ -Cineole10331031-Terpinene10621060 $t$ -Terpinene10621060 $t$ -Terpinene11011102 $s$ -Cineole11331114Samphor11431146Sorneol11651169-Terpineol11771176 $s$ -Bourbonene13841388 $\beta$ -Caryophyllene14181419Aromadendrene14391441 $t$ -Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S. Codinono               | 1500         | 1500         |
| Lagentyl actate132.57Caryophyllene oxide15811583Caryophyllene oxide15811583Caryophyllene oxide939939Camphene953954September980979Ayrcene9919914yrcene991991t-Terpinene10181017-Cymene10261025Limonene10311029,8-Cineole10331031-Terpinene10621060t-Terpinolene10881089t-Thujone11131114Camphor11431146Borneol11651169-Terpineol11771176s-Bourbonene13841388β-Caryophyllene14181419vromadendrene14391441t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o-Cadifiene               | 1524         | 1323         |
| Sage           k-Pinene         939         939           Camphene         953         954           3-Pinene         980         979           Ayrcene         991         991           4-Terpinene         1018         1017           t-Terpinene         1026         1025           imonene         1031         1029           ,8-Cineole         1033         1031           -Terpinene         1062         1060           t-Terpinolene         1088         1089           t-Terpinolene         1101         1102           t-Terpinolene         1113         1114           Camphor         1143         1146           Sorneol         1165         1169           -Terpineol         1177         1176           -Bourbonene         1384         1388           β-Caryophyllene         1418         1419           vromadendrene         1439         1441           t-Humulene         1454         1455                                                                                                                                                                                                                                                       | Carvonhyllene oxide       | 1525         | 1583         |
| Sage $a$ -Pinene939939Camphene953954 $\beta$ -Pinene980979 $Ayrcene$ 991991 $t$ -Terpinene10181017 $t$ -Cymene10261025 $imonene$ 10311029 $,8$ -Cineole10331031 $-Terpinene$ 10621060 $t$ -Terpinolene10881089 $t$ -Thujone11011102 $t$ -Thujone11131114Camphor11651169 $-Terpineol$ 11771176 $t$ -Bourbonene13841388 $\beta$ -Caryophyllene14181419 $xromadendrene$ 14541455 $-Cadinene$ 15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Caryophynene oxide        | 1381         | 1565         |
| $\alpha$ -Pinene939939Camphene953954 $\beta$ -Pinene980979 $Myrcene$ 991991 $\alpha$ -Terpinene10181017 $\alpha$ -Cymene10261025Limonene10311029 $\beta$ -Cineole10331031 $-Terpinene$ 10621060 $\iota$ -Terpinolene10881089 $\iota$ -Terpinolene11011102 $\iota$ -Thujone11131114Camphor11651169 $\iota$ -Terpineol11771176 $\iota$ -Bourbonene13841388 $\iota\beta$ -Caryophyllene14181419 $\iota$ -Humulene14541455 $-Cadinene$ 15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | Sage         |              |
| Camphene $953$ $954$ B-Pinene $980$ $979$ Myrcene $991$ $991$ $4$ -Terpinene $1018$ $1017$ $4$ -Cymene $1026$ $1025$ Limonene $1031$ $1029$ $8$ -Cineole $1033$ $1031$ $-Terpinene$ $1062$ $1060$ $t$ -Terpinolene $1088$ $1089$ $t$ -Thujone $1101$ $1102$ $t$ -Thujone $1113$ $1114$ Camphor $1143$ $1146$ Borneol $1165$ $1169$ $t$ -Terpineol $1177$ $1176$ $t$ -Bourbonene $1384$ $1388$ $\beta$ -Caryophyllene $1418$ $1419$ Aromadendrene $1439$ $1441$ $t$ -Humulene $1454$ $1455$ $-Cadinene$ $1524$ $1523$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | α-Pinene                  | 939          | 939          |
| B-Pinene $980$ $979$ Myrcene $991$ $991$ $4$ -Terpinene $1018$ $1017$ $4$ -Terpinene $1026$ $1025$ $4$ -Cymene $1026$ $1025$ $4$ -Cymene $1031$ $1029$ $8$ -Cineole $1033$ $1031$ $-$ Terpinene $1062$ $1060$ $4$ -Terpinolene $1088$ $1089$ $4$ -Thujone $1101$ $1102$ $4$ -Thujone $1113$ $1114$ $4$ -Thujone $1165$ $1169$ $4$ -Terpineol $1177$ $1176$ $4$ -Bourbonene $1384$ $1388$ $-$ Caryophyllene $1418$ $1419$ $4$ -Thumlene $1454$ $1455$ $-$ Cadinene $1524$ $1523$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Camphene                  | 953          | 954          |
| Ayrcene $991$ $991$ $A$ -Terpinene $1018$ $1017$ $A$ -Cymene $1026$ $1025$ $A$ -Cymene $1031$ $1029$ $A$ -Cineole $1033$ $1031$ $-$ Terpinene $1062$ $1060$ $t$ -Terpinolene $1088$ $1089$ $t$ -Thujone $1101$ $1102$ $t$ -Thujone $1113$ $1114$ $t$ -Thujone $1165$ $1169$ $t$ -Terpineol $1177$ $1176$ $t$ -Bourbonene $1384$ $1388$ $r\beta$ -Caryophyllene $1418$ $1419$ $xromadendrene$ $1454$ $1455$ $-Cadinene$ $1524$ $1523$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | β-Pinene                  | 980          | 979          |
| t-Terpinene10181017t-Cymene10261025timonene10311029,8-Cineole10331031-Terpinene10621060t-Terpinolene10881089t-Thujone11011102t-Thujone11131114Camphor11651169t-Terpineol11771176t-Terpineol11771176t-Terpineol11431441t-Terpineol14181419t-Terpineol14391441t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Myrcene                   | 991          | 991          |
| -Cymene10261025Limonene10311029,8-Cineole10331031-Terpinene10621060t-Terpinolene10881089t-Thujone11011102t-Thujone11131114Camphor11431146Borneol11651169-Terpineol11771176t-Bourbonene13841388 $\cdot\beta$ -Caryophyllene14181419Aromadendrene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | α-Terpinene               | 1018         | 1017         |
| Limonene10311029,8-Cineole10331031-Terpinene10621060t-Terpinolene10881089t-Thujone11011102t-Thujone11131114Camphor11431146Borneol11651169-Terpineol11771176t-Bourbonene13841388 $\cdot\beta$ -Caryophyllene14181419Aromadendrene14391441t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p-Cymene                  | 1026         | 1025         |
| ,8-Cineole10331031-Terpinene10621060 $\alpha$ -Terpinolene10881089 $\alpha$ -Thujone11011102 $\alpha$ -Thujone11131114Camphor11431146Borneol11651169 $\alpha$ -Terpineol11771176 $\alpha$ -Bourbonene13841388 $\beta$ -Caryophyllene14181419Aromadendrene14391441 $\alpha$ -Humulene14541455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limonene                  | 1031         | 1029         |
| -Terpinene10621060 $t$ -Terpinolene10881089 $t$ -Thujone11011102 $t$ -Thujone11131114Camphor11431146Sorneol11651169 $t$ -Terpineol11771176 $t$ -Bourbonene13841388 $t$ -Garyophyllene14181419 $t$ -Humulene14541455 $t$ -Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,8-Cineole               | 1033         | 1031         |
| t-Terpinolene10881089t-Thujone11011102t-Thujone11131114Camphor11431146Corneol11651169t-Terpineol11771176t-Bourbonene13841388- $\beta$ -Caryophyllene14181419vromadendrene14391441t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | γ-Terpinene               | 1062         | 1060         |
| t-Thujone11011102 $t$ -Thujone11131114 $t$ -Thujone11131114 $t$ -Tamphor11431146 $t$ -Terpineol11651169 $t$ -Terpineol11771176 $t$ -Bourbonene13841388 $t$ -Galinene14391441 $t$ -Humulene14541455 $t$ -Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | α-Terpinolene             | 1088         | 1089         |
| β-Thujone11131114Camphor11431146Corneol11651169-Terpineol11771176β-Bourbonene13841388-β-Caryophyllene14181419Aromadendrene14391441t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | α-Thujone                 | 1101         | 1102         |
| Camphor11431146Borneol11651169-Terpineol11771176B-Bourbonene13841388- $\beta$ -Caryophyllene14181419Aromadendrene14391441t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | β-Thujone                 | 1113         | 1114         |
| Borneol11651169-Terpineol11771176-Bourbonene13841388-β-Caryophyllene14181419Aromadendrene14391441t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Camphor                   | 1143         | 1146         |
| -Terpineol $1177$ $1176$ β-Bourbonene $1384$ $1388$ -β-Caryophyllene $1418$ $1419$ Aromadendrene $1439$ $1441$ t-Humulene $1454$ $1455$ -Cadinene $1524$ $1523$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Borneol                   | 1165         | 1169         |
| β-Bourbonene13841388β-Caryophyllene14181419Aromadendrene14391441t-Humulene14541455-Cadinene15241523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-Terpineol               | 1177         | 1176         |
| -β-Caryophyllene 1418 1419<br>Aromadendrene 1439 1441<br>t-Humulene 1454 1455<br>-Cadinene 1524 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | β-Bourbonene              | 1384         | 1388         |
| Aromadendrene     1439     1441       t-Humulene     1454     1455       -Cadinene     1524     1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>t</i> -B-Carvophvllene | 1418         | 1419         |
| t-Humulene 1454 1455<br>-Cadinene 1524 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aromadendrene             | 1439         | 1441         |
| -Cadinene 1524 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | α-Humulene                | 1454         | 1455         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | δ-Cadinene                | 1524         | 1523         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | α-Humulene<br>δ-Cadinene  | 1454<br>1524 | 1455<br>1523 |

| 565 | Caryophyllene oxide | 1581 | 1583 |
|-----|---------------------|------|------|
| 566 | Viridiflorol        | 1590 | 1593 |
| 567 |                     |      |      |

570 Table 2SM. *Q* value range, average, standard deviation and RSD% for the selected markers of each 571 spice. Legend to the abbreviations: α-Pin: α-pinene; Δ-3-Car: Δ-3-Carene; α-Phel: α-Phellandrene; 572 Lim: Limonene; Lin: Linalool; BorAc: Bornyl acetate; α-Ter: α-Terpinene; Bor: Borneol; Car: 573 caryophyllene; α-Hum: α-Humulene; Carv:Carvacrol; Thy: Thymol; α-Thuj: α-Thujone; β-Thuj: 574 β-Thujone; Eug: Eugenol

- 575
- 576

| #       | Am        | erican peppe | ertree - Q vali | ues 577        |
|---------|-----------|--------------|-----------------|----------------|
| #       | α-Pin     | ∆-3-Car      | α-Phel          | Li£178         |
| 1       | 0.85      | 0.79         | 0.82            | 0. <b>8</b> 79 |
| 2       | 0.80      | 0.72         | 0.75            | 0.380          |
| 3       | 0.80      | 0.72         | 0.76            | 0.3781         |
| 4       | 0.81      | 0.75         | 0.78            | 0.3482         |
| 5       | 0.86      | 0.80         | 0.82            | 0.383          |
| 6       | 0.83      | 0.80         | 0.80            | 0.384          |
| 7       | 0.82      | 0.78         | 0.78            | 0.765          |
| 8       | 0.83      | 0.80         | 0.80            | 0.786          |
| 9       | 0.86      | 0.81         | 0.84            | 0.867          |
| 10      | 0.87      | 0.81         | 0.83            | 0.80           |
| Range   | 0.81-0.87 | 0.72-0.81    | 0.75-0.84       | 0.70-0.85      |
| Average | 0.83      | 0.78         | 0.80            | 0.779          |
| Std dev | 0.03      | 0.03         | 0.03            | 0.04           |
| RSD%    | 3.1       | 4.5          | 3.6             | 5.891<br>592   |

593

| ш       | Rosemary - Q values 594 |           |           |                       |  |  |  |  |
|---------|-------------------------|-----------|-----------|-----------------------|--|--|--|--|
| #       | Lin                     | BorAc     | α-Ter     | B <b>ð</b> ₽5         |  |  |  |  |
| 1       | 0.55                    | 0.57      | 0.66      | 0. <b>59</b> 6        |  |  |  |  |
| 2       | 0.50                    | 0.53      | 0.61      | 0. <b>39</b> 7        |  |  |  |  |
| 3       | 0.61                    | 0.68      | 0.57      | 0. <b>59</b> 8        |  |  |  |  |
| 4       | 0.52                    | 0.55      | 0.59      | 0. <b>59</b> 9        |  |  |  |  |
| 5       | 0.57                    | 0.60      | 0.69      | 0.600                 |  |  |  |  |
| 6       | 0.65                    | 0.56      | 0.67      | 0.601                 |  |  |  |  |
| 7       | 0.48                    | 0.51      | 0.62      | 0. <b>60</b> 2        |  |  |  |  |
| 8       | 0.60                    | 0.62      | 0.67      | 0.783                 |  |  |  |  |
| 9       | 0.57                    | 0.55      | 0.62      | 0.254                 |  |  |  |  |
| Range   | 0.50-0.65               | 0.51-0.68 | 0.57-0.69 | 0.68-0.79             |  |  |  |  |
| Average | 0.56                    | 0.57      | 0.63      | 0.256                 |  |  |  |  |
| Std dev | 0.05                    | 0.05      | 0.05      | 0.04                  |  |  |  |  |
| RSD%    | 9.8                     | 9.0       | 8.1       | <sup>5.8</sup><br>608 |  |  |  |  |

609

| щ       | White pepper - Q values |           |           |               |  |  |
|---------|-------------------------|-----------|-----------|---------------|--|--|
| #       | α–Phel                  | Car       | Lim       | $\alpha$ -Hum |  |  |
| 1       | 0.81                    | 0.41      | 0.77      | $0.36_{15}$   |  |  |
| 2       | 0.87                    | 0.43      | 0.82      | 0.3915        |  |  |
| 3       | 0.89                    | 0.48      | 0.75      | 0.3910        |  |  |
| 4       | 0.93                    | 0.48      | 0.75      | 0.381 /       |  |  |
| 5       | 0.89                    | 0.49      | 0.64      | 0.4718        |  |  |
| 6       | 0.91                    | 0.42      | 0.62      | 0.5819        |  |  |
| 7       | 0.88                    | 0.46      | 0.72      | 0.42          |  |  |
| 8       | 0.87                    | 0.52      | 0.82      | 0.4820        |  |  |
| 9       | 0.84                    | 0.41      | 0.81      | 0.40,21       |  |  |
| 10      | 0.87                    | 0.49      | 0.71      | 0.46/22       |  |  |
| Range   | 0.81-0.93               | 0.41-0.52 | 0.62-0.82 | 0.36-0.48     |  |  |
| Average | 0.88                    | 0.46      | 0.74      | 0.46124       |  |  |
| Std dev | 0.03                    | 0.04      | 0.07      | 0.04          |  |  |
| RSD%    | 3.9                     | 8.5       | 9.5       | 9.826         |  |  |

| #       |           | 630<br>631 |           |                 |
|---------|-----------|------------|-----------|-----------------|
| #       | ∆-3-Car   | Car        | Lim       | α-Hum           |
| 1       | 0.85      | 0.43       | 0.78      | 0.3833          |
| 2       | 0.87      | 0.45       | 0.80      | $0.39_{1}$      |
| 3       | 0.92      | 0.42       | 0.73      | 0.275           |
| 4       | 0.92      | 0.42       | 0.71      | 0.836           |
| 5       | 0.89      | 0.49       | 0.69      | 0.637           |
| 6       | 0.92      | 0.40       | 0.62      | 0.238           |
| 7       | 0.90      | 0.45       | 0.75      | 0.6339          |
| 8       | 0.89      | 0.52       | 0.79      | 0.6840          |
| 9       | 0.89      | 0.49       | 0.76      | 0. <b>65</b> 41 |
| 10      | 0.89      | 0.47       | 0.73      | 0. <b>62</b> 12 |
| Range   | 0.85-0.92 | 0.40-0.52  | 0.62-0.80 | 0.38-0.48       |
| Average | 0.89      | 0.45       | 0.74      | 0.644           |
| Std dev | 0.02      | 0.04       | 0.05      | 0.04            |
| RSD%    | 2.6       | 8.4        | 7.5       | 9646            |

| Щ.      | Thyme - Q values |           |  |  |  |
|---------|------------------|-----------|--|--|--|
| #       | Carv             | Thy       |  |  |  |
| 1       | 0.80             | 0.78      |  |  |  |
| 2       | 0.85             | 0.83      |  |  |  |
| 3       | 0.81             | 0.80      |  |  |  |
| 4       | 0.81             | 0.80      |  |  |  |
| 5       | 0.82             | 0.81      |  |  |  |
| 6       | 0.83             | 0.84      |  |  |  |
| 7       | 0.84             | 0.81      |  |  |  |
| 8       | 0.82             | 0.81      |  |  |  |
| 9       | 0.77             | 0.75      |  |  |  |
| Range   | 0.77-0.85        | 0.75-0.84 |  |  |  |
| Average | 0.82             | 0.81      |  |  |  |
| Std dev | 0.02             | 0.03      |  |  |  |
| RSD%    | 3.0              | 3.2       |  |  |  |

| #       | Sage - Q values |           |  |  |  |  |
|---------|-----------------|-----------|--|--|--|--|
| #       | α-Thuj          | β-Thuj    |  |  |  |  |
| 1       | 0.65            | 0.64      |  |  |  |  |
| 2       | 0.76            | 0.77      |  |  |  |  |
| 3       | 0.70            | 0.70      |  |  |  |  |
| 4       | 0.60            | 0.59      |  |  |  |  |
| 5       | 0.78            | 0.76      |  |  |  |  |
| 6       | 0.67            | 0.69      |  |  |  |  |
| 7       | 0.74            | 0.75      |  |  |  |  |
| 8       | 0.80            | 0.80      |  |  |  |  |
|         |                 |           |  |  |  |  |
| Range   | 0.65-0.80       | 0.59-0.80 |  |  |  |  |
| Average | 0.71            | 0.71      |  |  |  |  |
| Std dev | 0.07            | 0.07      |  |  |  |  |
| RSD%    | 9.7             | 10.0      |  |  |  |  |

| #       | Q values - Cloves   |
|---------|---------------------|
| #       | Eug 670             |
| 1       | 0.30 671            |
| 2       | 0.29 672            |
| 3       | 0.31 673            |
| 4       | 0.32 674            |
| 5       | 0.30 675            |
| 6       | <sup>0.33</sup> 676 |
| 7       | <sup>0.34</sup> 677 |
| 8       | 0.34 678            |
| 9       | 0.34 679            |
| 10      | 0.34 680            |
| Range   | 0.29-0.34           |
| Average | 0.32 682            |
| Std dev | 0.02                |
| RSD%    | 5.6 083             |
|         | 684                 |

Table 3SM. Linear regression equations and correlation coefficients obtained by submitting
standard mixtures of each marker to MHS-SPME-GC-MS.

| 000                                               |                                                                                                                                                                                                                                                                             |                                                                                 |                                               |                                                                           |                                      |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|--|--|
| 689<br>690                                        | Sample Markers                                                                                                                                                                                                                                                              |                                                                                 | Concentration range<br>(mg mL <sup>-1</sup> ) | Equation                                                                  | r                                    |  |  |
| 691<br>692 Sag                                    | Sage                                                                                                                                                                                                                                                                        | $\alpha$ -thujone + $\beta$ -thujone                                            | 0.1 – 5                                       | y=11909x+7887994<br>y=14629x+383582                                       | 0.9998<br>0.9999                     |  |  |
| 694<br>695                                        | 593Thymethymol,<br>carvacrol594Thymethymol,<br>carvacrol595Iinalool,<br>borneol,<br>bornyl acetate,<br>$\alpha$ -terpineol599Rosemarylinalool,<br>bornyl acetate,<br>$\alpha$ -terpineol700 $\alpha$ -pinene,<br>$\Delta$ -3-carene,<br>limonene,<br>$\alpha$ -phellandrene | thymol,<br>carvacrol                                                            | 0.25 – 10<br>0.25 – 20                        | y=8936x+5061613<br>y=6335x+4608817                                        | 0.9994<br>0.9991                     |  |  |
| 696<br>697<br>698<br>699<br>700                   |                                                                                                                                                                                                                                                                             | linalool,<br>borneol,<br>bornyl acetate,<br>α-terpineol                         | 0.002 - 2<br>0.1 - 2<br>0.1 - 2<br>0.1 - 6    | y=6944x+71523<br>y=17877x+1317504<br>y=8405x-164025<br>y=2591x-4377       | 0.9995<br>0.9996<br>0.9998<br>0.9988 |  |  |
| 701<br>702<br>703<br>704<br>705                   |                                                                                                                                                                                                                                                                             | $\alpha$ -pinene,<br>$\Delta$ -3-carene,<br>limonene,<br>$\alpha$ -phellandrene | 2 - 40<br>7 - 70<br>2 - 60<br>10 - 90         | y=9368x+9875445<br>y=6676x+18933679<br>y=5540x+7798181<br>y=8092x+7369394 | 0.9987<br>0.9996<br>0.9996<br>0.9990 |  |  |
| 705<br>706                                        | Cloves                                                                                                                                                                                                                                                                      | eugenol                                                                         | 2 – 60                                        | y=6947x+13637306                                                          | 0.9994                               |  |  |
| 707<br>708 White<br>709 and b<br>710 peppe<br>711 | White pepper<br>and black<br>pepper                                                                                                                                                                                                                                         | $\Delta$ -3-carene,<br>limonene,<br><i>t</i> -β-caryophyllene,<br>α-humulene    | 0.5 - 10<br>0.5 - 10<br>1 - 20<br>0.25 - 70   | y=8777x+584746<br>y=7061x+15247<br>y=4615x-240498<br>y=15813x-273280      | 0.9987<br>0.9988<br>0.9988<br>0.9993 |  |  |

Table 4SM. Repeatability and intermediate precision expressed as relative standard deviation 713 (RSD%) of the selected markers for thyme and American peppertree analyzed by MHS-SPME-GC-714

MS. Legend to the abbreviations:  $\alpha$ -Pin:  $\alpha$ -pinene;  $\Delta$ -3-Carene;  $\alpha$ -Phel:  $\alpha$ -Phellandrene; 715

|     | _             |               |             | -       |
|-----|---------------|---------------|-------------|---------|
| 716 | Lim: Limonene | e; Carv: Carv | acrol; Thy: | Thymol; |

| 717 |   | Thyme - Repeatability |      |  |  |  |
|-----|---|-----------------------|------|--|--|--|
| 718 | # | Carv                  | Thy  |  |  |  |
| 719 | 1 | 11.6                  | 9.7  |  |  |  |
| 720 | 2 | 5.8                   | 6.4  |  |  |  |
| 721 | 3 | 9.4                   | 10.6 |  |  |  |
| 722 | 4 | 10.5                  | 11.0 |  |  |  |
| 723 | 5 | 10.8                  | 10.9 |  |  |  |
|     | 6 | 5.8                   | 5.8  |  |  |  |
| 724 | 7 | 12.8                  | 7.6  |  |  |  |
|     | 8 | 3.9                   | 9.5  |  |  |  |
| 725 | 9 | 0.6                   | 11.0 |  |  |  |

|    | American peppertree - Repeatability |         |        |      |  |  |  |
|----|-------------------------------------|---------|--------|------|--|--|--|
| #  | α-Pin                               | ∆-3-Car | α-Phel | Lim  |  |  |  |
| 1  | 6.4                                 | 0.7     | 0.9    | 0.4  |  |  |  |
| 2  | 11.0                                | 8.6     | 7.1    | 6.7  |  |  |  |
| 3  | 0.6                                 | 2.1     | 3.8    | 3.5  |  |  |  |
| 4  | 6.9                                 | 1.9     | 2.4    | 3.4  |  |  |  |
| 5  | 12.1                                | 9.0     | 7.0    | 5.2  |  |  |  |
| 6  | 10.0                                | 9.4     | 8.3    | 7.4  |  |  |  |
| 7  | 7.7                                 | 2.0     | 3.1    | 7.3  |  |  |  |
| 8  | 9.4                                 | 10.5    | 10.2   | 10.2 |  |  |  |
| 9  | 9.5                                 | 11.9    | 9.4    | 8.4  |  |  |  |
| 10 | 0.7                                 | 10.2    | 0.5    | 9.1  |  |  |  |

| 726   |   |                           |      |                                      |    |       |         |           |      |
|-------|---|---------------------------|------|--------------------------------------|----|-------|---------|-----------|------|
| 120   |   | Thyme – Interm. precision |      | American peppertree – Interm. precis |    |       |         | precision |      |
| 727 — | # | Carv                      | Thy  |                                      | #  | α-Pin | ∆-3-Car | α-Phel    | Lim  |
|       | 1 | 12.6                      | 11.7 |                                      | 1  | 7.9   | 5.7     | 5.9       | 5.4  |
| 700   | 2 | 8.8                       | 6.9  |                                      | 2  | 12.8  | 9.9     | 8.7       | 8.9  |
| 128   | 3 | 9.8                       | 11.8 |                                      | 3  | 6.2   | 6.1     | 6.8       | 6.8  |
| 720   | 4 | 11.5                      | 12.1 |                                      | 4  | 8.4   | 8.9     | 8.5       | 7.9  |
| 729   | 5 | 12.3                      | 14.5 |                                      | 5  | 14.3  | 10.0    | 9.2       | 7.5  |
| _     | 6 | 6.9                       | 7.2  |                                      | 6  | 12.5  | 10.7    | 10.3      | 9.4  |
| 730   | 7 | 13.5                      | 9.3  |                                      | 7  | 9.8   | 6.8     | 6.9       | 10.4 |
| -     | 8 | 6.7                       | 11.2 |                                      | 8  | 10.6  | 11.5    | 11.2      | 12.2 |
| 731   | 9 | 5.3                       | 13.2 |                                      | 9  | 11.5  | 13.9    | 12.4      | 10.4 |
|       |   |                           |      |                                      | 10 | 6.8   | 12.6    | 8.1       | 12.4 |

732







#### Figure 1SM



