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Using 2917 pb−1 of data accumulated at 3.773 GeV, 44.5 pb−1 of data accumulated at 3.65 GeV and 
data accumulated during a ψ(3770) line-shape scan with the BESIII detector, the reaction e+e− →
pp̄ is studied considering a possible interference between resonant and continuum amplitudes. The 
cross section of e+e− → ψ(3770) → pp̄, σ(e+e− → ψ(3770) → pp̄), is found to have two solutions, 
determined to be (0.059+0.070

−0.020 ± 0.012) pb with the phase angle φ = (255.8+39.0
−26.6 ± 4.8)◦ (< 0.166 pb at 

the 90% confidence level), or σ(e+e− → ψ(3770) → pp̄) = (2.57+0.12
−0.13 ± 0.12) pb with φ = (266.9+6.1

−6.3 ±
0.9)◦ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770) →
pp̄, the cross section of pp̄ → ψ(3770), which is useful information for the future PANDA experiment, is 
estimated to be either (9.8+11.8

−3.9 ) nb (< 27.5 nb at 90% C.L.) or (425.6+42.9
−43.7) nb.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

At e+e− colliders, charmonium states with J P C = 1−− , such as 
the J/ψ , ψ(3686), and ψ(3770), are produced through electron–
positron annihilation into a virtual photon. These charmonium 
states can then decay into light hadrons through either the three-
gluon process (e+e− → ψ → ggg → hadrons) or the one-photon 
process (e+e− → ψ → γ ∗ → hadrons). In addition to the above 
two processes, the non-resonant process (e+e− → γ ∗ → hadrons) 
plays an important role, especially in the ψ(3770) energy region 
where the non-resonant production cross section is comparable to 
the resonant one.

The ψ(3770), the lowest lying 1−− charmonium state above 
the D D̄ threshold, is expected to decay dominantly into the OZI-
allowed D D̄ final states [1,2]. However, assuming no interference 
effects between resonant and non-resonant amplitudes, the BES 
Collaboration found a large total non-D D̄ branching fraction of 
(14.5 ± 1.7 ± 5.8)% [3–6]. A later work by the CLEO Collaboration, 
which included interference between one-photon resonant and 
one-photon non-resonant amplitudes (assuming no interference 
with the three-gluon amplitude), found a contradictory non-D D̄
branching fraction of (−3.3 ± 1.4+6.6

−4.8)% [7]. These different re-
sults could be caused by interference effects. Moreover, it has been 
noted that the interference of the non-resonant (continuum) am-
plitude with the three-gluon resonant amplitude should not be 
neglected [8]. To clarify the situation, many exclusive non-D D̄ de-
cays of the ψ(3770) have been investigated [9,10]. Low statistics, 
however, especially in the scan data sets have not permitted the 
inclusion of interference effects in these exclusive studies.

BESIII has collected the world’s largest data sample of e+e− col-
lisions at 3.773 GeV. Analyzed together with data samples taken 
during a ψ(3770) line-shape scan, investigations of exclusive de-
cays, taking into account the interference of resonant and non-
resonant amplitudes are now possible. Recently, the decay chan-
nel of ψ(3770) → pp̄π0 [11] has been studied considering the 
above mentioned interference. In this Letter, we report on a study 
of the two-body final state e+e− → pp̄ in the vicinity of the 
ψ(3770) based on data sets collected with the upgraded Beijing 
Spectrometer (BESIII) located at the Beijing Electron–Positron Col-
lider (BEPCII) [12]. The data sets include 2917 pb−1 of data at 
3.773 GeV, 44.5 pb−1 of data at 3.65 GeV [13], and data taken 
during a ψ(3770) line-shape scan in the energy range from 3.74
to 3.90 GeV.
2. BESIII detector

The BEPCII is a modern accelerator featuring a multi-bunch 
double ring and high luminosity, operating with beam ener-
gies between 1.0 and 2.3 GeV and a design luminosity of 1 ×
1033 cm−2 s−1. The BESIII detector is a high-performance gen-
eral purpose detector. It is composed of a helium-gas based drift 
chamber (MDC) for charged-particle tracking and particle identi-
fication by specific ionization dE/dx, a plastic scintillator time-of-
flight (TOF) system for additional particle identification, a CsI (Tl) 
electromagnetic calorimeter (EMC) for electron identification and 
photon detection, a super-conducting solenoid magnet providing 
a 1.0 Tesla magnetic field, and a muon detector composed of 
resistive-plate chambers. The momentum resolution for charged 
particles at 1 GeV/c is 0.5%. The energy resolution of 1 GeV pho-
tons is 2.5%. More details on the accelerator and detector can be 
found in Ref. [12].

A geant4-based [14] Monte Carlo (MC) simulation software 
package, which includes a description of the geometry, material, 
and response of the BESIII detector, is used for detector simu-
lations. The signal and background processes are generated with 
dedicated models that have been packaged and customized for 
BESIII [15]. Initial-state radiation (ISR) effects are not included 
at the generator level for the efficiency determination, but are 
corrected later using a standard ISR correction procedure [16,
17]. In the ISR correction, phokhara [18] is used to produce a 
MC-simulated sample of e+e− → γISR pp̄ (without γISR J/ψ and 
γISRψ(3686)). For the estimation of backgrounds from γISRψ(3686)

and e+e− → ψ(3770) → D D̄ , MC-simulated samples with a size 
equivalent to 10 times the size of data samples are analyzed.

3. Event selection

The final state in this decay is characterized by one proton and 
one antiproton. Two charged tracks with opposite charge are re-
quired. Each track is required to have its point of closest approach 
to the beam axis within 10 cm of the interaction point in the beam 
direction and within 1 cm of the beam axis in the plane perpen-
dicular to the beam. The polar angle of the track is required to be 
within the region | cos θ | < 0.8.

The TOF information is used to calculate particle identifica-
tion (PID) probabilities for pion, kaon and proton hypotheses [19]. 
For each track, the particle type yielding the largest probability is 
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Fig. 1. Comparisons between experimental and MC simulation data of selected e+e− → pp̄ events at 3.773 GeV. (a) The invariant mass of pp̄ calculated with raw 4-momenta; 
(b) the angle between the proton and antiproton (θpp̄ ) in the rest frame of the overall e+e− CMS system; (c) the magnitude of the proton momentum; (d) the cos θ of the 
proton momentum. The black histograms are MC simulations and the red crosses are experimental data. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
assigned. Here, the momentum of proton is high (> 1.6 GeV/c). For 
this high momentum protons and antiprotons, the PID efficiency 
is about 95%. The ratio of kaons to be mis-identified as protons 
is about 5%. In this analysis, one charged track is required to be 
identified as a proton and the other one as an antiproton.

The angle between the proton and antiproton (θpp̄ ) in the rest 
frame of the overall e+e− CMS system is required to be greater 
than 179 degrees. Finally, for both tracks, the absolute differ-
ence between the measured and the expected momentum (e.g.
1.637 GeV/c for the ψ(3770) data sample) should be less than 
40 MeV/c (about 3σ ).

After imposing the above event selection criteria, 684 ± 26 can-
didate events remain from the ψ(3770) data set. Comparisons be-
tween experimental and MC data are plotted in Fig. 1. The MC 
simulation agrees with the experimental data. For other data sets, 
signal events are selected with similar selection criteria. Signal 
yields are listed in Table 1.

4. Background estimation

Background from ISR to the lower lying ψ(3686) resonance, 
which is not taken into account in the ISR correction procedure, is 
estimated with a sample of MC-simulated data. The number of ex-
pected background events from this process is 0.1 and is neglected 
in this analysis.

Background from ψ(3770) → D D̄ is estimated with an inclusive 
MC sample and can also be neglected. Exclusive channels, such 
as e+e− → K +K − , μ+μ− , τ+τ− , pp̄π0, pp̄γ are also studied. 
The total background contribution is estimated to be 0.4 events, 
which is equivalent to a contamination ratio of 0.06%. Contribu-
tions from decay channels with unmeasured branching fractions 
for the ψ(3770) are estimated by the branching fractions of the 
corresponding decay channels of ψ(3686). These background con-
tributions from unmeasured decay modes are taken into account 
in the systematic uncertainty (0.06%) instead of being subtracted 
directly.
The data set at 3.65 GeV contains a contribution from the 
ψ(3686) tail, whose cross section is estimated to be 0.136 ±
0.012 nb [6]. The normalized contribution from this tail, 0.89 
events, is also statistically subtracted from the raw signal yield.

5. Determination of cross sections

The observed cross sections at the center-of-mass energies √
s = 3.65, 3.773 GeV and the fourteen different energy points in 

the vicinity of the ψ(3770) resonance are determined according 
to σ = Nsig

εL , where ε is the detection efficiency determined from 
MC simulation and L is the integrated luminosity for each energy 
point. The observed cross sections are listed in Table 1. For energy 
points with no significant signal, upper limits on the cross sec-
tion at 90% C.L. are given using the Feldman–Cousins method from 
Ref. [20].

The observed cross section of e+e− → pp̄ contains the lowest 
order Born cross section and some higher order contributions. The 
BaBar Collaboration [21,22] has taken into account bremsstrahlung, 
e+e− self-energy and vertex corrections in their radiative correc-
tion. Vacuum polarization is included in their reported cross sec-
tion. This corrected cross section, which is the sum of the Born 
cross section and the contribution of vacuum polarization, is called 
the dressed cross section. In order to use the BaBar measurements 
of σ(e+e− → pp̄) [21,22] in our investigation, a radiative correc-
tion is performed to calculate the dressed cross section using the 
method described in Refs. [16,17]. With the observed cross sec-
tions as our initial input, a fit to the line-shape equation (Eq. (1)) 
is performed iteratively. At each iteration, the ISR correction factors 
are calculated and the dressed cross sections are updated. The cal-
culation converges after a few iterations (∼ 5). The dressed cross 
section at each data point is listed in Table 1. As a reference, the 
Born cross sections are also calculated and given in Table 1. The 
Born cross section around 3.773 GeV is in excellent agreement 
with a previous measurement obtained with CLEO data [23].
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Table 1
Summary of results at center-of-mass energies from 3.65 to 3.90 GeV. Nsig is the number of e+e− → pp̄ events; ε is the detection efficiency; L is the integrated luminosity; 
(1 + δ)dressed is the initial state radiation correction factor without the vacuum polarization correction; and σobs , σdressed and σBorn are the observed cross section, the dressed 
cross section and the Born cross section, respectively.

√
s (GeV) Nsig ε (%) L (pb−1) (1 + δ)dressed σobs (pb) σdressed (pb) σBorn (pb)

3.650 26.0 ± 5.1 62.6 ± 0.4 44.5 0.76 0.90 ± 0.18 ± 0.06 1.19 ± 0.24 ± 0.08 1.12 ± 0.22 ± 0.08

3.748 1.0+1.8
−0.6 61.2 ± 0.4 3.57 0.76 0.46+0.83

−0.28 ± 0.03 0.60+1.08
−0.36 ± 0.04 0.54+0.97

−0.32 ± 0.04

3.752 3.0+2.3
−1.9 60.8 ± 0.4 6.05 0.76 0.82+0.63

−0.52 ± 0.06 1.07+0.82
−0.68 ± 0.08 0.96+0.74

−0.61 ± 0.07

3.755 4.0+2.8
−1.7 61.7 ± 0.4 7.01 0.77 0.93+0.65

−0.39 ± 0.06 1.21+0.85
−0.51 ± 0.09 1.09+0.76

−0.46 ± 0.08

3.760 4.0+2.8
−1.7 62.4 ± 0.4 8.65 0.77 0.74+0.52

−0.32 ± 0.05 0.96+0.67
−0.41 ± 0.07 0.87+0.61

−0.37 ± 0.06

3.766 0.0+1.3
−0.0 62.4 ± 0.4 5.57 0.79 0.00+0.37

−0.00 (< 0.70) 0.00+0.47
−0.00 (< 0.89) 0.00+0.43

−0.00 (< 0.81)

3.772 0.0+1.3
−0.0 62.5 ± 0.4 3.68 0.80 0.00+0.56

−0.00 (< 1.06) 0.00+0.70
−0.00 (< 1.33) 0.00+0.64

−0.00 (< 1.20)

3.773 684.0 ± 26 62.3 ± 0.4 2917 0.80 0.38 ± 0.01 ± 0.03 0.47 ± 0.02 ± 0.04 0.43 ± 0.02 ± 0.03

3.778 0.0+1.3
−0.0 62.6 ± 0.4 3.61 0.78 0.00+0.57

−0.00 (< 1.08) 0.00+0.74
−0.00 (< 1.39) 0.00+0.66

−0.00 (< 1.25)

3.784 0.0+1.3
−0.0 62.4 ± 0.4 4.57 0.75 0.00+0.45

−0.00 (< 0.85) 0.00+0.60
−0.00 (< 1.14) 0.00+0.54

−0.00 (< 1.02)

3.791 1.0+1.8
−0.6 62.1 ± 0.4 6.10 0.74 0.26+0.48

−0.16 ± 0.02 0.35+0.64
−0.21 ± 0.02 0.32+0.57

−0.19 ± 0.02

3.798 3.0+2.3
−1.9 61.9 ± 0.4 7.64 0.75 0.63+0.49

−0.40 ± 0.04 0.85+0.65
−0.54 ± 0.06 0.77+0.59

−0.48 ± 0.05

3.805 1.0+1.8
−0.6 61.5 ± 0.4 4.34 0.75 0.37+0.67

−0.22 ± 0.03 0.50+0.90
−0.30 ± 0.04 0.45+0.81

−0.27 ± 0.03

3.810 20.0 ± 4.5 62.4 ± 0.4 52.60 0.75 0.61 ± 0.14 ± 0.04 0.81 ± 0.18 ± 0.06 0.73 ± 0.16 ± 0.05

3.819 1.0+1.8
−0.6 61.4 ± 0.4 1.05 0.75 1.55+2.79

−0.93 ± 0.11 2.06+3.70
−1.23 ± 0.14 1.85+3.34

−1.11 ± 0.13

3.900 12.0+4.3
−3.2 61.7 ± 0.4 52.61 0.76 0.37+0.13

−0.10 ± 0.03 0.49+0.17
−0.13 ± 0.03 0.44+0.16

−0.12 ± 0.03
6. Fit to the cross section

To extract the ψ(3770) → pp̄ cross section, the total cross 
section as a function of 

√
s is constructed and a fit to the mea-

sured values is performed. As discussed in the introduction, the 
measured cross section is composed of three contributions: the 
three-gluon resonant process (A3g ), the one-photon resonant pro-
cess (Aγ ) and the non-resonant process (Acon). For the exclusive 
light hadron decay of the ψ(3770), the contribution of the electro-
magnetic process Aγ is negligible compared to that of the three-
gluon strong interaction A3g [24]. The resonant amplitude can then 
be written as Aψ ≡ A3g + Aγ ∼ A3g . Finally, the total cross section 
can be constructed with only two amplitudes, Aψ and Acon ,

σ(s) = ∣∣Acon + Aψeiφ
∣∣2

=
∣∣∣∣
√

σcon(s) + √
σψ

mψΓψ

s − m2
ψ + imψΓψ

eiφ

∣∣∣∣
2

, (1)

where mψ and Γψ are the mass and width of the ψ(3770) [25], 
respectively; φ describes the phase angle between the continuum 
and resonant amplitudes, which is a free parameter to be deter-
mined in the fit; and σψ is the resonant cross section, which is 
also a free parameter.

The continuum cross section, σcon , has been measured by many 
experiments [21,22,26,27]. In Ref. [26] from the BESII Collabora-
tion, σcon was measured from 2 to 3.07 GeV, and is well-described 
with an s dependence according to

σcon(s) = 4πα2 v

3s

(
1 + 2m2

p

s

)∣∣G(s)
∣∣2

, (2)

∣∣G(s)
∣∣ = C

s2 ln2(s/Λ2)
. (3)

Here α is the fine-structure constant; mp is the nominal proton 
mass; v is the proton velocity in the e+e− rest frame; G(s) is the 
effective proton form factor [27]; Λ = 0.3 GeV is the QCD scale 
parameter; and C is a free parameter.

The dressed cross sections in Table 1, together with the BaBar 
measurements of the cross sections between 3 and 4 GeV, are fit-
ted with Eq. (1). In this fit, 26 data points are considered: 16 points 
from this investigation by BESIII, 5 points from Ref. [21] and 5 
Table 2
Summary of the extracted results for different solutions of the fit. Upper limits are 
determined at 90% C.L.

Solution σ dressed
(ψ(3770)→pp̄)

(pb) φ (◦)

(1) 0.059+0.070
−0.020 ± 0.012 255.8+39.0

−26.6 ± 4.8

(< 0.166 at 90% C.L.)

(2) 2.57+0.12
−0.13 ± 0.12 266.9+6.1

−6.3 ± 0.9

points from Ref. [22]. The free parameters are the phase angle φ, 
the resonant cross section σψ , and C from the form factor describ-
ing the contribution of the continuum. Fig. 2 shows the data points 
and the fit result.

The fit yields a χ2/ndf of 13.4/23. Two solutions are found 
with the same χ2 and the same parameter C of (62.0 ± 2.3) GeV4. 
Two solutions are found because the cross section in Eq. (1)
is constructed with the square of two amplitudes. This multi-
solution problem has been explained in Ref. [28]. A dip indi-
cating destructive interference is seen clearly in the fit (the red 
solid line in Fig. 2). The first solution for the cross section is 
σdressed(e+e− → ψ(3770) → pp̄) = (0.059+0.070

−0.020) pb with a phase 
angle φ = (255.8+39.0

−26.6)
◦ (< 0.166 pb at the 90% C.L.). The second 

solution is σdressed(e+e− → ψ(3770) → pp̄) = (2.57+0.12
−0.13) pb with 

a phase angle φ = (266.9+6.1
−6.3)

◦ .
For comparison, an alternative fit with only the BESIII data 

points is performed. Two solutions are found with the same 
χ2/ndf of 6.8/13 and the same parameter C of (62.6 ± 4.1) GeV4. 
The first solution for the cross section is σdressed(e+e− →
ψ(3770) → pp̄) = (0.067+0.088

−0.034) pb with a phase angle φ =
(253.8+40.7

−25.4)
◦ . The second solution is σdressed(e+e− → ψ(3770) →

pp̄) = (2.59 ± 0.20) pb with a phase angle φ = (266.4 ± 6.3)◦ . 
These two solutions agree with those from the previous fit, but 
have larger uncertainties.

Table 2 shows a summary of the fit results, where the first error 
is from the fit and the second error is from the correlated system-
atic uncertainties.

7. Systematic uncertainty study

The sources of systematic uncertainty in the cross section mea-
surements are divided into two categories: uncorrelated and cor-
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Fig. 2. Fit to the dressed cross section of e+e− → pp̄ as a function of center-of-mass 
energy. The red solid line shows the fit curve. The solid square points with error 
bars are from BESIII. The open circles are from the BaBar measurements of Ref. [21], 
and the open triangles from Ref. [22]. The inset shows a zoom of the region in the 
vicinity of the ψ(3770). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

related uncertainties between different energy points. The for-
mer includes only the statistical uncertainty in the MC simulated 
samples (0.4%), which can be directly considered in the fit. The 
latter refers to the uncertainties that are correlated among dif-
ferent energy points, such as the tracking (4% for two charged 
tracks), particle identification (4% for both proton and antipro-
ton), and integrated luminosity. The integrated luminosity for the 
data was measured by analyzing large angle Bhabha scattering 
events [13] and has a total uncertainty of 1.1% at each energy 
point.

To estimate the uncertainty from the radiative corrections, 
a different correction procedure using the structure-function meth-
od [29] is applied, and the difference in results from these two 
correction procedures (2%) is taken as the uncertainty. To investi-
gate the impact of the possible inconsistency of the MC simulation 
and experimental data, an alternative MC simulated sample is gen-
erated with a different proton momentum resolution (15% better 
than the previous MC sample), and the change in the final re-
sults (1.4%) is taken as the uncertainty.

In addition, the uncertainty on the reconstruction efficiency 
from the unmeasured angular distribution of the proton in the 
rest frame of the overall e+e− CMS system is also studied. Ac-
cording to hadron helicity conservation, the angular distribution 
of ψ → pp̄ can be expressed as dN

dcosθ ∝ 1 + α cos2 θ , where θ is 
the angle between the proton and the positron beam direction in 
the center-of-mass system. The theoretical value of α = 0.813 [30]
is used to produce the MC simulated sample in this analysis. In 
the case of ψ(3686) → pp̄, the mean value of α measured by 
E835 (0.67±0.16) [31] differs by 0.13 from the theoretical value 
of 0.80. To obtain a conservative uncertainty, an alternative MC 
simulated sample with α = 0.683 is used and the difference in 
the results (1.0%) is taken as the uncertainty. The uncertainty from 
the angle cut between the proton and antiproton is investigated by 
varying the angle cut (from 178.9 to 179.5 degrees) and the differ-
ence (2.2%) is taken as the uncertainty.

All of the above sources of uncertainty are applied to the ob-
served cross section at each energy point. The total systematic 
uncertainty of the individual energy points is 6.7%.

The systematic uncertainties on the parameters extracted from 
the fit, such as σ dressed

(ψ(3770)→pp̄)
and the phase angle φ, are estimated 

by the “offset method” [32], in which the error propagation is de-
termined from shifting the data by the aforementioned correlated 
uncertainties and adding the deviations in quadrature. In addition, 
a 1 MeV uncertainty for the beam energy measurements of all the 
data points is considered in the fit.

8. Summary and discussion

Using 2917 pb−1 of data collected at 3.773 GeV, 44.5 pb−1 of 
data collected at 3.65 GeV and data collected during a ψ(3770)

line-shape scan with the BESIII detector, the reaction e+e− →
pp̄ has been studied. To extract the cross section of e+e− →
ψ(3770) → pp̄, a fit, taking into account the interference of res-
onant and continuum amplitudes, is performed. In this investiga-
tion, the measured cross sections of e+e− → pp̄ from the BaBar 
experiment are included in a simultaneous fit to put more con-
straints on the continuum amplitude. The dressed cross section of 
e+e− → ψ(3770) → pp̄ is extracted from the fit and shown in Ta-
ble 2.

With the obtained dressed cross section of e+e− → ψ(3770) →
pp̄, the branching fraction Bψ(3770)→pp̄ is determined to be 
(7.1+8.6

−2.9) × 10−6 or (3.1 ± 0.3) × 10−4, by dividing the dressed 
cross section of e+e− → ψ(3770) [7]. Even the larger solution has 
a relatively small branching fraction comparing to the large to-
tal non-D D̄ branching fraction. Thus, the pp̄ channel alone cannot 
explain the large non-D D̄ branching fraction from BESII.

Using the branching fraction of ψ(3770) → pp̄, the cross sec-
tion of its time reversed reaction pp̄ → ψ(3770) can be estimated 
using the Breit–Wigner formula [25]:

σpp̄→ψ(3770)(s) = 4π(2 J + 1)

(s − 4m2
p)

Bψ(3770)→pp̄

1 + [2(
√

s − Mψ)/Γψ ]2
(4)

where Mψ and Γψ are the mass and width of the ψ(3770) reso-
nance, J is the spin of the ψ(3770), and mp is the proton mass. 
For the condition 

√
s = Mψ , the cross section σ(pp̄ → ψ(3770))

is estimated to be either (9.8+11.8
−3.9 ) nb (< 27.5 nb at 90% C.L.) or 

(425.6+42.9
−43.7) nb.

The future P̄ANDA (anti-Proton ANnihilations at DArmstadt) ex-
periment is one of the key projects at the Facility for Antiproton 
and Ion Research (FAIR), which is currently under construction 
at GSI, Darmstadt. It will perform precise studies of antiproton–
proton annihilations with various internal proton or nuclear targets 
and an antiproton beam in the momentum range from 1.5 GeV/c
to 15 GeV/c. In P̄ANDA, a detailed investigation of the charmo-
nium spectrum and the open charm channels is foreseen. For this 
physics program, it is important to obtain experimental informa-
tion on the so far unknown open charm cross sections, both to 
evaluate luminosity requirements and to design detector. Theoret-
ical estimations vary with several orders of magnitude [33–41]. In 
the physics performance report for P̄ANDA [42], the D D̄ produc-
tion cross section is estimated to be 6.35 nb, with the unknown 
branching ratio of ψ(3770) → pp̄ scaled from the known ratio of 
J/ψ → pp̄. In this paper, the cross section of σ(pp̄ → ψ(3770))

has been determined. As the first charmonium state above the D D̄
threshold, ψ(3770) could be used as a source of open charm pro-
duction.

In this paper, two solutions on the cross section of σ(pp̄ →
ψ(3770)) are obtained. It is impossible to distinguish these two 
solutions with our data. The first solution, (9.8+11.8

−3.9 ) nb, is com-
patible with a simple scaling from J/ψ used in the P̄ANDA physics 
performance report. The second solution, with the cross section of 
(425.6+42.9) nb, is two order of magnitudes larger.
−43.7
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