

since

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Synthesis and preliminary evaluation of model compounds targeting the NLRP3 inflammasome pathways

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/152704

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

Synthesis and preliminary evaluation of model compounds targeting the **NLRP3** inflammasome pathways

UNIVERSITA DEGLI STUDI **DI TORINO** ALMA UNIVERSITAS TAURINENSIS

Davide Garella, Mattia Cocco, Antonella Di Stilo, Gianluca Miglio, Massimo Collino, Roberto Fantozzi, Massimo Bertinaria Dipartimento di Scienza e Tecnologia del Farmaco. Università degli Studi di Torino. Via P. Giuria 9, 10125 Torino – Italia davide.garella@unito.it

Introduction

Inflammasomes have recently emerged as key mediators of inflammation and immunity. Four inflammasome complexes have been described to date. The most intensely studied is the NLRP3 inflammasome formed by the nucleotide-binding domain leucine-rich repeat family member NLRP3 and the adapter protein ASC, its assembling is triggered by a diverse series of endogenous and exogenous stimuli.¹ (figure 1).

	Optimisation of reaction conditions									
		CHO CI CI		catalyst (1mmol)			Et			
	1 mmol		3 mmol							
	Solvent	catalyst	Time (d)	Yield ^a	Solvent	catalyst	Time (d)	Yield ^a	✓ Use of polar protic	
	CHCl ₃	Et ₃ N	7	-	CH ₃ CN/H ₂ O	Et ₃ N	7	-	medium is preferred	
	CHCl ₃	DMAP	19	54 %	CH ₃ CN/H ₂ O	DMAP	5	42 %		
	CHCl ₃	DBU	12	25 %	CH ₃ CN/H ₂ O	DBU	20	trace	✓ Use of DABCO or	
	CHCl ₃	Im	7	-	CH ₃ CN/H ₂ O	Im	20	< 2%	DMAP gives best results	
	CHCl ₃	DABCO	7	-	CH ₃ CN/H ₂ O	DABCO	7	67 %		
	CHCl ₃	PPh ₃	7	С	CH ₃ CN/H ₂ O	PPh ₃	4	С	$\sqrt{1}$ ong reaction times	
	CHCl ₃	TMEDA	7	-	CH ₃ CN/H ₂ O	TMEDA	20	trace		
	Tab. 1 a) Isolated yields; b) reaction			Dioxane/H ₂ O	DABCO	20	-	are required		
	run on 10) mmol scal	le; c) cor	nplex	THF/MeOH/H ₂ O	DABCO	4	44 %		
mixture ; d) run at 80 °C Solvents: dioxane/H ₂ O (1/1).					CH ₃ CN/H ₂ O	DABCO	7	65 % ^b	Scale-up can be	
	CH ₃ CN /F	I ₂ O (9/1);			CH ₃ CN/H ₂ O	DABCO	2 d	40 % ^b	effectively obtained	
	THF/Me	OH/H₂O (1/	'1/2)							

-IL-18

secretion of the proinflammatory cytokines IL-1 β and IL-18.

Fig. 1. Model of inflammasome activation. Coordination of a manifold series of signals culminates in the activation of the inflammasome.

A series of autosomal and dominant or *de novo* mutations of nlrp3 lead to auto-inflammatory syndromes known as CAPS (cryopyrinassociated periodic syndromes) which are characterized by high levels of IL-1ß release and associated sterile systemic inflammation. The onset of chronic inflammation has also been linked to a wide range of metabolic disorders, such as type 2 diabetes, atherosclerosis, and Alzheimer's disease.²

Design of inhibitors of NLRP3-related pathways

CN

0,

Bay 11-7082

Few small molecules inhibitors of NLRP3 inflammasome-related effects have been described, among them parthenolide, Bay 11-7082 and bromoxone are the most studied.

OH

bromoxone

These molecules share the ability to behave as Michael

The synthesis of E- N- X- series of compounds was obtained through reaction of ethylacrylate or acrylonitrile with different aldehydes.

E compounds				Reaction conditions			N compounds				Reaction conditions		
	R1	R2	R3	solv	catalyst	yield		R1	R2	R3	solv	catalyst	yield
1E	-Н	-H	-H	В	DABCO	45%	1N	-H	-H	-Н	D	DABCO	69 %
2 E	-Н	2-NO ₂	-H	Α	DABCO	60 %	2N	-H	2-NO ₂	-H	Α	DABCO	44 %
3E	-Н	2-F	-H	Α	DABCO	66 %	4N	-H	2-Cl	-H	D	DABCO	quant
4E	-Н	2-Cl	-H	В	DABCO	67 %	5N	-H	2-Br	-Н	D	DABCO	quant
5E	-Н	2-Br	-H	В	DABCO	quant	7N	-H	2-Cl	4-Cl	D	DABCO	37 %
6E	-Н	4-Cl	-H	В	DMAP	38 %	8N	-H	2-Cl	6-Cl	D	DABCO	21 %
7E	-Н	2-Cl	4-Cl	В	DMAP	58 %		X compounds		S	Reaction conditions		
8E	-Н	2-Cl	6-Cl	В	DABCO	36 %		X		R1	Solv	catalyst	yield
9E	-Н	3-Cl	5-Cl	В	DABCO	40 %	13E	2-piridyl		-COOEt	Α	DABCO	48 %
10E	-(CH ₂) ₂ COOEt	2-Cl	-H	В	DMAP	8 %	13N	2-piridyl		-CN	Α	DABCO	70 %
11E	-(CH ₂) ₂ COOEt	2-Cl	4-Cl	В	DMAP	16 %	14N	2-naft	alenyl	-CN	D	DABCO	72 %
12E	-(CH ₂) ₂ COOEt	2-Cl	6-Cl	В	DMAP	11 %	15E	cyclo	hexyl	-COOEt	С	DABCO	33 %
Tab. 2 A = dioxane / $H_2O(1/1)$; B = $CH_3CN / H_2O(9/1)$; 16								met	thyl	-COOEt	В	DABCO	21 %
C = formamide; D = THF / MeOH / $H_2O(1/1/2)$													

50

Biological results

parthenolide

To explore the use of Michael acceptors as pharmaco-chemical tools modulating inflammatory pathways we designed some model compounds (figure 2).

EWG

acceptors. Although Michael are traditionally acceptors shunned in modern drug discovery, many biologically relevant druggable and pathways are targeted by thiol-reactive compounds.³

X = alkyl, cycloalkyl, aryl, substd aryl, heteroaryl

R3[´]

R1

 $^{\nu}R2$

Fig. 2. General structure of designed **Michael acceptors**

Synthesis

R-CHO

Designed compounds were synthesized via the Morita-Baylis-Hillman (MBH) reaction (*scheme 1*).

> Commercially available starting **EWG** materials Mild reaction conditions

(a)	(h) Pyroptotic cell death (%)
		0 10 20 30 40
IC ₅₀ (μM)	v	
22.6±4.5	Р	
7.8±1.1	2E	
27.5±2.5	3E	
87.0±1.4	4E	
34.9±8.3	6E	
75.4±1.4	7E	
35.2±8.5	8E	
83.4±5.8	9E	
>100	10E	
>100	11E	
>100	12E	
53.4±6.5	13E	
>100	15E	
76.6±5.5	16E	
32.3±1.4	1N	
2.4±0.8	2N	
7.6±1.5	4N	
10.8±4.1	5N	
6.4±13.4	7N	
16.3±1.9	8N	
20.5±7.1	13N	
8.9±1.5	14N]

(a) Cytotoxicity

Immortalized human tubular epithelial cells were exposed to increasing compound concentrations $(0.1-100 \ \mu M)$. After 72 h cell viability was evaluated by MTT assay. Data are means ± S.E.M. of at least three independent experiments run in quadruplicate.

(b) Pyroptotic cell death

PMA-differentiated THP-1 cells were stimulated with LPS. Cells were treated with vehicle alone (V), (P) or synthesized parthenolide compounds (10 μ M; 1 h), then pulsed with ATP in serum-free medium. The culture supernatants were collected and assayed for LDH activity. Data are means ± S.E.M. of at least three independent experiments run in triplicate.

> Preliminary data identify a number of compounds able to inhibit **pyroptotic cell death** which is recognized to be related to NALP3 activation.

Compounds 4E, 8E, 9E, 16E showed a better profile with respect to parthenolide, used as reference compound.

catalyst

1) D. De Nardo et al. *Trends Immunol.* **2011**, *32(8)*, 373-379. **2)** B. K. Davis et al. *Annu. Rev. Immunol.*

2011, 29, 707-735. **3)** S. Amslinger ChemMedChem **2010**, 5, 351-356.