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Gyrotactic trapping in laminar and turbulent Kolmogorov flow

Francesco Santamaria,1 Filippo De Lillo,1 Massimo Cencini,2 and Guido Boffetta1

1Dipartimento di Fisica and INFN, Università di Torino, via P. Giuria 1, 10125 Torino, Italy
2Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185 Rome, Italy

Phytoplankton patchiness, namely the heterogeneous distribution of microalgae over multiple
spatial scales, dramatically impacts marine ecology. A spectacular example of such heterogeneity
occurs in thin phytoplankton layers (TPLs), where large numbers of photosynthetic microorganisms
are found within a small depth interval. Some species of motile phytoplankton can form TPLs
by gyrotactic trapping due to the interplay of their particular swimming style (directed motion
biased against gravity) and the transport by a flow with shear along the direction of gravity. Here
we consider gyrotactic swimmers in numerical simulations of the Kolmogorov shear flow, both in
laminar and turbulent regimes. In the laminar case, we show that the swimmer motion is integrable
and the formation of TPLs can be fully characterized by means of dynamical systems tools. We
then study the effects of rotational Brownian motion or turbulent fluctuations (appearing when the
Reynolds number is large enough) on TPLs. In both cases we show that TPLs become transient,
and we characterize their persistence.

PACS numbers: 47.27.-i, 47.63.Gd, 92.20.jf

I. INTRODUCTION

Motile aquatic microorganisms in their natural habi-
tats move under the simultaneous and combined ef-
fect of ambient transport (currents, turbulence etc.)
and swimming.1,2 The interaction between these dif-
ferent transport mechanisms can give rise to interest-
ing phenomena, such as the generation of inhomoge-
neous distributions3,4 and swimming-induced flows like
bioconvection5,6 or bacterial turbulence,7 many aspects
of which can be studied within the theoretical framework
of dynamical systems theory and fluid mechanics.8–14

For most microorganisms, swimming is biased in spe-
cific directions by some kind of taxis in response to chem-
ical (e.g. chemotaxis15) or physical signals (e.g. photo-
taxis16 and magnetotaxis17). One of those taxes, rele-
vant to several species of phytoplankton, tends to orient
cell swimming direction upward against gravity (negative
gravitaxis). Although other mechanisms are also possi-
ble, vertical orientation typically results from the gravi-
tational torque due to the asymmetric cell-density distri-
bution, leading to bottom heaviness.1–3 In the presence of
a flow, gravitational torque combines with the hydrody-
namic one giving rise to directed locomotion, dubbed gy-
rotaxis, which can eventually cause accumulation of cells
in specific flow regions. In a laminar downwelling pipe
flow, for instance, the interplay of swimming and hydro-
dynamic shear produces a striking aggregation in the cen-
ter of the pipe known as gyrotactic focusing.3 In homo-
geneous isotropic turbulence, numerical simulations have
shown that gyrotactic algae generate small-scale clusters
with fractal distributions.13,14 Such findings, which have
been rationalized using tools from dynamical systems and
fluid mechanics, may be an explanation of why field ob-
servations have found that small-scale patchiness appears
to be stronger in motile phytoplankton species.18–20

In this paper we consider a case intermediate between
laminar flows and homogeneous turbulence: turbulence

in the presence of a mean shear flow. The motivation
for our study comes from the recent experimental ob-
servation that gyrotactic algae swimming within a lam-
inar vertical shear aggregate in horizontal layers around
the maximal shear rate, as a consequence of gyrotactic
trapping.4 This mechanism has been proposed as a possi-
ble explanation, at least for some phytoplankton species,
for the formation of the spectacular thin phytoplankton
layers (TPLs) often observed in (coastal) ocean. TPLs
are high concentrations of phytoplankton, centimeters to
one meter thick, which extend horizontally up to kilo-
meters and last from hours to a few days.21–25 They are
important to marine ecology by enhancing zooplankton
growth rates, thus providing high concentration of preys
for fishes and their larvae. Moreover, as many phyto-
plankton species found in TPLs are toxic, their presence
can enhance zooplankton and fish mortality, or induce
zooplankton to avoid toxic and mucus rich layers. TPLs
can be formed by several motile and non-motile species,
therefore very likely there is not a unique mechanism for
their formation. See the review Ref.25 and references
therein for an up-to-date account on various aspects of
TPLs.

It is worth recalling the basic ideas of the microflu-
idic experiments,4 which have demonstrated gyrotactic
trapping for Chlamydomonas nivalis and Heterosigma
akashiwo (a toxic species). Swimming algae were in-
jected at the bottom of a centimeter-sized tank where
a vertical shear is induced by a rotating belt. Cells
swim upwards to about the middle of the tank where
the shear rate becomes sufficiently strong to overcome
gravitational bias and cause the swimming direction to
tumble. Loosing gravitational bias, no net vertical ve-
locity can be maintained. Hence, cells remain trapped,
accumulating in horizontal layers. Recent numerical sim-
ulations have shown that gyrotactic phytoplankton forms
thin layers even in non-stationary Kelvin-Helmholtz flow,
where swimming cells are found to be trapped in evolving
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KH billows.26 However, field experiments with simulta-
neous measurement of biological and physical properties
have shown that while thin layers are weakly affected by
turbulence of moderate intensity, stronger turbulence will
dissolve them.27,28 The entire process is rather nontrivial
and poorly understood:25 on the one hand shear flows
can induce layers by gyrotactic trapping; on the other
hand they trigger the generation of turbulence which, in
turn, can destabilize gyrotactic trapping causing layers’
break-up.

In the present paper we study phytoplankton layers in
the Kolmogorov flow with shear along the vertical direc-
tion. This is a well known periodic shear flow model for
studying the transition to turbulence29–31 and it is pre-
sented together with the model equations for gyrotactic
motion in Sect. II.

In laminar and steady Kolmogorov flow (Sect. III), we
have been able to solve gyrotactic swimmer dynamics
by using tools from dynamical systems. In particular,
we have found that the motion is integrable, allowing
us to analytically characterize gyrotactic trapping. We
have then numerically studied the effect of stochasticity,
namely rotational Brownian motion, on the evolution of
the thin layers (Sect. IV).

In the turbulent Kolmogorov flow, small-scale fluctu-
ations superimpose to the mean large scale flow, and no
analytical study is possible. Direct numerical simula-
tions of the Navier-Stokes equations, coupled with the
Lagrangian dynamics of gyrotactic swimmers, have been
used to investigate the dynamical effects of turbulent
fluctuations on TPLs (Sect. V).

Both stochastic effects and turbulence make TPL a
transient phenomenon, and we characterized its persis-
tence properties. Discussions and final remarks on the
relevance of our findings are presented in Sect. VI.

II. MODELS

A. Gyrotactic swimming

We consider spherical cells, which is justified by de-
tailed analysis of cell morphology,32 and dilute suspen-
sions so that alga-alga interactions can be neglected as
well as back-reaction on the fluid flow. Moreover, thanks
to the small size of the cells (∼ 10 µm) with respect to the
Kolmogorov length scale (η, namely the smallest scale of
turbulent flows, in oceans η ∼ 0.3 − 10 mm) they can
be considered as point particles and their motion is akin
to that of passive tracers but for their ability to swim.
We assume that cells are neutrally buoyant, as their sed-
imentation speed (∼ 2.5− 3 µm/s) is much smaller than
their typical swimming speed (∼ 100 µm/s).5,32

According to the classic model of gyrotactic motility1–3

the position X and the swimming orientation p (where
|p| = 1) of a gyrotactic cell evolve according to the equa-

tions

Ẋ = u + vsp , (1)

ṗ =
1

2B
[ẑ − (ẑ · p)p] +

1

2
ω × p , (2)

ẑ denoting the vertical unit vector. In Eq. (1), the cell
velocity is given by the superposition of the fluid veloc-
ity at the cell location, u(X, t), and the swimming ve-
locity, vsp, with vs assumed to be constant.1,2 As for
the swimming direction dynamics, the first term on the
r.h.s. of Eq. (2) accounts for the bias in the direc-
tion opposite to gravitational acceleration, g = −gẑ,
with a characteristic orientation time B (in a still fluid,
u = 0, B is the typical time a cell employs to orient up-
wards). For bottom-heavy, neutrally buoyant and spher-
ical cells in a fluid with kinematic viscosity ν we have
B = 3ν/(hg), h measuring the distance between the cell
center of mass and its geometric center. We remark that
this term has, in general, an additional contribution aris-
ing from fluid acceleration.14 However for the formation
of TPLs in the oceans, where turbulence is not very in-
tense, with typical values of the turbulent energy dissipa-
tion ε � 10−4m/s3 (see e.g. Ref.33), fluid acceleration
(∼ (ε3/ν)1/4 ≈ 0.1m/s2 � g) can be safely neglected.
Finally, the last term in (2) represents the rotation of the
swimming direction due to fluid vorticity ω = ∇× u.

By comparing the two terms in Eq. (1), we can define
the swimming number Φ = vS/U where U is a typical
velocity of the flow, providing a dimensionless measure
of the swimming velocity. While from Eq. (2) we obtain
the dimensionless stability number Ψ = Bω, where ω is
a measure of the typical vorticity intensity. The latter
number measures the importance of vortical overturning
with respect to directional swimming.13 Given the flow,
specified in the following Section, the values of these two
numbers determine the behavior of the swimming cells.

In Sect. IV we will also consider the presence of
stochastic terms (rotational Brownian motion) in Eq. (2).

B. The Kolmogorov flow

As discussed in the Introduction, gyrotactic cells in
vertical shears can form thin layers when shear vorticity
exceeds the inverse orientation time, i.e. when Ψ > 1,
as demonstrated in laboratory experiments.4 However,
shear-induced turbulence can dissolve the layers after a
finite lifetime. The process of TPL break-up due to tur-
bulent fluctuations and thus the persistence properties
of TPLs are still poorly characterized, mainly because
of the experimental difficulties in tracking TPLs from
birth to death.25 Aiming to numerically explore the ef-
fects of turbulent fluctuations on the gyrotactic trapping,
we consider here the periodic shear flow, originally intro-
duced by Kolmogorov to study the transition to turbu-
lence. Several analytical studies have investigated its lin-
ear stability properties and weakly nonlinear behavior.29
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Moreover, extensive numerical simulations have explored
the fully turbulent regime.31,34

The Kolmogorov flow is realized when the Navier-
Stokes equation for an incompressible fluid (∇ · u = 0),
is sustained via the Kolmogorov body force, i.e.

∂tu + u ·∇u = −∇p+ ν∆u + F cos(z/L)x̂ (3)

where p is the pressure, density is taken to unity ρ = 1,
and x̂ denotes the unit vector in the horizontal direc-
tion. The physical domain is a cube of size LB = 2πL
with periodic boundary conditions in all directions. It
is easy to verify that (3) admits a stationary solution,
the laminar Kolmogorov flow u = U cos(z/L)x̂ with
U = L2F/ν. This laminar solution becomes unstable
with respect to transverse perturbations on scales larger
than L when the Reynolds number, Re = UL/ν, ex-

ceeds the critical value Rec =
√

2. The first instabil-
ity is two-dimensional (thanks to the Squire’s theorem,
valid for 2D, parallel flows) but, by increasing Re, three-
dimensional motion develops and the flow eventually be-
comes turbulent.31,34 Remarkably, even in the fully de-
veloped turbulent state the mean velocity profile ū (the
over-bar denoting time average) remains monochromatic,
as in the laminar flow, i.e. ū = U cos(z/L)x̂, with a dif-
ferent amplitude U < L2F/ν.34 By changing the relative
amplitude of the turbulent fluctuations with respect to
the mean Kolmogorov flow, we will investigate the effects
of turbulence on shear-induced gyrotactic trapping, and
thus on the persistence and properties of the resulting
thin layers.

III. SWIMMING IN THE LAMINAR
KOLMOGOROV FLOW

We start considering gyrotactic microorganisms swim-
ming in a laminar Kolmogorov flow u = U cos(z/L)x̂.
It is useful to make Eqs. (1) and (2) non-dimensional by
measuring lengths, velocities and times in terms of L, U
and L/U . In particular, Eq. (1) reads

Ẋ = cosZ + Φpx (4)

Ẏ = Φpy (5)

Ż = Φpz , (6)

where Φ = vs/U is the swimming number, while equa-
tion (2) becomes

ṗx = − 1

2Ψ
pxpz −

1

2
sinZ pz (7)

ṗy = − 1

2Ψ
pypz (8)

ṗz =
1

2Ψ
(1− p2

z) +
1

2
sinZ px . (9)

where Ψ = BU/L is the stability number. The box size
in dimensionless units is LB/L = 2π.

The coordinates X and Y do not enter the dynamics
of the other variables, thus we can ignore them and limit

our analysis to the four dimensional dynamical system
given by Eq. (6) for the vertical position and Eqs. (7)-
(9) for the swimming orientation. The condition |p| = 1
implies that the dynamics is three-dimensional.

It is easily seen from Eqs. (7-9) that when Ψ ≤ 1 the
gravitational bias dominates allowing cells to swim up-
wards through the vertical shear. Conversely, for Ψ > 1
vorticity becomes important inducing tumbling motion,
which in turns gives rise to gyrotactic trapping.4 In fact,
seeking for an equilibrium swimming direction in Eqs. (7-
9) when Ψ > 1, a refined analysis1 shows that, thanks
to the absence of vorticity along the direction of gravity
(as for the Kolmogorov flow here considered), the only
possible equilibrium solution is one with p lying on the
plane perpendicular to gravity and is non-linearly un-
stable. Therefore, if Ψ > 1 vortical motion overcomes
gravitational bias and cells perform tumbling motion for
some height Z where they remain trapped. While this is
generic for steady shear flows with vorticity perpendic-
ular to gravity, for the specific case of the Kolmogorov
flow it is possible to characterize the dynamical behavior
in great details. Indeed we can notice that, besides |p|,
Eqs. (4)-(9) admit two additional conserved quantities
implying that the system is integrable.

We start our analysis by observing that, when the grav-
itational bias dominates the orientation dynamics (i.e.
Ψ < 1), we expect an average upward swimming speed

〈Ż〉 = Φ〈pz〉 > 0. Since Eq. (8) is formally solved by

py(t) = py(0) exp[−
∫ t

0
pz(s)ds/(2Ψ)], at long times we

can write py(t) = py(0) exp[−t〈pz〉/(2Ψ)], meaning that
asymptotically py → 0 and the swimming orientation
evolves on the (px,pz) plane. Actually we can say more:
dividing (8) by (6) yields dpy/dZ = −py/(2ΨΦ), which
implies that

C(p, Z) = pye
Z/(2ΦΨ) (10)

is invariant under the dynamics (6-9). Furthermore, di-
viding (7) by (6) and solving the resulting ordinary dif-
ferential equation for px = px(Z), one easily finds that

H(p, Z) = Φe
Z

2ΦΨ

[
px −

Ψ(2ΦΨ cosZ − sinZ)

1 + 4Φ2Ψ2

]
, (11)

is also conserved by the dynamics. In Refs. 10 and 11 sim-
ilar considerations were used for studying prolate cells,
such as bacteria, swimming in a Poiseuille flow.

The conservation of C implies that if Z increases py
has to compensate decreasing exponentially, as discussed
above. As a consequence, we can neglect, at this stage,
swimming in the y direction (i.e. we set py = 0) and
limit our analysis to the two-dimensional system

θ̇ =
1

2Ψ
cos θ +

1

2
sinZ (12)

Ż = Φ sin θ , (13)

where we have introduced polar coordinates for the swim-
ming orientation, (px,pz) = (cos θ, sin θ).
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Since equations (12-13) are periodic, we can consider
the evolution on the torus (θ, z) ∈ [−π, π] × [0 : 2π]. In
the following we will use Z to denote the vertical co-
ordinate and z to indicate its restriction to the torus
(i.e. z = Z mod 2π). We observe that the quantity
(11) is not periodic in Z: when Z → Z ± 2π n, we have
H(θ, z) → H(θ, z)e±πn/(ΦΨ), i.e. H is multiplied by a
constant.

The system (12-13) can be rewritten as

θ̇ = G(θ, Z)∂ZH
Ż = −G(θ, Z)∂θH

(14)

with G = exp[−Z/(2ΦΨ)] being the inverse integrating
factor.35,36 Therefore the time change t → tG−1 makes
(14) a Hamiltonian system having exactly the same tra-
jectories of the original system (12-13) but these are
traveled with different speeds. As a consequence, while
the Lebesgue measure is invariant (from Liouville theo-
rem) for the Hamiltonian system, this is not the case for
Eqs. (12-13), which explains why one can observe accu-
mulations of swimmers (see below).

Let us now inspect Eqs. (12-13) more closely. For
Ψ < 1 the dynamics does not admit fixed points, and
Z grows in time, as discussed above. The conservation
of H, and in particular the exponential dependence on
Z, implies that when cells migrate upwards the term in
square brackets in (11) must decrease exponentially with
the vertical position to keep H = const. Therefore, for
large Z, the swimming direction will be given by

cos θ = px =
Ψ(2ΦΨ cosZ − sinZ)

1 + 4Φ2Ψ2
. (15)

Remarkably, because pz =
√

1− p2
x depends on Z, the

vertical velocity will change with height and cells will ac-
cumulate where it is minimal. A straightforward com-
putation shows that the minima of pz occur at Z =
nπ − arctan[1/(2ΦΨ)], for any integer n. Around these
positions one expects to observe ephemeral layers (also
for Ψ < 1) of high density of cells. The transient accu-
mulations last longer for smaller values of the swimming
number Φ. The above picture is confirmed in Fig. 1a
showing the time evolution of the vertical probability
density distribution (PDF), ρ(Z, t), resulting from an ini-
tially uniform distribution in Z ∈ [0 : 2π] for Ψ < 1.

The above scenario applies whenever Eq. (15) holds
globally, i.e. for any values of Z. As |px| ≤ 1, it is easy
to see that for swimmers with Φ < Φc = 1/2, Eq. (15)
can be satisfied only if Ψ ≤ Ψc with

Ψc = (1− 4Φ2)−1/2 . (16)

For fast enough swimmers, Φ ≥ Φc, Eq. (15) holds for
any value of the stability number Ψ. As Ψc ≥ 1, we must
distinguish two cases.

In the first (Fig. 1b), 1 < Ψ < Ψc, a fraction of cells
migrate upwards asymptotically setting their motion on
the orbit (15), as in Fig. 1a for cells with Ψ < 1. Also

t
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FIG. 1. (color online) Evolution of the vertical density of
cells, ρ(Z, t), in the 2d laminar Kolmogorov flow for Φ = 0.2
with (a) Ψ = 0.9 < Ψc, (b) 1 < Ψ = 1.06 < Ψc and Ψ =
1.12 > Ψc, where Ψc is given by (16). Dotted horizontal lines
in (a) and (b) mark vertical velocity minima (see text for a
discussion). The density has been obtained coarse-graining
the vertical position of N = 104 cells initialized uniformly in
(θ, Z) ∈ [−π, π]× [0 : 2π] and evolved by integrating Eqs. (12)
and (13) with a 4th-order Runge-Kutta scheme.

in this case maxima of cell density correspond to min-
ima of pz. However, unlike the case Ψ < 1, we now
observe a non negligible fraction of cells (depending on
the initial conditions) which do not migrate upwards and
accumulate in thin layers, now not in correspondence of
the minima of pz (Fig. 1b).

In the second, Ψ > Ψc, we observe that all swimmers
become trapped and generate an inhomogeneous vertical
density profile which soon becomes stationary in time
and organized in thin layers (Fig. 1c).

We can understand the different behaviors observed in
Fig. 1b and Fig. 1c by inspecting the phase-space quali-
tative dynamics for 1 < Ψ < Ψc and Ψ > Ψc. First, we
observe that, for Ψ > 1, Eqs. (12-13) admit the following
fixed points (written in the reference torus)

(θ∗, z∗) =


H1 (0, 2π − arcsin(Ψ−1))
H2 (π, π − arcsin(Ψ−1))
E1 (0, π + arcsin(Ψ−1))
E2 (π, arcsin(Ψ−1)) ,

(17)

where H’s and E’s are hyperbolic and elliptic fixed points
(see Fig. 2) with eigenvalues λ = ±(Φ

√
1−Ψ−1/2)1/2

and ±i(Φ
√

1−Ψ−1/2)1/2, respectively.
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FIG. 2. Cells positions in the laminar 2D Kolmogorov flow
at a long time on the (θ, z) torus for (a) Ψ = 1.06 and (b)
Ψ = 1.12 with Φ = 0.2, corresponding to Fig. 1b and c, re-
spectively. Black circles (red squares) mark the hyperbolic
(elliptic) fixed points (17). Black curves denote the separa-
trices emerging from the hyperbolic fixed points, which are
obtained from the isolines of H computed at H1 and H2.
At Ψ < Ψc (a) small black dots corresponds to trapped or-
bits and empty circles to the orbit (15) which asymptotically
characterized the vertically migrating cells and is very close
to the separatrix. For Ψ > Ψc (b) all orbits are trapped.

Below and above the critical value Ψc the form of the
separatrices, i.e. the orbits emerging from the hyperbolic
fixed points, changes qualitatively. For 1 < Ψ < Ψc the
separatrices roll up vertically around the torus with a
slip-knot from the hyperbolic point containing the ellip-
tic one (see Fig. 2a). Orbits initially within the slip-knot
remain trapped there, while those starting outside the
slip-knot migrate vertically, asymptotically following the
orbit (15). Conversely, when Ψ > Ψc, the separatrices
roll up around the torus in the θ direction (Fig. 2b) act-

0

1

0 Φc=1/2

Ψ

Φ

Ψc

FIG. 3. Behavior of swimming cell in parameter space for
the laminar Kolmogorov flow. The white region corresponds
to vertically trapped orbits (Ψ > Ψc), the grey one to par-
tially trapped trajectories (1 < Ψ < Ψc, with coexistence of
trapped and vertically migrating cells) and, finally, the black
to vertically migrating cells (Ψ < 1), whose swimming direc-
tion depends on the vertical position as predicted by Eq. (15).

0

1/4

1/2

3/4

1

 0  1  2  3  4  5  6

z
/L

B

ρ(z) LB

Ψ=1.1

d=2
d=3

 0  1  2  3  4  5  6

ρ(z) LB

Ψ=2.5

d=2
d=3

 0  1  2  3  4  5  6

ρ(z) LB

Ψ=10

d=2
d=3

FIG. 4. Number density of algae corresponding to the two
layers restricted to the domain z ∈ [0 : LB ], for both 2D and
3D for Φ = 0.05 and three values of Ψ as labeled. Density
differs for minor details in the two cases. Notice that layers
tend to disappear for large Ψ.

ing as barriers to vertical transport as typically happens
in Hamiltonian systems.37 Hence, whenever Ψ > Ψc tra-
jectories remain bounded in the vertical direction for all
initial conditions. It is noted that for Ψ = Ψc the or-
bit (15) becomes the separatrix and passes through all
the hyperbolic points. Figure 3 summarizes the possible
behaviors in parameter space (Φ,Ψ).

It should be noted that this layered structure is essen-
tially due to the fact that: (i) the velocity on the or-
bit depends on the vertical position, and the trajectory
spends more time where G is smaller (i.e. Z large) as
from Eq. (14); (ii) the fact that the separatrices confine
the motion. It is easy to understand that (i) and (ii) im-
ply that concentration will be large around the highest
allowed vertical value which, for 1 < Ψ < Ψc (Fig. 2a),
coincides with the hyperbolic points and, for Ψ > Ψc

(Fig. 2b), is in between the hyperbolic and elliptic points.
Cell accumulation will thus increase going upwards to the
top of the separatrices and then will abruptly fall down,
as revealed by the vertical asymmetry in density profiles
shown in Fig. 4, see also Ref. 25 for a discussion on such
asymmetries.

It should be noted that at increasing Ψ, the accumula-
tion in layers tends to disappear (see also Fig. 4). Indeed
in the limit Ψ→∞ the dynamics (12-13) becomes Hamil-
tonian with H = Φ cos θ − (1/2) cos(Z), corresponding
to the well known Harper Hamiltonian, originally intro-
duced to describe crystal electrons in the presence of a
magnetic field.38 Consequently, swimming cells cannot
display accumulation as implied by Liouville theorem.
Nonetheless, provided Φ < Φc, also in this limit we have
that the separatrices act as barriers to vertical migration.

We conclude this section briefly commenting the three
dimensional case. As discussed above, thanks to the in-
variance of (10) upward migrating cells (as in the black
and grey region of Fig. 3) follow trajectories which a
long times coincide with the two dimensional case (as
py → 0). In principle, the dynamics of non-vertically-
migrating cells can be fully characterized, e.g., studying
the conserved quantities.10 On a qualitative level, the
orientation vector will move on the intersection between
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the surface determined by (10) and (11) and the sphere
|p| = 1. The conservation of (10) implies that the ex-
treme values reached by py are linked to the extremes
of Z. The same conservation law also shows that py is
bounded away from 0 for any finite Z and any initial
condition with py 6= 0. As a consequence, all bounded
trajectories will have a finite average drift along y, ac-
cording to the initial sign of py. However, since y is a
slaved variable, the above depicted scenario, including
the behavior in parameter space (Fig. 3) is unmodified
going from two to three dimensions. Actually, as shown
in Fig. 4 the (vertical) density profiles are quantitatively
very close in two and three dimensions.

IV. EFFECTS OF ROTATIONAL DIFFUSION

In this section we focus on the effects of stochasticity
on the dynamics of the swimming orientation. Even in a
still fluid, indeed, swimming trajectories are not straight
lines and usually display a certain degree of randomness
because of thermal fluctuations and/or of the swimming
process. Thermal fluctuations are important for very
small (∼ 1µm) microorganisms, such as e.g. bacteria,
and can be modeled in terms of rotational Brownian mo-
tion (RBM),15 namely as a diffusion of the swimming
direction on the unit sphere. Gyrotactic microalgae are
typically too large to be affected by thermal fluctuations.
However, in theoretical approaches2,39 and consistently
with experimental observations,40,41 it is still possible to
use RBM to model the random fluctuations of the swim-
ming direction due, e.g., to small variations in the cell
shape, waving or imperfections in the flagella movement,
and bacteria-like run-and-tumble42 due to the desynchro-
nization between the flagella.

For the sake of simplicity, we only consider the 2D Kol-
mogorov flow, which displays, also quantitatively (see,
e.g., Fig. 4), the main features of the 3D flow. In two di-
mensions, RBM corresponds to diffusion of the angle θ in
Eq. (12) with (rotational) diffusivity Dr. As an example,
in Chlamydomonas augustae6 D−1

r ∼15 s. It is useful to
introduce a non-dimensional measure of diffusion, namely
the rotational Peclet number Per = U/(LDr). Consid-
ering RBM amounts to adding to the r.h.s. of (12) the

stochastic term
√

2Pe−1
r η, η being a zero-mean Gaussian

variable with 〈η(0)η(t)〉 = δ(t).
RBM can cause dramatic effects when gyrotactic trap-

ping is effective (i.e. when Ψ > Ψc): in principle, for any
Pe−1

r > 0, thanks to random fluctuations, all swimmers
potentially have a way to escape from the “barrier” of
the separatrices (by definition, impenetrable in the deter-
ministic case). We therefore expect that a small random
component in the swimming dynamics will make layers
transient, with a finite lifetime.

This scenario is confirmed in Fig.5 showing the time
evolution of the vertical cell-number density for stabil-
ity number corresponding to gyrotactic trapping (with
Ψ > Ψc as in Fig. 1c) when RBM is acting on the dy-
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FIG. 5. (color online) Evolution of the vertical number den-
sity ρ(Z, t) in the 2D laminar Kolmogorov flow with param-
eter as in Fig. 1c and the presence of rotational Brownian
motion with (a) Pe−1

r = 0.005, (b) 0.01, and (c) 0.04.

namics. Similarly to the deterministic case, an initially
uniform distribution in (θ, Z) ∈ [−π : π] × [0 : LB ]
(quickly) evolves into layers located around the elliptic
points. However, unlike the deterministic case, after a
typical time depending on Per, any layer dissolves and,
thanks to the flow periodicity, gives birth to a new layer
at distance LB/2 upward. The “length” of the traces in
Fig. 5 essentially corresponds to the lifetime of a layer.
Clearly, in the case of a non-periodic set-up only a single
layer would form, persist for some time and then dissolve
unless a continuous in-flow of algae is provided from be-
low. We notice that the lowest layer lasts for about half
the duration of the other layers: this is due to the fact
that it has no layers below feeding it. The figure shows
that the value of Per influences both the lifetime and the
focusing of the layers. We shall be more quantitative on
this aspect in the following.

To better understand the process it is useful to in-
spect the behavior of a typical single swimmer trajectory
(Fig. 6). We can clearly identify trapped states inter-
rupted by rapid upward migrations. As from Fig. 2b,
trapping is spatially localized at Z values (mainly) in be-
tween adjacent elliptic and hyperbolic points, where a
swimmer can spend a long time before RBM allows it to
escape the separatrix. Out of the trapping region, shear
vorticity is low and thus the cell can locally migrate ver-
tically (as globally done when Ψ < 1), till it enters a new
trapping region shifted of LB/2 above due to the flow pe-
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FIG. 6. (Color online) Typical cell trajectory for Φ = 0.05,
Ψ = 1.12 and Pr−1

r = 0.005. We can identify two regimes:
temporary trapping in a layer (around the horizontal dashed
lines demarking the elliptic points) and short jumps between
layers. Vertical (red) lines mark the transition between adja-
cent layers, numerically identified as the times at which the
vertical position Z increases of LB/2.

riodicity. Then the process starts again. The (stochas-
tic) switch between these two states of motion induces
an average vertical drift, 〈vz〉 > 0 (Fig. 7a). Clearly, in
both the deterministic (Pe−1

r → 0) and RBM dominated
(large Pe−1

r ) we should expect a zero average drift: in
the former case because of gyrotactic trapping, in the
latter due to fast decorrelation of the swimming orienta-
tion due to RBM (this is expected when Ψ/Per = BDr

becomes very large). Consequently, we expect to have an
intermediate value of the rotational diffusivity for which
the vertical drift is maximal, as confirmed in Fig. 7a.

The qualitative features of the trajectory shown in
Fig. 6 suggest to look at the statistics of trapping time
T . Thanks to the periodicity and the fact that out of the
layer vertical migration is fast (Fig. 6), we can define it
as the time T it takes for a swimmer to swim upwards
the distance between two consecutive layers (i.e. LB/2
in our model flow). The average exit (or trapping) time
Te = 〈T 〉 shown in Fig. 7b coincides with LB/(2〈vz〉).
While this is obvious as the two statistics are mathe-
matically equivalent, it can be useful when coping with
finite observation times. In fact, exit-time statistics can
be strongly biased when the total observation time is not
large enough (see Sect. V).

A quantitative comparison between the average exit
time Te of the single trajectory and Fig. 5 suggests how-
ever that Te tends to underestimate the layers time du-
ration. A more sounding definition of the layer per-
sistence time, Tp, requires somehow to account for the
fact that there could be many swimmers trapped for
times longer than the average Te. Heuristically we found
that a reasonable estimate is obtained considering that
a layer dissolves when, say, ∼ 90% of the cells have es-
caped from it. In terms of the exit time probability den-
sity function p(T ) we can thus define Tp implicitly as∫ Tp

0
p(T )dT ≈ 0.9. Fig. 7b shows also Tp, which appears

to be a better proxy of the persistence time, for instance
in the case of Fig. 5b, i.e. Pe−1

r = 0.01, we have Tp ≈ 630
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FIG. 7. Quantitative characterization of single cell and layer
properties as a function of the rotational Peclet number Per,
for two values of the swimming parameter Φ = 0.05 (circles)
and Φ = 0.2 (squares) at Ψ = 1.12 > Ψc in the 2D laminar
Kolmogorov flow. (a) Time and population average vertical
velocity 〈vz〉 normalized to the swimming speed vs. (b) Av-
erage trapping time Te (open symbols) for single trajectories
and layer persistence time Tp (semi-filled symbols). Notice
that the exit time Te coincides with LB/(2〈vz〉) (small filled
symbols inside the empty ones). (c) Inhomogeneity index χ
defined in (18).

which is essentially the trace length of the lowest layer,
i.e. half of the other layers.

The interpretation of Tp as the layer persistence time,
however, becomes meaningless when layers are not well
defined. For example, from Fig. 7b one can get the wrong
impression that at large Dr layers last longer and longer.
In reality, by increasing Dr (i.e. decreasing the coher-
ence in the swimming orientation) layers spread away,
becoming less and less well defined as high cell density
locations (as when Ψ becomes too large, see Fig. 4). To
quantify such an effect, we introduce a measure based on
the quadratic deviation from the uniform distribution on
the domain z ∈ [0 : LB ]. In other terms we use the peri-
odicity to restrict the vertical position in z ∈ [0 : LB ] so
that we can define the density ρ(z, t). With RBM such
density reaches a statistically stationary profile and we
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define the normalized root mean square deviation of the
average profile, ρ(z), from that expected for a uniform
distribution, i.e. ρ(z) = ρ0 = 1/LB . In formulae, this
inhomogeneity index is defined as

χ =

√
〈(ρ− ρ0)

2〉/ρ0 , (18)

the angular brackets denoting integration over z. Figure
7c shows that this measure monotonically decreases with
Dr, as expected. Also, faster swimmers concentrate less.

V. SWIMMING IN THE TURBULENT
KOLMOGOROV FLOW

As discussed in Sect. II B, the steady Kolmogorov flow
becomes unstable for Re >

√
2 and ultimately turbulent,

upon further increasing Re. Nonetheless, thanks to the
monochromatic character of the (time-averaged) mean
flow, we can always decompose velocity and vorticity, en-
tering Eqs. (1)-(2), in the mean shear with superimposed
fluctuations u′ and ω′ as

u = U cos(z/L)x̂ + u′(x, t) (19)

ω = −U
L

sin(z/L)ŷ + ω′(x, t) . (20)

Such decomposition suggests that we can consider turbu-
lent fluctuations as a perturbation of the dynamics stud-
ied in Sect. III. Actually, even at relatively low Re, the
amplitude of turbulent fluctuations is of the same or-
der as the mean flow, in particular u′rms/U ' 0.5.34 In
real oceans, however, fluctuations are typically smaller
than the mean flow due to different factors such as, e.g.,
stratification.33

In the following we will therefore consider the veloc-
ity (and vorticity) field defined as U cos(z/L)x̂ + γu′,
where u′ is the fluctuating component in (19), obtained
by a direct numerical simulation (DNS) of Eq. (3). In
this way, the parameter γ controls the intensity of tur-
bulent fluctuations so that u′rms/U ' 0.5γ. The ability
to control the weight of fluctuations is important to sys-
tematically assess the role of fluctuations. Indeed, there
are indications43 that in the standard Kolmogorov flow
(i.e. γ = 1), turbulence is so intense to completely dis-
solve phytoplankton layers. Another advantage of this
approach is that the statistical properties of the turbu-
lent fluctuations do not change with γ as they would, for
example, by introducing stratification.

Navier-Stokes equations (3) are integrated by means
of a standard, fully parallel pseudo-spectral code34 on a
cubic domain of size LB discretized by 1283 grid points,
with periodic boundary conditions in all directions. La-
grangian dynamics (1-2) (suitable modified with the γ-
factor as discussed above) of up to 105 swimmers for
each set of parameters (Φ,Ψ, γ) was performed using lin-
ear interpolation of the velocity and vorticity fields, as
in Refs. 13 and 14. A 2nd-order Runge-Kutta scheme
was used for time advancement of both Eulerian and

Lagrangian dynamics. Particle positions were re-boxed
within the periodic domain in the x and y directions,
while the absolute displacement was tracked along z. The
Reynolds number in our simulation is Re = 158, the
smallest Kolmogorov scale η is well resolved as kmaxη ≈
1.8.

Turbulent fluctuations, when strong enough, inhibit
gyrotactic trapping. This is confirmed in Fig. 8, show-
ing the swimmer vertical-density profiles for Ψ = 1.1 and
Ψ = 1.5 at varying the intensity of turbulent fluctua-
tions γ. Upon increasing γ vertical heterogeneity weak-
ens. This effect is quantified by the inhomogeneity index
χ Eq. (18), shown in Fig. 9 as a function of the stabil-
ity parameter Ψ for three values of the turbulent inten-
sity γ. As in the previous Section, we focus here on the
case Ψ > Ψc, when gyrotactic trapping is effective in the
laminar regime. Interestingly, at increasing γ turbulent
fluctuations not only smooth the inhomogeneities (de-
creasing the value of χ) but also induce a non-monotonic
dependence on Ψ, with maximal inhomogeneity obtained
for a value of the stability parameter, Ψ & Ψc, weakly
depending on γ.

Figure 10 shows the formation and disruption of lay-
ers, similarly to the phenomenology induced by RBM
(Fig. 5). More quantitatively, Figure 11 shows the av-
erage vertical velocity 〈vz〉, escape and persistence times
Te,p and inhomogeneity index as a function of γ, which
plays a similar role of Pe−1

r for the laminar case with
RBM (compare with Fig. 7).

At moderate values of turbulent intensity, velocity and
vorticity fluctuations allow cells to escape from the trap-
ping regions by moving them to regions of lower shear,
where upward directed swimming is possible. As a result,
the average vertical cell velocity, 〈vz〉, which was zero in
the absence of turbulent fluctuations, becomes positive.
However, very intense turbulence rotates the cell swim-
ming direction randomly and, moreover, fluctuations of
the vertical velocity also mix cells. As a consequence, the
average vertical motion 〈vz〉 decreases for large values of
γ. An intermediate turbulence intensity maximizes the
vertical migration velocity (see Fig. 11a). The average
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FIG. 8. Vertical profile of swimmer number density ρ(z) for
two values of the stability parameter Ψ = 1.1 (black lines) and
Ψ = 1.5 (grey lines) at different turbulent intensities γ = 0.01,
γ = 0.05 and γ = 0.2 (from left to right).
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FIG. 10. Evolution of vertical density of cells in a turbulent
Kolmogorov flow for swimming parameters Ψ = 1.1, Φ = 0.05
and turbulence intensity γ = 0.01 (a), 0.05 (b), 0.2 (c). The
initial condition is a random uniform distribution on [0, LB ].
Subsequent formation and disruption of layers is evident in
panels (b,c) (compare with the laminar case in presence of
rotational diffusion shown in Fig. 5). Time and scale have
been made non-dimensional as for the laminar case.

exit time, as already discussed, is determined by the av-
erage swimming speed, i.e. Te = LB/(2〈vz〉) (Fig. 11b).
However, unlike the laminar case (Fig. 7b), here the
agreement is not perfect especially when Te is large. The
reason is that the total integration time of turbulent sim-
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FIG. 11. Quantitative characterization of single cell and layer
properties as a function of turbulent intensity γ, for Φ = 0.05
(circles) and Φ = 0.2 (squares) with Ψ = 1.1. (a) Aver-
age vertical velocity 〈vz〉 normalized to the swimming speed
vs. (b) Layer persistence time Tp (semi-filled symbols) and
average trapping time Te (open symbols) for single trajecto-
ries, compared to LB/(2〈vz〉) (small filled symbols inside the
empty ones). Notice the discrepancy between π/〈vz〉 and Te

at Φ = 0.2, see text for a discussion. (c) Inhomogeneity index
χ as from Eq. (18).

ulations was shorter and the exit-time statistics does not
converge for very large T . In realistic situations, where
the numerical or experimental time is finite, the evalu-
ation of Te must be carefully performed and compared
with the other statistics such as the average vertical ve-
locity. The most affected cases are the ones with very
weak or very intense turbulence. In the latter case χ ≈ 0
and thus layering is negligible.

A simple way to model the vertical dynamics of gyro-
tactic swimmers is in terms of a diffusive process with
drift Vd (due to the average vertical migration speed, i.e.
Vd = 〈vz〉) and diffusion constant Dz, whose value de-
pends on turbulent fluctuations. The escape from a layer
can then be addressed through the exit-time statistics
asking for the time T needed for a swimmer to travel a
distance LB/2. This is a standard problem in stochastic
processes, see e.g. Ref. 44. In the case of diffusion with
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FIG. 12. (Color online) Exit time statistics. (a) Exit time
PDF for Ψ = 1.1, and Φ = 0.05 at three turbulent intensities
γ as labeled, compared with the prediction (21) with Dz and
Vd obtained as explained in the text. (b) Vertical diffusivity
constant Dz estimated from exit time statistics for cells with
Φ = 0.05 (red circles) and Φ = 0.2 (blue squares) for Ψ = 1.1
(filled symbols) and Ψ = 1.5 (empty symbols). Statistical
convergence is poor at large and small γ’s for Φ = 0.05. The
solid black line displays the γ2 behavior of the turbulent dif-
fusivity measured along tracer trajectories (plus symbols).

drift, the probability density function of the exit time T
is given by the so called inverse Gaussian function, which
we can write as follows

P(T ) =
LB

(4πDzT 3)1/2
e−

(VdT−LB/2)2

4DzT . (21)

We thus have a prediction for the exit time PDF which
can be directly tested against the measured one. For
the drift velocity we have Vd = 〈vz〉, which is mea-
sured in DNS (Fig. 11a), notice also that Eq. (21) im-
plies Te = 〈T 〉 = LB/(2Vd), consistently with Fig. 11b.
The diffusion constant Dz can be estimated by mea-
suring 〈T 2〉 in the DNS and noticing that in Eq. (21)
〈T 2〉 = LB(Dz +LVd/2)/V 3

d . In Figure 12a we show the
comparison between measured exit-time PDF p(T ) and
the inverse Gaussian prediction (21), with Dz and Vd
obtained as discussed above. The prediction turns out
to be very accurate for the right tail (long exit times)
for all turbulent intensities γ, while the left tail repro-
duces the numerical results only for large values of γ.
Indeed a purely Gaussian model cannot be expected to
describe the escape-time statistics accurately in presence
of strong trapping. The deviations in the left tails can be
interpreted as the result of the suppression of fast escapes
due to gyrotactic trapping, which is more effective in the
limit γ → 0. On the other hand, long escape times allow
trajectories to sum-up many uncorrelated contributions,
thus recovering a diffusive behavior, which explains the
good agreement on the right tail.

It is natural to identify Dz with the vertical turbulent
eddy diffusivity Dturb

z , characterizing the large scale dif-
fusive properties of fluid tracers. In Figure 12b we show,
as a function of the turbulent intensity γ, the Dz esti-
mated from the exit-time statistics for different values of
Φ and Ψ and the (vertical) turbulent diffusivity measured
from the vertical mean square displacement of tracer par-
ticles in the same flow. We start by noticing that the

turbulent diffusivity behaves as Dturb
z ∝ γ2, which is

consistent with the expectations as Dturb
z ∝ (u′rms)

2 ≈
γ2(U/2)2. Then we observe that the diffusivity Dz for
gyrotactic swimmers, estimated from exit times, is typi-
cally larger than the turbulent one, and the deviation is
more pronounced at small γ for larger swimming number
and smaller stability number, more precisely for Ψ closer
to Ψc. These features can be rationalized as follows. In
the presence of turbulent fluctuations the vertical diffu-
sivity is expected to have two contributions: one from
the fluctuations of the vertical velocity, which can be es-
timated from turbulent diffusivity, and one from swim-
ming combined with the reorientation of the swimming
direction due to vorticity fluctuations. Clearly, the latter
contribution will lead to a diffusivity which increases with
the swimming speed and thus is more important than the
former for small γ, indeed vs/u

′
rms ∼ Φ/γ. This explains

the larger discrepancy at small γ. As for the effect of
stability, diffusivity due to swimming is expected to be
larger when vertical motion is more coherent, i.e. cells
are more stable in their orientation (i.e. Ψ is smaller). Fi-
nally, when turbulent fluctuations become the dominant
effect, layers tend to disappear and cells are expected
to recover a diffusive dynamics which explains the con-
vergence of Dz to the turbulent value for γ → 1. Con-
sistently, the PDF of exit-times converges to (21) (see
Fig. 12).

VI. CONCLUSIONS

In this paper we have investigated the phenomenon
of gyrotactic trapping which has been recently proposed
as one of the possible mechanisms responsible for thin
phytoplankton layer formation.4,25

We derived a detailed theory of the mechanism within
the framework of dynamical systems theory for the lam-
inar Kolmogorov flow. The ideas and tools here devel-
oped can be generalized to basically any laminar shear
flow. In particular, the approach developed in Sect. III
can be easily extended to Poiseuille-like velocity fields
such as that used in the experiments presented in Ref. 4.
Nonetheless the Kolmogorov flow is advantageous as it
allows us to avoid considering boundaries and focus on
bulk properties without the need to model the behavior
of swimmers close to walls. Moreover, thanks to the fact
that the sinusoidal mean profile is preserved in the turbu-
lent case, we studied how gyrotactic trapping is altered
by turbulence.

We found that turbulent fluctuations, similarly to ran-
dom fluctuations of swimming direction due to rotational
Brownian motion, make gyrotactic trapping transient.
We characterized the phenomenon in terms of trapping
(or exit) times and showed that in the presence of turbu-
lence the statistics of exit times can be modeled (at least
for long trapping events) by a diffusive process with drift.
In particular, the (vertical) drift velocity results from the
average upward swimming while diffusion results from
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both turbulent diffusivity (as for tracer particles) and
swimming combined to fluctuations of the swimming di-
rection. When velocity fluctuations are small compared
to the swimming speed, the diffusivity induced by the lat-
ter is important. As a consequence, care should be taken
when estimating the effect of turbulence on thin layers
formed by swimming phytoplankton in terms of turbulent
diffusivity alone. Swimming combined to reorientation of
the swimming direction can indeed be very important for
the diffusivity properties, as also recently recognized in
simple linear flows.45

We found that the average exit time of single trajec-
tories Te is given by the average swimming speed and
typical vertical length characterizing the layers (which in
the periodic Kolmogorov flow is LB/2). The persistence
time of the layer Tp is of the order of a few (typically
∼ 2−3) Te depending on the value of the vertical diffusiv-
ity, using e.g. the inverse Gaussian prediction (21). Thus
ignoring the aforementioned difficulties in estimating Dz

for realistic oceanic flows, if we consider average swim-
ming speed 〈vz〉 in the range 0.2−0.6 vs, as suggested by
Fig. 11b (with vs ≈ 100− 200µm/s) and typical lengths
LB of the order of a few centimeters, we obtain an es-
timation of Tp from a few hours to a few days, which is
akin to values found in TPLs observed on the field.

We conclude mentioning that it would be very inter-
esting in future investigations to consider a more realistic
model in which modulation of turbulent fluctuations are
controlled by stratification, as in real oceans. Moreover,
it would be useful to quantitatively assess the diffusion
properties of swimming microorganism under the com-
bined effect of swimming and fluid motion.
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