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The capabilities of the Crystal14 program are presented, and the improvements made with respect
to the previous Crystal09 version discussed. Crystal14 is an ab initio code that uses a Gaussian-
type basis set: both pseudopotential and all-electron strategies are permitted; the latter is not much
more expensive than the former up to the first-second transition metal rows of the periodic table.
A variety of density functionals is available, including as an extreme case Hartree-Fock; hybrids
of various nature (global, range-separated, double) can be used. In particular, a very efficient
implementation of global hybrids, such as popular B3LYP and PBE0 prescriptions, allows for such
calculations to be performed at relatively low computational cost. The program can treat on the
same grounds 0D (molecules), 1D (polymers), 2D (slabs), as well as 3D (crystals) systems. No
spurious three-dimensional periodicity is required for low-dimensional systems as happens when
plane-waves are used as a basis set. Symmetry is fully exploited at all steps of the calculation;
this permits, for example, to investigate nanotubes of increasing radius at a nearly constant cost
(better than linear scaling!) or to perform Self-Consistent-Field (SCF) calculations on fullerenes
as large as (10,10), with 6000 atoms, 84000 atomic orbitals and 20 SCF cycles, on a single core
in one day. Three versions of the code exist, serial, parallel and massive-parallel. In the second
one the most relevant matrices are duplicated whereas in the third one the matrices in reciprocal
space are distributed for diagonalization. All the relevant vectors are now dynamically allocated
and deallocated after use, making Crystal14 much more agile than the previous version, in which
they were statically allocated. The program now fits more easily in low-memory machines (as many
supercomputers nowadays are). Crystal14 can be used on parallel machines up to a high number
of cores (benchmarks up to 10240 cores are documented) with good scalability, the main limitation
remaining the diagonalization step. Many tensorial properties can be evaluated in a fully automated
way by using a single input keyword: elastic, piezoelectric, photoelastic, dielectric, as well as first
and second hyperpolarizabilies, electric field gradients, Born tensors, etc. Many tools permit a
complete analysis of the vibrational properties of crystalline compounds. The infrared and Raman
intensities are now computed analytically and related spectra can be generated. Isotopic shifts are
easily evaluated, frequencies of only a fragment of a large system computed and nuclear contribution
to the dielectric tensor determined. New algorithms have been devised for the investigation of solid
solutions and disordered systems. The topological analysis of the electron charge density, according
to the Quantum Theory of Atoms in Molecules, is now incorporated in the code via the integrated
merge of the Topond package. Electron correlation can be evaluated at the Möller-Plesset second
order level (namely MP2) and a set of double-hybrids are presently available via the integrated
merge with the Cryscor program.

I. INTRODUCTION

Quantum mechanical ab initio simulation is rapidly
gaining a more important rôle in many scientific commu-
nities due to decreasing computational cost, as well as the
availability of computer programs of increasing capability
and ease of use. In particular, the number of computer
codes devoted to periodic systems has been rapidly grow-

ing. Crystal88 was the first such code to be distributed
publicly 25 years ago through the Quantum Chemistry
Program Exchange.1,2 Since then six other releases have
followed in 1992, 1995, 1998, 2003, 2006, 2009 and now
there is the current one, Crystal14. This computer
program can be used to study the properties of many
types of compounds characterized by periodicity in one
dimension (quasilinear and helical polymers, nanotubes),
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two dimensions (monolayers, slabs), or three dimensions
(crystals, solid solutions, substitutionally disordered sys-
tems). As a limiting case, molecules can also be studied.

Despite the many improvements and generalizations
that have been introduced since its first release, the
basic aspects of Crystal have remained the same.
Thus, this program computes the electronic structure
of periodic systems within the Hartree-Fock (originally)
and DFT single particle models using Bloch functions.
A special feature of the code is that the crystal or-
bitals are expanded as linear combinations of atom-
centered Gaussian-type functions. Powerful screening
techniques are employed to exploit real space local-
ity, which is another distinguishing characteristic of
Crystal. Restricted (closed shell) and unrestricted
(spin-polarized) calculations can be performed with all-
electron or with valence-only basis sets using effective
core pseudo-potentials.

Another unique feature is the extensive exploitation of
symmetry to achieve computational efficiency. Besides
the 230 space groups, 80 two-sided plane groups, 99 rod
groups, and 32 crystallographic point groups, there is
provision for molecular point group symmetry (e.g. icosa-
hedral) as well as helical symmetry. Automatic tools al-
low users to obtain lower dimensionality systems from
3D structures by specification of a few geometrical pa-
rameters. Slabs (2D periodic), nanorods (1D periodic)
and nanocrystals (0D) are easily generated from 3D crys-
talline structures; nanotubes (1D) and fullerenes (0D)

can be constructed from 2D sheets or multi-layered slabs
(Section II A). Full use of symmetry involves all steps of a
Crystal calculation, leading to drastically reduced com-
putation time and required memory, as well as improved
task farming in parallel calculations (Section II).3–7 Sym-
metry is also used to select the independent elements of
tensor properties for computation.

Several algorithms of Crystal14 now rely on the nu-
merical accuracy of the geometry optimizer: search for
equilibrium structures and transition states, volume- or
pressure-constrained minimizations for the determina-
tion of the equation of state of bulk crystals, nuclear
relaxation of strained lattices for the computation of elas-
tic, piezoelectric, photoelastic tensors, etc. Recent devel-
opments of the algorithms of the geometry optimizer are
illustrated in Section III.

A wide variety of crystal properties can now be com-
puted automatically. They include third and fourth rank,
as well as first and second rank tensors. Amongst the
former are the fourth rank elastic tensor along with the
related seismic wave velocities;8–11 the third rank di-
rect and converse piezoelectric tensors,12 and the fourth
rank photoelastic Pockels’ tensor (Section IV).13 In ad-
dition to the dielectric (or polarizability) tensor (static
and frequency-dependent), the second- and third-order
electric susceptibilities (or third- and fourth-order hyper-
polarizabilities) are computed analytically via the Cou-
pled Perturbed Hartree-Fock/Kohn-Sham (CPHF/KS)
method (Section V).14–19

TABLE I: Physical properties that can be computed with Crystal14. For each property, its formula and tensor rank are given
along with the general method of computation, which may be either analytical (A) or involve a mixed analytical/numerical
(A/N) scheme. Here, t, u, v, w = x, y, z represent Cartesian indices.

Property Tensor rank Formula Definitions Method

atomic gradient 1 ga
t = ∂E

∂ra,t
Energy E and atomic position vector ra, of atom a; A

cell gradient 2 Gtu= ∂E
∂Atu

Energy E and lattice metric matrix A = (a1, a2, a3); A

polarizability 2 αtu= ∂2E
∂ǫt∂ǫu

Energy E and electric field ǫ; A

Born charge 2 Za∗
tu = ∂2E

∂ǫt∂ra,u
Energy E, electric field ǫ and atomic position vector ra; A

electric field gradient 2 qtu= ∂ǫt

∂ru
Electric field ǫ and position vector r; A

Hessian 2 Hab
tu= ∂2E

∂ra,t∂rb,u
Energy E and atomic position vector ra; A/N

direct piezoelectricity 3 etuv=
∂Pt

∂ηuv
Polarization P and rank-2 strain tensor η; A/N

converse piezoelectricity 3 dtuv= ∂ηuv

∂ǫt
Electric field ǫ and rank-2 strain tensor η; A/N

first hyperpolarizability 3 βtuv= ∂3E
∂ǫt∂ǫu∂ǫv

Energy E and electric field ǫ; A

Raman intensity 3 Ia
tuv=

∂3E
∂ǫtǫu∂ra,v

Energy E, electric field ǫ and atomic position vector ra; A

elasticity 4 Ctuvw= ∂2E
∂ηtu∂ηvw

Energy E and rank-2 strain tensor η; A/N

photoelasticity 4 ptuvw=
∂∆ǫ

−1

tu

∂ηvw
Rank-2 dielectric tensor ǫ and rank-2 strain tensor η; A/N

second hyperpolarizability 4 γtuvw= ∂4E
∂ǫt∂ǫu∂ǫv∂ǫw

Energy E and electric field ǫ; A
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Previous versions of the program, starting with
Crystal03,20,21 have included efficient computation
of vibration frequencies (Hessian matrix) and related
properties. Now we have added analytical calculation
of infrared (IR) and Raman intensities through the
CPHF/KS scheme22–25 and automated computation of
IR and Raman spectra.26–28 These vibrational properties
are listed in Table I, together with those discussed in the
previous paragraph, as the main tensor properties avail-
able in Crystal14. In addition, the program now con-
tains improved algorithms for calculating phonon disper-
sion and anisotropic displacement parameters (ADP)29,30

(see Section VI).

New algorithms have recently been developed for the
study of solid solutions and, more generally, disordered
systems.31,32 As far as solid state solutions are concerned,
for any substitution fraction x within a given series, the
program finds the total number of atomic configurations
and determines the symmetry-irreducible configurations
among them. Symmetry irreducible configurations can,
then, be explored (i.e. optimized) automatically. Section
VII is devoted to the presentation of these new tools.

We have also developed new tools for the analysis of
electron charge and momentum densities. Section VIII
deals with i) topological analysis of the electron charge
density, performed according to Bader’s prescriptions us-
ing Gatti’s Topond package,33 that is now integrated
with the Crystal14 program; ii) computation of ADPs
and Debye-Waller thermal damping for X-ray structure
factors,29 and iii) new algorithms for analyzing the elec-
tron momentum density.34,35

For DFT calculations, the local-density and
generalized-gradient approximations (LDA and GGA)
already available in previous versions of the program
have been augmented with exchange-correlation func-
tionals corresponding to the third, fourth and fifth rung
of “Jacob’s ladder”. The semilocal and hybrid meta-
GGA functionals, range-separated hybrids and double
hybrids that have been implemented are discussed in
Section IX.

Crystal may be run either sequentially on a single
processor or in parallel. Parallel processing, in turn,
can be done either through a replicated data procedure
(Pcrystal), wherein all the most relevant quantities are
copied on each node, or according to a MPP (massively
parallel) strategy, in which the large matrices are par-
titioned and distributed amongst the cores. The MP-

Pcrystal version of the program, first released in 2010,
is advantageous for systems with a large unit cell and low
symmetry. Since then, we have improved performance so
that calculations now scale linearly up to thousands of
cores. These recent advances are described in Section X.

The paper is organized as follows: each section corre-
sponds to a particular capability of the Crystal14 pro-
gram; the newly developed features are illustrated from
a general point of view and a few examples are given of
their application to systems of interest. Technical details
about how to run specific calculations and extract the

corresponding information (input/output structure) can
be found in the CRYSTAL14 User’s Manual36 and in the
many tutorials available at the Crystal website.37

II. USE OF SYMMETRY IN CRYSTAL

Symmetry plays a crucial rôle in the study of crys-
talline compounds and its use in simulation can be enor-
mously advantageous because: i) it greatly simplifies the
set of data to be given as input; ii) it improves perfor-
mance dramatically; iii) the amount of memory storage
is reduced significantly; and iv) it aids in comparing with
experiment.

The data needed to define a crystalline structure is
greatly reduced if its space group is known because the
unit cell can be generated automatically from knowl-
edge of the asymmetric unit only. The same rule ap-
plies to slabs, rods, nanotubes and molecules (including
fullerenes). Two significant examples are nanotubes and
fullerenes, as obtained by geometrical construction from
graphene (see Section II A for further details and exam-
ples). The same kind of simplification applies to many
structure manipulations that modify either translational
or point symmetry, or both. For instance, a 2D graphene
monolayer can be automatically cut out of a 3D graphite
crystal simply by using the keyword SLABCUT (see below).

A. Low Dimensionality Systems

Twenty or thirty years ago, theoretical studies could
be classified into three main categories: standard molec-
ular calculations, fully periodic (bulk) calculations, and
cluster calculations. The first and last kind of calcula-
tions were performed with “molecular” codes, the second
kind with “solid state” codes, the two using completely
different tools and technologies: plane waves vs atomic
orbitals, DFT vs HF, all-electron vs pseudopotential ba-
sis set. Crystal, on the contrary, maintains full com-
patibility along the 3D → 2D → 1D → 0D periodicity
series. At the same time, various tools have been imple-
mented for an automated, consistent, easy construction
of low-dimensional systems, such as:

Slabs (3D → 2D) - This option allows for cutting a 2D
periodic slab out of a 3D bulk structure, like a graphene
monolayer out of the 3D graphite crystal simply by spec-
ifying: i) the crystallographic Miller’s indices of the cut-
ting plane (0 0 1 in this case); ii) the label of the layer
corresponding to the bottom cut (any layer in graphite);
iii) the number of layers forming the slab (1 in the case
of graphene). The origin of the 2D unit cell is set auto-
matically so as to maximize symmetry. In principle, this
option allows for any termination of the surface, any stoi-
chiometry and slab polarity because intrinsically “polar”
surfaces exist, where the electrical dipole perpendicular
to the surface can only be removed by altering the surface
structure, for instance, by breaking stoichiometry.
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FIG. 1: Structure of (a) a single-walled carbon nanotube and
(b) the (10,10) icosahedral carbon fullerene, made up of 6000
atoms.

Nanotubes (2D → 1D) - Nanotubes (see Figure 1 a)
of any size and order of symmetry can be built automat-
ically by rolling up a 2D slab.38 That is done by specify-
ing a pair of integers to define a roll-up vector in terms
of the slab unit vector components. The rolling vector
is perpendicular to the nanotube axis and its modulus is
the nanotube circumference. In order to build the (120,0)
carbon nanotube from a graphene sheet, for instance, the
value of those two integers is: 120 and 0.

Fullerenes (2D → 0D) - A fullerene cage can be
obtained starting from any hexagonal sheet;39 available
shapes are: icosahedron, octahedron and tetrahedron (all
consisting of equilateral triangular faces). The required
information includes a pair of integers representing the
components of 2D unit cell vectors defining the side of the
triangular face, the fullerene point group and polyhedron
type. For example, a (10,10) icosahedral fullerene (see
Figure 1 b) is obtained from a graphene sheet by speci-
fying the following data: 10, 10, IH, ICOSA (standing for
icosahedron).

Nanorods (3D → 1D) - To build “crystals in 1D”
starting from the corresponding 3D bulk structure.
Nanorods can be used as models for crystal edges (rele-
vant to catalysis), and real nano-objects. The required
input steps to build a nanorod are similar to those used to
create slabs: information about the crystal plane, termi-
nation and thickness of the two crystal planes defining it.
At this stage, a nanorod can exhibit sharp and unphys-
ical edges that can be smoothed out by further cutting
the rod along additional crystal planes parallel to the pe-
riodic direction. The origin of the nanorod cell is shifted
automatically to maximize symmetry of the rod group.
See Figure 2 (a) for an example.

Nanocrystals (3D → 0D) - Non-periodic nanosys-
tems are defined as nanocrystals, provided they preserve
a crystalline structure. Very small nanosystems loos-
ing the parent crystal structure and stoichiometry are
commonly referred to as nanoclusters. A new feature in
Crystal14 allows users to create nanocrystals from bulk
in a controlled way by generating a supercell with faces
parallel (2 by 2) to a set of three crystal planes (see Fig-
ure 2 (b) for an example). The same set of information

FIG. 2: (a) MgCl2 nanorod built on the (104) and (001)
surfaces;40 (b) the Mg216O216 nanocrystal defined by the
(100), (010) and (001) surfaces of bulk MgO, as further edited
by the (111) family of planes; (c) Wulff’ polyhedron of CeO2:
only (111) and (331) surfaces are represented, with contribu-
tions to the total area of 86% and 14%, respectively. Surface
energies are reported in Ref. 41.

used to create slabs (and nanorods) needs to be replicated
three times in this case. As for nanorods, a nanocrystal
can be smoothed by cutting edges along other crystal
planes, so breaking the original chemical stoichiometry.
For this reason, chemical composition is calculated and
printed at each step of the procedure. The origin of the
nanocrystal is shifted automatically to maximize point
symmetry.

Wulff polyhedron construction (2D → 0D) - After
a systematic study of a selected set of crystal surfaces,
where a set of well converged surface formation energies is
obtained, the thermodynamic equilibrium crystal shape
can be calculated using the Gibbs-Wulff theory to build
a Wulff polyhedron.

B. Symmetry and efficiency

Use of translation invariance is mandatory to trans-
form a cluster calculation for a piece of a bulk system into
a periodic bulk calculation. Bloch Functions (BFs) are
employed, in that regard, to transform an infinite Hamil-
tonian matrix into block-diagonal form. Each block cor-
responds to a k point in the first Brillouin Zone (BZ) (see
the first two panels in Figure 3). All periodic codes are
based on the use of BFs.

On the other hand, use of point symmetry is not essen-
tial to make a periodic calculation affordable and, indeed,
most periodic codes neglect it. However, point symmetry
can be very advantageous in periodic calculations (much
more than in molecular codes). It is exhibited by most
crystalline systems and can be invoked at several steps
of an ab initio calculation, thereby drastically reducing
computation time and resources. The key steps where
savings occurs are given in the following for the case
where the BFs are constructed from a local basis:

• Diagonalization of the Fock matrix is restricted to
the subset of k points in the irreducible BZ. The
eigenvalues in a star of k points (a set of points
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FIG. 3: Block-factorization of the Fock matrix for periodic
systems. F

g: in the basis of AOs, non-packed form (borders
are blurry to indicate that such matrix is infinite in princi-
ple); F

k: in the basis of BFs orbitals; F
k: in the basis of

SACOs. Also in the last two cases the matrix is infite, but
block diagonal

that are symmetry related) are the same and the
eigenvectors can be generated by symmetry opera-
tions. This kind of symmetry is used in Crystal

since its first release (Crystal88).

• Time required for the calculation of one- and two-
electron integrals is reduced by a factor of up to
the number of point symmetry operators in the
group. Again, such use of symmetry dates back
to Crystal88.3

• Diagonalization of the Fock matrix can be speeded
up dramatically in the basis of the Symmetry
Adapted Crystalline Orbitals (SACO)/Symmetry
Adapted Molecular Orbitals (SAMO), shown in the
last panel of Figure 3). SACO/SAMO are gener-
ated automatically in Crystal from the selected
basis set of Atomic Orbitals (AO) in the unit cell,
with no need for additional information about irre-
ducible representations (irrep) or characters. This
part of the code was implemented about 15 years
ago.4,5 The savings factor in computation time is
roughly proportional to the third power of the ratio
between the number of AOs in the basis set (NAO)
and the size of the largest block in the Fock matrix,
when represented in the SACO/SAMO basis.

• Construction of the density matrix scales with the
third power of the basis set size (N3

AO), as each of
the N2

AO matrix elements is obtained by summing
over all occupied crystalline orbitals (very roughly
NAO). The advantage is obtained by building the
matrix in the SACO/SAMO basis first.

Reduction of computing time thanks to the use of sym-
metry is not the only issue when handling very large
unit cell cases. Memory requirements can also become
a bottleneck, if not properly managed at every step of
a calculation. Storage of the Fock, overlap and density
matrices as full square matrices in the AO-Bloch func-
tion basis represent the main bottleneck and need to be
avoided. Since both one- and two-electron integrals are

evaluated in the AO basis, a set of back and forth trans-
formations (SACO to AO and AO to SACO)is required.
However, it is possible to switch directly from the AO
to the SACO/SAMO basis and use the latter through-
out. This has been implemented in Crystal14.6,7 with
a drastic reduction of both running time and memory al-
location. The larger the point group size, the bigger the
reduction of computational resources (see Section X for
details).

In the following we document the savings from full use
of symmetry in the case of Carbon Nanotubes (CNT), in
particular for the (n,0) family. The number of symmetry
operators in CNTs increases with the tube size, i.e. with
n. Thus, in principle, there is no limit to the number
of non-purely translational elements. Neglecting mirror
planes parallel and perpendicular to the tube axis, (n,0)
nanotubes possess 2n roto-translation symmetry opera-
tors. The largest nanotube considered here, with n =
320, has 640 such operators and 1280 atoms in its unit
cell. This is a huge number compared to a maximum of 48
point operators for standard cubic crystalline systems or
120 for fullerenes, in the molecular context. Thus, large
nanotubes are expected to show the maximum symmetry
savings factor in terms of computation time and memory
allocation. They also represent a severe test for the flexi-
bility of our code and its algorithms, as will be discussed
below. A more detailed description of the effect of sym-
metry can be found in Refs. 6 and 7. Large nanotubes
are, clearly, an extreme case. Evidence of the efficiency
of the code for systems with lower point symmetry (from
1 to 48 operators) is given in one of the next sections.

Tables II and III show the effect of full use of symmetry
on peak memory usage and on running time. The various
steps of the calculation can be divided into three units
(corresponding to the three blocks in Tables II and III):

a) Preliminary calculations for symmetry analysis (in-
cluding construction of the character table and
SACOs), index mapping and screening of integrals
(init). This unit includes also the generation of a
set of orthogonal functions through Cholesky de-
composition.

b) All steps involved in the SCF cycle, which are it-
erated as many times as necessary to achieve con-
vergence (15 iterations in the present case). In the
“direct SCF” strategy this unit includes: calcula-
tion of 1- and 2-electron integrals, as well as in-
tegrals approximated by multipolar expansion of
the electron charge density (pole); transformation
of the Fock matrix from the AO to the SACO basis
and its diagonalization (Fock) + (diag); construc-
tion of the density matrix in the AO basis (dens);
and integration of the exchange-correlation density
functional (dft).

c) Calculation of the total energy gradients with re-
spect to the nuclear coordinates (grad) at the end
of the SCF process.
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TABLE II: Peak memory request (in MByte) when one core is
used in the SCF+Gradient calculation for a set of (n, 0) car-
bon nanotubes. The B3LYP hybrid functional is used with
a basis set of 14 AOs per atom. Only roto-translational op-
erators are included in the point group (mirror planes are
neglected). For each nanotube, the number of atoms Nat and
number of symmetry operators Nop is given. The various
steps are as follows: initialization of the simulation, including
construction of the symmetry group and transformation ma-
trices (init); construction of the basis orthogonalization ma-
trix (Cholesky); calculation of 1-electron integrals, 2-electron
integrals, and integrals approximated by multipole expansion
of the charge density (pole); transformation of the Fock ma-
trix from the AO to the SACO basis (Fock) and its diag-
onalization (diag); construction and back transformation of
the density matrix (dens); grid integration of the exchange-
correlation density functional (dft); and calculation of total
energy gradients with respect to nuclear coordinates (grad).

(10,0) (20,0) (40,0) (80,0) (160,0) (320,0)

init 19 20 45 165 635 2488

Cholesky 17 17 21 32 53 105

2-electron 21 23 30 47 81 138

1-electron 17 18 21 32 53 105

pole 18 18 22 33 55 108

fock + diag 17 18 22 32 54 106

dens∗ 17 18 22 32 53 105

(23) (27) (40) (68) (126) (250)

dft 19 20 24 35 57 109

grad 74 77 91 260 124 239

Nat 40 80 160 320 640 1280

Nop 20 40 80 160 320 640

∗Formulation of the Density Matrix directly in terms of
SACOs will be available in a next release to be distributed
in mid 2014. Data in parentheses refer to the release
distributed since December 2013.

Let us begin with the memory allocation requirements
reported in Table II. Clearly, all steps except init require
an extremely small amount of memory. As an exam-
ple, the 239 MBytes for the grad step in the case of the
largest nanotube is about 1/10 of the memory commonly
available in a single core standard machine. The reason
for such low memory requirements is that the number of
atoms in the asymmetric unit is just 2 regardless of n. In
Crystal14 only the irreducible part of the Fock, over-
lap and density matrices is stored in memory (we recall
that in addition, screening reduces the total number of
matrix elements dramatically). As a consequence, about
6000 elements are stored for each matrix, irrespectively
of the size of the nanotube.

In the init step, the generation of the coefficients for
SACOs has not yet been optimized from the viewpoint
of memory allocation, as this is not an issue in all normal

TABLE III: CPU time (in seconds) for the various steps in the
SCF+Grad calculation for (n, 0) carbon nanotubes. See Table
II for description of individual steps. Timing for a single SCF
cycle (TOTcyc) and for the entire SCF procedure (TOTSCF ,
15 cycles in this case) are also reported.

(10,0) (20,0) (40,0) (80,0) (160,0) (320,0)

init 1.70 16.00 10.38 71.37 602.51 6461.87

Cholesky 0.59 2.17 8.55 34.63 138.89 561.94

pole 0.24 0.47 0.94 1.90 3.80 7.60

2-electron 26.29 21.39 20.72 21.28 22.45 34.84

1-electron 0.20 0.34 0.68 1.31 2.58 5.24

Fock 0.44 1.59 7.17 30.85 128.36 525.69

diag 0.10 0.39 0.81 1.58 3.07 6.67

dens∗ 0.05 0.09 0.18 0.38 0.90 2.12

(0.92) (3.28) (13.38) (54.83) (221.80) (883.44)

dft 11.52 11.61 13.14 15.17 20.65 34.80

TOTcyc 38.88 36.00 43.86 73.06 182.68 619.11

TOTSCF 585.49 558.17 676.83 1201.90 3481.60 16310.46

grad 240.52 203.72 208.83 249.45 388.23 904.11

cases (any space group or icosahedral symmetry). How-
ever, because memory requirements increase quadrati-
cally with the number of operators, SACO generation
becomes dominant at about 150-200 operators. In the
case with the largest number of symmetry operators
(640) considered here more than 2 GBytes are required.
That is why only roto-translation operators were taken
into account for Table II. The addition of mirror planes
would quadruple the number of symmetry operators, and
thereby increase memory requirements, with little gain in
efficiency.

Let us now turn to the running time. Table III shows
that the full SCF procedure plus gradient calculation for
the largest CNT (1280 atoms, 17920 atomic orbitals per
unit cell) is accomplished within less than 5 hours on
a single processor for the B3LYP hybrid functional. No
calculation for such a large CNT has been reported in the
literature, even with smaller basis sets or simpler func-
tionals such as LDA or GGA. The cost of the various
steps is reported in Table III and represented pictorially
in Figure 4; the (expectedly) most demanding steps along
the series are 2-electron integrals and calculation of the
gradients (grad). Nevertheless, for the same reasons in-
voked for low memory requirement, computing time is
remakably little and nearly independent of the nanotube
size: quite interestingly, about 40% of computing time
for the largest tube is spent in the init, Cholesky and
Fock steps, where higher efficiency could, in principle,
be recovered.
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FIG. 4: CPU time (in seconds) for the various steps of the
calculation of carbon nanotubes. See Table II for definitions.
TOTcyc is the time required for a SCF cycle at B3LYP level.

C. Symmetry in anisotropic properties

A number of physical properties can be given a tenso-
rial representation. For example, linear elasticity is de-
scribed by a fourth order tensor. Such a tensor consists of
21 independent components for a triclinic crystal whereas
they reduce to 3 in the case of a cubic crystal. Thus, sym-
metry is key to study tensorial properties: which compo-
nents have to be computed? Which elements are null by
symmetry? Which are symmetry-related? Moreover, ex-
perimental data are generally reported with some stan-
dard orientation of the cell parameters with respect to
the Cartesian frame. For comparison between calculated
and experimental data to be consistent, the orientation
issue needs to be clearly stated. Crystal performs such
a symmetry analysis of the tensor using the TENSOR key-
word. That is particularly useful in low-symmetric cases
and in the case of three-fold rotation axes. Such anal-
ysis is automatically performed prior to the calculation
of all tensorial properties available. A single keyword
(ELASTCON for elastic constants, PIEZOCON for piezoelec-
tric constants, PHOTOELA for photoelastic constants, see
Section IV for details) is sufficient for generating the full
tensor of interest.

III. GEOMETRY OPTIMIZATION OF
PERIODIC SYSTEMS

Geometry optimization is mostly employed in quantum
chemical calculations to obtain a nuclear configuration
that is either

• a stable structure of a given chemical species, or

• can be used to estimate the transition configuration
along a reaction path leading to determination of
the rate for the corresponding process.

The former use is based on the Born-Oppenheimer ap-
proximation and thermostatistics, and is realized by com-
puting the corresponding minimum of the Potential En-
ergy Hypersurface (PEH). As concerns the latter, an op-
timization towards an appropriate saddle point of the
PEH is done and, then, thermostatistical considerations
yield activation energies and reaction rates. These are
the main reasons why geometry optimization is one of
the most used options of any quantum chemical code. In
what follows, the optimization features recently imple-
mented in Crystal14, mostly dealing with minimiza-
tion, will be briefly discussed.

The efficiency of minimization methods depends pri-
marily on the extent to which the energy function or
PEH can be represented by a pure quadratic power se-
ries expansion in terms of the geometric coordinates used.
Most gradient techniques warrant that, for an ideal pure
quadratic PEH, the minimum will be attained in less
than M steps, where M is the number of independent
coordinates.42 Normally, such ideal behavior is not found
and various techniques are employed to ensure similar
convergence behavior.

In the Crystal code two different strategies are uti-
lized to deal with a non-quadratic periodic PEH: the
trust radius technique and the choice of suitable coordi-
nates. The former has already been well documented,43

and since no special features are used in the code imple-
mentation, it will not be considered further. On the other
hand, the coordinate system choices available in Crys-

tal for periodic calculations are worthy of discussion.

Although the critical points of a PEH are invariant
under coordinate system transformations, the quadratic
character of the energy function may be drastically
improved with a proper geometrical parameter choice.
Crystal allows for the use of two coordinate systems
that are particularly suitable for periodic calculations,
namely symmetrized crystallographic (SC) and redun-
dant valence (RV) coordinates. The former is the basic
set for any crystalline system and consists of symmetry
adapted fractional directions (SADIR) and elastic defor-
mations (SAED). In Crystal14 both sets of geometri-
cal parameters are normalized by default. This ensures
equivalent weights in the optimization procedure, which
is particularly relevant for the construction and use of the
approximate Hessian matrix employed in pseudo-Newton
techniques.42

With regard to SADIRs, the translational degrees of
freedom are first excluded. Then, the remaining direc-
tional coordinates are symmetry adapted and, subse-
quently orthonormalized using a Schmidt procedure. For
SAEDs the set is first symmetry adapted and Schmidt
orthogonalized. Then, each deformation d is normalized
so as to fulfill the condition

N∑

A=1

3∑

t=1





3∑

u=1

ǫ
(d)
tu XA

u





2

= 1, (1)
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where N is the number of atoms, XA
u are the Cartesian

coordinates of atom A and ǫ
(d)
tu is the d-th SAED.

While the SC coordinates are easily understood in
terms of common crystallographic concepts, their main
drawback is that the resulting energy function is fre-
quently far from being pure quadratic. There is also,
typically, a strong coupling between the atomic direc-
tional and elastic deformation degrees of freedom. This
is particularly noticeable in covalent systems that exhibit
strongly directed bonds. As previously proposed,44,45 for
this kind of system the use of RV coordinates often im-
proves the optimization process.

The generation of the RV sets and their implemen-
tation for geometry optimization of molecules46,47 and
crystals48,49 has been well-described in the previous lit-
erature. Accordingly, we omit the details here and high-
light just the key differences in Crystal from other im-
plementations.

The atomic connectivity required to define the RV co-
ordinates is set up according to Refs. 47 and 46. An
additional feature in the present implementation is that
symmetry equivalences within the RV set are recognized
and only one representative of each class is kept in mem-
ory together with the corresponding multiplicity per unit
cell, µi. A small displacement in the reference coordinate
system, δx, can be transformed into the displacement δq
in the RV basis set using

δq = Bδx, (2)

where B is the Wilson B-matrix whose elements are given
by

Bij = µi∂qi/∂xj .

In Crystal the reference coordinate system, x consists
of SADIRs and SAEDs and the B-matrix is computed by
numerical differentiation based on the central point ap-
proximation. The force in RV coordinates is determined
from the force in the reference system according to

fq = B−fx, (3)

where fqi
= −∂E/∂qi and B− = G−BT , the superscript

“−” indicates the generalized inverse and G = BTB.
While optimization is carried out in the redundant

space, in some steps of the procedure vectors in spaces
tangent to the PEH must be computed. This is done
by employing the projector P = G−G.47 If constraints
are required to keep some RV parameters fixed, then a
new projector that eliminates redundancies as well, P′,
is constructed as46

P′ = P − PC(CPC)−CP, (4)

where C is the projector onto the constraints subspace,
which is given in RV coordinates by

C ≡ Cij =

{

1 if i = j and i is constrained,

0 otherwise.
(5)

Both gradient and Hessian have to be projected. With
regard to the latter, the projected matrix H̃ = P′HP′

is diagonalized and its generalized inverse computed ac-
cording to

[H̃ij ]
− =

∑

k

Tik[hk]
−1

Tjk, (6)

where Tik is an element of the eigenvector matrix and k
runs over all eigenvalues of H̃ except those that corre-
spond to the redundancies (i.e. for n redundancies the
n eigenvalues of smallest magnitude). This procedure
also corrects for small errors that derive from numerical
calculation of the B-matrix.

Once the optimized displacements in the RV coor-
dinate system have been found, they must be back-
transformed to the reference system to obtain the re-
sulting geometry. In Crystal14 this is performed two
different ways:

1. in an iterative manner similar to that proposed for
molecular codes,46 and

2. by a strategy that minimizes a function which mea-
sures the proximity of an RV set of coordinates to
a real crystal geometry.

Option 1 has proved to be efficient for most molecular
structures. However, it is not as safe when points in the
RV are very far from the subspace that matches the true
geometrical parameter space. This usually occurs when
the connectivity that defines the RV coordinates exhibits
a large number of nested loops, which is the case in most
periodic systems, and the required change in geometry
is large. In such cases, the iterative procedure of op-
tion 1 diverges and a very approximate solution of the
back-transformation relation must be chosen in order to
continue the optimization.47 When such an approximate
back-transformation is performed more than once dur-
ing the optimization, the inaccuracy of the displacements
usually makes the whole procedure inefficient and most
of the advantages due to adopting RV coordinates is lost.

Option 2 is now implemented as an alternative
in Crystal14. It allows a more accurate back-
transformation, thereby providing a substantial reduc-
tion in the number of optimization steps. The overall
concept is as follows. Let us consider a set of RV coor-
dinates Q = {qi} and a reference set, X = {xi}, whose
redundancy is, in general, less than the former. There is a
correspondence such that every vector expressed in terms
of X has an image in terms of Q. The converse is not, in
general, true. The aim of the technique discussed here is
to unambiguously assign a coordinate position in X given
a point in Q. Thus, given a displacement in terms of RV
coordinates one would like to find a displacement in the
reference set that is closest to the former. The idea of
“closest” can be quantified by an “error” function:

Φ(x) =
∑

j

aj(qj − q̄j)
2, (7)
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where aj are weight factors, q̄j is the target in RV coor-
dinates and qj = qj(x1, x2, . . . , xN ). The optimum point
in X space is the one that minimizes Φ.

The gradient of Φ may be written as

∂Φ

∂xk

= 2
∑

j

aj(qj − q̄j)
∂qj

∂xk

, (8)

with ∂qj/∂xk = Bjk. If we define the vector dj =
2aj(qj − q̄j), then eq. (8) becomes:

g = B · d, (9)

where gk = ∂Φ/∂xk. The optimum point in X , corre-
sponding to zero gradient, is obtained by the conjugate
gradient method which, in the present implementation,
utilizes the Polak-Ribiere search direction.42,50

IV. ELASTIC, PIEZOELECTRIC AND
PHOTOELASTIC PROPERTIES OF CRYSTALS

Several strain-related tensor properties of crystalline
materials can be computed with the Crystal14 program
simply by inserting a single keyword in the input deck.
These properties include elasticity, piezoelectricity and
photoelasticity. A general and robust algorithm has been
devised which automatically handles any space group and
fully exploits point symmetry. Thus, along with other
general improvements of the code described in Section
X, it is now possible to carry out a complete ab initio
calculation of elastic properties for large unit cell systems,
such as garnets with 80 atoms per cell (see Section IVA
below for details).9,10

The elements of the fourth-rank elastic tensor C are
second energy density derivatives with respect to pairs
of cell deformations (see Table I). A fully automated al-
gorithm, using analytical energy gradients,8 for the cal-
culation of C, which was already implemented in Crys-

tal09 for 3D systems, has now been extended in a num-
ber of ways including the:9–11 i) generalization to 1D and
2D systems, ii) calculation of directional seismic wave-
velocities, iii) calculation of polycrystalline isotropic ag-
gregate elastic properties, iv) calculation of elastic prop-
erties under pressure. Some of these points are discussed
in Section IV A.

The direct piezoelectric tensor e, whose elements
are first derivatives of the polarization with respect to
crystal strain, is third rank. In our fully automated
implementation,12 the polarization is computed via the
Berry phase approach.51 The converse piezoelectric ten-
sor d, determined as the strain induced by an external
electric field, is evaluated from e and C using d = eC−1.
These calculations can be done for 1D, 2D, 3D systems.
A more detailed discussion of piezoelectricity will be
given in Section IVB along with a brief review of recent
applications.

The elements of Pockels’ photoelastic, or elasto-optic,
fourth-rank tensor P, are defined as first derivatives

of the inverse of the dielectric tensor with respect
to crystal strain. An automated scheme has been
implemented,13 which adopts the Coupled-Perturbed-
Hartree-Fock/Kohn-Sham (CPHF/KS) method (see Sec-
tion V) for computing the dielectric tensor of equilibrium
and strained configurations. The explicit dependence of
elasto-optic constants on the electric field frequency can
be evaluated as well, thus allowing a direct comparison
with experimental data. Some examples will be given in
Section IVC.

A. Elasticity

1. Nanotubes and Monolayers

As noted above, several improvements have recently
been made to the algorithms for computing elastic prop-
erties of crystals. One of them is the generalization to
1D and 2D systems.11 In this work we have investigated
elastic and vibrational properties for several families of
single-walled nanotubes and discussed how they are ex-
pected to converge to those of the corresponding mono-
layers. Zigzag (n,0) boron nitride,11 zigzag (n,0) beryl-
lium oxide,52 armchair (n,n) zinc oxide53 and zigzag (n,0)
magnesium oxide54 nanotubes have been studied, with
tube radii up to 24 Å, 27.1 Å, 45.3 Å and 43.3 Å, respec-
tively.

A technologically interesting and widely discussed fea-
ture of nanotubes is their response to uniaxial strain
along the nanotube axis.55,56 In this regard reference is
made to the Young’s (elastic) modulus, which essentially
coincides with the C11 elastic constant. A comparison
with the C11 elastic constant of the corresponding mono-
layer, as the tube radius increases, is not straightforward.
As discussed in Ref. 52, when a nanotube is stretched
(compressed) in the axial direction, its radius decreases
(increases) in order to minimize the total energy. For the
monolayer there is a corresponding deformation orthogo-
nal to the applied strain, i.e. Poisson’s effect, that must
be taken into account. The Poisson-corrected monolayer
value, for comparison, turns out to be C11 ×

(
1 − σ2

)
,

where σ is Poisson’s ratio given by σ = −C12/C11 in
terms of monolayer elastic constants. The damping fac-
tor (1 − σ2) is almost negligible for graphene and h-BN
(0.970 and 0.955) whereas it is 0.867 for h-BeO and 0.577
for h-ZnO. Clearly, this effect increases with the ionicity
of the chemical bonds in the system.

The IR-active vibrations of the above nanotubes can
be subdivided into two distinct groups, with frequencies ν
that tend either to an optical frequency of the monolayer
or to zero with increasing tube size n. Three modes de-
crease linearly to zero as 1/n. These are collective modes
without a direct correspondence in the vibrational spec-
trum of the monolayer. One of them, for instance, is
the ring breathing. We have demonstrated that, in the
large radius limit, these modes can be related to elastic
deformations of the monolayer.11 By imposing equality
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between the elastic strain energy of the monolayer and
the corresponding vibrational energy of the nanotube,
the slope of frequency versus 1/n for the latter can be
related to the elastic constants of the monolayer. For the
ring breathing mode, this gives:

ν =

√

C22

(MA + MB)

1

n|a| , (10)

where MA and MB are the atomic masses of the two
atoms of the system (boron and nitrogen, zinc and oxy-
gen, etc.) and a is the lattice parameter of the monolayer.
By fitting the BN nanotube vibration frequency versus
1/n we obtain 2637 cm−1 for the lhs of Eq. (10), whereas
the elastic constants of the monolayer give a value of 2662
cm−1. For BeO the same comparison yields 1913 cm−1

versus 1915 cm−1, while for ZnO the two values are 672
cm−1 and 668 cm−1. Bearing in mind that the prop-
erties involved in the comparison (vibration frequencies
of the nanotube and elastic constants of the monolayer)
are computed quite differently, the agreement is remark-
able and confirms the high accuracy of all the algorithms
involved.

2. Seismic Wave Velocities and Elastic Anisotropy

The acoustic wave velocities of a crystal are related
to the elastic constants by Christoffel’s equation.57,58 In
Crystal14, an automated procedure has been imple-
mented for computing these wave velocities along any
crystallographic direction. The three acoustic wave ve-
locities, also referred to as seismic velocities, can be la-
beled as quasi-longitudinal vp, slow quasi-transverse vs1

and fast quasi-transverse vs2, depending on their polar-
ization with respect to the propagation direction.59

Silicate garnets are among the most important rock-
forming minerals; they represent the main constituents
of the Earth’s lower crust, upper mantle and transition
zone. These garnets are characterized by a cubic lattice
with space group Ia3d and formula X3Y2(SiO4)3, where
the X site hosts divalent cations such as Ca2+, Mg2+,
Fe2+ and Mn2+ and the Y site is occupied by trivalent
cations such as Al3+, Fe3+ and Cr3+. The primitive cell
contains four formula units (80 atoms) and the structure
consists of alternating SiO4 tetrahedra and YO6 octahe-
dra sharing corners to form a three-dimensional network.
In a recent work the B3LYP elastic properties, including
seismic wave velocities, were obtained for the six most
abundant end-members of this family (pyrope, alman-
dine, spessartine, grossular, uvarovite and andradite).9,10

In Figure 5, we compare our ab initio directional seis-
mic wave velocities for andradite Ca3Fe2(SiO4)3, in par-
ticular, with experimental values.60 Seismic wave veloci-
ties are reported along an angle θ such that θ = 0◦ cor-
responds to the crystallographic direction [110], θ = 45◦

to the [111] direction, θ = 90◦ to the [001] direction,
etc. The agreement is quite impressive: both the angu-

FIG. 5: Directional seismic wave velocities of andradite single-
crystal, Ca3Fe2(SiO4)3, as computed at the B3LYP level (con-
tinuous lines) and as measured by Brillouin scattering at am-
bient pressure by Jiang et al.60 (black symbols). Seismic
wave velocities (quasi-longitudinal vp, slow and fast quasi-
transverse vs1 and vs2) are reported along an angle θ defined
in the text. Computed values have been downshifted by 0.1
km/s.

lar dependence and the oscillation amplitudes are very
accurately reproduced.

A further elastic property of great interest is the so-
called elastic wave anisotropy, as measured by the di-
mensionless parameter A that vanishes for an isotropic
material. For cubic crystals, A is given by the fol-
lowing simple expression in terms of elastic constants:
A = (2C44 + C12)/(C11) − 1. The elastic anisotropy of
garnets is generally rather small, 0.6 %, when compared
to that of other rock-forming minerals such as olivine,
25 %, spinel, 12 %, muscovite, 58 %, orthopyroxene, 16
%, etc.61 From the calculations of A, we can sort the six
silicate garnet end-members according to their increas-
ing elastic anisotropy: spessartine < pyrope < grossular
< almandine < andradite ≪ uvarovite. Spessartine and
pyrope show very low anisotropies (A = -0.025 and A
= -0.031, respectively) whereas uvarovite is, by far, the
most anisotropic with A = -0.159.

B. Piezoelectricity

Direct and converse piezoelectric tensors of 1D, 2D and
3D periodic systems can now be computed automatically
with Crystal14.

The piezoelectric response of nanotubes is of consid-
erable interest. We have recently found that BeO nan-
otubes exhibit a longitudinal piezoelectric response that
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is about 25% larger than BN nanotubes of comparable
radii.52 This is noteworthy since the response of the lat-
ter is quite large amongst low-dimensional systems.62 In
comparing the piezoelectric constant e11 for nanotubes
of increasing radii with that of the corresponding mono-
layer, Poisson’s effect has, again, to be taken into ac-
count. As before (see Sec. IVA) the connection between
vibration frequencies of the nanotubes and elasticity of
the monolayer implies a relationship, now between the
contribution of the nanotube collective modes to the po-
larizability on one hand and the monolayer piezoelectric-
ity on the other. We have investigated this relationship
for BN, BeO and ZnO nanotubes.11,52,53

As regards 3D systems, standard piezoelectric ce-
ramics, such as lead zirconate titanate (PZT) based
materials, are widely used in many technological
applications.63,64 At cryogenic temperatures, however,
their piezoelectric response is significantly reduced.
Hence, they cannot be used as actuators for adaptive op-
tics in space telescopes and low temperature capacitors.
In 1997 Grupp and Goldman discovered a giant piezoelec-
tric effect in strontium titanate SrTiO3 down to 1.6 K,
where the only non-zero converse piezoelectric coefficient
d31 = 16 × 10−10 m/V was reported. This is compara-
ble to the value for PZT at room temperature.65 In two
recent studies, we fully characterized direct and converse
third-rank piezoelectric tensors of the low temperature
phases of SrTiO3 and BaTiO3.

12,66

Due to its peculiar piezoelectric properties, α-SiO2 is
another material that is widely utilized in the electron-
ics industry. Unfortunately, its suitability is reduced for
applications requiring high thermal stability and high
electromechanical coupling. These limitations are mainly
due to the α-SiO2 to β-SiO2 phase transition, in which
case the piezoelectric constant d11 vanishes and d14 re-
mains the only non-zero component.67 Among quartz
homeotypes, GaAsO4 and α-GeO2 exhibit the highest
electromechanical coupling coefficients resulting in an
electrical to mechanical energy conversion efficiency of
about 22 %.68 Furthermore, they show a very high de-
gree of thermal stability since they do not undergo an α -
β phase transition.69 Using the new tools in Crystal14

we have recently studied the solid solution Si1−xGexO2

of α-quartz, where silicon atoms are progressively sub-
stituted with germanium atoms, as a function of x. A
linear increase in the piezoelectric response with the sub-
stitutional fraction had been suggested experimentally
for very small x.70 Our exploration of the entire range of
substitution revealed a quasi-linear increase throughout,
a result that provides the basis for an effective tuning of
the piezoelectric response.71

C. Photoelasticity

The variation of the refractive index (dielectric con-
stant) with respect to internal or applied strain gives rise
to the so-called photoelastic, or elasto-optic, tensor. We

FIG. 6: The three independent elasto-optic constants of MgO
crystal, computed at the PBE level, as a function of the elec-
tric field wavelength λ. Infinite wavelength results are also
shown, while dashed vertical lines indicate the experimental
wavelength range.

have recently implemented a general algorithm for the ab
initio calculation of this fourth-rank tensor in the Crys-

tal14 version of our program.13 Using this code we com-
puted the elasto-optic constants for a set of 8 crystalline
systems of different symmetry: simple cubic sodium chlo-
ride NaCl, lithium fluoride LiF, magnesium oxide MgO
and potassium chloride KCl; cubic silicon and diamond;
trigonal SiO2 α-quartz and tetragonal TiO2 rutile. Good
overall agreement with experiment was obtained, partic-
ularly so for the PBE generalized-gradient functional.

Experimental results for the elasto-optic constants can
vary considerably from one measurement to another. A
case in point is MgO, for which there are three indepen-
dent constants, namely p11, p12 and p44. The individual
values of p11 and p12 deduced by several workers are very
different from one another: p11 ranges from -0.21 to -0.31
and, for p12, even the sign is uncertain, with values rang-
ing from -0.08 to 0.04.72–74

Although the experiments are supposed to measure the
variation of the static dielectric tensor (i.e. at infinite
electric field wavelength, λ = ∞), they are actually per-
formed at finite wavelengths that may give results far
from the static limit. The experimental values reported
above were obtained in the wavelength range from 540
nm to 589.3 nm. In Figure 6, we show the three inde-
pendent elasto-optic constants of MgO, computed at the
PBE level, as a function of λ (see Section VB for more
details about the λ-dependent CPHF/KS computational
scheme). While p44 is almost wavelength-independent,
p11 and p12 exhibit a clear dependence upon λ, slowly
converging to the static limit above 1000 nm. In partic-
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ular, the value of p12 is found to pass from negative to
positive around 550 nm. Dashed vertical lines in the fig-
ure identify the experimental range of electric field wave-
lengths; both p11 and p12 are still changing in that range.
This aspect is particularly crucial for p12 which changes
sign in that range. This explains the uncertainty in its
experimental value.

As a further application, we have recently character-
ized the photoelastic behavior of the low-temperature
rhombohedral phase of BaTiO3, again by explicitly treat-
ing the dependence on λ.66

V. STATIC NON-LINEAR POLARIZABILITIES
AND FREQUENCY-DEPENDENT ELECTRONIC

DIELECTRIC CONSTANT

A new feature in Crystal14 is the calculation of the
electronic and vibrational contributions to the first and
second static hyperpolarizability tensor for molecules,
polymers, slabs and crystals. The dependence of the
electronic linear polarizability (or dielectric constant) on
the frequency of the applied electric field has been added
as well. The electronic properties are computed analyti-
cally, while the vibrational properties require a finite field
geometry optimization.

A. Coupled Perturbed HF/KS Calculation of
Static Electronic (Hyper)polarizabilities

The total electronic energy E of a crystal in a uniform
static electric field ε can be expressed as

E(ε) = E(0) −
∑

t

µtεt −
1

2!

∑

tu

αtuεtεu+

− 1

3!

∑

tuv

βtuvεtεuεv − 1

4!

∑

tuvw

γtuvwεtεuεvεw + . . .

with E(0) being the field-free electronic energy and
µ, α, β, γ . . . the electronic energy derivatives of order

1, 2, 3, 4 dots with respect to the Cartesian components
of the electric field (indicated by the subscripts t, u, v, w).
As for the corresponding physical properties, µ repre-
sents the dipole moment, α the polarizability, β the first
hyperpolarizability and γ the second hyperpolarizability.
For a closed-shell system, the second energy derivatives
αtu are calculated using the expression:

αtu = − 2

nk

BZ∑

k

ℜ
{

Tr
(

Ck†
Ω

k,tCk
U

k,un
)}

(11)

where nk is the number of k points in the first Bril-
louin Zone (BZ) and n is the diagonal occupation ma-
trix whose elements are 2 for occupied orbitals and 0
otherwise. Here Uk,u is an anti-Hermitian block off-
diagonal matrix that relates the unperturbed coefficient
matrix Ck, to the corresponding first-order perturbed
matrix, Ck,u ≡ CkUk,u, which gives the linear (first-
order) response to the electric field perturbation rep-
resented by the matrix Ωk,t. The off-diagonal blocks
of Uk,u depend not only on Ωk,u but also on the first-
order perturbed density matrix (through the two-electron
terms in the Hamiltonian) which, in turn, depends upon
Uk,u. Hence, a self-consistent solution of the Coupled-
Perturbed Hartree-Fock equations is required.

The CPHF calculation of static linear polariz-
abilites was already available in a previous version of
Crystal,14,15 for both closed and open shell systems,
along with a corresponding CPKS treatment using pure
and hybrid DFT functionals.16 Now the CPHF/KS
method has been extended to the first and second hy-
perpolarizability tensors. As a consequence of the 2n+1
rule the first-order coefficient matrix is sufficient to deter-
mine the first hyperpolarizability tensor. However, calcu-
lation of the second hyperpolarizability tensor γ requires
the second-order coefficients and they must be obtained
from a self-consistent solution of the second-order cou-
pled perturbed equations. Both the β and γ tensors can
be expressed in terms of Uk,uv:

βtuv = − 1

nk

∑

k

ℜ
{

Pt,u,vTr

([

Ck†
F

k,tCk
U

k,uv − Ck†
F

k,uvCk
U

k,t
]

n

)}

(12)

γtuvw = − 1

nk

∑

k
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n + ıUk,tw† ∂Uk,u

∂kv
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(13)

The operator P in Eqs. (12) and (13) carries out the sum over all permutations of the Cartesian directions and
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FIG. 7: PBE0 polarizability αxx and second hyperpolarizabil-
ity γxxxx of PA as functions of the shrinking factor (see text
for discussion). Larger circles mark regions of the plot where
α and γ values are converged to better than 1 % with respect
to the asymptotes.

Ek,vw is the second derivative of the Lagrange multiplier
matrix with respect to the field. We have used the sym-
bols Fk,u and Fk,uv to indicate derivatives of the Fock
matrix. The first derivative contains contributions from
Ω as well as the two-electron terms, but only the latter
contribute to the second derivative.

Details about the CPHF/KS method, and its im-
plementation in the Crystal program, can be found
elsewhere;17–19 examples of application to materials of
different dimensions are also available.75–79

The all-trans isomer of polyacetylene (PA) is a good
case to check the numerical accuracy of our implemen-
tation. PA is a prototype conjugated polymer semi-
conductor with π-electrons delocalized over a backbone
of carbon atoms connected through alternating double
and single bonds, with respective C-C bond lengths of
1.36 and 1.44 Å80 (point symmetry C2h). According
to experiment,81 PA has a band gap Eg of 1.35 eV.
Such a small band gap represents a severe test for DFT
calculations of optical properties (especially pure DFT,
which seriously underestimates the gap) because of in-
herent numerical instability as one approaches the con-
duction limit. The sensitivity with respect to the de-
scription of the electronic structure leads to calculated
(hyper)polarizabilities that change by orders of magni-
tude depending on the approximation adopted. Finally,
for finite oligomers it is known that conventional func-
tionals strongly overshoot the correct values.

We computed the static longitudinal polarizability αL

and second hyperpolarizability γL of PA (the first hy-
perpolarizability βL is null by symmetry) for Hartree-
Fock (HF) and various density functionals.77 The low-
est estimates - i.e. αHF

L = 165.2 and γHF
L = 6.16 · 106

a.u. - are provided by HF, which seriously overshoots

the energy gap (EHF
g = 6.8 eV). Convergence of the cal-

culated optical properties to the infinite periodic poly-
mer limit is essentially achieved for a chain length of 50
monomers. This is consistent with an extensive literature
on short PA oligomers. which also shows that HF val-
ues are relatively close to accurate Coupled-Cluster and
Möller-Plesset results (see Ref. 82 for instance).

Pure density functionals shrink the energy gap of PA
to less than 0.1 eV, thus leading to a catastrophic over-
shoot of the calculated optical properties. For the local
density approximation (LDA),83,84 the lowest electronic
transitions occur in the near Infra-Red (ELDA

g = 0.08

eV) and the calculated optical properties soar to αLDA
L =

1.10 · 105 and γLDA
L = 1.32 · 1016 a.u., respectively. As

expected, hybrid functionals provide a more accurate de-
scription of the PA band structure. PBE0,85 for instance,
yields an optical gap equal to 1.43 eV. The correspond-
ing (hyper)polarizabilities undergo a significant reduc-
tion compared to LDA, but still far exceed the HF values:
αPBE0

L /αHF
L ≃ 5 and γPBE0

L /γHF
L ≈ 500.

For small bandgap polymers, the precision of coupled
perturbed (hyper)polarizability calculations is mainly de-
termined by two computational parameters, namely

1. the shrinking factor used to generate a commensu-
rate grid of k points in the reciprocal space, and

2. the thresholds on the truncation of the two-electron
integral series (see the Crystal user’s manual for
details).

These two parameters are highly correlated because the
set of lattice vectors employed to evaluate matrices in
real space must also map the k points spanned by the
summations in eqs. (11) - (13). The more the band
gap narrows, the more these parameters must be tight-
ened. Thus, on the one hand, increasing the number of
k points naturally improves the description of the elec-
tronic band structure at k values where Eg(k) → 0 (i.e.
where α, β, γ → ∞). On the other hand, a larger num-
ber of two-electron contributions is required to account
for the concurrent spread of the density matrix range in
direct space.86 Indeed, a very accurate PBE0 calculation
of α and γ required consideration of 100 k points in the
first Brillouin zone and exchange contributions up to a
distance of 250 Å from cell 0 in direct space to achieve
well-converged results (Figure 7).

As implied above, the behavior of PA is exceptional
because of its very small band gap. In general, the calcu-
lation of β and γ for insulators and semiconductors can
be done with commonly used parameter settings, for ex-
ample, a shrinking factor of 6-8 and the default value of
Tx = 12 are adequate.19,87

B. Electric Field Frequency Dependence

The calculated dependence of the electronic linear po-
larizability on the electric field frequency ω (or wave-
length λ) can be directly compared with experimental
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FIG. 8: Electronic contribution to the wavelength-dependent
dielectric constant (continuous line), as computed with the
PBE functional for the cubic phase of BaTiO3. The experi-
mental value, at λ = 632.8 nm, is reported as a black circle88

and the structure of cubic BaTiO3 is shown in the inset.

data in the high frequency limit. For the cubic phase of
BaTiO3 the dielectric constant was measured to be 5.41,
in units of ǫ0, at λ = 632.8 nm.88 We assume that this fre-
quency is sufficiently high that the vibrational contribu-
tions are negligible. Then, in order to compare with ex-
periment the frequency-dependent CPHF equations must
be solved for the two first-order perturbation matrices,
Uk,u(+ω) and Uk,u(−ω). Such calculations were carried
out for the wavelength range 632.8 - 3000 nm.

Since, in our experience, the generalized-gradient ap-
proximation to DFT provides the best agreement with
experimental dielectric tensors and photoelastic con-
stants for most inorganic crystals (as compared to HF
and hybrids),13–15,17,19 we used the PBE functional (Fig-
ure 8) for these calculations. It is clearly seen in Figure
8 that the variation of the electronic dielectric constant
is quite large over the range of wavelengths considered,
so that accurate calculation of ǫ at the actual wave-
length of the experiment is important in this case and
the agreement between the calculated and experimental
values turns out to be within 2%.

C. Vibrational contributions to the
(hyper)polarizabilities

Nuclear motions have a rôle in determining static and
dynamic polarizabilities and hyperpolarizabilities. An ef-
ficient method for computing the vibrational contribu-
tions is the finite field nuclear relaxation (FF-NR) proce-
dure proposed by Bishop, Hasan and Kirtman.89 This
method includes all terms that are harmonic or first-

order in electrical/mechanical anharmonicity. It is a
general scheme that is currently implemented in Crys-

tal14 for non-periodic directions (3 independent direc-
tions in molecules, 2 in polymers, 1 in slabs) and for ten-
sor components that couple periodic with non-periodic
directions. The key step in the FF-NR method is a ge-
ometry optimization carried out in the presence of a fi-
nite, i.e. static, field. This optimization implicitly con-
tains the information about harmonic and anharmonic
vibrational parameters needed to obtain vibrational (hy-
per)polarizabilities. Thus, no force constants or electric
property derivatives need to be explicitly calculated. If
we denote the equilibrium geometry in a static electric
field (ε) by Rε, and R0 without the field, then a Taylor
series expansion of the field-dependent (electronic) dipole
moment at the two geometries yields:

µt(R0) = µt(0, R0) +
∑

u

αe
tuεu + (14)

+
1

2

∑

u,v

βe
tuvεuεv +

1

6

∑

u,v,w

γe
tuvwεuεvεw + · · ·

and:

µt(Rε) = µt(0, R0) +
∑

u

aµ
tuεu + (15)

+
1

2

∑

u,v

bµ
tuvεuεv +

1

6

∑

u,v,w

gµ
tuvwεuεvεw + · · ·

In Eq. (14) the superscript “e” refers to the static elec-
tronic value (experimentally obtained by extrapolating
to the static limit from measurements at sufficiently high
frequency that vibrational contributions are negligible).
In Eq.(15) the coefficients aµ, bµ and gµ contain addi-
tional vibrational contributions that are determined by
the geometry relaxation induced by the applied static
field ε:89

aµ
tu = αe

tu + αnr
tu (0; 0) (16)

bµ
tuv = βe

tuv + βnr
tuv(0; 0, 0) (17)

gµ
tuvw = γe

tuvw + γnr
tuvw(0; 0, 0, 0) (18)

The static αe and βe also contain contributions due to
anharmonic force constants and anharmonic electrical
property derivatives. They give the vibrational contribu-
tion to βe(−ω; ω, 0), γe(−ω; ω, 0, 0) and γe(−2ω; ω, ω, 0)
in the high frequency limit (see Ref. 89). For the spe-
cial case of the vibrational linear polarizability, one can
also carry out a Berry phase treatment using the Crys-

tal code and we have found that the two methods give
identical results.

As an example of the FF-NR method, calculations
have been carried out on infinite periodic (n,0) zigzag
BN nanotubes.78,87,90 The largest tube considered (n =
36) contained 114 atoms in the unit cell. Our results
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in that case show that the vibrational contributions to
hyperpolarizabilities can exceed the electronic values as
suggested by molecular calculations and theory. The vi-
brational contribution to each linear/nonlinear property
increases with the nanotube radius. This increase is ac-
companied by an elliptical field-induced deformation of
the cross-sectional geometry, which is enhanced for larger
radius tubes due to their greater flexibility, along with a
reduced band gap. The rate of increase relative to the
corresponding static electronic property is dictated pri-
marily by the number of static fields used to characterize
the process. For the components considered it is larger
in the transverse direction.

VI. VIBRATIONS IN SOLIDS: ANALYTICAL IR
AND RAMAN INTENSITIES, VIBRATIONAL

SPECTRA AND PHONON DISPERSION

Crystal14 includes several new tools for character-
izing the vibrational properties of crystalline solids. In
particular, infrared (IR) and Raman spectra can be fully
simulated, thanks to the newly introduced analytical
computation of the peak intensities. This complements
the calculation of peak positions available since Crys-

tal03. A procedure has been added to include Lorentz
broadening and correction factors for the experimental
setup. Thus, one can generate a spectrum that can be
directly compared with experiment. Apart from the vi-
brations at the center of the Brillouin zone that are seen
in IR and Raman spectra, Crystal14 allows for the cal-
culation of Phonon dispersion, a tool that is mandatory
for investigation of thermodynamic properties.

A. Analytical Intensities

In previous releases of the code it was possible to com-
pute the infrared intensity, but not the Raman intensity.
The calculation was performed by means of numerical dif-
ferentiation. A scheme involving Wannier functions was
presented in Crystal06 and a Berry phase scheme in
Crystal09. A new approach has been implemented for
this release22–25 in which IR and Raman intensities are
computed analytically and, as a result, very efficiently.

One possible way to obtain the working equations is to
differentiate the expression for atomic gradients,91,92

ga
t =

∂E

∂ra,t

= Tr

[
1

2
(H + F )

[a,t]
D − Sa

t Dw

]

(19)

where the eigenvalue-weighted density matrix Dw =
F [Ck†εCk] has been introduced (F here is the back-
Fourier transform operator). H is the one-electron part
of the Fock matrix F . The square brackets used for the
superscript a, t in Eq. (19), indicate that differentiation
is carried out only for integrals, and does not affect the
density matrix. The aim of using Eq. (19) as a starting

point for our treatment here is top avoid explicit gradi-
ents of coefficients that would require the solution of an
additional set of coupled–perturbed equations.

Born charges (Z∗) (and then the IR intensities) and
the Raman tensor (I) can be obtained by differentiating
Eq. 19 (at equilibrium geometry) one and two times,
respectively, with respect to the electric field, and then
imposing the zero field condition:

Za ∗
tu =

∂ga
t

∂ǫu

∣
∣
∣
∣
ǫ=0

= Tr
[

1
2 (H + F)

[a,t],u
D

+ 1
2 (H + F )[a,t]

Du − SDu
w

]

ǫ=0
(20)

Ia
tuv =

∂2ga
t

∂ǫu∂ǫv

∣
∣
∣
∣
∣
ǫ=0

= Tr
[

1
2 (H + F)

[a,t],u,v
D

+ 1
2Pu,v

1
2 (H + F)[a,t],u

Dv

+ 1
2 (H + F )

[a,t]
Du,v − SDu,v

w

]

ǫ=0
(21)

These equations can be recast in a form that is compu-
tationally more efficient and suitable for implementation.
However, that requires some manipulations22,24 that go
beyond the scope of this paper. We have also extensively
discussed elsewhere22,25 that problems related to the ge-
ometric phase are entirely avoided.

The excellent numerical stability of the above proce-
dure with respect to computational parameters such as
reciprocal space sampling, integral screening thresholds
and, to some extent, basis set has been demonstrated.23

Despite its quite recent implementation, a number of ap-
plications have been carried out on interesting crystalline
systems, like quartz,23 spessartine,24 pyrope,93 jadeite,94

UiO-6623 and CPO-2795 metal-organic frameworks. In
the following sub-section we present a new study on vi-
brational properties of Forsterite.

B. Simulated Vibrational Spectra

The infrared oscillator strengths fp can be computed
for each p-th mode by means of the mass-weighted effec-

tive mode Born charge vectors ~Zp:
97,98

fp,tu =
1

4πǫ0

4π

V

Zp,tZp,u

ν2
p

, (22)

Zp,t =
∑

a,u

tp,auZa∗
tu

1√
Ma

, (23)

where ǫ0 is the vacuum dielectric permittivity (1/4πǫ0 =
1 atomic unit), V is the unit cell volume, t and u refer
to the Cartesian components, tp,au is an element of the
eigenvectors matrix T of the mass-weighted Hessian ma-
trix W, that transforms the Cartesian atomic directions
into the p-th normal coordinate directions (see Section
VI C below).
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TABLE IV: IR properties of Mg2SiO4 forsterite computed
at the B3LYP level: frequencies ν (in cm−1) and oscillator
strengths f (dimensionless).

B3u B2u B1u

# ν f # ν f # ν f

1 206.2 0.0248 14 143.1 0.0827 27 206.5 0.0020

2 274.9 0.0559 15 277.2 0.0753 28 277.6 0.2059

3 293.7 0.4393 16 292.2 1.6219 29 290.3 1.3639

4 322.2 0.0554 17 350.2 1.4693 30 313.0 0.0080

5 387.8 1.2456 18 403.3 0.2651 31 419.6 0.9781

6 411.6 1.2740 19 431.7 0.2937 32 427.9 0.2979

7 475.9 0.0128 20 464.8 0.1664 33 489.5 0.2399

8 513.4 0.3391 21 517.3 0.0444 34 513.4 0.4134

9 540.0 0.0048 22 534.5 0.2105 35 874.4 0.5953

10 613.7 0.2044 23 637.6 0.0002

11 838.1 0.0053 24 835.1 0.1342

12 961.9 0.2283 25 870.3 0.3548

13 982.4 0.2415 26 988.9 0.0078

A simulated reflectance curve Rtt(ν) along the tt direc-
tion can be obtained by means of the Fresnel formula:99

Rtt(ν) =

∣
∣
∣
∣
∣

√

ǫtt(ν) − sin2(θ) − cos(θ)
√

ǫtt(ν) − sin2(θ) + cos(θ)

∣
∣
∣
∣
∣

2

, (24)

where θ is the incidence angle of the IR beam with re-
spect to the normal to the surface and ǫtt(ν) = ǫ1,tt(ν)+
iǫ2,tt(ν) is the tt-th component of the complex dielectric
function. The maxima of ǫ2(ν) and of Im(-1/ǫ(ν)) (Loss
Function) correspond to the TO and LO frequencies, re-
spectively. Note that, when the symmetry of the system
is orthorhombic or higher, ǫ(ν) is a diagonal tensor, so
that only the xx, yy and zz components are non-null.
The classical Drude-Lorentz model99 describes the dielec-
tric function as a superposition of damped harmonic os-
cillators:

ǫtt(ν) = ǫ∞,tt +
∑

p

Lp,tt(ν) , (25)

where ǫ∞,tt is the high-frequency (electronic) dielectric
contribution and the oscillator Lp,tt(ν) is defined as:

Lp,tt(ν) =
fp,ttν

2
p

ν2
p − ν2 − iνγp

. (26)

Each oscillator is characterized by three parameters: the
frequency νp of the TO mode (note: only of the TO
mode), its strength along the tt direction fp,tt (related
to the plasma frequency ν̃p through fp = ν̃2

p/ν2
p) and the

damping factor γn. As the implemented harmonic model
does not permit to compute values for the latter quantity,
a guess or average value is usually taken26.

TABLE V: Raman properties of Mg2SiO4 forsterite computed
at the B3LYP level: frequencies ν (in cm−1) and polarized
intensities (arbitrary units; values are renormalized so that
the highest one is set to 1000).

Ag

# ν a2 b2 c2

1 188.4 7 2 2

2 233.9 14 5 10

3 307.1 29 0 8

4 328.8 3 23 10

5 344.6 15 19 12

6 424.8 14 7 2

7 559.6 5 141 136

8 618.2 328 0 2

9 819.2 519 850 187

10 856.1 1000 323 839

11 967.3 188 125 172

B1g B2g B3g

# ν d2 # ν e2 # ν f2

12 224.9 1 23 182.7 2 30 190.0 2

13 260.4 2 24 252.9 3 31 303.6 4

14 317.4 24 25 323.6 2 32 322.3 2

15 367.1 1 26 374.0 14 33 380.5 42

16 391.5 9 27 450.7 57 34 420.8 17

17 441.9 57 28 608.3 58 35 608.9 143

18 596.2 44 29 884.4 85 36 928.0 129

19 644.9 10

20 834.8 32

21 865.5 39

22 979.7 6

When simulating the experimental Raman spectrum
of a real crystal, a number of factors must be taken into
account. The relevant formulas, which are well-known,
are briefly summarized here for ease of reference. For
an oriented single-crystal the Raman Stokes scattering
intensity associated with the general tu component of
the polarizability tensor corresponding to the p-th vibra-
tional mode of frequency ωp may be calculated as:

Ip
tu ∝ C

(

αtu

∂Qp

)2

(27)

where Qp is the the normal mode coordinate for mode
p. The prefactor C depends100 on the laser frequency ωL

and the temperature T :

C ∼ (ωL − ωp)
4 1 + n(ωp)

30ωp

(28)
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FIG. 9: IR reflectance spectra of Mg2SiO4 forsterite along the
a, b and c axes (B3u, B2u and B1u symmetries, respectively)
computed at the B3LYP level. The damping factor γ is set
to 3 cm−1 for all modes. Experimental spectra from Ref. 96
are reported for sake of comparison.

with the Bose occupancy factor n(ωp) given by

1 + n(ωp) =

[

1 − exp

(

− ~ωp

kBT

)]−1

(29)

The polycrystalline (powder) spectrum can be computed
by averaging over the possible orientations of the crys-
tallites as described in Eq. (4) and (5) of Ref. 101.

While the intensity of the transverse optical (TO)
modes is straightforwardly computed once the appropri-
ate polarizability derivative is obtained, the correspond-
ing calculation for longitudinal optical (LO) modes re-

quires a correction due to χ
(2)
uvw:100,102

∂αuv

∂ra,t

∣
∣
∣
∣
∣
R0

=
1

V

∂3ETOT

∂ra,t∂Eu∂Ev

∣
∣
∣
∣
∣
E=0,R0

− 2
∑

u′

Za∗
u′t

∑

w

ǫ−1
u′wχ(2)

uvw (30)

In Eq. (30) ǫ−1 is the inverse of the high-frequency (i.e.
pure electronic) dielectric tensor. χ(2) is defined as in Eq.
(69) of Ref. 17.
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FIG. 10: Polarized Raman spectra of Mg2SiO4 forsterite com-
puted at the B3LYP level with polarizations: XX (a2 contri-
butions), YY (b2), ZZ (c2), XY (d2), XZ (e2), YZ (f2). The
damping factor γ is set to 3 cm−1 for all modes.
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1. IR and Raman spectra of forsterite

Mg2SiO4 forsterite, is the magnesium end member of
the olivine family, that are important rock-forming sili-
cates. As a demonstration of the methods presented in
this section, we show here their application to the simu-
lation of the vibrational properties of this crystal.

In Figure 9 the simulated reflectance spectrum along
the three axes a, b, c is compared with experiment. The
similarity of the two is striking, with all the main features
of the spectrum being correctly reproduced by the sim-
ulation. Note in particular that the oscillator strength
affects the width of the reflectance bands and peaks (the
larger the value, the wider the band); experimental wide
bands and narrow peaks always correspond to computed
features of the same kind. Table IV reports the main
ingredients required for the simulated spectra: the IR-
active TO vibrational frequencies and the corresponding
oscillator strengths; one more ingredient (not reported) is
the dielectric tensor computed by means of CPHF mod-
ule of Crystal14.

In Figure 10 the computed Raman spectra are reported
for the six independent orientations. It is interesting
to notice how, for this crystal, these directions indeed
provide significantly different spectra. This information
is very useful for experimentalists in order to obtain a
perfect orientation of the crystal and thus avoid leakage
from one symmetry to another. We plan in the future to
compare these data with high-quality measured spectra.
Table V reports the raw computed data that were used
to generate Figure 10. Note how the Raman intensities
range over more than four orders of magnitude, and that
several modes that are considered Raman-active upon
symmetry analysis are found to possess zero or very low
intensity. Another interesting aspect (that is not seen
in Figure 10 due to the adopted scale) is that B1g, B2g

and B3g symmetries have considerably lower absolute in-
tensities compared to the Ag modes. This highlights the
potential interest in measuring accurate directional spec-
tra since these modes (specially the B1g ones) would be
hardly seen in a polycrystalline (powder) spectrum.

C. Phonon Dispersion and Thermodynamic
properties

The calculation of vibration frequencies at the Γ point
(k = 0, at the center of the First Brillouin Zone -FBZ-
in reciprocal space), within the harmonic approxima-
tion, is available from the Crystal03 version of the
program.20,21 The vibration frequencies at the center of
the FBZ (directly comparable with the outcomes of IR
and RAMAN measurements), are obtained from the di-
agonalization of the mass-weighted Hessian matrix of the
second derivatives of the total energy per cell with respect
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FIG. 11: Differences of the entropy S of pyrope, as a function
of temperature, as computed with different supercells with
respect to the largest x16 supercell considered. Data obtained
with the B3LYP hybrid functional.

to atomic displacements u:

WΓ
at,bu =

H0
at,bu√

MaMb

with H0
at,bu =

(

∂2E

∂u0
at∂u0

bu

)

,

(31)
where atoms a and b (with atomic masses Ma and Mb)
in the reference cell are displaced along the t-th and u-
th Cartesian directions. The first derivatives of the total
energy per cell (ga

t = ∂E/∂uat) with respect to atomic
displacements from the equilibrium configuration Req are
computed analytically, whereas second derivatives nu-
merically, using a two-point formula:

∂2E

∂uat∂ubu

≈ ga
t (Req, ubu = +u) − ga

t (Req, ubu = −u)

2u
,

where u = 0.003 Å, a value 10 - 50 times smaller than
that usually used in other solid state programs.103–105

The calculation of the thermodynamic properties is
more demanding, as it requires the knowledge of phonon
modes over the complete FBZ; phonons at points dif-
ferent from Γ can be obtained by considering a supercell
(SC) of the original unit cell, following the so called direct

method.106,107 The lattice vectors g =
∑

t lgt at identify
the general crystal cell where {at} are the direct lattice
basis vectors, with t = 1, . . . , D (where D is the dimen-
sionality of the system: 1, 2, 3 for 1D, 2D, 3D periodic
systems): within Born von Kármán periodic boundary
conditions the integers lgt run from 0 to Lt − 1. The pa-
rameters {Lt} define the size and shape of the SC in di-
rect space. Let us label with G the general super-lattice
(i.e. whose reference cell is the SC) vector and let us in-
troduce the L =

∏

t Lt Hessian matrices {Hg} whose el-
ements are Hg

at,bu = ∂2E/(∂u0
at∂ug

bu) where, at variance

with equation (31), atom b is displaced in cell g, along
with all its periodic images in the crystal, in cells g + G.
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rope and difference between the two, as a function of temper-
ature. Data obtained with the B3LYP hybrid functional.

The set of L Hessian matrices {Hg} can be Fourier trans-
formed into a set of dynamical matrices

{
Wk

}
each one

associated with a wavevector k =
∑

t (κt/Lt)bt where
{bt} are the reciprocal lattice vectors and the integers κt

run from 0 to Lt − 1:

Wk
at,bu =

∑

g∈SC

Hg
at,bu√

MaMb

exp(ık · g) , (32)

The eigenvalues of the dynamical matrices are the square
of the vibrational frequencies νk

p , while the eigenvectors

correspond to the normal modes. The frequencies νk
p

define the energy spectrum of the harmonic oscillators:

Ek
p (n) = hνk

p

(
1

2
+ n

)

. (33)

The crucial point is then the speed of convergence of
the integration in reciprocal space, that is substituted
by a finite sum over the k points, a large number of
points implying calculations with a large supercell. Ther-
modynamic properties of Mg3Al2(SiO4)3 pyrope garnet
are currently under investigation.108 Figure 11 shows the
convergence of entropy as a function of the supercell size,
from the 80 atoms primitive cell, indicated as x1, up to
x16, a supercell containing 16×80 = 1280 atoms (thus
permitting to obtain the frequencies at 16 k points. All
the considered supercells do have the cubic symmetry,
so as to exploit it. In all cases, only 9 SCF+G calcula-
tions are performed. The figure shows, for various tem-
peratures, the difference for the various supercells with
respect to the x16 data. It turns out that already at
x8 entropy is quite well converged, the difference with
respect to x16 being smaller than 1 kJ/mol. In Figure
12 our ab initio results are compared with experimental
data.109,110 The overall agreement is quite good, much
better than obtained previously.111

FIG. 13: Urea ADPs at 123 K as (a) computed on a 2×2×2
supercell30 and (b) obtained experimentally.113 Ellipsoids are
drawn at 75% probability.

1. Anisotropic Displacement Parameters

Another important consequence of thermal motion is
the damping of X-ray and Neutron Scattering diffracted
intensities as a function of temperature (see Section
VIII B). These effects are usually accounted for by means
of the mean square displacements (MSD) along each nor-
mal mode of the harmonic oscillators. The sum of these
MSD over all the oscillators leads to the definition of the
Anisotropic Displacement Parameters (ADPs).112 These
quantities can now be computed automatically with the
Crystal14 version of the program.29 ADPs have re-
cently been computed with such a scheme for several
molecular crystals.30 Good agreement was found with
respect to experimental data. ADPs convergence was
studied with respect to several computational variables,
such as basis set, lattice parameters, and Hamiltonian.
In Figure 13 we report a graphical representation of the
computed and experimental113 ADPs of crystalline urea.
The overall features of atomic thermal motion are well de-
scribed, with only the computed ADPs of nitrogen over-
shooting the experimental ones.

The effect of thermal motion on the electronic charge
density (ECD) and structure factors is treated in Section
VIII B, where the case of crystalline silicon is considered.

VII. TOOLS FOR STUDYING SOLID
SOLUTIONS AND DISORDERED SYSTEMS

Solid solutions and disordered materials are charac-
terized by non periodic occupation of some sites. Ex-
perimental structure determinations normally interpret
the site-occupancy pattern in terms of average fractional
site occupations. The experimental space group of dis-
ordered crystals or solid solutions cannot be used in the
simulation of such systems, because fractional occupan-
cies of crystallographic sites cannot be adopted as such.
Each average occupation corresponds to a number of cell
configurations (i.e. distributions of the atoms or vacan-
cies involved in these fractionally occupied sites) from
the collection of which the observed crystal properties
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arise. Evaluating such average properties with quantum-
mechanical simulations is a tremendous challenge due to
the convolution of two main requirements. First, in order
to account for non periodic site occupation and to keep
periodicity, multiple cells - supercells (naa × nbb × ncc)
- have to be considered, where na, nb, nc are integers
and a, b and c are the vectors defining the primitive
experimental cell. As a consequence, structure relax-
ation becomes very expensive. Second, the number of
configurations increases as RD, where R and D are the
number of considered species and sites, respectively. The
extreme difficulty of such a task has seriously hindered
first-principle quantum-mechanical approaches so far.

In order to reduce the computational cost, the action of
symmetry on the configurations can be considered. Be-
fore presenting the tools dedicated to the study of dis-
ordered systems and implemented in the new version of
Crystal, few concepts about the action of symmetry
will be very briefly sketched. For full details, the reader
can refer to Ref. 31 and 32.

A. Brief overview on the action of symmetry

Consider a structure (of any dimensionality) charac-
terized by a symmetry group G and possessing an ir-
reducible crystallographic position d of multiplicity |D|,
occupied by atomic species A. Using Wyckoff’s notation,
this position would be noted |D|d. This structure is
known as the aristotype for the considered disordered
system.

Suppose atomic species X substitutes for A in any pro-
portion on d site. Then, |D| + 1 compositions are pos-
sible : A|D| − αX, α = 0, . . . , |D|. If positions of A and
X cannot be distinguished, the compound is said disor-
dered. For each composition, there are

|Sα| =

(

|D|
α

)

=
|D|!

α!(|D| − α)!

possibilities to place atoms A and X. Summing over the
|D| + 1 composition, |S| = 2|D| possibilities exists. Each
possibility is called a configuration. In Figure 14, two-
color configurations derived from a C4v aristotype struc-
ture are presented as a function of the composition. The
various species are sketched by colored circles. The com-
position is expressed as the ratio of the different species.
For more than two species, the number of configurations
can easily be calculated. In the present version of Crys-

tal, 2 species only are allowed.
The aristotype symmetry group naturally partitions

the set of configurations (S) into subsets of symmetry
related configurations. Two configurations are symme-
try related or equivalent if it exists an operator g ∈ G
that maps one onto the other. No element of G relates
configurations belonging to two subsets. So, subsets are
symmetry-independent classes of configurations (SICs).
Properties of configurations belonging to the same SIC

FIG. 14: (color online) Symmetry-independent classes of two-
color configurations on four positions resulting from the action
of the C4v group. M is the number of configurations per
class (multiplicity); |Gs| is the number of residual symmetry
operators in each class. The multiplicity of each class equals
|G|/|Gs|.

being identical or equivalent, each SIC can be fully de-
scribed by one representative. Any element of the class
can be chosen as a representative. The contribution of
a given SIC to average properties depends on its multi-
plicity (M) or the number of configurations it contains,
modulated by Boltzmann distribution. The multiplicity
of a given SIC is related to the symmetry of its elements
M = |G|/|Gs| where |Gs| is the group of any chosen con-
figuration in the SIC. Multiplicity and |Gs| are given in
Figure 14. Obviously, two configurations belonging to
the same SIC have the same composition, but two con-
figurations sharing the same composition may belong to
different classes (see again Figure 14, composition 2/2).

So, the number of SICs is a key quantity. Counting
the number of SICs relies on Polya’s theory that exploits
the Cauchy-Frobenius lemma, often called the Burnside
lemma:

|∆(S)| =
1

|G|
∑

g∈G

|Sg| ,

where ∆(S), |∆(S)| and Sg are the set of SICs, the num-
ber of SICs in S and the set of configurations stabilized
by g or configurations whose symmetry group contains g,
respectively. The |Sg| are easily estimated using the Cay-
ley theorem that states that any group acting on a set
of |D| points is isomorphous of a subgroup of the group
of permutations of |D| objects. As such, the symmetry
operators identified to permutations can be represented
by cycles. Considering the example in Figure 14, d1’s ac-
tion about the plane passing on 1 and 3 is described by
(1)(3)(24) while (1234) accounts for the action of the 4-
fold rotation. It follows that a configuration is stabilized
by d1 if positions in a given cycle are occupied by the
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TABLE VI: Total number of SICs ND resulting from the ac-
tion of the space group Ia3d on sets of sites (Dod : dodeca-
hedral ; Oct: octahedral) of the garnet structure considering
two species. The primitive cell contains 8 dodecahedral and
12 octahedral sites. The conventional cell is twice.

NDod NOct

Primitive cell 23 154

Conventional cell 874 179’444

same species. By induction, if |CycD(g)| is the number
of cycles for operation g acting on D, |Sg| = |R||CycD(g)|.
The number of SICs is given by Polya’s formula:

|∆(S)| =
1

|G|
∑

g∈G

|R||CycD(g)| . (34)

Polya’s formula is not a tool to generate the configura-
tions and their classes. In the 2-species case, efficient
algorithm relies on lexicographic representation and or-
dering of the configurations briefly described in the next
section. Simple applications show that the number of
SICs increases very quickly with the number of involved
sites and the number of species. In Table VI, applications
to the garnet structure considering solid solution on the
dodecahedral or the tetrahedral sites illustrate this point.
Despite factorization by the number of SICs, ab initio cal-
culations might remain unfeasible for a large number of
situations. For large systems, it becomes impossible to
generate the full list of SICs and to compute quantum
mechanically all of them. Some authors have proposed
to compute randomly selected configurations. However,
such an approach suffers drawbacks. For example, equiv-
alent calculations might be performed. The SICs are
found as a function of their multiplicity, the probabil-
ity to reach a given SIC of multiplicity M equals M/|S|.
So, the longer (low symmetry) the SIC, the larger its
probability to be found. As the size of the cell increases,
the lower the probability to reach symmetric SICs. How-
ever, several lines of thinking suggest that the most sta-
ble configuration should have high symmetry. If so, it is
important to reach the SICs independently of their sym-
metry.

This can be obtained by rewriting Polya’s formula.
Two elements g and g′ lying in the same conjugacy class
can be exchanged, so they have the same cycle structure :
|CycD(g)| = |CycD(g′)|. Then, Eq. 34 can be factorized
by conjugacy classes,

|∆(S)| =
1

|G|

|C|
∑

j=1

|Cj||R||CycD(gj)| ,

where gj is a representative of the class Cj. From this ex-
pression, probability distribution on the set of conjugacy

classes: C = {C1, ..., C|C|} can be defined:

|C|
∑

j=1

|Cj||R||CycD(gj)|

|∆(S)||G| = 1 , (35)

with

Prob(Cj) =
|Cj ||R||CycD(gj)|

|∆(S)||G| , j = 1, ..., |C| . (36)

For G and D given, the probability of the conjugacy
classes can be calculated. If a configuration s stabilized
by an operator g belonging to a given class is randomly
constructed, the probability that this configuration is in
a given SIC ω is Prob(ω ∋ s|s ∈ Sg) = |ω ∩ Sg|/|Sg|.
This probability is different from the previous one. It
can be shown that selecting the conjugacy classes with
such probability (36) and building at random a stabi-
lized configuration for each selected class, SICs are found
with an equal probability 1/|∆(S)|. A configuration sta-
bilized by an operation of symmetry is obtained mapping
all elements of the same cycle onto the same species. As
a consequence, only the identity class allows to produce
asymmetric configuration because every cycle contains
one element. If the probability of the identity is set to
zero, only symmetric configurations show up. The prob-
ability of the SICs becomes a decreasing function of the
multiplicity. The most symmetric SICs have the highest
probability to be found.

B. Implemented tools

Tools dedicated to the study of disordered materials
offer the possibility to count and generate lists of rep-
resentatives as well as the multiplicity of SICs. Disor-
dered systems involving several symmetry independent
sites can be considered, but only isoelectric substitutions
should be analyzed.

Counting and enumerating SICs

The CONFCNT keyword yields in lexicographic order
representatives of the SICs. The lexicographic order is
equivalent to the alphabetical order. The |D| involved
sites are arbitrarily ordered from 1 to |D|, the two species
are identified as 0 and 1 (0 foregoes 1). Each configura-
tion is represented by a “string” (L) of length |D| com-
posed by 0 and 1. Then a configuration s1 foregoes a
configuration s2 if for 1 ≤ i ≤ |D|, L1(i) < L2(i), L1(j <
i) = L2(j < i). For example, |D| = 4, (0010) foregoes
(0011) which foregoes (0100). This natural order permits
to perform efficient tests to identify new SICs and their
representative without requiring memory storage.

Default options (|D| + 1 compositions, symbol for the
substituting species, multiplicity, etc.) can be modified
by means of specific keywords. Among those, ONLYCOMP
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permits to select a specific composition, thus reducing
the length of the output. The number of SICs over the
|D|+1 compositions can be obtained without generating
the SICs at no computer cost. We warm the user to use
this option when starting a new study in other to avoid
lengthy output.

Two-body interactions up to a chosen distance are
symmetry-sorted invoking the INTPRT keyword. Higher-
order interactions are not considered.

Random selection of SICs

The CONFRAND keyword calls a symmetry-adapted and
tunable Monte Carlo (not Metropolis) sampling tool. At
a given composition, it returns representatives of SICs
and their multiplicity. By default, SICs are found with
the same probability, but symmetric SICs can be se-
lected. The number of SICs for the given composition
is calculated. The number of searched SICs might be
user-controlled. The number of Monte Carlo draws can
be chosen, in this case the number of found SICs is not
predefined.

Calculations on selected configurations

The CONFRAND option produces a file that allows to
perform calculations on found SICs. These calculations
are launched by the RUNCONF keyword. Taking advan-
tage of the parallel architecture, a multitask scheme is
implemented, so several configurations can be calculated
simultaneously, each one in parallel mode. The transfer
file is quite compact because each configuration is sim-
ply identified by an integer that carries full informations
about distribution of the species on the different sites.

Results on normal spinel MgFeAlO4 are shown in Fig-
ure 15. The conventional cell has been considered. Mix-
ing occurs on the 16 octahedral sites. The average en-
ergy has been calculated producing SICs according to
two schemes. In one scheme, the SICs have found uni-
formly at random independently of their symmetry. The
second one contains two steps, symmetric SICs are first
searched, then the asymmetric ones. The running av-
erage is compared to the limit value (dashed horizontal
line). In both cases, the convergence is quite rapid. But
at low temperature, searching the symmetric SICs first
seems more efficient supporting the idea that the stablest
configuration has some high symmetry.

Defining the supercell

As previously stated, simulation of disordered systems
requires the use of supercells. In such cases, full point
and translational symmetries of the supercell have to be
properly considered in order to generate a minimal list
of SICs. This includes non conventional centering of the
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FIG. 15: (color online) Spinel case study: deviation of the
Boltzmann average energy E from its limit value over the
full set of SICs, in mHartree, as a function of the number of
considered configurations n. Panels (a), (b) and (c) corre-
spond to the infinite temperature limit, 1500 K and 300 K,
respectively. For each temperature, the Boltzmann average
energy has been calculated according to two procedures over
the full set of configurations. Circle: MC sampling, square:
symmetry-enhanced sampling.

supercells. Starting from a primitive cell, suppose that a
naa+nbb+ncc supercell is built. This supercell contains
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na × nb × nc translation vectors corresponding to sym-
metry operations. Then, the space group of the supercell
to be considered is a non-conventional one and includes
the operators of the group of the aristotype compatible
with the supercell combined with the na ×nb ×nc trans-
lational operators. A special supercell option (SCELCONF
keyword) allows to deal with this non-conventional space
groups.

VIII. ELECTRON DENSITY ANALYSIS

Detailed information about the electronic structure of
crystalline compounds is provided by observables related
to the one-electron density matrix (DM), such as the
electron charge density (ECD) [ρ(r)], and the electron
momentum density (EMD) [π(p)].114 The ECD is ob-
tainable from diffraction experiments and is straightfor-
wardly related to the topological features of the system
in direct space, thus to position of nuclei and charac-
teristics of bonds. The EMD can be reconstructed from
directional Compton scattering experiments:115 the anal-
ysis of the distribution in momentum space of the slow
valence electrons is known to provide valuable comple-
mentary insight into the chemical features of the system.

Some of the new features of Crystal14 as regards
electron densities are: i) the complete topological anal-
ysis of the ECD by means of the automated integration
of the Topond package into Crystal14 (see Section
VIII A); ii) the parallelization, with linear speed-up, of
all the algorithms related to ECD and EMD; iii) calcula-
tion of anisotropic displacement parameters and Debye-
Waller thermal factors for dynamical X-ray structure fac-
tors (see Section VIII B); iv) new algorithms for the anal-
ysis of the EMD (see Section VIII C).

A. Topological analysis of Charge Density

Over the past decade, studies of chemical bonding in
solids have experienced a renovated interest. Among
other reasons, the availability of reconstructed experi-
mental electron densities, derived from high resolution
synchrotron radiation diffraction measurements,116,117

and accurate ab initio theoretical determinations, has
provided a unique opportunity for comparison, mutual
validation and enhancement in the analytical skills of
both approaches.117,118

The Quantum Theory of Atoms in Molecules119

(QTAIM), as implemented within the theoretical frame-
work of the Crystal program120 (QTAIMAC) repre-
sents the most complete density-based topological tool
for chemical bonding studies and, since 1998, has been
implemented by C. Gatti in the public code Topond.33

Currently, Topond has been embedded into the Crys-

tal14 suite of programs and the whole machinery is now
easily accessible through the keyword TOPO of its Prop-

erties module. The QTAIMAC scheme explicitly refers

FIG. 16: From top to bottom: electron density, ρ(r), its
Laplacian, ∇2ρ(r) and the ∇ρ(r) trajectories for graphene
(left panels) and boron nitride (right panels). Bond paths are
indicated in heavy black lines and the bond critical points are
denoted by filled circles. Dotted blue lines indicate negative
contour levels.

to the experimentally observable electron density and yet
involves different quantities whose analysis can be carried
out separately but whose properties have to be combined
and discussed together in order to get a complete and re-
liable picture of the underlying bonding network.

A first step of the analysis provides so-called critical
points (CP) of space, that are points where the gra-
dient of any scalar function vanishes. It is worth not-
ing that a two-way correspondence between CPs of the
density, ∇ρ(r) = 0, and chemically recognizable struc-
tures such as nuclei, bonds, rings and cages, is always
possible.120 Then, the topological analysis of the Lapla-
cian of the electron density, ∇2ρ(r), can reveal the atomic
shell structure and the degree of sharing of paired elec-
trons among neighboring atoms. In particular, it has
been shown that local maxima and minima in ∇2ρ(r), in
the valence shell region of an atom (VSCC) are intimately
related to the formation of chemical bonds and conse-
quently to the presence of share electrons and/or lone
pairs.119,121 This is particularly true in the case of metal-
lic elements where the Laplacian distribution, in contrast
to the charge density, can often reveal asphericity result-
ing from an incomplete filling of the d-shell, suggesting
possible mechanisms for metal-ligand interactions.122,123
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FIG. 17: Atomic Debye-Waller damping factors at 298 K,
computed with four different Hamiltonians from their respec-
tive best determinations of the ADP for the set of 18 structure
factors of Ref. 127 for silicon. The experimental points cor-
respond to the ADP of Ref. 128.

Furthermore, a comparison of crystalline CPs and Lapla-
cian features with the corresponding ones in the case of
isolated molecules, or atoms, enables to evaluate pack-
ing and cooperative effects on the bonding character.124

Moreover, QTAIMAC allows for the determination of
atomic basins and their properties like the volume, the
electronic population, Lagrangian and Hamiltonian elec-
trons kinetic energy. Properties for the total system
can be thus defined and calculated in terms of atomic
contributions.125 Finally, Topond can evaluate many lo-
cal quantities like kinetic energy densities, virial densities
and Becke electron localization function.126 As a matter
of fact, topological properties have been extensively used
in the characterization of the energetic features of inter-
molecular interactions in molecular and weakly bound
solids and have provided new descriptors and tools for
the study of chemical bonding.

In Figure 16 the electron density, its Laplacian and
the gradient trajectories are reported for two layered pe-
riodic hexagonal crystals, namely graphene (left panels)
and boron nitride (right panels). Both structures can
be understood as a network of strong interactions where
the difference between homo- and hetero-bonds can be
fully appreciated. The possibility given by Crystal14

to incorporate electron correlation effects, by using hy-
brid, double-hybrid or MP2 corrected density matrices,
represents a great opportunity and a significant progress
towards a better understanding of the experimental re-
sults (see Section IX).

B. Debye-Waller Thermal Factors

Due to the fact that core and inner-valence electrons
of atoms follow the movement of the respective nuclei,
when ECD and related X-ray structure factors (XSF)
are considered, it is mandatory to account for the effect
of finite temperature, for instance by means of atomic
harmonic Debye-Waller thermal factors.112 An enormous
amount of literature has been devoted to the approximate
evaluation of such effects in order to allow for a correct
interpretation of the X-ray scattering data.118

If a harmonic lattice potential is considered, then
the probability density function of the nuclear displace-
ments with respect to the equilibrium configuration of the
atoms turns out to be a Gaussian function.129 The most
common way nuclear motion effects are dealt with when
X-ray diffraction is considered is by means of Debye-
Waller (DW) atomic factors which damp the diffrac-
tion intensities with respect to increasing wave num-
ber and temperature. Atomic DW factors are usu-
ally computed from atomic anisotropic displacement pa-
rameters (ADP). It has recently been suggested that
ADPs are scarcely affected by anharmonicity so that
harmonic mean-square displacements already provide a
good description even of strongly anharmonic nuclear
potentials.130

In the Crystal14 program, we have developed a fully
ab initio approach for the computation of ADPs, by
solving the lattice dynamics of the system (see Section
VI C for details), DW factors and dynamical XSFs.29

This scheme has been applied to the calculation of ADPs
of a series of molecular crystals such as urea, benzene,
urotropine and L-alanine and a satisfactory agreement
has been reported with available experimental data.30

As a test-case for the ab initio calculation of dynami-
cal X-ray structure factors, we have considered crystalline
silicon.29 In general, experimental diffraction intensities
and charge densities are less accurate than energy-related
properties.131 Crystalline silicon represents an exception
because of the high level of purity of its single crystals
and availability of a very accurate technique for the mea-
surement of dynamical structure factors (Pendellösung
fringes method)132–134 which are known by an order of
magnitude more accurately than for any other crystal.127

In Figure 17 we report the DW damping factors com-
puted with four different Hamiltonians from their respec-
tive best determinations of the ADPs for the set of 18
structure factors Fhkl of Ref. 127. The experimental
points correspond to the ADP of Ref. 128. It is seen
that HF and B3LYP underestimate the ADP and give
a too small damping, the LDA overestimates the ADP
while PBE is in very good agreement with experiment.

The technique used relies on the accurate description
of the lattice dynamics and of the electron charge distri-
bution of the system. The description of both aspects is
dramatically affected by the adopted quantum chemical
method. In the case of crystalline silicon, we find that
the PBE functional of the DFT provides the best values
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FIG. 18: (color online) Anisotropy map of the EMD of α-
quartz as computed at HF level in a vertical plane; the vertical
(θ=0◦) and horizontal (θ=90◦) axes coincide with the [001]
and [100] crystallographic directions, respectively. The step
between isolines is 0.01 a.u. and the maximum and minimum
values reported are 0.1 and -0.1 a.u. The red thick and the
black thin lines mark the region of the map where |p|=1.0
and 1.3 a.u., respectively.

for both properties. An overall agreement factor of 0.47
% between the ab initio predicted values and the exper-
imental determinations is found, as regards dynamical
structure factors.

C. Momentum Density

The EMD π(p) is a single-center function, invariant
under the symmetry operations of the point group of the
crystal, augmented with the inversion arising from the
equality π(p) = π(−p);135 such an object is a function
of the counterintuitive momentum-space coordinates and
it is characterized by a “collapsed” character about the
origin p = 0. For these reasons it is generally difficult
to extract the information content of the EMD that is
usually revealed in its very subtle features.

In recent years, a series of strategies have been de-
vised and implemented in the Crystal14 program for
the analysis of the EMD and Compton profiles (CP) of
crystalline materials:

• The computation of the EMD from the density ma-
trix of the system; merits and drawbacks of this
scheme with respect to that based on the crystalline
orbital coefficients have been illustrated.35 One of
the main advantages is that of making the compu-
tation of the EMD of crystals possible at the MP2

level of theory, through the MP2 density matrix
provided by the Cryscor program.136

• The automated evaluation of the spherical aver-
age (SA) EMD function πSA(|p|) and computation
of the EMD-anisotropy ∆π(p) = π(p) − πSA(|p|).
This scheme allows for the automated computation
of EMD-anisotropy maps.34 As an example, Figure
18 reports an anisotropy map of the EMD of α-
quartz, as computed at HF level in the (010) plane.
The region of maximum anisotropy lies at |p| values
between 1.0 and 1.3 a.u. in this case.

• A partition scheme of the total EMD of a crystal
into contributions coming from well-defined chem-
ical subunits [π(p) =

∑

i πi(p)] that takes advan-
tage of the localization of the crystalline orbitals
into Wannier functions.34,137–141

• As regards momentum space, the usual approxi-
mation of completely neglecting nuclear motions
can result in a reasonable estimate of the CPs and
the effect of finite temperature is seldom explicitly
considered, although few ad hoc models have been
reported.142,143 We have recently developed an ab

initio Monte Carlo technique for the determination
of the thermally averaged electronic first-order den-
sity matrix of crystals, in a harmonic approxima-
tion. The CPs and EMD of crystals can be com-
puted at any temperature within such a scheme in
a general, even if costly, way.144

• The recent development of an algorithm for com-
puting CPs from the density matrix of the sys-
tem, rather than from the crystalline orbitals,
made possible the investigation of the effect of
the adopted computational method on momentum
space properties, even beyond the one-electron ap-
proximation, with the MP2 approach implemented
in the Cryscor program.136 We have shown that
very accurate directional CPs, as can be measured
from the inelastic scattering of high intensity syn-
chrotron radiation by single-crystal samples,145,146

can reveal subtle aspects of the electronic struc-
ture of periodic systems. In the cases of urea,147

silicon148,149 and quartz34 the theoretical CPs ob-
tained using single-determinantal approximations
to the ground-state wave function were found in
fact to present definite discrepancies with respect
to the experiment, which were partly removed when
use was made of an ab initio technique based on a
multi-determinantal description of the wave func-
tion, namely MP2.

IX. CLIMBING THE JACOB’S LADDER FOR
SOLIDS

Density Functional Theory (DFT), in its Kohn-Sham
formalism, has now reached a widespread success with
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an ever increasing number of applications in chemistry,
materials science and solid-state physics.150 In the quest
for the unknown exact exchange-correlation (XC) func-
tional, many different approximations (DFA) have been
proposed. Even if not systematically improvable, DFA
can be classified in a hierarchical fashion according to
the “Jacob’s Ladder” proposed by J. P. Perdew.151 When
climbing the ladder, more complex ingredients are in-
cluded in the mathematical form of the XC functional
with the aim of reaching higher accuracy. The rungs of
increasing accuracy/complexity are: (1) LDA, (2) GGA,
(3) meta-GGA, (4) hyper-GGA and (5) RPA-like func-
tionals.

In Crystal14, all rungs of the Jacob’s Ladder are
available. Along with LDA and GGA functionals, al-
ready included in the previous versions of the code, XC
functionals belonging to the third-, fourth- and fifth-rung
have been implemented, namely: semilocal and hybrid
mGGA functionals, Range-Separated Hybrids (RSH)
(4th-rung) and Double Hybrids (5th-rung).

A. New DFT functionals in CRYSTAL14

1. mGGA functionals

mGGA functionals currently implemented in Crys-

tal14 are τ -dependent and belong to the Minnesota’s

set, namely the M05 and M06 families.152–156 They in-
clude: the M05 global hybrid functional and its M05-2X
variant with a doubled amount of HF exchange; the M06
hybrid functional and its variants from the 100% HF ex-
change (M06-HF) to the M06-2X functional with twice
amount of exact exchange and the pure mGGA function-
als M06-L.

2. Range-Separated Hybrid functionals

While global hybrids (GH) include a constant amount
of exact exchange, in the RSH functionals the amount of
HF exchange depends on the distance between electrons.
This is obtained from the separation of the Coulomb op-
erator in different ranges, usually by means of the error
function.157 When a partition into three pieces is adopted
the Coulomb operator looks like:

1

r12
=

erfc(ωSRr12)

r12
︸ ︷︷ ︸

SR

+
1 − erfc(ωSRr12) − erf(ωLRr12)

r12
︸ ︷︷ ︸

MR

+
erf(ωLRr12)

r12
︸ ︷︷ ︸

LR

(37)

where ω is the length scale of separation. The general
form of a range-separated hybrid is then:

ERSH
xc = EDFA

xc + cSR(EHF
x,SR − EDFA

x,SR ) +

+ cMR(EHF
x,MR − EDFA

x,MR) + cLR(EHF
x,LR − EDFA

x,LR )

According to the values of cSR, cMR, cLR, ωSR and ωLR,
short-, middle- and long-range corrected RSH function-
als can be defined. This allows one to include exact ex-
change in the selected interelectronic range and take ad-
vantage of its peculiar features. Short-range corrected
(or Screened Coulomb) RSH functionals remove long-
range HF exchange and are designed for solids where
the LR-HF can lead to numerical instability, in partic-
ular for metallic systems. On the contrary, long-range
corrected RSH functionals include HF exchange at LR
to recover the correct decay of the exchange potential
which is wrong in semilocal DFT functionals. In between,
middle-range corrected RSH functionals are targeted to
take advantage of the best of both worlds.

Crystal14 offers a wide variety of RSH func-
tionals, namely: HSE06158 and HSEsol159 (Short-
range Corrected); HISS160,161 (Middle-range Corrected);
RSHXLDA162, LC-ωPBE, LC-ωPBEsol163, ω-B97 and
ωB97-X164,165 (Long-range Corrected). The Henderson-
Janesko-Scuseria model of the PBE exchange hole166 has
been adopted for the implementation of HSE06, HISS,
LC-ωPBE and related RSH methods. This hole allows
a fully analytical evaluation of the range-separated en-
hancement factor and recovers the correct PBE limit.

3. Double Hybrid functionals

Double hybrid functionals (DH) are hybridized not
only in the exchange part by including a certain amount
of HF exchange (i.e. the dependence on occupied or-
bitals) but also in the correlation part. In this case, hy-
bridization involves the mixing with a contribution to the
correlation energy that depends on unoccupied orbitals
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through a MP2-like perturbative correction. Different
schemes have been proposed, see Ref. 167 for a detailed
list of double hybrid methods. Double hybrid functionals
implemented in the code have the general formula:

EDH
xc = (1−A)∗EDFA

x +A∗EHF
x +(1−B)∗EDFA

c +B∗EMP2
c

as proposed by Grimme.168 A rigorous proof of the equa-
tion above within the adiabatic connection formalism
has been recently reported.169 The MP2-like correlation
correction to the SCF energy is computed by means of
the Cryscor program.136,170,171 According to the equa-
tion above, the following DH functionals have been made
available in Crystal14: B2PLYP, mPW2PLYP168,172

and B2GP-PLYP.173 Although the cost of the calcula-
tion is the same as for MP2, double hybrids are less ba-
sis set dependent and partly overcome the drawbacks of
DFT methods in the description of weak dispersive in-
teractions.

4. Availability

Energies and analytic gradients are available for LDA,
GGA, mGGA and related hybrid functionals, for both
closed- and open-shell systems. DFT calculations can be
run either sequentially or in parallel. For double-hybrids,
only energies are available. Note that they have the same
computational cost as MP2 rather than DFT. Calcula-
tions can only be run sequentially and for closed-shell
systems. Parallel calculations will be made available with
a future Cryscor release.174

Approximately, the cost of the calculation is: LDA <
GGA ∼ mGGA < GH < RSH << DH. The higher cost
of RSH with respect to GH is mainly due to the miss-
ing bipolar expansion approximation for two-electron ex-
change integrals.

Properties that require the solution of the CPKS equa-
tions (e.g. polarizabilty, hyper-polarizabilities and Ra-
man intensities) are limited to a subset of LDA, GGA
and related global hybrid functionals (see Ref. 36 for
details).

B. Validation of XC functionals for solids

Most of the exchange-correlation functionals added
to Crystal14 have been designed and optimized for
molecules. It is then interesting to validate them for
application to solids. Moreover, it has been recently
claimed that global hybrids and long-range corrected
RSH functionals are impractical for calculation of crys-
talline systems.175 Here, we show that they can be ap-
plied to solids as well. As a comparison between various
DFA flavors, we report results for the prediction of the
lattice parameter, bulk modulus and band gap of a rep-
resentative set of nine simple solids, namely: three ionic
solids which feature medium-to-wide band gap (i.e. LiF,

TABLE VII: Mean deviation (MD) and mean absolute devi-
ation (MAD) for the equilibrium lattice constants (Å), bulk
moduli (GPa) and band gaps (eV) from a variety of DFA with
respect to reference values (see text for details) for the set of
nine solids a

Method Lattice constant Bulk modulus Band gap

MD MAD MD MAD MD MAD

HF 0.062 0.065 16.7 17.6 6.32 6.32

LDA -0.030 0.032 8.7 9.2 -1.84 1.84

PBE 0.082 0.082 -9.9 0.1 -2.01 2.01

PBEsol 0.028 0.029 -1.8 4.5 -1.98 1.98

B97 0.074 0.074 -4.6 5.6 -0.46 0.72

B3LYP 0.079 0.079 -5.7 7.2 -0.52 0.89

PBE0 0.032 0.035 6.1 6.7 -0.07 0.63

PBEsol0 -0.004 0.015 12.0 12.0 -0.02 0.62

HSE06 0.035 0.038 5.0 6.4 -0.69 0.71

HSEsol -0.002 0.016 11.1 11.1 -0.65 0.65

HISS 0.007 0.022 16.3 16.3 0.13 0.51

LC-ωPBE -0.007 0.036 21.0 21.0 4.28 4.28

LC-ωPBEsol -0.053 0.053 35.0 35.0 5.49 5.49

ω-B97 0.027 0.028 11.2 11.2 4.22 4.22

ω-B97X 0.036 0.037 8.8 8.9 3.79 3.79

RSHXLDA -0.009 0.037 17.9 18.2 4.50 4.50

M06-L 0.043 0.043 -0.9 6.8 -1.39 1.39

M06 0.051 0.056 1.2 6.3 -0.06 0.71

M06-2X 0.020 0.046 12.1 12.1 1.91 1.91

a The full set of results is available as supporting information.

NaCl, MgO) and six semiconductors (i.e. C, Si, Ge, SiC,
GaN, GaAs) ranging from very wide to very narrow band
gap semiconductors.

Computed results are listed in Table VII. Mean devi-
ations (with respect to a dataset of reference values are
reported for eighteen XC functionals that belong to the
first four rungs of the Jacob’s Ladder. Results for HF
are also included for comparison. Apart from LiF and
NaCl, basis sets for other solids have been taken from
Ref. 176. For LiF and NaCl a triple-zeta quality basis
set has been employed. The reference dataset includes:
(i) experimental lattice constants corrected for the zero-
point anharmonic expansion, as reported in Ref. 177;
experimental bulk moduli from Ref. 178 and (iii) low
temperature (< 77 K) experimental (fundamental) band
gaps.179–181

As regards the prediction of the lattice parameters,
PBEsol0 and HSEsol are the best performers, followed
by HISS and PBEsol. As expected, HF tends to overesti-
mate the lattice parameters, while LDA underestimates
them. Pure GGA and mGGA functionals overstimate
lattice constants but results improve when a GGA func-
tional devised for solids, as PBEsol, is used. Inclusion
of HF exchange in GHs and RSHs also improves the re-
sults but this depends on the adopted XC functional (e.g.
PBE vs PBEsol based hybrids).
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Most of the tested XC functionals tend to overestimate
the bulk modulus of the examined solids. Oddly, the
overestimation increases when passing from SC- to MC-
to LC-RSH methods, as in the series: HSE06, HISS and
LC-ωPBE. A possible explanation is that the reference
data are less reliable than for lattice constants. In any
case, PBEsol shows the lowest MAD, followed by B97,
HSE06 and M06.

The correct prediction of the band gap is still a mat-
ter of debate in DFT. Here, we computed the band gap
within the Kohn-Sham formalism as the difference be-
tween the top of the valence bands and the bottom of
the conduction bands. This corresponds to the defini-
tion of the fundamental gap. Therefore, reference data
have been chosen to be consistent to that definition.
The examined systems span a range from 0.5 to 15 eV.
As expected, all semilocal functionals underestimate the
band gap, while global hybrids, short- and middle-range
RSH functionals give very good results. On the con-
trary, LC-RSH methods tend to overestimate the band
gap of solids. This is not unexpected because the inclu-
sion of HF exchange at long-range makes them closer to
HF which is know to largely overestimate the band gap.
However, finding the best XC functional for band gap
prediction is not an easy task, as recently discussed by
some of us.182

Overall, hybrid functionals, both global and short-
range corrected, give the best results for basic solid state
properties, in particular when combined with a semilocal
functional devised for solids, as PBEsol. Nevertheless,
a middle-range corrected functional as HISS might be a
good compromise, because of its good performance for
molecular properties as well.161,183 The good accuracy
of hybrid HF/DFT methods as testified by Table VII,
as well as other results reported in the present work, and
their very efficient implementation in the code make then
Crystal14 stand out for its application in solid state
chemistry and materials science.

X. CRYSTAL14 PERFORMANCE

In the preparation of Crystal14 some effort has been
devoted to improve general efficiency and optimize mem-
ory storage, particularly concerning executions in parallel
on a large number of processors for large unit cell cases.
Performance of Crystal14 has already been discussed
in the particular case of highly symmetric systems such
as the nanotubes illustrated in Section II. Such calcula-
tions, which are shown to be feasible on one processor of
an ordinary desktop, can be run very efficiently in parallel
on a large number of processors because very good load-
balancing in the computation of one- and two-electron
integrals has now been complemented with an effective
distribution of the matrix diagonalization task over the
irriducible representations of the symmetry group of the
system, that is, for example, 640 in the case of the largest
nanotube considered in Section II. Indeed, one can

achieve almost ideal load-balancing and scaling in these
particular cases where the nanotube symmetry proper-
ties imply that all irreducible representations include an
equal number of basis functions, i.e. all matrices to be
diagonalized have equal size.

Surfaces and interfacial phenomena, defective solids,
biomaterials, and nanoparticulate systems, all require
models including a large number of atoms in the unit cell
and low symmetry, mostly P1. Crystal14 has been op-
timized to be efficient and low memory consuming also in
these cases and take advantage of the availability of High
Performance Computing (HPC) resources, which have
become the method of choice in those areas of science and
technology that require the treatment of large amounts
of data or the accomplishment of particularly demanding
computational tasks. MPPcrystal, the massive paral-
lel version of the program, first available in Crystal09,
make it possible to perform calculations on hundreds or
even thousands of CPUs, depending on system size. Scal-
ability of the code both with respect to system size and
with respect to the number of processors has been in-
creased significantly with repect to previous implementa-
tion in Crystal09.184,185 Efforts have been devoted also
to the reduction of the memory footprint of the code, as
the general trend in HPC systems is towards a decrease
of the per core available RAM, due to the cost of memory
both in terms of production and power consumption.

We refer the mesoporous silica MCM-41 structure as a
test case for performance analysis of the current version
of MPPcrystal. It consists of a unit cell containing 579
atoms. The basis set was obtained from a 6-31G∗ Pople’s
standard basis set leading to nearly 8000 (7756) AOs in
the unit cell. For tests at higher system sizes, supercells
were built expanding the MCM-41 unit cell along the c
axis. Different supercells will be denoted as Xj, with j
being an integer defining the order of expansion along
c. The B3LYP hybrid exchange-correlation density func-
tional was used. Every run consists in an energy and
gradient calculation, SCF+G, which are representative
of a typical Crystal run. For example, structure opti-
mizations and phonon calculations consist essentially of
several iterations of SCF+G steps.

A. CPU Time Scaling

MCM-41/X1 can be considered a medium-size system
relative to current capabilities of MPPcrystal since
a SCF+G calculation can be run fairly efficiently on
a limited number of cores (less than 10) and use of
HPC resources is not strictly necessary, although fast-
communication hardware is beneficial for attaining ex-
cellent scalability. SCF+G calculations for MCM-41/X1
were run in the range of 8-64 cores both on a local Linux
cluster of Intel-Xeon processors with Ethernet connec-
tions and SuperMUC (LRZ, Germany), a HPC IBM Sys-
tem x iDataPlex powered by 16 Intel cores per node run-
ning at 2.7 GHz, with 2 GB/core (Figure 19).
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FIG. 19: Per core running time scaling and memory use with
number of computing cores for MCM-41/X1 (7756 atomic or-
bitals in the unit cell) on a local Linux cluster and HPC Su-
perMUC system.

Scalability with the number of cores employed (n) is
represented in terms of Speed-up with reference to the
case with n=8: Speedup= t8/tn, where tn is wall-clock
time required for a SCF+G calculation run with n cores.
The curve obtained with the HPC system closely ap-
proaches the bisectant in Figure 19 corresponding to ideal
full scalability within this range of n. Out of this range,
scalability is still good. For example, Speed-up = 14.1
vs an ideal value of 16 at n=128, but it tends to de-
teriorate for higher n (Speed-up 25.7 and 42.6 vs ideal
32 and 64, respectively, for n=256 and 512) The ma-
trix diagonalization step carries the main responsibility
for degrading scalability. In our experience the ratio of
the number of basis functions in the unit cell (nBS) to
n is a good index for evaluating the expected degree of
scalability and it can be stated that good scalability is
granted by nBS/n ≥ 50. This criterion suggests that as
many as n=155 cores can be used to run this particular
calculation efficiently.

The other curve in Figure 19 obtained from perform-
ing the same calculations with the local cluster shows at
what extent slow communications affect scalability. A
Speed-up of 5.6 for n=64 is still not dramatically far
from the ideal value of 8, though much worse than 7.5
as obtained with SuperMUC, thus suggesting that MP-

Pcrystal can also be run on ordinary hardware without
dramatic loss in performance. In absolute terms, it took
3970 wall-clock sec to run one full SCF+G Crystal cal-
culation for MCM-41/X1 on 64 cores of our local cluster
vs 1990 sec on better performing SuperMUC. Recent im-
provements in memory storage management enabled us
to run such a calculation also with Pcrystal by keeping
memory requirements below 2 GB memory occupation
per core. Comparison with Pcrystal emphasizes the
great advantage of MPPcrystal in this case. Indeed,
this is a very unfavorable run with Pcrystal, because
of expected large memory requirements and severe inef-
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FIG. 20: Running time scaling with the number of computing
cores as a function of the system size on the SuperMUC sys-
tem. Different supercells of MCM-41 are considered, starting
from X1 (7756 AOs) up to X10 (77560 AOs).

ficiency in diagonalization. Diagonalization is performed
only for matrices in the Γ point in this case, due to the
large size of the unit cell. As a consequence, that step
is thoroughly in charge of one of the cores with Pcrys-

tal, all others being idle, and an SCF+G calculation
required 74375 sec to be completed by 64 cores of our
local cluster, that is, nearly 20 times more inefficiently
than MPPcrystal.

Data in Figure 19 and previous considerations suggest
that MPPcrystal can be used for even larger unit cell
cases provided an adequate amount of computational re-
sources is allocated. That such a possibility exists is con-
firmed by data reported in Figure 20, where performance
in SCF+G calculations for supercells of MCM-41 up to
MCM-41/X10 is shown in a range of 32-2048 core uti-
lization (in this case Speedup is referred to t32). In the
first place, Figure 20 verifies that very large unit-cell cal-
culations can be run in the scale of nowadays easily ac-
cessible HPC resources. Moreover, Crystal14 appears
to be fairly efficient and shows very good scalability for
any appropriate choice of n with respect to the size of
the problem. That is easily appreciated, for example, by
comparing curves referring to MCM-41/X1 with MCM-
41/X10, as best scalability, satisfying the criterion de-
fined above based on the ratio of nBF to n, is obtained
for n ≤ 155 and n ≤ 1550, respectively, in the two cases.

Very similar trends were obtained by running the same
calculations on other HPC architectures, such as HEC-
ToR (UK), a Cray XE6 system, based on 12-coreAMD
Opteron 2.1GHz Magny Cours processors, and Fermi
(CINECA, Italy), an IBM Blue Gene Q system. Scalabil-
ity improves slightly for IBM Blue Gene systems, because
a poorer per core performance implies a smaller visibility
of the communication overheads and a less relevance of
the worst scaling algorithms such as the diagonalization
step. It is important to notice that scalability can de-
pend strongly on various factors, since different parts of
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FIG. 21: Running time scaling for a SCF calculation with
increasing size of the supercell of MCM-41 on 1024 cores of
the HPC SuperMUC system. Scaling of single steps such as
the calculation of the integrals and diagonalization are also
reported with reference to ideally linear, quadratic and cubic
trends.

the code show better parallel performance with respect
to others. For example, if on one hand the two-electron
integral algorithm is known to scale perfectly with the
number of CPUs, on the other hand the diagonaliza-
tion procedure, which is based on the Scalapack routines,
shows a rather poor scaling. The overall scaling depends
on the relative importance of these two steps in the SCF
cycle. This is apparent in Figure 21 where, despite the
good scaling previously shown with the number of cores,
computational time increases almost quadratically with
the size of the supercell. Indeed, because the calcula-
tion of two-electron integrals has become still more effi-
cient and closely approaches linear scaling in Crystal14,
time required for matrix diagonalization, which exhibits
a quadratic behavior as far as MCM41/X8 (then tending
to cubic), dominates and determines the general trend.

Furthermore, scaling depends strongly on the density
of the system under investigation and the number of one-
and two-electron integrals to be computed depends on
the overlap of the basis functions. For the reasons men-
tioned above more compact crystals than MCM-41 are
expected to exhibit better overall scaling with respect to
the number of cores used. As an example, data about
performance for a 3×3×3 supercell of calcite is reported
in table VIII. Although such a supercell contains less
than half of the atoms in MCM-41/X1 (270 vs. 579), scal-
ability on SuperMUC follows a better scaling: at n=2048,
Speed-up is 43.5 for calcite and only 26.1 in the case of
MCM-41/X1, both to be compared with an ideal factor
of 64.

TABLE VIII: Speed-up for a 3×3×3 calcite supercell as a
function of the number of cores (n). All calculations were
performed with the hybrid B3LYP functional on SuperMUC.
tn is wall-clock time in seconds. Efficiency was evaluated as:
Speed-up×32×100/n

.

n tn Speedup Efficiency

32 38471.3 1.00 100%

64 19769.0 1.95 97.3%

128 9866.3 3.90 97.4%

256 5116.4 7.52 93.9%

512 2753.6 13.97 87.3%

1024 1576.7 24.40 76.2%

2048 883.4 43.55 68.0%

B. Memory Storage

Diminishing memory requirements has been a main
challenging issue in extending the capabilities of Crys-

tal to handle large unit-cell systems in the HPC context
where the general trend implies reduced memory avail-
ability both in terms of GB/core and bandwidth. Such
result has been achieved partially by extending the use
of dynamical memory allocation enormously, optimizing
memory usage throughout the entire code, particularly in
the most memory consuming steps, carefully taking spar-
sity into account and progressively distributing more and
more data to the cores.

Figure 19 contains a plot of the maximum memory
required by MPPcrystal to run a MCM-41/X1 on a
different number of cores. One of the main features of
MPPcrystal is an optimized use of memory resources
obtained by distributing data to cores as far as possi-
ble. However, even MPPcrystal includes a part of
replicated data, which are mainly related to informa-
tion of very general use, such as mapping tables, or data
that, if distributed according to a predetermined pat-
tern, would downgrade load balancing of the algorithms.
This is the reason why the memory-occupation curve in
the Figure appears as to be tending to an asymptotic
value for large values of n, which represents the maximum
amount of replicated data being stored to memory dur-
ing an SCF+G calculation for MCM-41/X1. The max-
imum request for memory amounts to 945 MB per core
at n=8. Such request is drastically reduced at n=16 be-
cause memory occupation is dominated by the size of the
matrices defined in the reciprocal space (Fock and over-
lap matrices, eigenvectors) which are fully distributed to
the cores, so that a higher number of cores corresponds
to more effectively distributed data. As n grows, blocks
of such matrices distributed to each core become smaller
and smaller until data distribution is almost complete
and the base of the replicated-data emerges.

Figure 22 shows how memory request evolves when
considering large supercells of MCM-41 and how effi-
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FIG. 22: Maximum per core memory usage (Megabytes) in a
SCF calculation for MCM-41 supercells with increasing size
on 512 and 1024 cores of the HPC SuperMUC system.

ciently increasing n enables to extend the size of the
system that can be handled below an assumed thresh-
old of 2 GB of memory used per core, which is about the
amount of memory one expects to be available in most
HPC systems, like SuperMUC. Figure 22 shows that, for
example, supercells as large as MCM-41/12X satisfy such
requirement with n=2048. For larger supercells, such as
MCM-41/16X (more than 110000 basis functions), pre-
liminary calculations show that the replicated-data part
becomes relevant and approaches the 2 GB limit, so that

improvements are needed to further reduce memory re-
quirements and enhance data distribution.
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17 M. Ferrero, M. Rérat, B. Kirtman, and R. Dovesi, J.

Chem. Phys. 129, 244110 (2008).
18 R. Orlando, M. Ferrero, M. Rérat, B. Kirtman, and
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R. Dovesi, J. Chem. Phys. 139, 164102 (2013).

24 L. Maschio, B. Kirtman, R. Orlando, and M. Rérat, J.
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R. Dovesi, J. Chem. Phys. 139, 167101 (2013).

26 M. De La Pierre, R. Orlando, L. Maschio, K. Doll,
P. Ugliengo, and R. Dovesi, J. Comp. Chem. 32, 1775
(2011).

27 A. M. Ferrari, L. Valenzano, A. Meyer, R. Orlando, and
R. Dovesi, Journal of Physical Chemistry A 113, 11289
(2009).

28 C. Carteret, M. De La Pierre, M. Dossot, F. Pascale,
A. Erba, and R. Dovesi, J. Chem. Phys. 138, 014201
(2013).

29 A. Erba, M. Ferrabone, R. Orlando, and R. Dovesi, J.
Comput. Chem. 34, 346 (2013).

30 A. O. Madsen, B. Civalleri, M. Ferrabone, F. Pascale, and
A. Erba, Acta Crystallogr. Sec. A 69, 309 (2013).

31 S. Mustapha, P. D’Arco, M. De La Pierre, Y. Noel,
M. Ferrabone, and R. Dovesi, J. Phys.: Condens. Mat-
ter 25, 105401 (2013).

32 P. D’Arco, S. Mustapha, M. Ferrabone, Y. Noel, M. De
La Pierre, and R. Dovesi, J. Phys.: Condens. Matter 25,
355401 (2013).

33 C. Gatti, TOPOND-96 : an electron density topological
program for systems periodic in N (N=0-3) dimensions,
User’s manual, CNR-CSRSRC, Milano (1996).

34 C. Pisani, A. Erba, S. Casassa, M. Itou, and Y. Sakurai,
Phys. Rev. B 84, 245102 (2011).

35 A. Erba and C. Pisani, J. Comput. Chem. 33, 822 (2012).
36 R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando,

C. M. Zicovich-Wilson, F. Pascale, K. Doll, N. M.
Harrison, B. Civalleri, I. J. Bush, et al., CRYSTAL14
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