
29 July 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

High pressure elastic properties of minerals from ab initio simulations: The case of pyrope,
grossular and andradite silicate garnets.

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/157217 since 2016-01-05T12:47:51Z



This is an author version of the contribution published on:

A. Erba, A. Mahmoud, D. Belmonte, R. Dovesi
High pressure elastic properties of minerals from ab initio simulations: The

case of pyrope, grossular and andradite silicate garnets.
THE JOURNAL OF CHEMICAL PHYSICS (2014) 140



High Pressure Elastic Properties of Minerals from Ab initio Simulations: The

Case of Pyrope, Grossular and Andradite Silicate Garnets.
A. Erba,1, a) A. Mahmoud,1 D. Belmonte,2 and R. Dovesi1

1)Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces),
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A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline
materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on
the automated computation of pressure-dependent elastic stiffness constants, is implemented in the Crystal

solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young
moduli, directional seismic wave velocities, elastic anisotropy index, Poisson’s ratio, etc.) can be computed
for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic
properties of three silicate garnet end-members (namely, pyrope, grossular and andradite) which are of great
geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical
approach is proved by comparing with available experimental measurements. The description of high-pressure
properties provided by several equations of state is also critically discussed.

I. INTRODUCTION

The elastic properties of the Earth’s crust, mantle
and transition zone, that can be measured by modern
seismological techniques, constitute a reliable ground on
which different geological compositional models can be
discussed.94 A obvious prerequisite to this discussion, is
the knowledge of the elastic properties of the main min-
erals and rocks which constitute the Earth’s interior, at
geophysical (i.e. high pressure, high temperature) con-
ditions. A complete characterization of the elastic prop-
erties of a material is given in terms of its elastic con-
stants, from which seismic wave propagation velocities,
and bulk, shear and Young moduli can be deduced.95–98

In the last decades, an enormous amount of X-
ray diffraction studies were performed which measured
isothermal equations of state of several rock-forming min-
erals in order to determine their equilibrium bulk mod-
ulus K0 and its pressure derivative K ′

0.
99 Experimental

measurements of elastic constants under pressure are by
far less frequent. At ambient pressure, different experi-
mental determinations of K0 agree relatively well to each
other. However, when the high-pressure elastic behavior
is considered, deviations up to 50 % have been reported
as regards K ′

0. As Jiang et al.
100 correctly pointed out,

the magnitude of these discrepancies is such to prevent
any reliable geological interpretation of seismic data.

We have recently shown how accurately ab initio simu-
lations can predict reliable elastic properties of a family of
silicate garnets, among the most important rock-forming
minerals, at ambient pressure.101,102 In this contribution,
we consider the much more ambitious task of proving the
reliability of theoretical simulations in predicting high-
pressure, up to 60 GPa, elastic properties of minerals of
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geophysical interest. Some members of the same family of
garnets are considered. In order to do so, we have imple-
mented a number of algorithms into the public Crystal

program that are described into some detail in Section
II.

Beside their geological interest, garnets are technolog-
ically relevant materials as components of lasers, com-
puter memories, microwave optical devices and as abra-
sives and filtration media.103 Silicate garnets, in partic-
ular, are among the main constituents of the Earth’s
lower crust, upper mantle and transition zone. They ex-
hibit a cubic structure (space group Ia3d) and formula
X3Y2(SiO4)3, where the X site hosts divalent cations
such as Ca2+, Mg2+, Fe2+ and Mn2+ and the Y site
is occupied by trivalent cations such as Al3+, Fe3+ and
Cr3+.104 Their primitive cell contains 80 atoms, that cor-
respond to four formula units. Among the most com-
mon end-members of the family, here we consider pyrope
Mg3Al2(SiO4)3, grossular Ca3Al2(SiO4)3 and andradite
Ca3Fe2(SiO4)3.

Few Brillouin scattering experimental measurements
exist of the elastic constants under pressure of these
minerals: two studies for pyrope,105,106 two for
grossular,100,106 and two for andradite.106,107 From a
theoretical perspective, few simulations using empiri-
cal/semiempirical potentials have been performed on the
elastic properties of garnets at ambient pressure.108–110

Beside our recent investigation of the ambient pressure
elastic properties of six end-members (pyrope, grossular,
andradite, spessartine, uvarovite and almandine),101,102

only other two ab initio studies are reported: Li et al.
111

performed molecular dynamics simulations of the elas-
tic constants of pyrope, as a function of pressure and
temperature, in a projector-augmented-waves (PAW)
density-functional-theory (DFT) implementation; Kawai
and Tsuchiya112 performed DFT calculations of the elas-
tic properties of grossular, in the local-density approxi-
mation (LDA).
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In this paper, we report a full set of elastic proper-
ties of pyrope, grossular and andradite at high-pressure,
computed ab initio using a fully periodic implementa-
tion of the hybrid B3LYP, Becke-three parameters-Lee-
Yang-Parr,113,114 functional and all-electron basis sets.
The possibility of using all-electron basis sets instead of
pseudo-potentials describing core electrons has recently
been shown to be of particular relevance when calcula-
tions under pressure are performed since also core elec-
trons can participate to the chemical bonding.115 The
same computational approach was successfully applied
to the investigation of structural, electronic, vibrational
(Infrared and Raman), magnetic, optical and elastic (at
ambient pressure) properties of silicate garnets.101,116–122

Calculations are performed with a development version of
the Crystal14 program123 where a fully-automated and
general procedure for computing elastic and piezoelectric
tensors, photoelastic constants and seismic velocities of
crystals of any symmetry has recently been implemented
and applied to the study of several crystals.101,124–130

The paper is organized as follows: in Section II we
present the theoretical techniques that we have developed
and implemented in the Crystal program for dealing
with the effect of pressure, such as an automated algo-
rithm for the computation of various equations of state,
the calculation of the analytical stress tensor and the
pressure dependence of elastic stiffness constants; Sec-
tion III is devoted to the definition of the adopted com-
putational setup; our results, as compared with available
experimental data, are discussed in Section IV as regards
the pressure-volume relation, and pressure dependence of
the elastic constants and bulk modulus; conclusions are
drawn in Section V.

II. THEORETICAL TECHNIQUE

This Section is devoted to the description of the theo-
retical procedure that we have set up, and implemented
in the Crystal program, for computing elastic proper-
ties of crystals of any space group of symmetry at high
pressure, at the ab initio level. A fully analytical scheme,
based on the stress tensor, is used for optimizing the
proper volume associated with a given pressure, as de-
scribed in Section II A. Alternatively, an equation of
state could be used (see Section II B); as we shall dis-
cuss in the next section, however, the former approach
is preferable as it is more accurate. The elastic prop-
erties under hydrostatic pressure are then computed at
the corresponding volume, according to the methodology
described in Section II C.

A. P-V Relation through Analytical Stress Tensor

The stress tensor σ is a symmetric second-rank tensor
that can be computed analytically from the total energy

density derivatives with respect to strain:

σij =
1

V

∂E

∂ǫij
=

1

V

3
∑

k=1

∂E

∂a′

ki

akj , (1)

with ǫ second-rank symmetric pure strain tensor and
i, j = x, y, z. In the second equality, ∂E/∂ǫij has been
expressed in terms of analytical energy gradients with re-
spect to lattice parameters, with aij elements of a 3×3
matrix, A, where Cartesian components of the three lat-
tice vectors a1, a2 and a3 are inserted by rows [V =
a1(a2×a3) is the cell volume]; when a distortion is ap-
plied to the cell, the lattice parameters transform as

a′

ij =

3
∑

k=1

(δjk + ǫjk)aik , (2)

where δjk is the Kronecker delta. The difficult part of
the calculation of the stress tensor in equation (1) is the
evaluation of the analytical energy gradients with respect
to the cell parameters, which have been implemented in
the Crystal program about ten years ago by Doll et

al. for 1D, 2D and 3D periodic systems. Details about
the implementation and the explicit form of the internal
energy E can be found in Refs. 131 and 132.

An external “pre-stress” in the form of a hydrostatic
pressure P ,

σpre
ij = Pδij , (3)

can be added to that of equation (1). Given that the opti-
mizer works in terms of analytical cell gradients, in order
to perform a pressure-constrained geometry optimiza-
tion, the total stress tensor has to be back-transformed
to obtain the corresponding constrained gradients:

∂H

∂aij
=

∂E

∂aij
+ PV (A−1)ji . (4)

Let us note that, with the inclusion of a hydrostatic pres-
sure, the function to be minimized becomes the enthalpy
H = E + PV . The implementation of a geometry op-
timizer under an external hydrostatic pressure, in the
Crystal program, has been done by Doll.133 so that the
optimized volume V of any crystal at a given hydrostatic
pressure P can be computed analytically.

B. P-V Relation through Equation of State

An alternative approach for establishing the P -V re-
lation of a crystalline material is using so-called Equa-
tions of State (EOS). The “cold” EOS is an energy-
volume or pressure-volume relation which describes the
behavior of a solid under compression and expansion, at
T = 0 K, that is the case of standard ab initio simu-
lations. Universal, i.e. not specific of particular ma-
terials, EOSs are usually expressed as analytical func-
tions of a limited set of parameters (equilibrium energy
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E0, equilibrium volume V0, equilibrium bulk modulus
K0 = −V ∂P/∂V and pressure derivative of equilibrium
bulk modulus K ′

0 = ∂K0/∂P ) for ease of interpolation,
extrapolation and differentiation, and are quite used in
solid state physics and geophysics.134,135

The main purpose EOSs are commonly used for, in the-
oretical simulations, is passing from (few) energy-volume
data in the vicinity of the equilibrium volume to the
P -V relation and, possibly, to high-pressure properties.
To do so, energy-volume data are numerically fitted to
the analytical E(V ) functional form of the EOS. From
P = −∂E/∂V , the P -V connection is established. In
principle, an advantage of this approach would be the
possibility of predicting the high-pressure behavior of a
solid from low-pressure or even equilibrium properties:
the explicit dependence of the bulk modulus on volume
(or pressure from P -V ), is given by K(V ) = V ∂2E/∂V 2.
Let us recall that the analytical expression of the E(V )
relation is generally obtained as a series which is trun-
cated to some order. By taking derivatives of increasing
order of this expression, for computing pressure P , bulk
modulus K and its pressure derivative K ′, the error in-
troduced by that truncation increases. This is particu-
larly so when EOSs are used for extrapolating to high
pressures.

A number of universal EOSs have been proposed so
far.134,136–141 All of them are phenomenological and
can behave quite differently from each other as re-
gards extrapolation at high pressure. Comprehensive re-
views and comparisons of different EOSs are available
in the literature.142–146 Four EOSs are currently imple-
mented in the Crystal14 program: the original third-
order Murnaghan’s,136 the third-order Birch’s,137,138 the
logarithmic Poirier-Tarantola’s,141 and the exponential
Vinet’s.139 In Appendix A, we report the explicit func-
tional form of these EOSs and, in particular, of the cor-
responding expressions for the bulk modulus dependence
on volume. A discussion on how they differently per-
form in extrapolating P -V and K-V relations up to the
high-pressure regime for silicate garnets will be given in
Section IV.

C. Elastic Properties at P > 0

In the absence of any finite pre-stress, elastic constants
can be defined as second energy density derivatives with
respect to pairs of infinitesimal Eulerian strains:

Cijkl =
1

V0

(

∂2E

∂ǫij∂ǫkl

)

ǫ=0

. (5)

The constants above do represent the link between stress
and strain via the Hooke’s law. In the limit of zero tem-
perature, typical of ab initio simulations, they are also re-
ferred to as athermal elastic constants. For details about
the implementation of the elastic tensor calculation in
the Crystal program see Refs. 101 and 124.

If a finite pre-stress σpre is applied in the form of a hy-
drostatic pressure P , as in equation (3), within the frame
of finite Eulerian strain, the relevant elastic stiffness con-
stants read:97,147–150

Bijkl = Cijkl +
P

2
(2δijδkl − δilδjk − δikδjl) , (6)

provided that V0 in equation (5) becomes the equilibrium
volume V (P ) at pressure P . In the present, fully auto-
mated, implementation of the calculation of the stiffness
tensor B (and of S = B

−1, the compliance tensor) un-
der pressure, V (P ) is obtained from the analytical stress
tensor described in Section II A. An option exists for
using the V (P ) relation obtained from a given EOS, as
discussed in Section II B.

Since both ǫ and δ are symmetric tensors, we can
rewrite the equality (6) as:

Bvu = Cvu +
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, (7)

where Voigt’s notation has been used, according to which
v, u = 1, . . . 6 (1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz, 6
= xy).151 The elastic stiffness tensor exhibits, in general,
21 independent elements that reduce to 3 (i.e. B11, B12

and B44) for crystals with cubic symmetry, as in the case
here considered of silicate garnets.

High-pressure elastic properties of isotropic polycrys-
talline aggregates can be computed from the elastic stiff-
ness and compliance constants defined above via the
Voigt-Reuss-Hill averaging scheme.152 In particular, for
cubic crystals, the adiabatic bulk modulus K0 is simply
defined as:

K0 =
1

3
(B11 + 2B12) ≡

1

3
(S11 + 2S12)

−1 . (8)

The shear modulus G = 1/2[GV + GR] can be expressed
as the average between Voigt upper GV and Reuss lower
GR bounds as:

G =
1

10
(B11 −B12 + 3B44) +

5

2
(4(S11 − S12) + 3S44)

−1 .

From the bulk modulus and the average shear modulus
defined above, Young’s modulus E and Poisson’s ratio σ
can be defined as well:

E =
9K0G

3K0 + G
and σ =

3K0 − 2G

2(3K0 + G)
. (9)

A further elastic property of great interest is the so-
called elastic wave anisotropy which can be measured
by the dimensionless parameter A that vanishes for an
isotropic material.153,154 For cubic crystals, seismic wave
velocities along high symmetry directions can be com-
puted with simple analytical expressions in terms of the
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elastic stiffness constants;155 as a consequence, the elas-
tic wave anisotropy A can be given the following simple
form:

A =

[

2B44 + B12

B11
− 1

]

× 100 . (10)

Even cubic crystals show non-zero elastic wave anisotro-
py.

III. COMPUTATIONAL DETAILS

All the calculations reported in this manuscript
are performed with the Crystal14 program for
ab initio quantum physics and chemistry of solid
state.123 The B3LYP one-electron Hamiltonian is
adopted, which contains a hybrid Hartree-Fock/Density-
Functional exchange-correlation term. All-electron
atom-centered Gaussian-type-function (GTF) basis sets
are adopted. Oxygen atoms are described by a (8s)-
(411sp)-(1d) contraction of primitive GTFs, silicon by
a (8s)-(6311sp)-(1d) one, aluminum by a (8s)-(611sp)-
(1d) one, calcium by a (8s)-(6511sp)-(21d) one and
magnesium by a (8s)-(511sp)-(1d) one. For iron, a
(8s)-(64111sp)-(411d) contraction of GTFs is used, aug-
mented with a further f -type polarization function as
reported into details in previous works.117,118,156

In Crystal, the truncation of infinite lattice sums is
controlled by five thresholds, which are set to 7 7 7 7
16.157 Reciprocal space is sampled according to a sub-
lattice with shrinking factor 3, corresponding to 4 points
in the irreducible Brillouin zone. The DFT exchange-
correlation contribution is evaluated by numerical inte-
gration over the cell volume: radial and angular points
of the atomic grid are generated through Gauss-Legendre
and Lebedev quadrature schemes, using an accurate pre-
defined pruned grid: the accuracy in the integration pro-
cedure can be estimated by evaluating the error associ-
ated with the integrated electronic charge density in the
unit cell versus the total number of electrons per cell:
2 ×10−5|e| out of a total number of 800 electrons per
cell for pyrope, for instance. The convergence threshold
on energy for the self-consistent-field (SCF) step of the
calculations is set to 10−10 hartree.

Equilibrium and strained configurations are optimized
by use of analytical energy gradients calculated with
respect to both atomic coordinates and unit-cell pa-
rameters or atomic coordinates only, respectively.158–160

A quasi-Newtonian technique is used, combined with
the BFGS algorithm for Hessian updating.161–164 Con-
vergence is checked on both gradient components and
nuclear displacements; the corresponding tolerances on
their root mean square are chosen to be 10 times more
severe than the default values for simple optimizations:
0.00003 a.u. and 0.00012 a.u., respectively. For the elas-
tic constants calculation, two strained configurations are
considered for each independent strain, with a dimen-
sionless strain amplitude of 0.01.

FIG. 1. For each garnet (andradite in the upper panel, grossu-
lar in the middle panel and pyrope in the lower panel), V/V0 is
reported as a function of pressure P . Continuous lines repre-
sent computed values as fitted with a cubic spline. Computed
values are obtained with the analytical stress tensor scheme
at 8 pressures in the range 0 GPa - 60 GPa for pyrope and
grossular and at 7 pressures in the rage 0 GPa - 40 GPa for
andradite, as reported in Table I. Circles are experimental
data from Ref. 165 for pyrope, Ref. 166 for grossular and
Ref. 107 (full circles) and 166 (empty circles) for andradite.

IV. RESULTS AND DISCUSSION

As anticipated in Section II, an essential prerequisite
to an effective study of the elastic properties of crystals
at high pressure, at the ab initio level, is a correct de-
scription of the pressure-volume relation. In order to
establish such a connection, we optimize the cell volume
in presence of an external pre-stress, in the form of an
hydrostatic pressure (see equation 3), following the pro-
cedure described in Section II A.

The computed P -V relations for pyrope (up to 60
GPa), grossular (up to 60 GPa) and andradite (up to
40 GPa) are reported as continuous lines in Figure 1
and compared with accurate experimental data. Since
pyrope is considered to be a major constituent in the
Earth’s upper mantle and transition zone, its equation of
state has been extensively studied experimentally in the
last 40 years with different techniques such as ultrasonic,
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Brillouin scattering and X-ray diffraction.167–176 In the
lower panel of Figure 1, as an experimental reference, we
consider the X-ray diffraction study on a pure synthetic
pyrope single-crystal, up to 33 GPa, that Zhang et al.

performed in 1998, where a complete review of previous
studies is also reported.165 They concluded that most
previous measurements at P > 10 GPa were performed
under nonhydrostatic conditions that severely biased the
corresponding outcomes. In a subsequent study, Zhang
et al. reported about accurate X-ray diffraction mea-
surements on the compressibility of, among other silicate
garnets, synthetic grossular and andradite, up to 12 GPa
and 14 GPa, respectively.166 These experimental values
are reported in the upper and middle panels of Figure 1.
For andradite, we also report the values obtained with a
Brillouin scattering experiment, up to 11 GPa, by Jiang
et al. in 2004.107 A satisfactory agreement between com-
puted and experimental P -V relations is obtained for the
three garnets, as clearly seen from Figure 1. This reli-
able description of the P -V relation does represent an
essential prerequisite for what follows.

Given the excellent description obtained with the an-
alytical stress tensor approach, one may wonder about
the accuracy that could be reached in computing the P -
V relation by following the alternative scheme, based on
the EOS, described in Section II B. In Table I we re-
port the deviations from such analytical reference of the
volumes deduced from various EOSs (Murnaghan, Birch-
Murnaghan, Poirier-Tarantola and Vinet, see Appendix
A for their explicit functional form), as a function of pres-
sure, for pyrope, P, grossular, G, and andradite, A. For
comparison, the analytical values of Figure 1 are also
reported. Before discussing into some detail how dif-
ferent EOSs describe the P -V relation, let us point out
that they have been obtained by fitting energy/volume
points with the most compressed volume corresponding
to a pressure of about 17 GPa. This means that values in
Table I below and above 17 GPa have been obtained by
interpolation and extrapolation, respectively. These two
regions are separated by a horizontal line in the table.
As a first consideration, we can see how the four differ-
ent EOSs are providing exactly the same volumes (quite
close to the analytical ones) in the interpolation region,
that is for P ≤ 12 GPa in the table. When we consider
the extrapolation region, the four EOSs slightly deviates
from each other; overall, all of them remain quite close to
the analytical reference, with maximum differences of 0.4
% for pyrope, at 60 GPa, with the Poirier-Tarantola log-
arithmic EOS, 0.6 % for grossular, at 60 GPa, with the
Murnaghan EOS and 0.5 % for andradite, at 40 GPa,
with the Murnaghan EOS. Since differences among the
four EOSs are very small, it is difficult to tell which one is
providing the best description as regards the P -V relation
of this family of garnets: Birch-Murnaghan for pyrope,
Vinet for grossular and Poirier-Tarantola for andradite.
All of them are essentially providing an acceptable de-

TABLE I. Volume V (in Å3) of the primitive cell and bulk
modulus K (in GPa) as a function of pressure P (in GPa) for
pyrope, P, grossular, G and andradite, A. Computed values
obtained with the procedure described in Sections IIA and
IIC (Cal.) are reported in the first column of each property.
Deviations from such reference values of those deduced from
various equations of state: Murnaghan, M, Birch-Murnaghan,
BM, Poirier-Tarantola, PT and Vinet, V are also reported;
the horizontal lines separate interpolation from extrapolation
regions for the EOSs.

P V (Å3) K (GPa)

Cal. Fitted to EOS Cal. Fitted to EOS

M BM PT V M BM PT V

P

0 770.0 0.5 0.5 0.5 0.5 171 0 1 1 1

4 753.0 0.5 0.5 0.5 0.5 188 -1 -1 0 0

8 737.7 0.5 0.5 0.5 0.5 203 0 0 0 0

12 723.7 0.6 0.6 0.6 0.6 220 -1 -1 -2 -2

20 699.4 0.7 0.5 0.3 0.4 251 1 -2 -5 -3

30 673.9 0.8 0.2 -0.2 0.0 289 3 -4 -9 -6

40 652.3 1.1 0.0 -1.0 -0.5 326 6 -5 -13 -9

60 617.1 2.0 -0.6 -2.6 -2.7 399 13 -8 -24 -17

G

0 852.4 0.4 0.4 0.4 0.4 171 0 0 0 0

4 833.6 0.3 0.4 0.4 0.4 187 0 0 0 0

8 816.7 0.3 0.3 0.4 0.3 203 0 0 0 0

12 800.6 1.1 1.1 1.1 1.1 219 0 0 -1 0

20 773.8 1.2 1.2 0.8 0.9 250 2 -1 -3 -2

30 745.6 1.4 0.8 0.2 0.5 288 5 -1 -7 -4

40 721.6 2.0 0.7 -0.4 0.1 325 11 -1 -10 -6

60 681.6 4.3 1.5 -1.0 0.2 396 20 -1 -18 -11

A

0 903.8 0.1 0.1 0.1 0.1 152 0 0 1 1

4 881.5 0.1 0.1 0.1 0.1 169 0 1 1 1

8 861.9 0.1 0.2 0.2 0.2 187 0 0 -1 -1

12 844.6 0.0 -0.1 -0.1 -0.1 204 0 -1 -2 -1

20 812.8 1.8 1.4 1.1 1.3 234 5 1 -2 0

30 781.1 2.7 2.8 0.8 1.3 273 9 2 -6 -2

40 754.8 3.6 1.9 0.1 1.0 311 15 2 -10 -4

scription of the compressibility of these minerals. As we
shall comment below, this is no more the case when the
bulk modulus dependence from pressure, K-P , is consid-
ered.

Following the procedure described in Section II C, we
have computed the elastic stiffness constants Bvu of py-
rope and grossular up to 60 GPa and those of andradite
up to 40 GPa. The three independent constants, B11,
B12 and B44, are reported in Figure 2 as black lines for
andradite (top panel), grossular (middle panel) and py-
rope (lower panel); their trend with respect to pressure is
quite similar for the three garnets and it is quasi-linear,
with B12 showing a slightly more linear behavior than
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FIG. 2. Elastic stiffness constants Bvu of pyrope (lower
panel), grossular (middle panel) and andradite (upper panel),
as a function of pressure P . Black lines represent computed
values. For pyrope, two experimental datasets are reported:
one by Sinogeikin and Bass105 (filled symbols) and one by
Conrad et al.106 (empty symbols). For grossular, the results
by Jiang et al.100 are reported (filled symbols) as well as those
by Conrad et al.106 (empty symbols) for the B11 constant. For
andradite, experimental values by Jiang et al.107 (filled sym-
bols) are given along with those by Conrad et al.106 (empty
symbols) for the B11 constant. All experimental values are
obtained from Brillouin scattering measurements.

B11 and B44. In Figure 2 we also report available exper-
imental data, obtained from various Brillouin scattering
measurements.

For pyrope, two experimental determinations of the
elastic constants at high pressure have been performed:
one by Sinogeikin and Bass105 who reported values at am-
bient pressure and at P = 14 GPa (given as filled symbols
in the figure) and one by Conrad et al.

106 who reported
values at three different pressures (given as empty sym-
bols in the figure). From the analysis of the lower panel
of Figure 2 the following considerations can be made: i)
the two experimental datasets agree relatively well with
each other; ii) as already noticed in our previous study
of the elastic constants of silicate garnets at ambient
pressure,101 the absolute computed values of Bvu at P =
0 GPa are found in excellent agreement with the mea-

sured ones; iii) the computed pressure dependence of the
elastic stiffness constants satisfactorily matches available
experimental data in the low-pressure regime.

Also for grossular, two experiments are available to
compare with: the results by Jiang et al.,100 that refer to
a 87 % grossular-rich garnet, are reported as filled sym-
bols in the middle panel of Figure 2; they reported elastic
constants at 8 different pressures up to 11 GPa. The val-
ues obtained by Conrad et al.

106 at 5 different pressures
up to 10 GPa for the B11 constant are also reported as
empty symbols; for this latter study, that is less accurate
than the former one (2 crystal directions were measured
at each pressure for the latter with respect to 36 in the
former), we do not report the values for B12 and B44

for sake of clarity. We observe that: i) the two exper-
iments give a similar description of B11 while the two
remaining constants are described very differently (not
shown in the figure), as previously discussed by Jiang et

al.;100 ii) the absolute values of the elastic constants at
ambient pressure agree with the experiments as regards
B12 and B44 while B11 is slightly overestimated in this
case (let us recall that the experiment by Jiang et al.

was performed on a 87 % grossular-rich garnet with 9 %
of andradite which exhibits lower elastic constants than
grossular); iii) the pressure dependence of all elastic con-
stants nicely compares with the experimental behavior;
in particular, the low-pressure crossing of B12 and B44 is
perfectly reproduced.

For andradite, two experimental datasets are available:
Jiang et al.

107 reported values at 9 pressures up to 11
GPa (filled symbols in the figure). Again, for B11 we
also report, as empty symbols, the less accurate results
by Conrad et al.

106 who measured the elastic constants
at 5 pressures up to 10 GPa. Some considerations: i)
the two experiments describe a very different pressure
dependence of the elastic constants (shown for B11, not
for the other constants just for clarity sake); ii) both the
absolute values at ambient pressure and the pressure de-
pendence of computed constants are in good agreement
with data by Jiang et al. and, consequently, significantly
deviate from those by Conrad et al.; iii) Given the reli-
able description of the pressure dependence of computed
elastic constants of pyrope and grossular, our results for
andradite confirm the higher accuracy of the measure-
ments by Jiang et al. with respect to those by Conrad et

al..

The computed values for the elastic stiffness constants
as a function of pressure are explicitly reported in Table
II for pyrope, grossular and andradite. In the same table,
we also report some elastic properties of isotropic poly-
crystalline aggregates, as computed via the Voigt-Reuss-
Hill averaging scheme illustrated in Section II C: bulk
modulus K, shear modulus G, Young modulus E, Pois-
son’s ratio σ and the anisotropy factor A. In particular,
from the pressure dependence of the computed bulk mod-
ulus K, its first derivative K ′ can be deduced and com-
pared with experimental determinations obtained from
various EOSs (see below for such a comparison).
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TABLE II. Elastic properties of pyrope, grossular and andradite as a function of pressure P (GPa). Elastic constants Bvu,
bulk modulus K, shear modulus G and Young modulus E are expressed in GPa, Poisson’s ratio σ is dimensionless and the
anisotropy factor A is expressed in %. All these properties are defined in Section IIC.

Pyrope Grossular Andradite

P B11 B12 B44 K G E σ A B11 B12 B44 K G E σ A B11 B12 B44 K G E σ A

0 296 109 89 171 91 231 0.27 -3.0 323 95 105 171 109 269 0.24 -5.6 281 87 83 152 88 222 0.26 -10.0

4 320 121 96 188 98 250 0.28 -2.2 350 106 109 187 114 284 0.25 -7.4 308 100 86 169 93 236 0.27 -11.7

8 344 133 102 203 103 265 0.28 -2.0 375 117 112 203 119 298 0.26 -9.1 334 113 89 187 97 248 0.28 -12.9

12 366 146 107 220 108 279 0.29 -1.6 399 129 115 219 123 311 0.26 -10.0 358 126 92 204 101 259 0.29 -13.4

20 409 172 116 251 117 304 0.30 -1.2 445 153 120 250 130 333 0.28 -11.7 400 152 96 234 106 277 0.30 -14.0

30 459 205 125 289 126 330 0.31 -0.9 498 184 126 288 137 356 0.29 -12.5 450 185 100 273 112 295 0.32 -14.4

40 505 237 133 326 133 352 0.32 -0.4 547 215 130 325 143 375 0.31 -13.2 496 218 103 311 116 309 0.33 -14.5

60 592 302 146 399 145 389 0.34 +0.3 633 277 137 396 152 404 0.33 -13.0

Among the elastic properties reported in the table, the
elastic anisotropy index A is particularly interesting. In
our previous investigation of the elastic properties of six
silicate garnet end-members at ambient pressure, we have
sorted them in terms of increasing anisotropy: spessar-
tine and pyrope are the more isotropic, grossular and
almandine show an intermediate anisotropy, and andra-
dite and uvarovite are characterized by the largest elastic
anisotropy.101 The same relative behavior is observed in

the first row (P = 0 GPa) of Table II with anisotropies
of -3.0 %, -5.6 % and -10 % for pyrope, grossular and
andradite, respectively. In this respect, Table II tells us
how such elastic anisotropy is affected by pressure. Inter-
estingly, pyrope is found to further decrease its already
low anisotropy down to 0.3 % at 60 GPa while the other
two garnets show an increasing anisotropy, more so for
grossular than for andradite.

The values obtained for the bulk modulus K from the
explicit calculation of the elastic constants, as a function
of pressure, are also reported (column “Cal.”) in Table
I, along with the deviations from such values of the bulk
moduli deduced from the four EOSs (Murnaghan, Birch-
Murnaghan, Poirier-Tarantola and Vinet) described in
Appendix A. As already discussed for the P -V relation
above, also for the bulk modulus K, as far as the inter-
polation region P < 17 GPa is considered, the four EOSs
provide similar values of K to each other and to the com-
puted reference from the elastic constants. In particular,
this remarkable matching of computed bulk moduli from
the elastic constants and from the EOS-formalism is a
nice evidence of the high numerical precision of all the
algorithms involved in the simulation.

At variance with what previously observed for the P -V
relation, when the bulk modulus is considered, as soon
as the extrapolation region P > 17 GPa is reached, the
descriptions provided by the different EOSs rapidly di-
verge from each other with differences as large as 10 %
for pyrope and grossular at 60 GPa and 8 % for andradite
at 40 GPa. From inspection of Table I, we can deduce
that the third-order logarithmic Poirier-Tarantola EOS
is providing the lowest values for K at high pressure (the

poor description provided by this EOS has already been
described by Pavese177 who concluded that fourth-order
terms are necessary for correcting it), the third-order
Murnaghan’s one the highest while Birch-Murnaghan’
and Vinet’ give intermediate values. By comparing with
the bulk modulus values computed from the elastic stiff-
ness constants at each pressure, we can clearly observe
that the closest agreement is obtained with the third-
order Birch-Murnaghan EOS, more so for grossular and
andradite than for pyrope for which none of the four
EOSs is providing an entirely satisfactory agreement.

From an experimental point of view, a lot of X-ray
diffraction studies focused on measuring isothermal equa-
tions of state of rock-forming minerals in order to deter-
mine their bulk modulus K0 and its pressure derivative
K ′

0 (see the comprehensive work by Knittle99 for a re-
view on the topic). If at ambient pressure, different ex-
perimental determinations of K0, agree relatively well to
each other, this is not the case at high pressures where
disagreements up to 50 % are commonly reported as re-
gards K ′

0. As noted by Jiang et al., the magnitude of
these discrepancies is such that a reliable geological in-
terpretation of seismic data becomes unlikely on these
grounds.100 The spread among existing experimental de-
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TABLE III. Bulk modulus pressure derivative K′

0 of pyrope, grossular and andradite garnets as computed in the present study
and determined in previous experimental studies.

Pyrope Grossular Andradite

This study (2014) 4.1 This study (2014) 4.0 This study (2014) 4.4

Zou et al.176 (2012) 4.4 - 4.6 Gwanmesia et al.182 (2013) 4.5 Jiang et al.107 (2004) 4.7

Gwanmesia et al.175 (2006) 3.9 Gréaux et al.183 (2011) 4.0 - 4.3 Wang and Ji181 (2001) 4.7

Sinogeikin and Bass105 (2000) 4.1 Kono et al.184 (2010) 4.4 Conrad et al.106 (1999) 5.8

Chen et al.174 (1999) 5.3 Jiang et al.100 (2004) 3.8

Conrad et al.106 (1999) 3.2 Wang and Ji181 (2001) 5.9

Zhang et al.165 (1998) 4.4 Conrad et al.106 (1999) 5.5

Leger et al.173 (1990) 3.8 Olijnyk et al.180 (1991) 6.2

Webb169 (1989) 4.9 Weaver et al.185 (1976) 4.5

Levien et al.186 (1979) 4.5

Sato et al.178 (1978) 1.8

Bonczar and Graham167 (1977) 4.7

Takahashi and Liu179 (1970) 5.4

terminations of K ′

0 is documented in Table III where we
also report our computed values for pyrope, grossular and
andradite.

For pyrope, even without considering the oldest works,
where discrepancies as large as 200 % were reported (1.8
for Sato et al.

178 and 5.4 for Takahashi and Liu179), also
among the most recent studies differences as large as 65
% are reported (compare 5.3 by Chen et al.

174 with 3.2
by Conrad et al.

106). The accurate work by Sinogeikin
and Bass in 2000 gives a value of 4.1 which is found to be

in perfect agreement with our present simulations. For
grossular, K ′

0 values are spread from 6.2, as obtained by
Olijnyk et al.

180 in 1991, to 3.8 by Jiang et al.
100 in 2004

(a difference of 63 %). In this case, our computed value
is 4.0, whereas almost all the experimental determina-
tions are a bit higher. For andradite, less experimental
determinations are reported, with a maximum deviation
from each others of 23 %. The two most recent studies
(Jiang et al.

107 in 2004 and Wang and Ji181 in 2001),
both report a value of 4.7 while our calculated value is
4.4.

V. CONCLUSIONS

A theoretical scheme, as implemented in the Crystal

program, has been presented which allows for comput-
ing a variety of elastic properties under pressure of crys-
talline materials of any symmetry, at the ab initio level.
The technique consists in optimizing the cell volume at a
given pressure by means of the analytical calculation of
the corresponding stress tensor and then automatically
applying to the lattice all the needed deformations in or-
der to compute the independent elastic constants which
are pressure-corrected according to their Eulerian strain
formulation.

This strategy has been applied to the investigation
of high-pressure elastic properties of three rock-forming
minerals such as pyrope, grossular and andradite, for
which experimental data to compare with are available,
even if only in the P ≤ 11 GPa pressure range. The

theoretical description of both the pressure-volume rela-
tion and the pressure dependence of elastic constants has
been documented to be extremely reliable for this class
of materials. Among other elastic indices, the anisotropy
index has been found to decrease to very small values for
pyrope and increase to similar values for grossular and
andradite, as a function of pressure.

Both theoretically and experimentally, the high-
pressure elastic behavior of crystals has often been de-
duced by fitting energy-volume, or pressure-volume data
to given equations of state. Four different analytical
expressions of equations of state have been considered,
among the most popular proposals in the literature, and
their descriptions of high-pressure elastic properties dis-
cussed. All of them are providing fairly good pressure-
volume relations whereas large discrepancies between
each other have been reported as regards the pressure
dependence of the bulk modulus, the third-order Birch-
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Murnaghan equation giving somehow the best descrip-
tion.

ACKNOWLEDGMENTS

The CINECA Award N. HP10BLSOR4-2012 is ac-
knowledged for the availability of high performance com-
puting resources and support. Improvements of the
Crystal code in its massive-parallel version was made
possible thanks to the PRACE proposal no. 2011050810.

Appendix A: Equations of State: Functional Form

The four EOSs implemented in the Crystal14 pro-
gram and discussed in this paper are here reviewed; in
particular, explicit expressions are provided for the bulk
modulus dependence on volume (and thus on pressure,
from the P -V relation) that are of interest for the study
of elastic properties of materials under pressure. For con-
venience, let us introduce the dimensionless parameters
v = (V0/V )1/3, u = v−1 and x = ln(V0/V ) with V0 equi-
librium volume. The E(V ) functional form proposed by
Murnaghan in 1944 reads as:136

E(V ) = E0 +
K0V

K ′

0

(

v3K′

0

K ′

0 − 1
+ 1

)

−
K0V0

K ′

0 − 1
, (A1)

where E0 is the equilibrium energy. From P =
−(∂E/∂V )S we get

P (V ) =
K0

K ′

0

(

v3K′

0 − 1
)

. (A2)

Since, by definition, K(V ) = V (∂2E/∂V 2)T,S , by differ-
entiating equation (A1) twice with respect to the volume
V , one obtains

K(V ) = K0v
3K′

0 . (A3)

The previous EOS is often used for 0 < P < K0/2. The
E(V ) form of the third-order isothermal EOS, proposed
by Birch in 1947, reads like:137

E(V ) = E0+
9V0K0

16

[

K ′

0

(

v2 − 1
)3

+
(

v2 − 1
)2(

6 − 4v2
)

]

By differentiating the previous expression with respect
to the volume, the corresponding P (V ) expression is ob-
tained:

P (V ) =
3K0

2

(

v7 − v5
)

[

1 +
3

4
(K ′

0 − 4)
(

v2 − 1
)

]

(A4)

The bulk modulus dependence on volume in this case
becomes:

K(V )=
K0(4−K ′

0)

8

(

42v7−27v9−15v5
)

−
K0

2

(

5v5−7v7
)

The E(V ) expression of the logarithmic Poirier-Tarantola
EOS, as proposed in 1998 is:141

E(V ) = E0 +
K0V0

2
x2 +

K0V0

6
x3
(

K ′

0 − 2
)

. (A5)

The corresponding P (V ) expression is:

P (V ) = K0v
3

[

x +

(

K ′

0 − 2
)

2
x2

]

. (A6)

The bulk modulus dependence on volume becomes:

K(V ) = K0v
3

[

1 +
(

K ′

0 − 1
)

x +

(

K ′

0 − 2
)

2
x2

]

. (A7)

The E(V ) functional form of the exponential EOS by
Vinet (1987) reads as:

E(V ) = E0 −
4K0V0
(

K ′

0 − 1
)2

[

1 −
3

2
(K ′

0 − 1)(1 − u)

]

×

× e
3

2 (K′

0
−1)(1−u) (A8)

The above expression is also known as bonding energy
relation. The corresponding P (V ) expression becomes

P (V ) = 3K0
1 − u

u2
e

3

2 (K′

0
−1)(1−u) , (A9)

which is exact for a harmonic crystal with K ′

0 = 1. The
bulk modulus dependence on volume is:

K(V ) = K0v
2e

3

2 (K′

0
−1)(1−u) ×

×

{

2 + u

[

3

2

(

K ′

0 − 1
)

− 1

]

−
3

2

(

K ′

0 − 1
)

u2

}

The Vinet EOS is found to be more realistic than the
Murnaghan and Birch ones for large compressions, P ≫
K0/2.
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Phys. Chem. C 117, 12864 (2013).

129A. Erba and R. Dovesi, Phys. Rev. B 88, 045121 (2013).
130A. Mahmoud, A. Erba, K. E. El-Kelany, M. Rérat, and R. Or-
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lando, Phys. Rev. B 89, 045103 (2014).
131K. Doll, R. Dovesi, and R. Orlando, Theor. Chem. Acc. 112,

394 (2004).
132K. Doll, R. Dovesi, and R. Orlando, Theor. Chem. Acc. 115,

354 (2006).
133K. Doll, Molecular Physics 108, 223 (2010).
134A. B. Alchagirov, J. P. Perdew, J. C. Boettger, R. C. Albers,

and C. Fiolhais, Phys. Rev. B 63, 224115 (2001).
135R. E. Cohen, O. Gülseren, and R. J. Hemley, Am. Mineral. 85,

338 (2000).
136F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).
137F. Birch, Phys. Rev. 71, 809 (1947).
138F. Birch, J. Geophys. Res. 83, 1257 (1978).
139P. Vinet, J. Ferrante, J. R. Smith, and J. H. Rose, J. Phys. C

19, 467 (1986).
140W. B. Holzapfel, Rep. Prog. Phys. 59, 29 (1996).
141J.-P. Poirier and A. Tarantola, Physics of the Earth and Plane-

tary Interiors 109, 1 (1998).
142O. L. Anderson, Equations of State of Solids for Geophysi-

cists and Ceramic Science (Oxford University Press, New York,
1995).

143T. S. Duffy and Y. Wang, Mineralogical Society of America
Reviews in Mineralogy 37, 425 (1998).

144J. Hama and K. Suito, J. Phys.: Cond. Matter 8, 67 (1996).
145F. Stacey, B. Brennan, and R. Irvine, Geophys. Surveys 4, 189

(1981).
146R. J. Angel, in High-Pressure and High-Temperature Crystal

Chemistry, edited by R. Hazen and R. Downs (Mineralogical
Society of America, 2000), pp. 35–59.

147B. B. Karki, G. J. Ackland, and J. Crain, J. Phys.: Cond. Matter
9, 8579 (1997).

148J. Wang, J. Li, S. Yip, S. Phillpot, and D. Wolf, Phys. Rev. B
52, 12627 (1995).

149D. C. Wallace, Thermodynamics of Crystals (Wiley, New York,
USA, 1972).

150D. C. Wallace, Rev. Mod. Phys. 37, 57 (1965).
151J. F. Nye, Physical properties of crystals (Oxford University

Press, Oxford, 1957).
152R. Hill, J. Mech. Phys. Solids 11, 357 (1963).
153B. B. Karki, L. Stixrude, S. J. Clark, M. C. Warren, G. J.

Ackland, and J. Crain, Am. Mineral. 82, 51 (1997).
154T. Tsuchiya and K. Kawamura, J. Chem. Phys. 114, 10086

(2001).
155A. Authier and A. Zarembowitch, in International Tables for

Crystallography, Vol. D, edited by A. Authier (Wiley, 2006),
p. 72.

156F. Pascale, C. Zicovich-Wilson, R. Orlando, C. Roetti,
P. Ugliengo, and R. Dovesi, J. Phys. Chem. B 109, 6146 (2005).

157R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M.
Zicovich-Wilson, F. Pascale, K. Doll, N. M. Harrison, B. Cival-
leri, I. J. Bush, et al., CRYSTAL14 User’s Manual, Università di
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