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We apply ab initio quantum mechanical techniques to the study of the solid solution Si1−xGexO2 of
α-quartz where silicon atoms are progressively substituted with germanium atoms, to different extent
as a function of the substitutional fraction x. For the first time, the whole range of substitution (x =
0.0, 0.16, 0.3, 0.5, 0.6, 0.83, 1.0), including pure end-members α-SiO2 and α-GeO2, is here explored.
An elongated supercell (doubled along the c crystallographic axis) is built with respect to the unit
cell of pure α-quartz and a set of thirteen symmetry-independent configurations is considered; their
structural, energetic, dielectric, elastic and piezoelectric properties are computed and analyzed.
All the calculations are performed using a development version of the Crystal09 program with a
Gaussian-type-function, pseudopotential, basis set and the hybrid functional PBE0; all geometries
are fully optimized at this level of theory. In particular, for each configuration, fourth-rank elastic
and compliance tensors and third-rank direct and converse piezoelectric tensors are computed. It
has already been shown that the structural distortion of the solid solution increases, almost linearly,
as the substitutional fraction x increases. The piezoelectric properties of the Si1−xGexO2 solid
solution are found to increase with x, with a similar quasi-linear behavior. The electromechanical
coupling coefficients are enhanced as well and the linear trend recently predicted by Ranieri et al.
[Inorg. Chem., 50, 4632 (2011)] can be confirmed from ab initio calculations. These doped crystals
do represent good candidates for technological applications requiring high piezoelectric coupling and
high thermal stability.

I. INTRODUCTION

The low temperature phase of silica, α-quartz, has a
trigonal crystalline structure of symmetry group P3221
(or P3121), containing three SiO2 formula units per unit
cell. Its structure consists of sharing-corner SiO4 tetrahe-
dra. Among silica polymorphs, α-quartz (α-SiO2 in the
following) is the most stable form at ambient conditions
(up to 3 GPa).1 Upon heating at atmospheric pressure,
α-SiO2 undergoes a phase transition at 846 K to β-SiO2;
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in the transition, silicon atoms are displaced by 0.03 nm
and the crystalline system passes from trigonal to hexag-
onal with space group P6222 (or P6422).3

Due to its peculiar piezoelectric properties, α-SiO2 is
widely applied in the electronic industry. However, its
physical properties are severely reduced for applications
requiring high thermal stability and high electromechan-
ical coupling coefficients. These limitations are mainly
due to the α-SiO2 to β-SiO2 phase transition where the
piezoelectric constant d11 vanishes and d14 remains the
only non-zero component.4

Interestingly, piezoelectric properties of quartz homeo-
types AIVO2 (AIV = Si, Ge) and MIIIXVO4 (MIII = B,
Al, Ga, Fe and XV = P, As) are predicted to be much
larger than that of quartz. All these materials crystal-
lize in the same space group as α-SiO2 and then their
structure can be described in terms of helical chains of
adjacent tetrahedra along the c axis.5–10 The high piezo-
electric performance of these α-SiO2 homeotypes is re-

lated to the degree of distortion in their crystal struc-
ture; the more distorted is the structure, the higher
piezoelectric response is expected. This structural distor-
tion can be described by two angles: the intertetrahedral
bridging angle, θ, and the tetrahedral tilting angle, δ,
which, in the case of undistorted tetrahedra, are geomet-
rically related to each other by the following relation:11

cos θ = 3/4 − [cos δ + 1/(2
√

3)]2. Tilting angle δ is an
order parameter for the α - β phase transition and corre-
sponds to the rotation of the tetrahedra from their ideal
position in β-SiO2 where δ = 0.12 When the structure is
distorted, θ and δ decreases and increases, respectively.
A graphical definition of these two angles is given in Fig-
ure 1.

The electromechanical coupling coefficients represent
the effectiveness with which a piezoelectric material con-
verts electrical energy into mechanical energy or vice

versa. It has recently been suggested that the electrome-
chanical coupling coefficients depend linearly on the in-
tertetrahedral θ angle.12,13

Among quartz homeotypes, GaAsO4 (θ = 129.6 deg
and δ = 26.5 deg)8 and α-GeO2 (θ = 130 deg and δ =
25.7 deg)5 have the most distorted structures. As a con-
sequence, they also exhibit the highest electromechanical
coupling coefficients (i.e. energy conversion efficiency),
about 22 %. Furthermore, they show a very high degree
of thermal stability since they do not undergo the α - β
phase transition.12

A series of solid solutions for α-quartz homeotypes
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FIG. 1: (color online) Graphical definition of (a) the interte-
trahedral bridging angle θ and (b) the tetrahedral tilting angle
δ which is an order parameter for the α - β phase transition
in quartz.

has been studied both experimentally and theoretically:
SiO2-GeO2,

14–18 SiO2-PON (phosphorus oxynitride),19

SiO2-AlPO4,
20 AlPO4-GaPO4,

21–25 AlPO4-AlAsO4,
21

AlPO4-FePO4,
26 GaPO4-FePO4.

27 The structural pa-
rameters and the piezoelectric properties of all these solid
solutions are expected to vary as a function of the sub-
stitutional fraction x, thus representing an effective way
for tuning such properties for specific technological ap-
plications.

Among these solid solutions, the SiO2-GeO2 system is
probably the most promising; its phase diagram shows
that the solubility of α-GeO2 into α-SiO2 can reach
31 % at 1000 K and 70 MPa, under hydrothermal
conditions.15 An attempt has been made to synthesize
a series of Si1−xGexO2 solid solutions of different chem-
ical composition, as a function of x, by using hydrother-
mal and flux methods.13,17,28 The first measurement of
the piezoelectric response of one of these compositions
(Si0.93Ge0.07O2) indicates that the main piezoelectric
constants, d11 and d14, exceed those of α-quartz by 20 -
30 %. Furthermore, its α - β phase transition tempera-
ture is found to be 1053 K, which is 207 K higher than
that of pure quartz.29

In the present work, we apply ab initio quantum me-
chanical techniques to the simulation of several proper-
ties of the Si1−xGexO2 system with different chemical
composition. An elongated supercell (doubled along the
c crystallographic axis) is built with respect to the unit
cell of pure α-quartz where Si atoms are progressively
substituted with Ge atoms. The whole range of substi-

tution is here considered; beside the two end-members
of the solid solution, α-SiO2 (x = 0) and α-GeO2 (x
= 1), five intermediate compositions are taken into ac-
count: x = 0.16, 0.3, 0.5, 0.6 and 0.83. Some inter-
mediate compositions require different atomic configura-
tions to be properly described; in some configurations,
two Ge atoms are directly bridged one another by an
O atom, while in others, Si atom(s) may lie between
them. All possible symmetry-independent configurations
are simulated for each substitutional fraction x; a to-
tal of thirteen symmetry-independent configurations are
considered, overall.

A complete set of piezoelectric constants (elements
of direct and converse third-rank piezoelectric tensors
e and d, and electromechanical coupling coefficients k)
and elastic constants (elements of the fourth-rank elas-
tic C and compliance S tensors) is computed for each
configuration. Electronic and nuclear contributions to
the dielectric tensor ǫ are also computed. The effect on
the electromechanical coupling constants of the chemical
composition along the Si1−xGexO2 solid solution series
is analyzed. As a by-product, some insight can be gained
about the influence of the chemical composition on struc-
tural and electronic properties.

All the calculations are performed using a development
version of the Crystal09 program30,31 with a Gaussian-
type-function, pseudopotential, basis set and the hybrid
functional PBE0; all geometries are fully optimized at
this level of theory.

The structure of the paper is as follows: the theoreti-
cal methodology adopted for the calculation of piezoelec-
tric, elastic and dielectric tensors is presented in Section
II; the definition and validation of the adopted compu-
tational setup is given in Section III; main results are
presented and analyzed in Section IV where it is shown
that the properties of the intermediate compositions vary
smoothly and almost linearly with respect to the germa-
nium content; conclusions are drawn in Section V.

II. THEORETICAL METHODS

A. Elastic Tensors Calculation

The elements of the fourth-rank elastic tensor C for
3D systems are usually defined as second energy density
derivatives with respect to pairs of deformations:32

Cvu =
1

V

∂2E

∂ηv∂ηu

∣

∣

∣

∣

∣

0

, (1)

where η is the symmetric second-rank pure strain ten-
sor, V the equilibrium cell volume and Voigt’s notation
is used according to which v, u = 1, . . . , 6 (1 = xx, 2 = yy,
3 = zz, 4 = yz, 5 = xz, 6 = xy). An automated scheme
for the calculation of C (and of S = C

−1, the compliance
tensor) has been implemented in the Crystal program
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that exploits analytical gradients and compute numeri-
cally the second derivatives.33,34

B. Piezoelectric Tensors Calculation

In the linear regime, direct e and converse d piezoelec-
tric tensors describe the polarization P induced by strain
η and the strain induced by an external electric field E,
respectively:

direct effect P = eη at constant field (2)

converse effect η = d
T
E at constant stress (3)

The direct and converse piezoelectric tensors are con-
nected to each other: e = dC and d = e S. Our approach
consists in directly computing the intensity of polariza-
tion induced by strain. In Crystal, the polarization can
be computed either via localized Wannier functions or
via the Berry phase (BP) approach.35 The latter scheme
is adopted in the automated implementation exploited
here.36

The electromechanical coupling coefficients kiv, which
expresses the efficiency of transformation of mechanical
into electrical energy, are defined as:37,38

kiv =
div

√

ǫT
iiSvv

or kiv =
eiv

√

ǫS
iiCvv

. (4)

Here ǫ
T and ǫ

S are the free stress and zero strain dielec-
tric tensors, respectively. In this study, the electrome-
chanical coupling coefficient is calculated using the right-
hand side in expression (4), since in crystal the dielec-
tric constant is calculated where the lattice parameters
are fixed (constant strain).

C. Dielectric Tensor Calculation

The electronic contribution to the polarizability and
the dielectric tensor is evaluated through the Cou-
pled Perturbed Hartree-Fock or Kohn-Sham (CPHF/KS)
scheme39 as adapted to periodic systems.40 This is a per-
turbative, self-consistent method that describes the effect
of an external electric field on the relaxation of the crys-
talline orbitals.

Additional details about the method and its
implementation in the Crystal program can be
found elsewhere,41–43 as well as recent example of
applications.36,44–48

The total static dielectric tensor can be determined as
follows:

ǫ0ij = ǫelij + ǫvib
ij = ǫelij +

4π

V

∑

p

Zp,iZp,j

ν2
p

, (5)

where ǫelij and ǫvib
ij are the electronic (clamped ion) and

vibrational (ionic) contributions, νp is the phonon fre-
quency of mode p, V is the unit cell volume and Zp is
the mass-weighted mode effective Born charge vector.49

III. COMPUTATIONAL DETAILS

The calculations reported in this manuscript are per-
formed with a development version of the Crystal09

program.30,31 An effective Durand preudopotential (PS)
is used for describing core electrons.50 Gaussian-type-
functions are adopted for valence electrons: a PS-211G∗

basis set is used for Silicon, a PS-211G∗ one for Germa-
nium and a PS-41G∗ one for Oxygen atoms, which have
already been optimized in previous studies.51

The level of accuracy in evaluating the Coulomb and
exact exchange infinite series is controlled by five pa-
rameters whose values are here set to T1 = T2 =
T3 = T4 = 1

2
T5 = 8.30 The reciprocal space is sam-

pled according to a regular sub-lattice with a shrinking
factor of 8, corresponding to 65 independent k points
in the first irreducible Brillouin zone (BZ). The DFT
exchange-correlation contribution is evaluated by nu-
merical integration over the unit cell volume. Radial
and angular points of the integration grid are generated
through Gauss-Legendre radial quadrature and Lebedev
two-dimensional angular point distributions. A pruned
grid with 99 radial and 1454 angular points is used (see
the XXLGRID keyword in the Crystal09 user’s manual
of Ref. 30). The numerical integration accuracy can be
estimated by the error in the electronic charge per unit
cell: 4.0 × 10−6|e| out of a total of 144 electrons per cell
in α-GeO2, for instance.

The convergence of the self-consistent-field step is set
to 10−10 hartree for both geometry optimizations and
phonon frequency calculations. The fractional atomic co-
ordinates and unit-cell parameters are optimized within
a quasi-Newton scheme using analytical energy gradients
combined with the Broyden-Fletcjer-Goldfarb-Shanno al-
gorithm for Hessian updating.52–55 The optimization con-
vergence is checked on the root-mean-square (RMS) and
maximum values of both gradients and nuclear displace-
ments. The thresholds for the maximum and RMS forces
are set to 0.00045 a.u. and 0.0003 a.u.; those for atomic
displacements to 0.0018 a.u. and 0.0012 a.u., respec-
tively.

Phonon vibrational calculations are performed within
the harmonic approximation to the lattice potential.56

Vibration frequencies at the Γ point of the BZ are ob-
tained by diagonalizing the dynamical mass-weighted
Hessian matrix of the second derivatives of the total en-
ergy per cell with respect to pairs of atomic displace-
ments in the reference cell. First derivatives are com-
puted analytically, whereas second derivatives numeri-
cally (for more details see Ref. 57). Eckart’s conditions
are imposed in order to eliminate translational spurious
contributions to the dynamical matrix.58

A. One-electron Hamiltonian

Four different one-electron Hamiltonians are consid-
ered: the local density approximation (LDA) and a gen-
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TABLE I: Effect of the adopted one-electron Hamiltonian on
computed structural and electronic properties for α-SiO2 and
α-GeO2. See text for a definition of the quantities reported.

LDA PBE B3LYP PBE0 Exp.
α-SiO2

a = b (Å) 4.777 4.921 4.939 4.898 4.91659

c (Å) 5.343 5.429 5.435 5.399 5.40559

V (Å3) 105.62 113.88 114.83 112.18 113.1359

Si-O1 (Å) 1.629 1.629 1.619 1.616 1.60759

Si-O2 (Å) 1.637 1.634 1.623 1.621 1.61459

O1-Si-O1 (deg) 107.11 108.45 108.67 108.48 108.9359

O1-Si-O2 (deg) 112.40 111.19 110.63 110.89 110.5259

θ (deg) 133.73 140.28 143.02 141.19 143.7359

Eg (eV) 7.0 7.4 10.1 10.6 8.960

α-GeO2

a = b (Å) 4.932 5.130 5.174 5.101 4.98561

c (Å) 5.723 5.804 5.791 5.752 5.64661

V (Å3) 120.57 132.30 134.24 129.61 121.5061

Ge-O1 (Å) 1.779 1.779 1.760 1.759 1.73662

Ge-O2 (Å) 1.788 1.784 1.765 1.764 1.74162

O1-Ge-O1 (deg) 104.57 106.61 107.27 106.70 107.7262

O1-Ge-O2 (deg) 115.03 112.98 111.96 112.55 110.4962

θ (deg) 124.56 130.69 134.38 131.88 130.0562

Eg (eV) 3.4 3.6 6.0 6.4 5.763

eralized gradient approximation (GGA), namely Perdew-
Burke-Ernzerhof (PBE),64 to the density functional the-
ory (DFT) and two hybrid schemes (namely B3LYP65

and PBE066) which include 20 and 25 % of exact HF
exchange, respectively.

Table I shows the influence of the adopted one-electron
Hamiltonian on computed structural and electronic prop-
erties of the two end-members α-SiO2 and α-GeO2. Lat-
tice parameters, cell volume, bond lengths and angles,
intertetrahedral angle θ and electronic band gap Eg are
reported and compared with experimental values. As re-
gards lattice parameters, LDA underestimates them by
2.8 % for α-SiO2 and 1 % for α-GeO2 while PBE overesti-
mates them by 1.7 % and 2.9 %, respectively. The B3LYP
hybrid functional describes well the α-SiO2 structure,
with a deviation of 0.5 %, but poorly the α-GeO2 struc-
ture (3.8 % of deviation from the experiment). The PBE0
hybrid functional is providing the best overall descrip-
tion of the structural features of the two end-members
with deviations of 0.4 % and 2 %, respectively. Also
the description of the θ intertetrahedral angle provided
by hybrid functionals is satisfactory. The PBE0 hybrid
functional is used in the following of the paper. Let us
note that the electronic band gap obtained with PBE0 is
slightly overestimated with respect to the experimental
value and will then lead to slightly underestimated values
for the optical dielectric tensor.

TABLE II: For any composition x, number Ntot of atomic
configurations, number of Nirr symmetry-irreducible configu-
rations among them, multiplicity M and number of symmetry
operators Nops proper of each irreducible configuration.

x 0

6

1

6

2

6

3

6

4

6

5

6

6

6

Ntot 1 6 15 20 15 6 1

Nirr 1 1 3 3 3 1 1

M 1 6 6 6 3 6 12 2 6 6 3 6 1

Nops 12 2 2 2 4 2 1 6 2 2 4 2 12

IV. RESULTS AND DISCUSSION

A. Structural Model for Solid Solution

In the present study of the piezoelectric properties of
the Si1−xGexO2 solid solution, we want to consider the
whole range of compositions. In particular, beside the
two end-members, α-SiO2 (x = 0) and α-GeO2 (x = 1),
we explicitly consider five intermediate compositions: x
= 0.16, 0.3, 0.5, 0.6 and 0.83. To do so, an elongated
supercell (doubled along the c crystallographic axis) is
built with respect to the unit cell of pure α-quartz. A
new feature of the Crystal program is exploited for find-
ing automatically all the possible atomic configurations
corresponding to any composition x.67,68 For any substi-
tutional fraction x, the program finds the total number
Ntot of atomic configurations; a full symmetry analysis
is then performed to find Nirr symmetry-irreducible con-
figurations among them. To each irreducible atomic con-
figuration, characterized by Nops symmetry operators, a
multiplicity M is associated.

A total of thirteen symmetry-independent configura-
tions are considered; their properties are illustrated in
Table II. For the two pure phases, silicon (germanium)
atoms are centered on equivalent 6a Wyckoff positions
and only one atomic configuration is obviously possible,
that is characterized by 12 symmetry operators. For the
two compositions x = 1

6
= 0.16 and x = 5

6
= 0.83,

there is one irreducible configuration out of six possible
atomic configurations, each one invariant under 2 sym-
metry operators. Substitutional fractions x = 2

6
= 0.3

and x = 4
6

= 0.6 are described by a total of 15 atomic
configurations, out of which 3 are found to be symmetry-
independent: two of them with a multiplicity M = 6
(2 symmetry operators each) and one with multiplicity
M = 3, with 4 symmetry operators. For the composition
x = 3

6
= 0.5, 20 atomic configurations can be obtained;

3 are found to be symmetry-irreducible: the first one has
2 symmetry operators and a multiplicity M = 6, the
second one has no symmetry at all and a multiplicity
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TABLE III: Structural and energetic properties of the Si1−xGexO2 solid solution series, as a function of the substitutional
content x. Calculations are performed using the PBE0 hybrid functional. All data reported are per unit cell; ∆E is the energy
difference with respect to pure α-quartz.

SiO2 Si0.83Ge0.17O2 Si0.67Ge0.33O2 Si0.5Ge0.5O2 Si0.33Ge0.67O2 Si0.17Ge0.83O2 GeO2

∆E (Ha/cell) - 0.1119 0.2235 0.3348 0.4459 0.5567 0.6672
a (Å) 4.898 4.936 4.965 5.005 5.035 5.069 5.101
c (Å) 5.400 5.459 5.516 5.575 5.633 5.692 5.752
c/a 1.102 1.106 1.111 1.114 1.119 1.123 1.128
V (Å3) 112.2 115.2 118.1 120.9 123.8 126.6 129.6
θ (deg) 141.2 139.8 138.2 136.6 134.8 133.4 131.9
δ (deg) 18.6 19.7 20.9 22.1 23.4 24.5 25.6
ρ (g/cm3) 2.66 2.92 3.18 3.42 3.65 3.86 4.07
Si-O1 (Å) 1.616 1.617 1.617 1.618 1.622 1.623 -
Si-O2 (Å) 1.621 1.622 1.623 1.624 1.629 1.628 -
Ge-O1 (Å) - 1.750 1.750 1.751 1.755 1.756 1.759
Ge-O2 (Å) - 1.754 1.756 1.756 1.758 1.761 1.764

M = 12 while the third one is characterized by 6 sym- metry operators and a multiplicity M = 2.

In the next tables, for each composition x, weighted av-
erage values will be reported over all the corresponding ir-
reducible atomic configurations. In general, we find that,
for a given substitutional fraction x, the variation of any
considered property among the different irreducible con-
figurations is quite small (lower than 1 %). For instance,
the difference in the energy of the three irreducible con-
figurations, in the case x = 2

6
, is less than 10−4 hartree

and the difference in the lattice parameters and volume
is lower than 0.003 Å and 0.3 Å3, respectively.

B. Structure and Energy

Structural and energetic properties of the Si1−xGexO2

solid solution series are reported in Table III as a func-
tion of the composition x. The energy difference ∆E with
respect to pure α-quartz, equilibrium lattice parameters
a and c, their ratio c/a, cell volume V , intertetrahedral
bridging angle θ, tetrahedral tilting angle δ, density ρ
and several bond lengths and angles are reported. As
mentioned above, all the reported data, for each compo-
sition x, are the weighted average values over all the cor-
responding irreducible configurations, where the weights
in the averaging procedure are determined by the multi-

plicities M given in Table II.

From the analysis of ∆E, we can see how the inclusion
of Ge atoms in pure α-SiO2 systematically destabilizes
the structure, α-GeO2 being less stable than α-SiO2 by
0.6672 hartree/cell. Furthermore, it can be seen that the
progressive substitution of each Si atom with a Ge atom
increases the energy by about 0.111 (±0.001) hartree/cell
at each substitutional step when passing from pure α-
SiO2 to pure α-GeO2.

Along the Si1−xGexO2 series, the cell volume V in-
creases quite linearly with the number of Ge atoms in
the cell. Interestingly, also the distortion of the cell, that
can be quantified by the c/a ratio, increases linearly. The
c/a ratio, as well as θ and δ angles, reflects the interte-
trahedral distortion in the helical chains; the ideal value
of the c/a ratio is 1.10 for pure α-SiO2 and 1.13 for pure
α-GeO2 at room temperature.69 The c/a ratio, and θ
and δ angles vary linearly with respect to the composi-
tion x, as observed experimentally.13,17 Bond distances,
X-O1 and X-O2 (with X = Si, Ge), vary regularly as a
function of the composition. For instance, this can be
observed in the systematic increase of the Si-O and Ge-
O bond lengths, related to the internal distortion of the
tetrahedra, as the Ge content increases.

C. Elastic and Piezoelectric Properties

Before discussing into some detail the piezoelectric
properties of the Si1−xGexO2 solid solution, let us re-

call that direct and converse piezoelectricity measure the
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TABLE IV: Elastic (in GPa) and compliance (in TPa−1) constants of the Si1−xGexO2 solid solution as a function of the
composition x. Intertetrahedral bridging angle θ (in deg) and bulk modulus B (in GPa) are also reported. Experimental data
for x = 0 are from Ref. 69, for x =0.07 from Ref. 29 and for x = 1 from Ref. 6. Calculations performed at PBE0 level.

x θ Elastic Constants Compliance Constants B
C11 C12 C13 C14 C33 C44 C66 S11 S12 S13 S14 S33 S44 S66

0
This study 141.2 93.20 14.22 20.38 14.97 120.79 61.34 39.07 11.95 -2.00 -1.68 -3.40 8.85 17.99 28.29 45.4
Exp. 143.7 86.79 6.79 12.01 18.12 105.79 58.21 40.00 12.78 -1.77 -1.25 -4.53 9.74 20.00 29.10 3870

0.07 Exp. 142.6 85.5 10.38 - 16.3 - 57.2 37.5 - - - - - - - -
0.16 This study 139.8 83.62 15.56 20.89 12.23 114.06 54.86 33.82 13.49 -2.55 -2.01 -3.57 9.57 19.85 32.32 42.7
0.3 This study 138.2 76.06 16.51 21.03 9.80 108.57 49.57 29.61 14.98 -3.11 -2.32 -3.57 10.21 21.66 36.41 40.5
0.5 This study 136.7 69.80 17.49 21.21 7.79 104.24 44.87 26.09 16.52 -3.77 -2.62 -3.54 10.78 23.57 40.71 38.8
0.6 This study 134.8 64.42 17.79 21.02 5.99 100.48 40.72 23.14 18.06 -4.40 -2.89 -3.33 11.27 25.62 45.19 37.0
0.83 This study 133.4 59.45 18.24 20.78 4.45 97.42 36.99 20.59 19.79 -5.24 -3.12 -3.02 11.67 27.83 50.14 35.4

1
This study 131.9 54.73 18.08 20.75 3.15 94.68 33.69 18.31 21.71 -6.02 -3.44 -2.60 12.07 30.20 55.54 33.7
Exp. 130.0 64 22 32 2 118 37 21 19.25 -4.68 -3.95 -1.29 10.62 27.17 47.87 32.871

Bulk modulus B (GPa)= 1

9
[a + 2b], where a = 2C11 + C33 and b = 2C13 + C12.

variation of polarization under a finite strain and the
strain induced by an applied electric field, respectively.
The two third-rank tensors associated with these proper-
ties, e and d, are connected to each other via the elastic
C and compliance S fourth-rank tensors, according to the
relations given in Section II B. For this reason we analyze
first the elastic properties.

In Table IV we report, for each considered composition
x, elastic constants Cvu, compliance constants Svu, the
intertetrahedral angle θ and the bulk modulus B of the
solid solution. Available experimental data are also re-
ported, for pure end-members and for the Si0.93Ge0.07O2

case. By comparing with the experiment, in these three
cases, a good agreement is observed for most diagonal
elements such as C11, C44 and C66. Off-diagonal terms,
such as C12 and C13, show a larger discrepancy which,
however, can be expected since they have very small val-
ues and similar deviations are also found among different
experiments.6,10 The C14 off-diagonal constant, though
small, is in relatively good agreement with the experi-
mental determinations.

If we look at the elastic properties of the Si1−xGexO2

solid solutions of intermediate compositions, a very
smooth connection is found between those of the end-
members as a function of x, for all the elastic constants.
An overall index of this smoothness is given by the bulk
modulus B, reported in the last column of Table IV,
which varies smoothly from 45.4 GPa for α-SiO2 to 33.7

GPa for α-GeO2. The good numerical accuracy of our
approach for computing such properties can be inferred
from inspection of the behavior of the very small C14 off-
diagonal constant which regularly varies from 14.97 GPa
(18.12 GPa in the experiment) to 3.15 GPa (2.2 GPa in
the experiment).

The overall effect of the progressive substitution of Ge
atoms for Si atoms, is that of reducing the bulk modulus
and, as a consequence, from our theoretical predictions,
to decrease the values of all the diagonal elastic constants
(a behavior that looks consistent). From the comparison
with the experiments, the trends of two elastic constants
show a discrepancy: i) the C13 constant is theoretically
predicted to be almost independent from the composi-
tion x, by passing from 20.38 GPa at x = 0 to 20.75
GPa at x = 1, whereas experimentally it becomes three
times larger (from 12 GPa to 32 GPa); ii) the diagonal
C33 elastic constant is theoretically predicted to decrease
from 120.79 GPa to 94.68 GPa while experimentally it
grows in the opposite direction from 106 GPa to 118
GPa. In this respect, we should mention that the ex-
perimental determination of the elastic constants of the
two end-members is not homogeneous since it has been
performed in two separate experiments; our theoretical
predictions seem to be more reliable in this case, at least
as concerns the trend from α-SiO2 to α-GeO2 along the
solid solution series.

In Table V, we report direct and converse piezoelectric
constants, electronic and static dielectric constants (per-

mittivity) and electromechanical coupling coefficients of
the Si1−xGexO2 solid solution, as a function of the substi-
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TABLE V: Direct and converse independent piezoelectric constants, electronic and static dielectric constants (relative per-
mittivity) and electromechanical coupling coefficients of the Si1−xGexO2 solid solution, as a function of the composition x.
Experimental data, when available, are reported for end-members. Calculations performed at PBE0 level.

x 0 0.16 0.3 0.5 0.6 0.83 1
Calc. (Exp.) Calc. Calc. Calc. Calc. Calc. Calc. (Exp.)

Direct Piezoelectricity eiv (C/m2)
e11 0.179 (0.171)a 0.197 0.208 0.222 0.229 0.236 0.241 -
e14 -0.060 (-0.041)a -0.076 -0.092 -0.108 -0.122 -0.134 -0.145 -
e26 -0.184 (-0.171)a -0.196 -0.208 -0.218 -0.228 -0.234 -0.240 -

Converse Piezoelectricity div (pm/V)
d11 2.30 (2.31)a 2.89 3.46 4.08 4.70 5.49 6.31 (4.04)c

d14 0.18 (0.73)a 0.91 1.12 1.38 1.85 2.37 3.11 (3.82)c

d26 -4.78 (-4.62)a -5.79 -6.83 -8.15 -9.47 -10.87 -12.58 -

Electronic Permittivity ǫ∞ij
ǫ∞11 2.13 (2.36)b 2.19 2.25 2.30 2.36 2.42 2.48 (2.89)d

ǫ∞33 2.16 (2.38)b 2.22 2.29 2.35 2.42 2.49 2.60 (2.99)d

Static Permittivity ǫ0ij
ǫ011 4.21 (4.43)a 4.39 4.54 4.71 4.86 5.00 5.11 (6.65)e

ǫ033 4.42 (4.64)a 4.60 4.73 4.90 5.06 5.19 5.26 (7.43)†

Electromechanical Coupling kiv (%)
k11 9.61 (10.23)⋆ 10.90 11.90 13.04 13.78 14.50 15.32 -
k14 3.94 (2.63)⋆ 5.23 6.54 7.87 9.20 10.49 11.75 -
k26 15.26 - 17.10 19.07 20.92 22.86 24.52 26.38 -

a Ref. 72, b Ref. 73, c Ref. 10, d Ref. 74, e Ref. 75
† This value has been obtained from the oscillator strengths calculated from the eight Raman LO and TO phonon modes of
Ref. 75.
⋆ This value has been computed by Zeng et al.,38 from experimental converse piezoelectric strain, free stress dielectric and
compliance constants of Ref. 72.

tutional fraction x. Experimental data, when available,
are reported for the two pure end-members. In particu-
lar, dielectric and piezoelectric properties of α-SiO2 have
been extensively measured and a quite complete set of
these constants is experimentally known. The agreement
between our theoretical predictions and the experimental
values is rather good for almost all quantities in the ta-
ble. The only significant discrepancy is observed for the
off-diagonal component, d14, of the converse piezoelectric
tensor and is due to the poor description of off-diagonal
elastic and compliance constants (see again Table IV),
probably affected by temperature effects, neglected in
the calculations. Such a discrepancy, however, is fairly
acceptable considering that the value of d14 (0.18 pm/V)
is quite small if compared with the other converse piezo-
electric constants (d11 = 2.30 pm/V and d26 = −2d11 =
-4.60 pm/V). According to the symmetry space group
of the α-quartz structure (P3221), the piezoelectric con-
stant e26 = −e11 and d26 = −2d11; deviations from these
relations in Table V are due to numerical accuracy in the
supercell calculations with reduced symmetry.

The comparison with experiments is much more diffi-
cult for the second end-member, α-GeO2, due to the fact
that it does not exist in nature. Synthesizing and growing

pure α-GeO2 crystals artificially is a difficult task so that
the determination of its response properties is much less
accurate than for α-SiO2.

76 For instance, the reported ex-
perimental value for the static dielectric constant ǫ033 has
been indirectly calculated from longitudinal-optical, LO,
and transverse-optical, TO, Raman frequencies, among
which some are not very accurately measured (due to the
presence of shoulders in the spectrum); the least-squares
procedure used to obtain the static dielectric value is very
sensitive to the starting frequency values.75

As regards the compositional effect on the piezoelec-
tric response of the Si1−xGexO2 solid solution, Table V
clearly shows as both direct and converse piezoelectric
constants regularly increase passing from pure α-SiO2 to
pure α-GeO2 by progressively substituting Si atoms with
Ge atoms, as suggested by Ranieri et al. a couple of years
ago.13

For the dielectric response, it is seen from the table
that the nuclear contribution to the permittivity is as
large as the electronic one. This latter one reported in
the work is small compared to the experimental one due
to the overestimation of the electronic gap as mention in
section III A. The static dielectric constant values, re-
ported in the table, are used, via expression (4), for com-
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FIG. 2: (color online) Electromechanical coupling coefficients
as a function of the intertetrahedral bridging angle θ. The
experimental values for pure end members (full black dia-
monds) are also reported.13 In the experimental work, Ranieri
et al. also predicted the coupling values for some intermediate
compositions with small substitutional fraction x assuming a
linear behavior; these data are reported as empty black dia-
monds.

puting the electromechanical coupling coefficients (kiv)
that express the efficiency of a piezoelectric material in
converting mechanical into electrical energy. Our com-
puted values (via the second equality in equation 4) for
α-quartz are compared with data reported by Zeng et

al.,38 who computed them from experimental converse
piezoelectric strain, free stress dielectric and compliance
constants of Ref. 72, following the first equality in equa-
tion (4). Again, also the electromechanical coupling coef-
ficients vary linearly along the Si1−xGexO2 solid solution
series and, in particular, they increase with x.

In Figure 2, we report the computed electromechanical
coupling coefficients, k11, k14 and k26, as a function of the
intertetrahedral angle θ that, as discussed in the intro-
duction, is related to the structural deformation of the
Si1−xGexO2 solid solution. From the figure, a perfect
linear behavior is observed for both k14 and k26 coeffi-
cients while k11 shows a slight deviation from linearity
while increasing the content of Ge atoms. The experi-
mental values for pure end members are obtained from
the so-called AT-cut,77 which almost, but not exactly,
corresponds to the k11 coefficient.13 Our theoretical cal-

culations can describe in a quite accurate way both the
absolute values of these coefficients and their slope with
respect to θ.

Understanding how the piezoelectric, dielectric and
elastic properties of the Si1−xGexO2 solid solution can be
tuned by varying the substitutional fraction of Ge atoms
can prove extremely useful for designing materials with
optimal properties for specific technological applications.

V. CONCLUSIONS

The influence of the substitutional fraction x in the
Si1−xGexO2 solid solution is theoretically investigated on
a large variety of structural, dielectric, elastic and piezo-
electric properties. For the first time, a full range of com-
positions x (0.0, 0.16, 0.3, 0.5, 0.6, 0.83, 1.0), including
pure α-SiO2 and α-GeO2 end-members, is considered.
A set of thirteen symmetry-independent atomic config-
urations is studied. Accurate ab initio simulations are
performed using the Crystal program with the PBE0
global hybrid functional and atom-centered Gaussian-
type-functions basis set.

Almost linear relationships are observed among the
chemical composition x, structural distortion (given in
terms of intertetrahedral angle θ and tilting angle δ),
elastic and piezoelectric properties. Such a linear behav-
ior allows for simple tuning of several physical properties
of interest by doping α-quartz with different amounts
of Ge atoms. In particular, piezoelectric properties are
shown to be enhanced when increasing the concentration
of Ge atoms. The electromechanical coupling coefficients,
that express the efficiency of a piezoelectric material in
converting mechanical into electrical energy, are also an-
alyzed into some detail, as a function of the chemical
composition and structural distortion.
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(2010), http://www.crystal.unito.it.

31 R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saun-
ders, and C. M. Zicovich-Wilson, Z. Kristallogr. 220, 571
(2005).

32 J. F. Nye, Physical properties of crystals (Oxford Univer-
sity Press, Oxford, 1957).

33 W. F. Perger, J. Criswell, B. Civalleri, and R. Dovesi, Com-
put. Phys. Commun. 180, 1753 (2009).

34 A. Erba, A. Mahmoud, R. Orlando, and R. Dovesi, Phys.
Chem. Minerals (2013), in press.

35 Y. Noel, C. M. Zicovich-Wilson, B. Civalleri, P. D’Arco,
and R. Dovesi, Phys. Rev. B 65, 014111 (2001).

36 A. Erba, Kh. E. El-Kelany, M. Ferrero, I. Baraille, and
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