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A general methodology has been devised and implemented into the solid-state ab initio quantum-mechanical
Crystal program for studying the evolution under geophysical pressure of the elastic anisotropy of crystalline
materials. This scheme, which fully exploits both translational and point symmetry of the crystal, is developed
within the formal frame of one-electron Hamiltonians and atom-centered basis functions. Six silicate garnet
end-members, among the most important rock-forming minerals of the Earth’s mantle, are considered, whose
elastic anisotropy is fully-characterized under high hydrostatic compressions, up to 60 GPa. The pressure
dependence of azimuthal anisotropy and shear-wave birefringence of seismic wave velocities for these minerals
are accurately simulated and compared with available single-crystal measurements.

I. INTRODUCTION

Modern seismology is a powerful tool for experimen-
tal measurements of the elastic properties of the Earth’s
deep interior whose outcomes provide essential infor-
mation for discriminating among different compositional
models of the crust, upper mantle and transition zone,
once the elastic response of the individual constituents
is well-characterized. In this respect, seismic data that
are discussed by neglecting elastic anisotropy, can sug-
gest models which are not correct.1 Crystals of the man-
tle are generally anisotropic (olivine, the most abundant
upper-mantle mineral, exhibits an average anisotropy of
24 %, for instance) and characterized by a relatively high
degree of alignment due to typical mantle temperatures
which allow for recrystallization. The effects of elastic
anisotropy might be subtle and, among other manifesta-
tions, give usually rise to i) shear-wave birefringence that
is, the two polarizations of transverse waves travel with
different velocities, and ii) azimuthal anisotropy that is,
the seismic wave velocities depend on propagation direc-
tion. If not properly recognized, anisotropic effects are
generally modeled as inhomogeneities such as layering or
gradients.

Silicate garnets are among the most important rock-
forming minerals of the Earth’s lower crust, upper man-
tle and transition zone. They are characterized by
a cubic structure with space group Ia3d and formula
X3Y2(SiO4)3, where the X site hosts divalent cations
such as Ca2+, Mg2+, Fe2+ and Mn2+ and the Y site
is occupied by trivalent cations such as Al3+, Fe3+

and Cr3+. At least twelve end-members of this fam-
ily of minerals have been identified.2 The primitive
cell contains four formula units (80 atoms) and the
structure consists of a network of corner-sharing SiO4

tetrahedra and YO6 octahedra. The most common
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end-members of the family are pyrope Mg3Al2(SiO4)3,
almandine Fe3Al2(SiO4)3, spessartine Mn3Al2(SiO4)3,
grossular Ca3Al2(SiO4)3, uvarovite Ca3Cr2(SiO4)3 and
andradite Ca3Fe2(SiO4)3. Garnets are expected to play
different roles in the Earth’s mantle, depending on the
particular geological model considered: in the pyrolite
model3 the entire upper mantle is chemically homoge-
neous and the garnet phase would be mainly composed
by a pyralspite (pyrope-almandine-spessartine) solid so-
lution; in the piclogite model4,5 the transition region be-
tween 400 and 670 km depth would be richer in calcium
and with more abundant garnets than the pyrolite model.

Some of us have recently illustrated how ab initio the-
oretical simulations do represent an effective and reli-
able tool for the investigation of various elastic prop-
erties of this class of materials: i) the elastic response
of the six above-mentioned end-members has been com-
puted at ambient pressure;6,7 ii) elastic stiffness con-
stants of pyrope, grossular and andradite have been
computed at geophysical pressures up to 60 GPa;8

iii) the elastic behavior of the grandite solid solution,
Ca3Fe2−2xAl2x(SiO4)3, has been explicitly computed as
a function of its composition x.9 In all cases, the theo-
retical description has been compared with available ex-
perimental data.10–25

In this paper, we apply ab initio theoretical simula-
tions to the study of the evolution of elastic anisotropy
of the six above-mentioned silicate garnet end-members
under geophysical pressures. Furthermore, the elastic be-
havior of almandine, spessartine and uvarovite at high
pressure is here addressed with ab initio techniques for
the first time. Once the fourth rank elastic tensor has
been computed, according to the elastic continuum the-
ory, the three seismic wave velocities of a crystal, propa-
gating along any direction, can be computed by solving
Christoffel’s equation26,27 and can be labeled as quasi-
longitudinal vp, slow quasi-transverse vs1 and fast quasi-
transverse vs2, depending on their polarization with re-
spect to the propagation direction.28

Calculations are performed with the Crystal14



2

program29,30 where some of the present authors and co-
workers have implemented fully-automated and general
procedures for computing elastic tensors under pressure,
photoelastic constants and seismic velocities of crystals
of any symmetry.6,8,31–36 A fully periodic implementation
of the global hybrid B3LYP, Becke-three parameters-Lee-
Yang-Parr,37,38 functional and all-electron basis sets are
used.

The structure of the paper is as follows: In Section II
the methodology adopted for the calculation of the elas-
tic tensor of a crystal under pressure is briefly illustrated;
the computational setup within which all calculations are
performed is described in Section III; in Section IV we re-
port and discuss the P -V relation of almandine, spessar-
tine and uvarovite, along with the pressure dependence
of seismic wave velocities and elastic anisotropy of the six
end-members; conclusions are drawn in Section V.

II. THEORETICAL TECHNIQUE

A fully analytical scheme, based on the stress tensor, is
used for optimizing the crystal volume associated with a
given external pressure. The stress tensor σ is a symmet-
ric second-rank tensor that can be computed analytically
from the total energy density derivatives with respect to
strain:

σij =
1

V

∂E

∂ǫij

=
1

V

3
∑

k=1

∂E

∂a′

ki

akj , (1)

with ǫ second-rank symmetric pure strain tensor and
i, j = x, y, z. In the second equality, ∂E/∂ǫij has been
expressed in terms of analytical energy gradients with re-
spect to lattice parameters of the strained lattice, whose
calculation has been implemented in the Crystal pro-
gram about ten years ago by Doll et al. for 1D, 2D and 3D
periodic systems.39,40 In the above expression, aij are el-
ements of a 3×3 matrix, A, where Cartesian components
of the three lattice vectors a1, a2 and a3 are inserted
by rows and V is the cell volume. When a distortion is
applied to the cell, the lattice parameters transform as

a′

ij =

3
∑

k=1

(δjk + ǫjk)aik , (2)

where δjk is the Kronecker delta.
By adding an external hydrostatic “pre-stress” σpre

ij =

Pδij to σij and by inverting equation (1), one gets the
expression for the constrained gradients

∂H

∂aij

=
∂E

∂aij

+ PV (A−1)ji . (3)

Let us note that, with the inclusion of a hydrostatic pres-
sure, the function to be minimized becomes the enthalpy
H = E + PV . The implementation of a geometry op-
timizer under an external hydrostatic pressure, in the

Crystal program, has been done by Doll41 so that the
optimized volume V of any crystal at a given hydrostatic
pressure P can be computed analytically.

In the absence of any finite pre-stress, elastic constants
can be defined as second energy density derivatives with
respect to pairs of infinitesimal Eulerian strains:

Cijkl =
1

V0

(

∂2E

∂ǫij∂ǫkl

)

ǫ=0

. (4)

An automated scheme for the calculation of the elas-
tic tensor above has been implemented in the Crystal

program.6,42

If a finite pre-stress σ
pre is applied in the form of a hy-

drostatic pressure P , within the frame of finite Eulerian
strain, the relevant elastic stiffness constants read:28,43–46

Bijkl = Cijkl +
P

2
(2δijδkl − δilδjk − δikδjl) , (5)

provided that V0 in equation (4) is replaced by the equi-
librium volume V (P ) at pressure P . In the present, fully
automated, implementation of the calculation of the stiff-
ness tensor B (and of S = B−1, the compliance ten-
sor) under pressure, V (P ) is obtained from the analyt-
ical stress tensor described before. If Voigt’s notation
is used, according to which v, u = 1, . . . 6 (1 = xx, 2 =
yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy),47 the elastic stiff-
ness tensor passes from a 4-index to a 2-index notation
(Bijkl → Bvu) and, in general, exhibits, 21 independent
elements that reduce to 3 (i.e. B11, B12 and B44) for
crystals with cubic symmetry, as in the case of silicate
garnets.

III. COMPUTATIONAL DETAILS

All the calculations reported in this manuscript
are performed with the Crystal14 program for
ab initio quantum physics and chemistry of solid
state.30 The B3LYP one-electron Hamiltonian is
adopted, which contains a hybrid Hartree-Fock/Density-
Functional exchange-correlation term. All-electron
atom-centered Gaussian-type-function (GTF) basis sets
are adopted. Oxygen atoms are described by a (8s)-
(411sp)-(1d) contraction of primitive GTFs, silicon by
a (8s)-(6311sp)-(1d) one, aluminum by a (8s)-(611sp)-
(1d) one, calcium by a (8s)-(6511sp)-(21d) one and
magnesium by a (8s)-(511sp)-(1d) one. For iron, a
(8s)-(64111sp)-(411d) contraction of GTFs is used, aug-
mented with a further f -type polarization function as
reported in detail in previous work.48–50

In Crystal, the truncation of infinite lattice sums is
controlled by five thresholds, which are set to 7 7 7 7
16.29 Reciprocal space is sampled according to a sub-
lattice with shrinking factor 3, corresponding to 4 points
in the irreducible Brillouin zone. The DFT exchange-
correlation contribution is evaluated by numerical inte-
gration over the cell volume: radial and angular points
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of the atomic grid are generated through Gauss-Legendre
and Lebedev quadrature schemes, using an accurate pre-
defined pruned grid: the accuracy in the integration pro-
cedure can be estimated by evaluating the error associ-
ated with the integrated electronic charge density in the
unit cell versus the total number of electrons per cell:
2 ×10−5|e| out of a total number of 800 electrons per
cell for pyrope, for instance. The convergence threshold
on energy for the self-consistent-field (SCF) step of the
calculations is set to 10−10 hartree.

Equilibrium and strained configurations are optimized
by use of analytical energy gradients calculated with re-
spect to both atomic coordinates and unit-cell param-
eters or atomic coordinates only, respectively.51–53 A
quasi-Newtonian technique is used, combined with the
BFGS algorithm for Hessian updating.54–57 Convergence
is checked on both gradient components and nuclear dis-
placements; the corresponding tolerances on their root
mean square are chosen to be 10 times more severe than
the default values for simple optimizations: 0.00003 a.u.
and 0.00012 a.u., respectively. For the elastic constants
calculation, two strained configurations are considered
for each independent strain, with a dimensionless strain
amplitude of 0.01.

IV. RESULTS AND DISCUSSION

The first aspect to be discussed is the pressure-volume
relation of the six silicate garnet end-members. In a re-
cent investigation, we have computed the P -V relation
for pyrope and grossular up to 60 GPa and for andra-
dite up to 40 GPa with the same methodology described
in Section II and compared it with available experimen-
tal studies.8 For synthetic pyrope, a single-crystal X-ray
diffraction study up to 33 GPa by Zhang et al.58 was
available, whereas a subsequent study by Zhang et al.59

on synthetic single-crystal grossular and andradite up to
12 GPa and 14 GPa, respectively, was taken as a ref-
erence. The analytical stress tensor approach provided
an excellent agreement with these experimental studies.
An equation of state (EOS) approach was also investi-
gated with four different analytical expressions (third-
order Murnaghan’s,60 third-order Birch’s,61 logarithmic
Poirier-Tarantola’s62 and exponential Vinet’s63). When
extrapolating to high pressure, the four EOSs slightly de-
viated from each other, still remaining relatively close to
the analytical reference. On the contrary, we reported
large deviations from the reference as regards the pres-
sure dependence of the bulk modulus, the third-order
Birch-Murnaghan providing the best description among
them.

The P -V relation for almandine, uvarovite and spes-
sartine is reported in Figure 1. Simulated data (as com-
puted through the analytical stress tensor approach) are
reported as continuous lines up to 6 GPa, 30 GPa and
40 GPa for almandine, uvarovite and spessartine, re-
spectively. As main experimental reference, we consider

FIG. 1. V/V0 is reported as a function of pressure P , for
almandine (upper panel), uvarovite (middle panel) and spes-
sartine (lower panel). Continuous lines represent computed
values (with the analytical stress tensor scheme); full circles
are experimental data from Ref. 64, open circles form Ref.
65, open squares from Ref. 59 and open triangles from Ref.
66.

the high-pressure X-ray synchrotron diffraction study of
spessartine and uvarovite by Diella et al.64 up to 25 GPa
and 35 GPa, respectively (full circles). We also report the
values obtained by Leger et al.65 in their powder X-ray
diffraction study as a function of pressure for spessartine
and uvarovite up to 25 GPa (open circles). For alman-
dine, single-crystal X-ray diffraction data by Zhang et

al.59, up to 22 GPa, are reported (open squares). Com-
puted values for almandine are reported up to 6 GPa
only because for higher pressures the electronic structure
of the system is not converging within the numerical ac-
curacy required by such calculations. For spessartine,
other two compressional experiments are considered: a
recent pressure-volume-temperature study by Gréaux et

al.66 up to 13 GPa (open triangles) and a single-crystal
X-ray diffraction study by Zhang et al.59 up to 15 GPa
(open squares). The computed P -V relation for alman-
dine and spessartine is found to be in excellent agreement
with the accurate studies by Diella et al.64 and Zhang et
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TABLE I. Elastic properties of uvarovite (Uva), spessartine
(Spe) and almandine (Alm) as a function of pressure P (GPa).
Elastic stiffness constants Bvu, bulk modulus K0, shear mod-
ulus G, Young modulus E (expressed in GPa) and dimen-
sionless Poisson’s ratio σ are reported as computed at B3LYP
level.

P B11 B12 B44 K0 G E σ

Uva

0 306 83 87 158 96 240 0.25

4 332 96 90 175 100 253 0.26

8 356 110 93 192 104 264 0.27

12 379 124 95 209 107 274 0.28

20 419 151 99 240 112 290 0.30

30 466 185 102 279 116 305 0.32

0 310 114 94 179 96 244 0.27

4 334 126 98 195 101 258 0.28

8 357 138 102 211 105 270 0.29

Spe 12 380 151 106 227 109 282 0.29

20 422 177 112 259 116 303 0.30

30 472 210 119 297 123 325 0.32

40 519 244 125 335 130 345 0.33

Alm

0 309 117 89 181 92 236 0.28

2 322 123 92 189 95 245 0.28

4 335 129 96 198 99 254 0.29

6 347 136 99 206 102 262 0.29

al.59 whereas for uvarovite the agreement is acceptable
but somehow less satisfactory, particularly so when pres-
sure exceeds 10 GPa.

According to the procedure described in Section II, we
have computed the elastic stiffness constants Bvu of spes-
sartine up to 40 GPa, of uvarovite up to 30 GPa and of al-
mandine up to 6 GPa. The three independent constants,
B11, B12 and B44, are reported in Table I as a function
of pressure. When pressure increases, elastic stiffness
constants increase with a quasi-linear behavior as pre-
viously observed for pyrope, grossular and andradite.8

Let us discuss first spessartine and uvarovite for which
we have computed elastic stiffness constants up to very
high pressures: B12 shows the largest variation among
them, changing by 123 % and 84 % passing from 0 to
30 GPa for uvarovite and spessartine, respectively; B11

changes by 52 % for both garnets, while B44 is found to
be the least pressure dependent, varying by only 17 %
and 27 %, respectively. To the best of our knowledge, no
experimental data of elastic constants under pressure of
spessartine and uvarovite have been reported so far. As

regards almandine, experimental elastic constants under
pressure have been reported by Jiang et al.67 up to 11
GPa for an almandine-rich (72 %) garnet. The B11 con-
stant increases by 12 % and 14 % from 0 to 6 GPa and
from 0 to 5.8 GPa in our calculations and in the exper-
iment, respectively, B12 by 16 % and 17 % and B44 by
11 % and 10 %, respectively. The overall agreement is
definitely satisfactory.

We have computed high-pressure elastic properties of
isotropic polycrystalline aggregates from the elastic stiff-
ness and compliance constants through the Voigt-Reuss-
Hill averaging scheme.68,69 In particular, for cubic crys-
tals, the adiabatic bulk modulus K0 is simply defined
as:

K0 =
1

3
(B11 + 2B12) . (6)

The average shear modulus G can be expressed as:

G =
1

10
(B11 −B12 + 3B44) +

5

2
(4(S11 − S12) + 3S44)

−1 .

From the bulk modulus and the average shear modulus,
expressions for Young’s modulus E and Poisson’s ratio σ
can easily be obtained:

E =
9K0G

3K0 + G
and σ =

3K0 − 2G

2(3K0 + G)
. (7)

All these properties are reported in Table I as a function
of pressure. Due to the fact that all these properties are
derived from the elastic stiffness constants, they show a
quasi-linear trend as a function of pressure too.

Most experimental studies of the elastic proper-
ties of garnets under pressure, report average seismic
wave velocities.15,25,67,70–73 Within the Voigt-Reuss-Hill
scheme, the average values of quasi-transverse (shear),
vs, and quasi-longitudinal, vp, seismic wave velocities can
be computed as:74

vs =

√

G

ρ
and vp =

√

K0 + 4
3G

ρ
, (8)

where ρ is the crystal density. We have simulated these
seismic wave velocities for pyrope up to 60 GPa, for
grossular, andradite, uvarovite and spessartine up to 30
GPa and for almandine up to 6 GPa, and reported them
in Figure 2 (as continuous lines) where they are com-
pared with available experimental data. It is clearly seen
from Figure 2 that both vs and vp vary quasi-linearly
with pressure, with vs showing a smaller dependence on
pressure than vp.

For pyrope, three accurate experiments have been per-
formed at high pressure: a single-crystal Brillouin scat-
tering study by Sinogeikin et al.15 who reported values
up to 20 GPa at ambient temperature (full circles); a
synchrotron X-ray diffraction experiment by Gwanmesia
et al.70 up to 11 GPa at 300 K (open triangles) and an
ultrasonic measurement at room temperature done by
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FIG. 2. Quasi-longitudinal, vp, and quasi-transverse, vs, av-
erage seismic wave velocities (in km/s) as a function of pres-
sure P (in GPa) for pyrope, grossular, andradite, spessartine,
uvarovite and almandine. Computed data are reported as
continuous lines. Full circles are experimental data from Ref.
15, open circles form Ref. 71, open triangles from Ref. 70
and 72, full pentagons from Ref. 73 and open diamonds from
Ref. 19.

Chen et al.71 up to 10 GPa (open circles). For grossular,
two reliable high-pressure synchrotron X-ray diffraction
experiments by Gwanmesia et al.72 (open triangles) and
Kono et al.73 (full pentagons) are reported up to 7 GPa
and 14 GPa, respectively. As far as we know, no experi-
mental data are available for spessartine. For andradite,
uvarovite and almandine, the only available data are the
low-pressure ones by Wang et al.19 (open diamonds).

The overall agreement between our computed veloci-
ties and experimental ones is rather good, especially so
when a comparison is possible with experiments at rel-
atively high pressures. In particular, we note that the
velocities measured by Wang et al.19 for pyrope, grossu-
lar, andradite, uvarovite and almandine at very low pres-
sures (P < 3 GPa) in most cases significantly deviate
from other experimental datasets (when available) and
computed values.

In principle, from accurate single-crystal Brillouin
scattering experiments, directional seismic wave veloci-
ties can be measured which convey the essential informa-
tion for analyzing into detail the elastic anisotropy of a
crystal. However, few directional studies have been per-
formed so far for silicate garnets.15,25,67 From a funda-
mental point of view, within the elastic continuum model,
the three acoustic wave velocities of a crystal, along any
general direction represented by unit wave-vector q̂, can
be related to the elastic constants by Christoffel’s equa-

tion which can be given an eigenvalues/eigenvectors form
as follows:26,27

Aq̂U = V2U with Aq̂

jk =
1

ρ

∑

il

q̂iCijkl q̂l , (9)

where Aq̂

jk is Christoffel’s matrix, ρ the crystal density,
i, j, k, l = x, y, z represent Cartesian directions, q̂i is the
i-th element of the unit vector q̂, V is a 3×3 diagonal
matrix whose three elements give the acoustic velocities
and U = (û1,û2,û3) is the eigenvector 3×3 matrix where
each column represents the polarization û of the corre-
sponding eigenvalue. The three acoustic wave velocities,
also referred to as seismic velocities, can be labeled as
quasi-longitudinal vp, slow quasi-transverse vs1 and fast
quasi-transverse vs2, depending on the polarization di-
rection û with respect to wave-vector q̂.28

As we shall show in what follows, from the analysis of
directional seismic wave velocities, the main aspects of
elastic anisotropy, such as shear-wave birefringence and
azimuthal anisotropy, can be fruitfully discussed, in par-
ticular as regards their evolution on pressure. In Figure
3 we report our computed directional seismic wave ve-
locities for grossular, uvarovite, spessartine, pyrope, an-
dradite and almandine along the same azimuthal angle
θ which spans the (110) plane of the lattice by explor-
ing all the most symmetric crystallographic directions:
θ = 0◦ corresponds to the crystallographic direction
[110], θ = 45◦ to [111] direction, θ = 90◦ to [001] direc-
tion, etc. Computed velocities are reported as continuous
lines of increasing thickness as a function of pressure (0
GPa, 4 GPa, 8 GPa, 12 GPa, 20 GPa, 30 GPa). Avail-
able directional experimental data are also reported in
the figure: for andradite, data from an accurate single-
crystal Brillouin scattering experiment by Jiang et al.25

are reported at ambient pressure (full squares) and at 8.7
GPa (full circles); a subsequent study by Jiang et al.67

on a single-crystal grossular-rich garnet at 4.3 GPa (full
circles) is also taken as a reference; for pyrope, data from
the study by Sinogeikin and Bass15 are reported. From
comparison with available experiments, it is clearly seen
how accurate the theoretical description of angular de-
pendence, oscillation amplitudes and pressure shift of the
seismic wave velocities can be.

From the analysis of Figure 3 we can sort the six end-
members according to increasing propagation velocity, at
zero pressure, as follows: Alm < And < Spe < Uva <
Pyr < Gro; we can also notice that the sequence remains
unchanged even under increasing pressure. Almandine
shows the slowest vp, while pyrope and grossular allow
for the fastest propagation. In our previous work,6 this
behavior has been explained in terms of the elemental
composition of the end-members via equation (8) which
states that seismic wave velocities are inversely propor-
tional to the density of the material. Fe-bearing phases,
such as andradite and almandine are the most dense, fol-
lowed by the Mn- and Cr-bearing phases, such as spessar-
tine and uvarovite whereas pyrope and grossular contain
the lightest elements (Mg, Ca) thus being the least dense
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TABLE II. Computed average polycrystalline isotropic quasi-longitudinal, vp, and quasi-transverse, vs, seismic wave velocities
(in km/s) and elastic anisotropy index (in %) as a function of pressure (in GPa) for pyrope, grossular, andradite, spessartine,
uvarovite and almandine.

P Pyrope Grossular Andradite Spessartine Uvarovite Almandine

vp vs A vp vs A vp vs A vp vs A vp vs A vp vs A

0 9.182 5.118 -3.0 9.495 5.572 -5.6 8.504 4.866 -10.0 8.664 4.839 -2.5 8.762 5.087 -15.8 8.502 4.683 -4.5

4 9.397 5.208 -2.2 9.727 5.641 -7.4 8.759 4.932 -11.7 8.881 4.907 -3.6 8.993 5.127 -16.6 8.760 4.794 -4.1

8 9.712 5.345 -2.0 9.938 5.697 -9.1 8.988 4.981 -12.9 9.079 4.964 -4.1 9.204 5.158 -16.9

12 9.936 5.422 -1.6 10.128 5.749 -10.0 9.198 5.021 -13.4 9.267 5.014 -4.5 9.401 5.184 -17.1

20 10.324 5.535 -1.2 10.474 5.805 -11.7 9.520 5.060 -14.0 9.605 5.090 -5.1 9.697 5.194 -16.9

30 10.742 5.638 -1.9 10.848 5.855 -12.5 9.891 5.090 -14.4 9.969 5.153 -5.1 10.044 5.194 -16.5

40 11.100 5.708 -0.4 11.167 5.881 -13.2 10.207 5.094 -14.5 10.294 5.201 -5.1

60 11.704 5.798 +0.3 11.683 5.890 -13.0

(the reader can find the explicit values of the computed
densities in Table II of Ref. 6). Another consideration
that can be made from the analysis of Figure 3 is that
seismic wave velocities increase as pressure increases.

From directional seismic wave velocities, the elastic
anisotropy of a crystal can be fully characterized. The
azimuthal anisotropy for quasi-longitudinal and quasi-
transverse seismic wave velocities can be defined as
follows:28

AX =
vXmax

− vXmin

vX

, (10)

where X = p, s labels longitudinal and shear waves and
vX is the polycrystalline isotropic average velocity ob-
tained from Voigt-Reuss-Hill scheme, whose expression
is given in equation (8). Elastic anisotropy would be
zero for an ideal isotropic material; even cubic crystals,

such as silicate garnets, however, show a non-zero elastic
anisotropy.28 For cubic crystals, the elastic anisotropy
can be given a simple expression in terms of a single
anisotropy index computed from the elastic constants:75

A =

(

2B44 + B12

B11
− 1

)

× 100 . (11)

Computed average isotropic seismic wave velocities (lon-
gitudinal vp and shear vs) and elastic anisotropy index
A are reported in Table II as a function of pressure for
the six end-members. In the absence of external pres-
sure, the six silicate garnet end-members can be sorted
in terms of increasing elastic anisotropy, as follows: Spe
< Pyr < Alm < Gro < And ≪ Uva. Spessartine and
pyrope show very low anisotropy while uvarovite is by
far the most anisotropic among them.

Let us analyze the effect of pressure on the elastic
anisotropy of this class of materials. From Figure 3 and
Table II it is seen that the elastic anisotropy of grossular,
uvarovite, spessartine and andradite increases as a func-
tion of pressure. In particular, grossular and spessartine
are the most affected by pressure, with anisotropies vary-
ing from -5.6 % to -13.2 % and from -2.5 % to -5.1 %,
respectively, when passing from 0 GPa to 40 GPa; the
elastic anisotropy of andradite increases form -10 % to
-14.5 % in the same pressure range while the anisotropy
of uvarovite only slightly increases form -15.8 % to -16.5
% passing from 0 GPa up to 30 GPa. Pyrope and alman-
dine show a different behavior under pressure: their elas-
tic anisotropy decreases. If at ambient pressure pyrope
shows a larger anisotropy than spessartine, as soon as

pressure increases the anisotropy of spessartine becomes
larger than pyrope.

V. CONCLUSIONS

A general ab initio methodology has been devised and
implemented in the Crystal program for analyzing the
evolution under pressure of the elastic anisotropy of crys-
talline materials. The scheme, developed within periodic
boundary conditions, localized atomic orbitals and one-
electron Hamiltonians, has been applied to a family of
silicate garnets which are among the main rock-forming
minerals of the Earth’s mantle. The characterization of
the elastic anisotropy of minerals is of particular interest
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FIG. 3. Directional quasi-transverse and quasi-longitudinal seismic wave velocities of single-crystal grossular, uvarovite, spes-
sartine, pyrope, andradite and almandine along an azimuthal angle θ (defined in the text). Computed data at different pressures
(0 GPa, 4 GPa, 8 GPa, 12 GPa, 20 GPa, 30 GPa) are reported as continuous lines of increasing thickness. Experimental data
by Jiang et al.25 for andradite at ambient pressure (triangles), downshifted by 0.1 km/s, and at 8.7 GPa (circles) are reported.
Experimental data by Jiang et al.67 for a grossular-rich garnet at 4.3 GPa (circles) are also reported, downshifted by 0.4 km/s
for quasi-longitudinal and 0.24 km/s for quasi-transverse seismic wave velocities. For pyrope, data by Sinogeikin and Bass15

are reported at 0 GPa (triangles) and 13.9 GPa (circles).

to the geophysical description of the Earth’s deep interior
and to the understanding of seismic wave propagation
during earthquakes.

The elastic properties under geophysical pressure of
spessartine, uvarovite and almandine have been inves-
tigated with an ab initio technique for the first time.
Furthermore, azimuthal anisotropy and shear-wave bire-

fringence of seismic velocities have been fully character-
ized for the six silicate garnet end-members as a function
of increasing pressure, up to 60 GPa. The propagation
velocity of elastic waves has been found to systemati-
cally increase with pressure. The evolution of elastic
anisotropy with pressure has also been investigated. Py-
rope and almandine have been found to decrease their
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elastic anisotropy with pressure while for grossular, an-
dradite, spessartine and uvarovite it increases, more so
for grossular and spessartine than for andradite and
uvarovite.
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