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Use of symmetry can dramatically reduce the computational cost (running time and memory allocation) of
Self-Consistent-Field ab initio calculations for molecular and crystalline systems. Crucial for running time is
symmetry exploitation in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix
at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation,
full square matrices (overlap, Fock and density) in the Atomic Orbital (AO) basis are avoided and a direct
transformation from the packed AO to the SACO (Symmetry Adapted Crystalline Orbital) basis is performed,
so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. Quantitative
examples, referring to the implementation in the Crystal code, are given for high symmetry families of
compounds such as carbon fullerenes and nanotubes.
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I. INTRODUCTION

In the study of the electronic structure of crystalline
compounds, it is mandatory to exploit translational sym-
metry by using a variational basis of Bloch Functions
(BFs), so that a block-diagonal structure is obtained for
the (infinite) Hamiltonian matrix, each block correspond-
ing to a k point in the First Brillouin Zone (BZ) (see first
transformation in Figure 1). Indeed, all periodic codes
are based on the use of BFs. Point symmetry, on the
other hand, is totally or partially neglected in many com-
puter codes, both periodic and molecular; only a subset
of point groups (if any) is implemented, whose operators
are used at some steps of the calculation: the largest
point group implemented in most molecular codes is D2h

(the only exception is, to the authors’ knowledge, the
TURBOMOLE program1), a possible reason being that
most (certainly not all!) of the molecular systems, when
containing many atoms, have usually low symmetry. The
low exploitation of symmetry is surprising, in particular
in solid state, when considering the emphasis given in
many cases to the need for “linear scaling” (a keyword
in the title of a large number of papers)2–13 of the algo-
rithms. Why hunting for “linear scaling” and at the same
time forsaking a saving factor that can be as large as 48
(cubic space groups), or 120 (fullerenes), or even more
for nanotubes? A very recent publication14 fills the gap
in part. It describes the use of symmetry in the calcu-
lation of the two-electron integrals (but not in the other
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steps of the calculation) in biatomic cubic compounds
and carbon nanotubes, with important saving factors,
along lines very similar to the ones described many years
ago by one of the present authors15 and implemented in
the first release of the Crystal code (Crystal88).

In the present paper we discuss how symmetry per-
mits a drastic reduction in running time and mem-
ory allocation in Self-Consistent Field (SCF) calcula-
tions of the electronic structure for both molecules and
solids. This formal scheme has been implemented for the
new release of the Crystal code16,17 (Crystal14, see
http://www.crystal.unito.it).

Symmetry can reduce running time at various steps of
the SCF process:

1. Calculation of one- and two-electron integrals,
whose number is reduced by up to a factor of Nop,
the number of point symmetry operators R in the
group; this part was implemented almost 30 years
ago in the first version of the Crystal code;15

2. Numerical integration of the exchange-correlation
density functional in an asymmetric subset of grid
points;15

3. Selection of a subset of k points of the BZ, namely
the Irreducible Brillouin Zone (IBZ), at which the
Fock matrix is diagonalized (this applies to periodic
systems only). The number of k points is reduced
also in this case by a factor approaching Nop when
a dense mesh of points is used;15

4. Diagonalization of the Fock matrix, by using Sym-
metry Adapted Crystalline Orbitals (SACOs, in
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FIG. 1. Block-factorization of the Fock matrix. F
g: basis of

AOs (Atomic Orbitals, non-packed form; borders are blurry
to indicate that such matrix is infinite in principle); F

k: basis
of BFs (Bloch Functions, i.e. Crystalline Orbitals); F

k: basis
of SACOs (Symmetry Adapted Crystalline Orbitals).

the case of solids) or Symmetry Adapted Molec-
ular Orbitals (SAMOs, for molecules) as a basis.
SACO/SAMO bases are generated automatically
in Crystal from the selected basis set of Atomic
Orbitals (AOs) and their symmetry, with no ref-
erence to a data-base of the Irreducible Represen-
tations (IRs) or character tables. This part of the
code was implemented more than 15 years ago.18,19

In this case saving factor in computational time is
even larger than for all previous items in this list,
as being roughly proportional to the third power
of the ratio of the number of AOs in the basis set
(NAO) to the size of the largest block of the Fock
matrix when represented in the SACO/SAMO ba-
sis (MIR);

5. Reconstruction of the density matrix, a step scaling
with the third power of the basis set N3

AO, as each of
the N2

AO matrix elements is obtained by summing
over all occupied crystalline orbitals (in the order of
NAO). Instead, if a density matrix is first formed in
the SACO/SAMO basis for each of the NIR IRs and
then transformed to the AO basis, computational
time gets roughly proportional to NIR ·M3

IR+NIR ·
M2

IR ·Nop, with significant saving. This part of the
scheme has been implemented for the present study.

Computational time is not the only issue in handling
large unit cell systems, as memory can become a compu-
tational bottleneck if not properly treated at every stage
of the calculation. In this respect, avoiding represen-
tation of the Fock, overlap and density matrices as full
square matrices in the AO basis is crucial. As both one-
and two-electron integrals are evaluated in such a basis,
a set of back and forth transformations are required from
the AOs to the SACOs/SAMOs bases. These expedients
have been fully implemented in the Crystal code for
the present study, too.

In the following, performance in terms of both compu-
tational time and memory requirements, resulting from
full symmetry exploitation, will be illustrated in the
case of two series of highly symmetric compounds: car-
bon fullerenes of the (n, n) family20 (120 symmetry op-
erators), and carbon nanotubes of the zig-zag (n, 0)

family21,22 (8 × n symmetry operators, where n up to
100 has been considered). Systems with higher period-
icity are not considered here because the corresponding
maximum number of point operators (48) is lower than
for fullerenes and nanotubes, and then the advantages
of the full exploitation of symmetry less evident. The
scheme is however fully general, and in no way limited to
low dimensionality systems, as documented in a second
paper.23

The structure of the present paper is as follows: in
Section II the computational scheme is shown, and the
use of symmetry for reducing both the CPU cost and the
memory allocation discussed. Section III provides details
of the computational setup adopted for the calculations.
The effectiveness of the scheme is documented in Section
IV. The main conclusions are drawn in Section V.

Additional information is available in the supplemen-
tary material;24 corresponding tables in this section are
labelled with the S prefix.

II. THE COMPUTATIONAL SCHEME

The following scheme has been implemented in the new
Crystal14 code.16,17 All the presented features are in
the current public version, except for the formulation of
density matrix in terms of SACOs (point G. below), that
is implemented in a second release of the code to be dis-
tributed in 2014. A brief outline was presented about
two years ago, when the scheme was still at the project
stage.25

Crystal was designed so as to take advantage of the
chemical nature and connectivity of the system. Thus,
interactions are computed in real space and selected on
the basis of AO overlap criteria. However, as recalled
above, the SCF problem for periodic systems must be
solved in the reciprocal space by representing matrices in
the BF basis. For these reasons, all three types of ma-
trices used in the SCF cycle, namely overlap (S), Fock
(F) and density (P), must be represented both in the AO
and the BF basis along the SCF cycle. Moreover, they
all can be stored either in their symmetry irreducible
form or in the symmetry full form. In real space, every
matrix M (M = S, F, P) is expressed in the AO basis
and stored in packed arrays as a result of the application
of effective integral selection (screening) criteria, that
drastically reduce the number of matrix elements to be
computed and stored (see point C. below). Hence their
size scales linearly with the size of the system, instead
of quadratically. In the following, such matrices are la-
beled with Latin characters: upper-case for full matrices
(Mg) and lower-case for matrix irreducible blocks (mg),
with g denoting a real space lattice basis vector. Mg is
obtained from mg by application of the symmetry opera-
tors R of the point group. For molecules we can formally
assume that g represents the null vector only. In highly
symmetric cases, mg is much smaller than Mg: Table I
shows that the size of Fg and fg for C60, with accurate
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TABLE I. General information about a family of (n, n) fullerenes. N tot
at is the total number of atoms, Nasym

at the subset in
the asymmetric unit; NAO is the total number of atomic orbitals; Sf denotes the size of the asymmetric wedge of the Fock
matrix, and SF its expanded version obtained by application of the symmetry operators (both matrices are packed); MIR is
the number of rows (columns) of the largest diagonal block in the square NAO ×NAO Fock matrix in the SAMO basis (F); R1,
R2 and R3 are the ratios SF/Sf , Sf/N

tot
at and NAO/MIR, respectively. All fullerenes possess the same symmetric pattern with

120 operators and 10 IRs.

(n, n) Nasym
at N tot

at NAO Sf SF MIR R1 R2 R3

(1,1) 1 60 840 1’759 169’980 38 97 29 22
(2,2) 3 240 3’360 6’707 716’130 146 107 28 23
(4,4) 10 960 13’440 25’377 2’847’690 572 112 26 23
(6,6) 21 2’160 30’240 55’661 6’362’370 1’278 114 26 24
(8,8) 36 3’840 53’760 97’559 11’260’170 2’264 115 25 24

(10,10) 55 6’000 84’000 151’071 17’541’090 3’530 116 25 24

basis set and computational conditions (see Section III), is 169’980 and 1759, respectively. Their ratio (R1 in the
Table) is 97, tending to 120 for larger fullerenes.

In reciprocal space, F and S must both be in square
form (this is a capital difference with respect to the di-
rect space representation) to be diagonalized at each k

point in the IBZ and yield the one-electron eigenvalues
and eigenvectors (in molecular cases it can formally be
assumed that there exists only the Γ point in the IBZ).
The eigenvectors are also to be stored to memory as they
are needed in the reconstruction of the density matrix.
They are arranged in a matrix, A, with the same size
and symmetry properties related to F. In the following,
matrices in reciprocal space (including A) are denoted as
Mk when the BFs are constructed in the basis of AOs,
whereas blackboard characters (Mk) are used when the
BFs are in the basis of SACOs/SAMOs so that the over-
lap, Fock and eigenvectors matrices take a block-diagonal
form, each block being labeled by an irreducible repre-
sentation index (Mk,IR).

The reader can appreciate the advantage of using the
SAMO basis by taking, again, C60 as an example (Table
I): the size of Fk is 840× 840 whereas that of the largest
F

k,IR is only 38 × 38, that is, the size of the largest IR
matrix to diagonalize and store to memory is 489 times
smaller than Mk.

Here follows a list of the steps where Crystal widely
benefits from deep use of the system symmetry:

A. Symmetry is used to identify relationships between
atoms, shells, atom pairs, so that linear transfor-
mations along the SCF process can be performed
efficiently through mapping tables. It is also used
to find the IRs and the character table, as well as
the transformation matrices Wk from the AO to
the SACO/SAMO basis, which are stored in a com-
pressed form.

B. One- and two-electron integrals are evaluated with
reference to the symmetry irreducible set of atoms
and shell-shell couples.

C. Every element of the direct space irreducible Fock
matrix wedge fg is formed by combination of one-
and two-electron integrals with the density matrix
Pg′

:

fgµν =
∑

λ,ρ,g′

P
g′

λρ

∑

h

[

(µ0νg|λhρh+g′

)

−
1

2
(µ0λh|νgρh+g′

)

]

+ Hg
µν (1)

where square brackets contain the Coulomb and
exchange integrals and Hg

µν is the one-electron
contribution to the Fock matrix. Summations in
Eq. 1 are truncated by screening techniques based
on overlap criteria between gaussian functions or
charge distributions for multipolar expansions and
on an estimate of the density matrix range in real
space (see Refs. 16, 17, and 26). In the same way,
the number of matrix elements to be computed is
restricted to those atoms related by some degree of
vicinity so that matrices in real space take a very
compact structure scaling linearly with the system
size, as anticipated above. In addition to this, only
the irreducible wedge of the matrices is formed and
only fg and pg are stored to memory. Shell-shell
blocks of Pg in Eq. 1 are obtained by rotation
from pg when needed and this can be done with
a “low-memory” approach illustrated in Refs. 27
and 28. For example, in the case of C60 (Table
I), only 1759 elements of fg (g = 0, in this case)
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were computed and stored to memory instead of
840× 840 = 705′600 in the full square Fock matrix
Fg, that is, 400 times less elements.

D. The exchange-correlation functional of the electron
density in the unit cell is integrated numerically on
a set of points belonging to the asymmetric part
(that is the symmetry irreducible part) of the inte-
gration grid.

E. Transformation of the overlap and Fock matrices
from real to reciprocal space (mg → M

k) requires
in principle the following intermediate transforma-
tions:

mg a
−→ Mg b

−→ Mk c
−→ M

k (2)

corresponding to:
a) Generation of the full overlap and Fock matrices
in real space by applying the set of symmetry op-
erators R of the point group to the corresponding
irreducible matrices:

Mg′

=
∑

R

R†mgR (3)

b) Fourier transform of Mg to reciprocal space, that
is, from the AO to the BF basis (first transforma-
tion in Figure 1):

Mk =
∑

g

eik·gMg (4)

In the molecular case, obviously, no transformation
to the reciprocal space is needed.
c) Transformation of Mk into the SACO block-
diagonal form (second transformation in Figure 1):

M
k = Wk †MkWk (5)

W matrices take a different form for the various
k points, depending on their multiplicity. In the
molecular case, the SAMO block-diagonal form M

k

is obtained directly from Mg, with formally k =
g = 0.

In Crystal09 the three steps in Eq. 2 implied
the calculation of the four full matrices at every k

point along subsequent steps. However, since steps
a, b and c are mere linear transformations, by an
appropriate mapping we can obtain every block of
M

k (Mk,IR) in a single step from mg, so reducing
dramatically the amount of data to keep in memory
with respect to storage of the full square matrices
in the AO basis (Mk). The required size is equal
to the size of the largest matrix M

k,IR (MIR in Ta-
ble I). This latter procedure is followed in Crys-

tal14. As already mentioned, in the case of C60
this amounts to M2

IR = 1444 elements, instead of
N2

AO = 705′600 in the AO basis, the ratio between
the two allocations, (R3)

2, being as large as 489.

F. Every block of the overlap or Fock matrix in the
SACO/SAMO basis (Mk,IR) is diagonalized and
the eigenvectors A

k,IR are obtained. As antici-
pated, the corresponding saving factor in comput-
ing time can be huge.

G. Formation of the irreducible density matrix in real
space (pg) was achieved through the following steps
in Crystal09:

A
kIBZ

d
−→ AkIBZ

e
−→ AkBZ

f
−→ PkBZ

g
−→ pg (6)

where:
d) The eigenvectors of the Fock matrix in the BF
basis for every k point in the asymmetric part of
the first Brillouin zone (IBZ) were obtained from
those in the SACO/SAMO basis. They formed
large square matrices with the same size as Fk.
e) The eigenvectors at every k point in the first
Brillouin zone (BZ) were obtained from those in
the IBZ by application of all symmetry operators
R, because back-Fourier transform to real space
requires integration over the entire first Brillouin
zone, i.e. a sum over all k points in the BZ.
f) Formation of the full square density matrix in
reciprocal space.26

g) Fourier transform of PkBZ to real space.

Here pg is in compact form because it takes ad-
vantage of both symmetry and interaction screen-
ing. In the second release of Crystal14 (to
be distributed in 2014), this matrix is gener-
ated straightforwardly from the eigenvectors in the
SACO/SAMO basis, A

k, by means of the same
mapping that was used for transforming the over-
lap and Fock matrices from real to reciprocal space
(point E. above). Such an improvement has a
strong impact both on computational time and
memory usage, because full square matrices, such
as Ak and Pk, are no longer to be allocated (their
size would be 840× 840 in the case of C60 in Table
I).

The new scheme implies the following steps:

A
kIBZ

h
−→ P

kIBZ
i
−→ P

kBZ
l
−→ pg (7)

namely:
h) Construction of the density matrix in the
SACO/SAMO basis at reciprocal space points in
the IBZ. Unlike step f above, eigenvectors have
the size of the IR they belong to, instead of the
full number of the AOs in the unit cell.
i) Generation of the density matrix at all reciprocal
space points in the BZ from those in the IBZ by ap-
plication of all symmetry operators (again, arrays
are much shorter than in the AO basis adopted in
step e above).
l) Fourier transform and basis change from SACOs
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(or SAMOs for molecules) to AOs. Since such a
transformation implies matrix double products, it
scales in principle with the third power of the num-
ber of basis functions. Nevertheless, matrices in the
SACO basis are in block form, whose maximum di-
mension in C60 is MIR × MIR = 38 × 38 to be
compared with the larger NAO ×NAO = 840×840.
Actually, both Fourier and SACO to AO transfor-
mations now take full advantage of this property.

III. COMPUTATIONAL CONDITIONS

Simulations were performed with the B3LYP hybrid
functional.29–31 Carbon atoms were described using a 6-
31G(d)32 Gaussian-type basis set, consisting of 14 atomic
orbitals (AOs) per atom. The level of accuracy in eval-
uating the two-electron Coulomb and Hartree-Fock ex-
change series is controlled by five parameters Ti (i =
1, ...5).16 T1 and T2 refer to the Coulomb integrals, T3, T4

and T5 to exchange. In this study accurate values such as
8, 8, 8, 8, 20 were chosen. The DFT exchange-correlation
contribution is evaluated by numerical integration over
the unit cell volume. In Crystal, radial and angular
points of the grid are generated through Gauss-Legendre
radial quadrature and Lebedev two-dimensional angular
point distributions. A (75,974)p grid was used, corre-
sponding to a pruned grid with 75 radial and 974 angular
points (XLGRID keyword in the Crystal14 manual).16

For nanotubes, the reciprocal space was sampled along
the unique lattice vector according to a sublattice with
shrinking factor16 set to 10, corresponding to 6 indepen-

dent ~k vectors in the irreducible part of the Brillouin
zone. All calculations were run on a cluster with 8 Intel
Xeon E5620 cores working at 2.40 GHz, and 2 GBytes
RAM per core.

IV. RESULTS AND DISCUSSION

A. Fullerenes

Fullerenes, as highly symmetric molecular structures,
are an excellent first example of how symmetry can make
ab initio calculations for large molecules affordable with
a low request for computational resources. We con-
sider here (n, n) fullerenes of increasing size, from C60
(n = 1) to C6000 (n = 10; see Figure 2 a); the corre-
sponding number of atoms grows quadratically with n,
N tot

at = 60n2, so that it ranges from 60 to 6000 (see Table
I). Correspondingly, the basis set size (NAO) increases
from 840 to 84’000 AOs. The number of symmetry oper-
ators is constant and equal to 120 along the whole series.

Let us begin with discussing the effect of symmetry
on the size of matrices involved in the SCF process. All
60 atoms in C60 are related by symmetry so that there
is only one C atom in the asymmetric unit (Nasym

at in
Table I). Because there are 120 symmetry operators in

FIG. 2. Graphical representation of the structure of (a) the
(10,10) carbon fullerene of Ih point group with an average
radius of 35.0 Å and (b) the (100,0) carbon nanotube with a
radius of 39.2 Å.

the Ih point group of fullerenes, the ratio N tot
at /Nasym

at

becomes more favourable as the molecule size increases
(it raises to 109 for C6000). Thus, the impact of the
use of symmetry on the size of matrices and on general
performance is expectedly huge. In spite of the applied
screening to reduce the number of the interactions to be
considered, the size of the Fock matrix in real space (SF

in Table I) varies from 0.17 to 17.5 millions of elements
along the series considered here when symmetry is not
taken into account; note the linear trend as a function of
the number of atoms. The size of the same matrix (Sf in
Table I) drops to 1759÷151’071 elements when reduced
by symmetry, corresponding to a saving factor as large
as 97 for C60 and 116 for C6000 (R1 in Table I), that
is, very close to Nop (120). Beside the great reduction in
memory storage, R1 is also an important index of per-
formance as being also the saving factor in the calcula-
tion of one- and two-electron integrals as a consequence
of the application of symmetry. The overall scaling of
matrix sizes with system size, taking into account both
screening and symmetry, is linear as revealed by index
R2 = Sf/N

tot
at (average allocation per atom): its value

is 29 for C60 and 25 for C6000. In this particular case,
the global trend is even better than linear due to the av-
eragely higher multiplicity of atoms in larger fullerenes.
If no screening strategy were adopted and symmetry ne-
glected, scaling with size would be quadratic as matrices
would contain N2

AO elements. In this respect, the ratio
N2

AO/Sf measures the saving factor (in terms of matrix
elements) of a calculation with symmetry and interac-
tion screening over a “brute force” calculation: it would
be close to 50’000 in the case of C6000.

However, there is a step where square shape is, indeed,
an unavoidable requirement, i.e. when matrices are to
be diagonalized. In such a case, symmetry can have even
more dramatic effects. When transformed to the SAMO
basis, the full square matrices for (n, n) fullerenes de-
compose to ten blocks, each of them corresponding to
an IR. As an example, block sizes range from 4 to 38
for C60, and from 670 to 3530 for C6000, to be com-
pared with the number of AOs, NAO, 840 and 84’000,
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respectively. There are, thus, several relevant advantages
in such a basis transformation; here the key quantity is
R3 = NAO/MIR (see Table I):

i) Memory requirement is dramatically reduced since
M2

IR is the maximum number of matrix elements
to be kept in memory, instead of N2

AO, if all matrix
diagonal blocks are stored to disc and retrieved one
by one on need. Saving in memory usage is in the
order of (R3)

2.

ii) Diagonalization of many small matrices is to be pre-
ferred to that of a larger matrix as the employed
algorithms scale with the third power of the ma-
trix size. Here the saving factor is in the order of
(R3)

3/NIR.

iii) Only one block of each IR needs to be diagonalized
because of degeneracy; eigenvectors for all other
rows of an IR are obtained by symmetry.

The largest block in the SAMO basis, MIR, for these
fullerenes corresponds to IR Hg in all cases, whose size
is between 1/22 (C60) and 1/24 (C6000) of NAO basis
functions (Table I). Consequently, the requirement of
memory for C60 is less than 12 KB per matrix, instead
of more than 5 MB (double-precision real numbers) and,
more relevantly, nearly 100 MB instead of 56 GB for
C6000. Under the hypothesis of a third-power scaling
algorithm for diagonalization (point ii above), gain in ef-
ficiency is also huge, as a speed-up of at least 1000 times
is expected from a rough estimate in terms of (R3)

3/NIR.
We now proceed in analyzing time performance and

memory requirements. Beside reporting on the efficiency
and scalability of single steps, we chose to consider also
the time required for an SCF energy-plus-gradient calcu-
lation, in order to give a realistic representation of the
power of the implemented algorithms. We refer to ab-
solute CPU running time instead of purely relative data
about scalability. Though widely arbitrary and strongly
depending on the employed hardware, such a choice is
meant to convey an idea of feasibility of such large size
calculations at a good level of accuracy, even with low-
level hardware. Calculations were run both on a single
core (serial running) and on 8 cores (parallel running) so
as to show the advantage of a change in the paralleliza-
tion strategy of Crystal14 with respect to Crystal09:
from the IBZ k points (with no effect for the present
molecular case) to a finer task farming over the IRs (ten
IRs, then ten cores at a time can be busy at the diagonal-
ization step). In all the considered cases, wall-clock and
CPU running times differ from each other by less than
1%.

Running times with a single core are represented
graphically in Figure 3, and reported in Table S1 in
the Supplementary Information. The various steps of a
SCF+gradient calculation were illustrated in Section II.
In particular, there are two steps that are preliminary
to the SCF procedure, namely initialize, which includes
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FIG. 3. Running time (seconds) for the various steps of to-
tal energy calculation of (n, n) fullerenes with one single core.
Data refer to the following steps: 1) initialization of the sim-
ulation, including the construction of the symmetry group
and transformation matrices (initialize); 2) orthogonaliza-
tion of the basis set (orthog); 3) calculation of one- and two-
electron integrals (integrals); 4) numerical integration of the
exchange-correlation density functional (dft); 5) transforma-
tion of f into F (Fock); 6) Fock matrix block-diagonalization
(diag); 7) construction of the density matrix (densmat); 8)
a single SCF cycle (TOTcyc, corresponding to a step 3-7 se-
quence); 9) the entire SCF procedure (TOTSCF , 20 SCF cy-
cles in this case). All calculations were performed on a cluster
with 8 Intel Xeon E5620 cores working at 2.40 GHz and 2 GB
of RAM per core. Note that data for TOTSCF refer to the
right (r) time axis.

the construction of tables for screening and symmetry
analysis, and orthog, which refers to the orthogonaliza-
tion of the AO basis set. In a direct-SCF strategy ev-
ery SCF cycle is made up of the evaluation of the inte-
grals (integrals), numerical integration of the exchange-
correlation density functional (dft), transformation from

fg to F
~k in block-diagonal form (Fock), diagonalization

of every F
k,IR block (diag), construction of the density

matrix and transformation to pg (densmat). TOTcyc

refers to a complete SCF cycle. All (n, n) fullerenes con-
sidered in the present study converged to an accuracy
of 10−8 Ha in the total energy in about 20 SCF cycles;
the corresponding total time is labeled as TOTSCF in
the tables. Calculation of the total energy gradient with
respect to nuclear positions is also taken into account
(gradient) as being an important step in structure opti-
mizations and several other properties such as phonons,
elastic tensors etc; note that the corresponding data are
reported only in the Tables.

Perhaps the most relevant information from Figure
3 is that a complete SCF calculation for C6000 (with
84’000 AOs as a basis set) can be run with a single core
within one day. As to be expected, the calculation of
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one- and two-electron integrals and the integration of the
exchange-correlation functional are the most time con-
suming steps in a single SCF cycle and time for diago-
nalization becomes comparable from (8,8) on, showing a
clear trend to become dominant for larger size molecules
(so that one can easily imagine how prohibitive diagonal-
ization time would soon be if it were not performed in the
SAMO basis). Linear transformations in step Fock that
were introduced with the new algorithms implemented in
Crystal14 only account for about 2% of the time for a
whole SCF cycle.

Also basis set orthogonalization largely benefits from
the use of symmetry. Instead, time spent in preliminary
analyses and classifications (initialize) tends to grow sig-
nificantly with the system size as this step becomes domi-
nated by the decomposition of the full reducible represen-
tation into irreducible representations and the formation
of transformation matrices. This is, of course, a price to
pay for the incommensurable advantage of using symme-
try; it must be noticed that a single performance is re-
quired along one entire SCF calculation, which accounts
for no more than 1% of the total time for the SCF calcu-
lation (when used for normal symmetries, with a maxi-
mum of 48 operators, the cost of this step is negligible23).

It is possible to estimate the scaling with system size
by comparing the series including (1,1), (2,2), (4,4) and
(8,8), along which the number of atoms increases by a
constant factor of 4 (Figure 3 and Table S1 in the Sup-
plementary Information). Up to the case of (4,4) with
960 atoms, scaling of the whole total energy calculation
is essentially linear, going from 392 for (1,1), to 1312 for
(2,2), to 5443 seconds for (4,4). For larger fullerenes scal-
ing is worse than linear; for example from (4,4) to (8,8)
the SCF time increases by a factor of 6.4 instead of 4.
Steps that are mainly responsible for this behavior are
diag, with its cubic scaling, and integrals, that shows a

scaling O(N tot
at

1.27
) from (4,4) to (8,8) due to a compo-

nent with quadratic scaling.
When run in parallel with 8 cores (see Table S2 in

the Supplementary Information), a complete calculation
of the total energy plus the energy gradient for C6000
is accomplished within less than 5 hours, with an effi-
ciency around 60%. Despite an excellent scaling (about
100%) of the integrals and dft steps with the number of
cores, running time is here mainly determined by the diag
step, whose efficiency is only 39%. The latter is affected
by some unbalancing of tasks due to both the fact that
NIR=10 is not a multiple of the number of cores and,
above all, the very different sizes of the various F

k,IR,
so that diagonalization of matrices with size MIR are
dominant. Steps orthog, Fock and densmat scale in a
similar way (40÷60%) for the same reasons. A massive
parallel approach would improve core balancing dramat-
ically, but it has not been implemented in this case, yet.
For (6,6) and smaller fullerenes, the diagonalization step
is less relevant; in these cases scaling efficiency over the
entire SCF procedure is higher than 80%.

Peaks in memory usage are reported in Table II.

The largest allocation for the largest fullerene occurs in
initialize (1.5 GB), which is actually comparable to the
amount of memory requested in the Fock+diag steps.
Even if it does not correspond to the maximum memory
reduction attainable in principle, such memory request
still permits to run a calculation of a C6000 fullerene
with 84’000 AOs using less than 2 GB per core.

TABLE II. Memory peaks (MBytes) in SCF+gradient calcu-
lations for (n, n) fullerenes. Labels as in Figure 3.

(1,1) (2,2) (4,4) (6,6) (8,8) (10,10)
N tot

at 60 240 960 2’160 3’840 6’000

initialize 60 90 245 539 957 1500
orthog 17 69 201 422 757 1236
integrals 21 78 216 398 654 986
dft 19 69 185 368 624 956
Fock + diag 17 70 207 449 840 1432
densmat 17 69 204 435 798 1333
TOTSCF 60 90 245 539 957 1500
gradient 63 188 314 481 725 1236

B. Carbon Nanotubes

Carbon nanotubes (CNTs) are an extraordinary ex-
ample of the power of symmetry in the case of periodic
systems. Here we consider a series of CNTs of the zig-
zag (n, 0) family, with n ranging from 10 to 100 (see
Table III). A graphical representation of the structure of
the (100,0) nanotube is given in Figure 2 b. There are
4n atoms in the unit cell (40÷400 in the considered se-
ries) and 8n symmetry operators (80÷800), namely roto-
translations and both longitudinal and transversal mirror
planes. The number of atomic orbitals ranges from 560
to 5600 with the adopted basis set.

Unlike fullerenes, the number of symmetry operators
increases with the nanotube size, so that Nasym

at is con-
stant and equal to 1. This feature has a strong impact
on efficiency, if used properly as in the case of our im-
plementation. Indeed, the size of mg matrices (see Table
III) remains almost unaltered with increasing number of
atoms. Still, it slightly decreases upon reaching the large
radius regime, because interactions with the opposite side
of the tube become negligible. For instance, the size Sfg

of the symmetry irreducible Fock matrix, which is 2361
for (10,0), decreases to 2133 for (40,0) and to 2117 for
(100,0). As SFg increases linearly with system size, the
symmetry-related saving factor R1 grows linearly along
the series, going from 54 for (10,0) to 545 for (100,0).
As shown by index R2 the overall scaling with the sys-
tem size is even better than linear, its value decreasing
from 59 to 5 when going from (10,0) to (100,0), this be-
ing a consequence, again, of the nearly fixed size of mg

matrices.
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TABLE III. General information about a family of (n, 0) carbon nanotubes. The number of irreducible atoms Nasym
at is 1 in

all cases; Nop denotes the number of symmetry operators. The number of irreducible representations, NIR, and the ratio R3

have distinct values for the Γ point, the zone boundary Z point and the other reciprocal space points (labeled with k). All
other symbols as in Table I. All nanotubes have the same value for MIR (required to compute R3), that is 14 for Γ and 28 for
Z and the other reciprocal space points.

(n, 0) Nop NIR N tot
at NAO Sfg SFg R1 R2 R3

Γ Z k Γ Z k

(10,0) 80 26 8 13 40 560 2361 127’900 54 59 40 20 20
(20,0) 160 46 13 23 80 1120 2181 235’960 108 27 80 40 40
(40,0) 320 86 23 43 160 2240 2133 464’240 218 13 160 80 80
(60,0) 480 126 33 63 240 3360 2133 696’360 326 9 240 120 120
(80,0) 640 166 43 83 320 4480 2133 928’480 435 7 320 160 160
(100,0) 800 206 53 103 400 5600 2117 1’154’200 545 5 400 200 200

Another very important consequence of increasing
symmetry with the number of atoms is that the size of
the blocks in M

k is constant along the series. The largest
blocks at the Γ point, the most symmetric case, contains
14 × 14 elements, but even at other k points the largest
size is as small as 28 × 28. As a consequence, R3 in-
creases linearly with system size, implying huge saving
factors for both computational time and memory storage
at the diagonalization step. Being the size of blocks con-
stant, their number NIR increases along the series. For
instance, it varies from 26 to 206 in Γ and the trend is
linear also at other k points (Table III).

Figure 4 and Table S3 in the Supplementary Infor-
mation show timings for the CNT family on one core.
The most time consuming steps for small tubes, namely
the calculation of integrals and the integration of the
exchange-correlation functional, become irrelevant for
large tubes because of their excellent scaling with the
number of atoms: in particular, the time required for
the calculation of the integrals remains nearly constant
as a consequence of the constant number of irreducible
atoms Nasym

at , discussed above, so that the most time
consuming steps for larger tubes are the linear transfor-
mation from AOs to SACOs basis (Fock) and the linear
back transformation from SACOs to AOs basis during the
reconstruction of the density matrix (densmat). Both
these steps show a nearly quadratic behavior with the
system size. The most important aspect here is the scal-
ing of the diagonalization step: it is linear rather than
cubic (as it would be in a calculation with no symmetry),
this being a consequence of the size of the SACO blocks
remaining constant, and of the number of diagonaliza-
tions to be performed increasing linearly. This is indeed
the greatest advantage of using symmetry in nanotube
calculations. Overall, a single SCF cycle shows linear
scaling with system size up to (60,0), i.e. 240 atoms, so
that for a (100,0) CNT only 120 seconds are required.

Preliminary steps of the calculation are more critical
as basis set orthogonalization shows a quadratic behav-

ior with the nanotube size, requiring about 25 seconds for
(100,0). From (40,0) on, the most time consuming step of
all the total energy calculation, accounting for more than
15% of the total time, is the initialization step, which
includes decomposition of representations and construc-
tion of transformation matrices; the percentage raises to
more than 50% for (100,0). This step is here inevitably
more consuming than for fullerenes, due to the increasing
number of symmetry operators along the series.

In the case of 8-core runs (Table S4 in the Supplemen-
tary Information), the total time for total energy cal-
culation shows a scaling efficiency ranging between 68%
and 82%. From (40,0) on, scaling of the total time is
always lower than that for single SCF cycles, e.g. 70%
vs 85% for (100,0), due to the low level of parallelism
in the subroutines for symmetry classification (initialize
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FIG. 4. Running time (seconds) for the various steps of total
energy calculation of (n, 0) nanotubes with one single core.
The SCF procedure consists of 15 cycles in this case. Note
that data for initialize and TOTSCF refer to the right (r)
time axis. Labels as in Figure 3.
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TABLE IV. Memory peaks (MBytes) in SCF+gradient cal-
culations for (n, 0) nanotubes. Labels as in Figure 3.

(10,0) (20,0) (40,0) (60,0) (80,0) (100,0)
N tot

at 40 80 160 240 320 400

initialize 15 54 208 462 816 1270
orthog 11 13 20 29 37 46
integrals 15 19 29 41 52 64
dft 13 15 23 32 40 50
Fock + diag 11 13 20 29 37 47
densmat 11 13 20 29 37 46
TOTSCF 15 54 208 462 816 1270
gradient 54 60 79 159 270 412

step, efficiency in the range 52÷61%). Within a single
SCF cycle, the best scaling steps for large nanotubes are
Fock, densmat and diag, with efficiencies of 89, 94 and
100% in the case of (100,0); their algorithms take full
advantage of the increasing number of IR blocks.

A look at memory usage in Table IV reveals that in
all cases the most memory consuming step is the iniziali-
ation part, by requiring as much as 1.3 GB for (100,0).
All other SCF steps require much smaller amounts of
memory: the second most consuming is integrals, requir-
ing 15÷64 MB along the series. The other steps require
11÷50 MB.

As a final note, in the present implementation the con-
struction of irreducible representations and transforma-
tion matrices between AO and SACO bases remains a
critical step for the simulation of nanotubes: its cost in
terms of both memory and time becomes very large when
the number of operators gets larger than 800-1000. It is
possible to avoid exceeding this threshold by consider-
ing a sub-group of the actual symmetry group, e.g. the
one formed by roto-translations only: in this way a full
energy-plus-gradient calculation for a (320,0) nanotube
(1280 atoms, 640 operators) requires about 2.5 GB RAM
and 5 hours on a single core (see Ref. 17, Section “Sym-
metry and efficiency”). A new algorithm is currently un-
der study, that scales less than with the third power of
the number of operators.

V. CONCLUSIONS

We have presented a scheme for Self-Consistent-Field
ab initio calculations, featuring full exploitation of trans-
lational and point group symmetries, and enabling high
efficiency in many crucial steps: integrals calculation, in-
tegration of exchange-correlation functional, sampling of
the reciprocal space, diagonalization of the Fock matrix,
reconstruction of the density matrix. The formulation
is general and suitable for both molecular and periodic
calculations. Key features of the novel implementation
include avoidance of full square matrices, direct transfor-
mation between AO and SACO bases and reconstruction

of the density matrix in the SACO basis.
Performance of the scheme as implemented in the

Crystal code is documented in terms of both com-
putational time and memory requirements, in the case
of two families of large, highly symmetric compounds,
namely carbon fullerenes (up to 6000 atoms; point group
with 120 symmetry operators) and nanotubes (up to 400
atoms and 800 operators). Calculation of integrals and
integration of exchange-correlation functional are among
the most time consuming steps for both families; perfect
scaling with number of cores of these steps permits to
take full advantage of parallel computing. Diagonaliza-
tion step becomes a relevant step for large fullerenes; its
poor scaling with number of cores makes it the bottleneck
for this kind of systems. In nanotubes diagonalization is
a minor step, thanks to exploitation of the increasing
number of symmetry operators which keeps constant the
size of matrices to diagonalize. As a drawback, basis set
transformations take up a significant time for large nan-
otubes; again, parallel computing permits to solve the
issue, thanks to the excellent scaling of this step with
number of cores. Time scaling of an SCF cycle with sys-
tem size is linear for fullerenes up to about 1000 atoms
and for nanotubes up to about 250 atoms.

As a synthetic figure, a full energy-plus-gradient cal-
culation for a nanotube with 400 atoms runs on a single
core requiring 1.3 GB RAM and 70 minutes of computa-
tional time; more impressively, the same calculation for
a fullerene with as many as 6000 atoms requires only 1.5
GB RAM and 24 hours of computational time.

VI. ACKNOWLEDGEMENTS

The authors acknowledge Compagnia di San Paolo
for financial support (Progetti di Ricerca di Ateneo-
Compagnia di San Paolo-2011-Linea 1A, progetto
ORTO11RRT5). CZ acknowledges financial support
from Mexican CONACyT through project CB-178853.

1TURBOMOLE V6.5 2013, a development of University of Karl-

sruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007,

TURBOMOLE GmbH, since 2007; available from

http://www.turbomole.com.
2M. Strain, G. Scuseria, and M. Frisch, Science 271, 51 (1996).
3R. Stratmann, G. Scuseria, and M. Frisch, Chem. Phys. Lett.
257, 213 (1996).

4J. Burant, G. Scuseria, and M. Frisch, J. Chem. Phys. 105, 8969
(1996).

5J. Millam and G. Scuseria, J. Chem. Phys. 106, 5569 (1997).
6G. Scuseria, J. Phys. Chem. A 103, 4782 (1999).
7K. Kudin and G. Scuseria, Phys. Rev. B 61, 16440 (2000).
8E. Schwegler and M. Challacombe, J. Chem. Phys. 105, 2726
(1996).

9M. Challacombe and E. Schwegler, J. Chem. Phys. 106, 5526
(1997).

10E. Schwegler, M. Challacombe, and M. Head-Gordon, J. Chem.
Phys. 106, 9708 (1997).

11M. Challacombe, J. Chem. Phys. 110, 2332 (1999).
12E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garćıa, and J. M.

Soler, Phys. Stat. Sol. (b) 215, 809 (1999).
13P. Ordejón, Phys. Stat. Sol. (b) 217, 335 (2000).



10

14A. Rusakov, M. Frisch, and G. Scuseria, J. Chem. Phys. 139,
114110 (2013).

15R. Dovesi, Int. J. Quantum Chem. 29, 1755 (1986).
16R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-

Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J.
Bush, et al., CRYSTAL14 User’s Manual, Università di Torino,
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