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A general-purpose, fully-automated, computationally-efficient implementation is presented of a series of tech-
niques for the simultaneous description of pressure and temperature effects on structural properties of ma-
terials, by means of standard ab initio simulations. Equilibrium volume, bulk modulus, thermal expansion
coefficient, equation-of-state, Grüneisen parameter, constant-pressure and constant-volume specific heats are
computed as a function of temperature and pressure for the simple crystal of diamond and compared with
accurate experimental data. Convergence of computed properties with respect to super-cell size is criti-
cally discussed. The effect on such properties of the adopted exchange-correlation functional of the density-
functional-theory is discussed by considering three different levels of approximation (including hybrids): it is
found to be rather small for the temperature dependence of equilibrium volume and bulk modulus, whereas
it is quite large as regards their absolute values.

I. INTRODUCTION

Standard ab initio quantum-chemical methods based
on the Density Functional Theory (DFT) represent a
powerful tool for the accurate determination of a variety
of properties of materials (structural, electronic, vibra-
tional, optical, elastic, magnetic, etc.).1–4 The increasing
efficiency of the algorithms and the growing parallel com-
puting resources are rapidly widening the range of appli-
cability of such schemes which can now be routinely used
for studying minerals of geophysical interest, defective
materials for the electronics, adsorption of biomolecules
on biomaterials, porous materials for hydrogen storage,
etc.5–8 Such methods, however, describe the ground state
of the system at zero temperature and pressure which is a
severe limitation to their general applicability. The effect
of pressure, for instance, is particularly relevant to the
study of minerals at geophysical conditions9 while tem-
perature is affecting a large variety of properties (also
simple ones such as equilibrium structure and electron
charge distribution), even at ambient conditions.10,11

The effect of pressure on structural properties of ma-
terials can be accounted for in a relatively simple way
either by fitting energy-volume data to a given analyti-
cal expression for the equation-of-state (EOS),12–16 or by
performing pressure-constrained geometry optimizations
where cell gradients are corrected for by the proper hy-
drostatic stress term.17,18 Pressure can also be included
into elastic response properties;19–22 the algorithm for the
elastic tensor calculation has recently been generalized to
include such effect in the public Crystal program, for
instance.23,24

Modeling the effects of temperature is a much more
difficult task. Despite the entrance into a new age of
molecular quantum chemistry has recently been declared
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(“In the fourth age we are able to incorporate into our
quantum chemical treatment the motion of nuclei [...]
and compute accurate, temperature-dependent, effective
properties, thus closing the gap between measurements
and electronic structure computations”),25 we are still far
from having such schemes efficiently implemented, in par-
ticular for the solid state. The most effective technique
for taking into account temperature effects (including an-
harmonic terms) on computed properties of materials,
in particular as regards thermal nuclear motion, would
be ab initio molecular dynamics which, however, is still
rather computationally demanding.26–28

Two main features have to be modeled in order to
properly account for the effect of temperature on ma-
terials: i) volume expansion, and ii) nuclear motion. The
two effects are obviously physically interconnected but,
with standard ab initio methods, require quite different
techniques to be properly described so that it proves con-
venient to treat them separately. Most structural prop-
erties of materials are dominated by thermal expansion
which requires the determination of the equilibrium vol-
ume at different temperatures, V (T ); an explicit account
of lattice dynamics is then needed, even for predicting
zero temperature properties by including zero-point mo-
tion (ZPM) effects, commonly neglected, which may sig-
nificantly affect equilibrium volume and bulk modulus
determinations. Due to the fact that core and inner-
valence electrons of atoms follow the movement of the
respective nuclei, when electron charge density (ECD)
and related X-ray structure factors are considered, it is
mandatory to account for the effect of thermal nuclear
motion, for instance by means of atomic Debye-Waller
factors.29–31 An enormous amount of literature has been
devoted to the approximate evaluation of such effects in
order to allow for a correct interpretation of the X-ray
scattering data.11 It has recently been shown that very
accurate directional Compton profiles, as measured from
the inelastic scattering of high intensity synchrotron ra-
diation by single-crystal samples,32,33 can reveal subtle
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aspects of the electron momentum distribution (EMD)
of periodic systems.34–37 At variance with ECD, nuclear
motion effects on the EMD of a crystal are extremely sub-
tle and can be predicted with either ad hoc models38,39

or rather sophisticated ab initio techniques.40

In the present work, a general-purpose, fully-
automated, computationally-efficient implementation is
presented of an ab initio theoretical scheme for the com-
bined inclusion of temperature and pressure effects on
structural properties of materials. All the implemented
algorithms can be executed in parallel and massive-
parallel mode, up to several thousands of CPUs, with
a high scaling.41,42

Within the frame of standard quantum chemical meth-
ods, temperature can be modeled by explicitly treating
the lattice dynamics. To do so, a harmonic approxima-
tion (HA) to the lattice potential is commonly adopted
which proved extremely effective in predicting vibration
properties of a variety of materials, when light atoms such
as H, He and Li are absent. Drawbacks of the HA are
well-known; among others, zero thermal expansion.43,44

The simplest way of going beyond the HA, without
explicitly computing phonon-phonon interaction coeffi-
cients, is represented by the so-called quasiharmonic ap-
proximation (QHA) which introduces the missing volume
dependence of phonon frequencies by retaining the har-
monic expression for the Helmholtz free energy.45,46

According to the QHA, the equilibrium volume, V (T ),
at any temperature T can then be deduced by mini-
mizing Helmholtz’s free energy F (V ; T ). This approach
also allows for the natural combination of temperature
and pressure effects: the equilibrium structure at any
temperature and pressure can be computed. Depending
on the temperature and pressure ranges to be explored,
the lattice dynamics has to be solved at few volumes
in the expansion and compression regime, respectively.
Within such a formal scheme, a simplified model (namely,
Grüneisen approach) has been extensively used in the
past according to which a linear dependence of phonon
frequencies on volume in the vicinity of the equilibrium
is assumed.10 Let me stress that, generally (and partic-
ularly so when small cell systems are studied), within
the direct-space approach to phonon calculation, super-
cells have to be considered in order to make the lattice
dynamical description converge.

Both schemes are here implemented into a devel-
opment version of the public Crystal14 program for
quantum-chemistry and -physics of the solid state, which
adopts one-electron Hamiltonians and atom-centered
Gaussian-type function basis sets.42,47 The implemented
algorithms are applied to the simple case of diamond,
whose thermal expansion has been accurately character-
ized both experimentally48–50 and theoretically.51–56

The structure of the paper is as follows: the main
formal aspects of harmonic lattice dynamics and quasi-
harmonic approximation are introduced in Section II; de-
tails about the implemented algorithm are given in Sec-
tion III; preliminary results on diamond are presented

and discussed, with respect to available experimental and
theoretical data, in Section IV where the effect of the
adopted one-electron Hamiltonian is illustrated into some
detail; conclusions are drawn in Section V.

II. THEORETICAL FRAMEWORK

The formalism of harmonic lattice dynamics is briefly
recalled in Section II A in order to fix the notation. The
main limitations of the harmonic approximation, in par-
ticular as regards the zero thermal expansivity, are men-
tioned in Section II B where the principal aspects of the
simplest approach for going beyond it, namely quasi-
harmonic approximation, are presented.

A. Elements of Harmonic Lattice Dynamics

Within the Born-Oppenheimer approximation, the
quantum-mechanical description of nuclear motions is
dictated by the shape of the potential energy surface
E(R). The configuration R which describes the instanta-
neous position of all nuclei in the crystal can be specified
by assigning to each of them the displacement with re-
spect to the equilibrium position: R ≡ {. . . , [(R0)a +
g + xg

a ] , . . . }. The index a (a = 1, . . . , N) labels the
general nucleus in the unit cell and (R0)a is its equilib-
rium position in the reference zero cell; the lattice vec-
tor g =

∑3
m=1 lgm am identifies the general crystal cell

where am are the direct lattice vectors. In a cyclic crys-
tal model, the integers lgm run from 0 to Lm − 1. When
dealing with cubic crystals (as here for simplicity) all
Lm’s are set to a common value L. The parameter L
defines the size of a supercell (SC).

The potential field E(R) is a function of the displace-
ments xg

a or, equivalently, of their Cartesian coordinates
xg

j , the index j running from 1 to 3N . In what follows,
matrix notation is used; uppercase letters in bold and
lowercase letters in bold with over-line represent 3N×3N
matrices and 3N vectors, respectively. Thus, the Carte-
sian coordinates of the displacements are represented by
vectors xg. By expanding E(R) in a Taylor series with
respect to these coordinates about the equilibrium R0

configuration, after setting E(R0) = 0, and exploiting
translational invariance, one gets:

E(R) =
L3

2

∑

g

(

x0
)T

Vgxg + O3({x
g}) , (1)

where L3 Hessian matrices {Vg} have been introduced
whose elements are defined as V

g
ai,bj = ∂2E/(∂x0

ai∂xg
bj)

and are energy second derivatives with respect to the
displacement of atom a along the i-th Cartesian direction
in the reference 0 cell and atom b along the j-th Cartesian
direction in the g crystal cell.

The harmonic approximation (HA) to the lattice po-
tential consists in neglecting all O3 terms in equation
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(1). On the one hand, the HA has experienced an enor-
mous success in the study of vibration properties of crys-
tals due not only to its simplicity but also to its pre-
dicting power. Standard solid state quantum-mechanical
programs, based on one-electron Hamiltonians, can ac-
curately and efficiently evaluate the second-order energy
derivatives with respect to atomic displacements. When
suitable Hamiltonians are adopted (like the popular hy-
brid B3LYP functional), an extremely accurate descrip-
tion of vibrational phonon frequencies can be achieved for
most crystalline compounds, as long as very light atoms
(such as H, He, Li) are not considered.57–59 On the other
hand, the HA has a large number of significant deficien-
cies that will be mentioned in Section II B.

Translational invariance allows for the factorization
of the harmonic nuclear Schrödinger equation into L3

separate ones, each associated with a wavevector k =
∑3

n=1 (κn/L)bn where bn are the reciprocal lattice vec-
tors and the integers κn run from 0 to L− 1. For each k,
the dynamical matrix Wk is defined as Fourier transform
of the Hessian matrices {Vg}:21

Wk =

L3
∑

g=1

M− 1
2 VgM− 1

2 exp(ık · g) , (2)

where M is the diagonal matrix of the nuclear masses.
The solution is obtained by diagonalizing the dynamical
matrices

{

Wk
}

:

(Uk)† Wk Uk = Λk . (3)

3N phonons, labeled by a band index j (j = 1, . . . ,3N),
are associated with each of the L3 k-points, whose fre-
quencies ωkj are related to the eigenvalues λkj via ωkj =

2π
√

λkj . The columns of the Uk matrix in equation (3)
represent the corresponding normal mode coordinates.

B. Quasi-Harmonic Approximation

When the lattice dynamics of a crystal is solved within
the purely HA, vibration frequencies are described as in-
dependent of interatomic distances and the correspond-
ing vibrational contribution to the internal energy of the
crystal turns out to be independent of volume. It follows
that, within such an assumption, a variety of physical
properties would be wrongly described: thermal expan-
sion would be null, elastic constants would not depend
on temperature, constant-pressure and constant-volume
specific heats would coincide with each other, thermal
conductivity would be infinite as well as phonon lifetimes,
etc.43,44

An explicit account of anharmonic effects would re-
quire the calculation of phonon-phonon interaction co-
efficients with techniques (such as Vibrational Config-
uration Interaction, VCI, Vibrational Self-Consistent-
Field, VSCF, Vibrational Perturbation Theory, VPT,

Transition Optimized Shifted Hermite, TOSH, calcula-
tion of higher order interatomic force constants, etc.)
that are rather computationally demanding for large
systems.60–64 A simple and powerful approach for cor-
recting most of the above mentioned deficiencies of the
HA is the QHA.45

According to the QHA, the Helmholtz free energy,
F , of a crystal is written retaining the same harmonic
expression65 but introducing an explicit dependence of
vibration frequencies on volume:45,46

FQHA(T, V ) = U0(V ) + FQHA
vib (T, V ) , (4)

where U0(V ) is the zero-temperature internal energy of
the crystal without any vibrational contribution (a quan-
tity commonly accessible to standard ab initio simula-
tions) and the vibrational part reads:

FQHA
vib (T, V ) =EZP

0 (V )+kBT
∑

kj

[

ln

(

1 − e
−

~ω
kj(V )

kB T

)

]

,

(5)
where kB is Boltzmann’s constant, ~ Planck’s constant,
ωkj(V ) the volume-dependent vibration frequency of
the j-th phonon of reciprocal point k and EZP

0 (V ) =
∑

kj ~ωkj(V )/2 is the zero-point energy of the system.
The zero-pressure equilibrium volume at a given temper-
ature T , V (T ), is obtained by minimizing FQHA(V ; T )
with respect to volume V and keeping T as a fixed pa-
rameter. From the volume-temperature relation V (T ),
the volumetric thermal expansion coefficient αV (T ) is ob-
tained as:

αV (T ) =
1

V (T )

(

∂V (T )

∂T

)

P=0

. (6)

For cubic crystals, a linear thermal expansion coefficient
αl(T ) is commonly considered which is simply αl(T ) =
αV (T )/3. The temperature-dependent bulk modulus,
K(T ), can be obtained as an isothermal second derivative
of equation (4) with respect to the volume:

K(T ) = V (T )

(

∂2FQHA(V ; T )

∂V 2

)

T

. (7)

By differentiating equation (4) with respect to the volume
and changing sign, one gets the pressure-volume relation,
at a given temperature:

P (V ; T ) = −
∂FQHA(V ; T )

∂V
= −

∂U0(V )

∂V
−

∂FQHA
vib (V ; T )

∂V
.

(8)
By numerically inverting the above expression, the
volume-pressure relation at any given temperature,
V (P ; T ), is derived which can be used to define the vol-
umetric thermal expansion coefficient at any pressure P
as:

αV (T ; P ) =
1

V (T ; P )

(

∂V (T ; P )

∂T

)

P

. (9)
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The mean vibrational energy of a phonon (i.e. harmonic
oscillator) with angular frequency ωkj(V0), in thermal
equilibrium at temperature T , is given by:

E [ωkj(V0)] = ~ωkj(V0)





1

2
+

1

e
~ω

kj(V0)

kB T − 1



 . (10)

By differentiating with respect to temperature the sum
over all possible phonons of E [ωkj(V0)], one obtains an
expression for the constant-volume specific heat of the
crystal, CV (T ):

CV (T ) =
∑

kj

∂E [ωkj(V0)]

∂T
=
∑

kj

CV,kj(T ) (11)

=
∑

kj

[~ωkj(V0)]
2

kBT 2

e
~ω

kj(V0)

kB T

(

e
~ω

kj(V0)

kB T − 1

)2 , (12)

where a mode contribution, CV,kj , to the specific heat
has been introduced. The difference between constant-
pressure and constant-volume specific heats can be ex-
pressed in terms of quantities defined above as:21

CP (T ) − CV (T ) = α2
V (T )K(T )V (T )T . (13)

1. Grüneisen Approach

Grüneisen formalism assumes a linear dependence of
vibration phonon frequencies on volume, in the vicinity
of the zero temperature equilibrium volume V0.

10 The
key quantity is here represented by the dimensionless
mode Grüneisen parameter which proved to be partic-
ularly useful in the fundamental understanding of the
mechanism of thermal expansion of crystals; for each
phonon, it reads:

γkj = −
V0

ωkj(V0)

(

∂ωkj(V )

∂V

)

V =V0

. (14)

An overall thermal Grüneisen parameter, γ(T ) can be
defined as the weighted average of the various mode
Grüneisen parameters in terms of the corresponding
mode contribution to the specific heat, which proves use-
ful in reducing high-temperature equations-of-state into
shock-compression experiments:66

γ(T ) =
∑

kj

γkj CV,kj(T )

CV,kj(T )
. (15)

Within Grüneisen approach, the volumetric thermal ex-
pansion is given by:

αgru
V (T ) =

1

KV0

∑

kj

γkj CV,kj(T ) . (16)

III. COMPUTATIONAL PROCEDURE

The general-purpose, fully-automated algorithm, as
implemented in a development version of the public
Crystal14 program, for computing the properties in-
troduced in Section II B is here illustrated. The asym-
metric unit of the starting crystalline structure, de-
fined according to the space group it belongs to, is
first fully-optimized by use of analytical energy gradi-
ents with respect to both atomic coordinates and unit-cell
parameters,67–69 with a quasi-Newtonian technique com-
bined with the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm for Hessian updating.70–73 Convergence is checked
on both gradient components and nuclear displacements.
Once the zero temperature, zero pressure equilibrium
volume V0 has been determined (zero-point motion ef-
fects are neglected at this stage), an explored volume
range is defined where the most compressed volume is
Vc = xcV0 and the most expanded volume is Ve = xeV0,
with 0 < xc < 1 and xe > 1. The width of the adopted
volume range has to be set depending on the values of
pressure and temperature to be explored. A number NV

of equidistant volumes, including V0, is considered within
this range.

For each considered volume Vi (i = 1, . . . , NV ), a full
volume-constrained geometry optimization is performed.
Phonon frequencies

{

ωkj(Vi)
}

are then computed accord-
ing to the formalism described in Section II A (more de-
tails on the implementation of phonon calculation with
Crystal can be found in Refs. 74 and 75); the en-
ergy second derivatives defining the Hessian matrices
{Vg} are computed as numerical first derivatives of an-
alytical gradients by displacing all and only symmetry-
independent atoms along symmetry-independent Carte-
sian directions. From computed phonon frequencies,
thermodynamic properties are evaluated, at almost zero
computational cost, at NT equidistant temperatures Tt in
the range T1 ≤ Tt ≤ T2:

{

FQHA(Tt; Vi)
}

(t = 1, . . . , NT ),
for instance, from equation (5).

When all volumes {Vi} have been considered, inter-
nal energy/volume data,

{

U0(Vi)
}

, are fitted to various

equations-of-state (the third-order Murnaghan’s,12 third-
order Birch’s,13,14 logarithmic Poirier-Tarantola’s,15 and
exponential Vinet’s16) to determine the zero temperature
bulk modulus K0, still without zero-point motion effects,
according to the methodology recently implemented in
Crystal.23 It is worth mentioning that, in order to
perform numerically the derivative of equation (14) for
computing mode Grüneisen parameters, the continuity
of phonon frequencies among different volumes has to be
established: scalar products of the corresponding normal
modes are performed for resolving possible crossings.

Let me stress that, apart from the definition of the
temperature and pressure ranges to be explored (which
can be modified at almost zero computational cost by
means of complete restart calculations, see case i) be-
low), the only parameters to be specified as an input to
the entire procedure are xc, xe and NV , defining range
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TABLE I. Equilibrium volume of the primitive cell, V0, and
bulk modulus, K0, of diamond at zero pressure and tempera-
ture, as computed with different Hamiltonians and compared
with experimental values.50,76 Data in parentheses are ob-
tained by neglecting ZPM effects. The lattice parameter is
given by a0 = (4V0)

1/3.

LDA PBE B3LYP Exp.

V0 11.11 11.49 11.48 11.34

(10.99) (11.36) (11.35)

K0 467.5 431.2 439.5 442.1

(476.8) (441.5) (449.2)

and number of the explored volumes. The whole algo-
rithm then reduces to a single-run calculation due to its
fully-automated feature. In the present study, xc = 0.98
(corresponding to a 2 % compression) and xe = 1.04 (cor-
responding to a 4 % expansion). The number of explored
volumes is NV = 5. Computed results are not changed
by using a larger number of volumes in this case.

Three distinct levels are available for the restart op-
tion: i) a restart from a previous complete calculation
that can be used to explore different ranges of tempera-
ture and pressure at almost zero computational cost; ii)
a restart from a previous incomplete calculation where
only the first m geometry optimizations and phonon cal-
culations were performed; iii) a restart from a previous
incomplete calculation where m geometry optimizations
and m − 1 phonon calculations were performed.

In order to make all the thermodynamical properties
converge, super-cells (SC) calculations have to be gen-
erally performed, unless the primitive cell of the system
is already large enough. The SC size is proportional to
the parameter L introduced in Section II A; its effect on
computed properties will be discussed in Section IV. The
implemented algorithms can be executed in parallel and
massive-parallel mode, up to several thousands of CPUs,
with a high scaling, as recently demonstrated in Refs. 41
and 42.

IV. RESULTS AND DISCUSSION

When standard ab initio quantum-mechanical tech-
niques are applied, equilibrium structural properties of
materials at zero temperature are usually determined by
neglecting ZPM effects. Merits and limitations of dif-
ferent one-electron Hamiltonians are often discussed by
comparing computed values with the outcomes of low-
temperature experimental measurements. The ZPM ef-
fect is commonly neglected in that its proper account
would require the explicit description of the lattice dy-

namics which is a computationally much more demand-
ing task than simple static geometry optimizations.

ZPM effects on structural properties of diamond are
shown in Table I where equilibrium volume of the prim-
itive cell, V0, and bulk modulus, K0, at zero pressure
and temperature are reported, as computed with dif-
ferent functionals of the DFT (a local-density approxi-
mation, LDA, the Perdew-Burke-Ernzerhof generalized-
gradient functional, PBE,77 and the popular B3LYP hy-
brid functional78,79 with 20 % of exact Hartree-Fock
exchange). All-electron atom-centered Gaussian-type
function basis sets of triple-zeta valence quality, aug-
mented by a polarization function (namely, TZVP), are
adopted.80 Experimental values from low-temperature
measurements are also reported: V0 determined at 4.2 K
with the X-ray diffraction Bond method on a high-purity
single crystal of synthetic diamond50 and K0 from Bril-
louin scattering measurements,76 as reported in Ref 81.
The static values (in parentheses), without ZPM effects,
are obtained by fitting electronic energy-volume data to
the third-order Birch-Murnaghan equation of state.13,14

It is seen that, by neglecting ZPM, an excellent agree-
ment could be claimed for the PBE functional on both
volume and bulk modulus; a very similar, slightly better,
agreement would be obtained with the B3LYP hybrid
functional for V0 only. When the ZPM is included in the
calculations, V0 increases by about 1 % and K0 decreases
by about 2.3 %. If PBE and B3LYP still give essentially
the same description of V0, the values they provide for
K0 are quite different from each other. The PBE error
(just 0.1 % without ZPM) increases to 2.6 % by includ-
ing ZPM. Correspondingly, B3LYP decreases from 1.6
% down to 0.6 %. Then, B3LYP appears to provide the
best description of these two properties for diamond. The
ZPM effect is even larger for another simple cubic crystal
as MgO where V0 is increased by 2 % and K0 decreased
by 6 %.66

The results to be presented in this section depend on a
few computational parameters. In particular, their con-
vergence with respect to the number of k-points (see
equation 5 for Helmholtz free energy and 11 for constant-
volume specific heat, for instance) has to be carefully
checked. Equivalently, within the direct space SC ap-
proach that is used here, convergence must be checked
with respect to the size of the adopted SC (see the L
parameter introduced in Section II A). Different ther-
modynamical quantities usually converge with different
speeds, entropy being generally somehow slower than
specific heat.

In Figure 1, the constant-pressure specific heat of di-
amond CP (T ) is reported as a function of temperature,
as computed at the PBE level with equation (13). Ex-
perimental data from Refs. 82 and 83 are also shown
for comparison. The total computed CP (T ) is reported
(solid line) as obtained from the largest SC considered in
this study: a conventional cubic cell with L = 5, contain-
ing a total of 1000 carbon atoms (namely, C5); a massive-
parallel implementation of all the algorithms involved has
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FIG. 1. Constant-pressure specific heat of diamond as a func-
tion of temperature. Circles are experimental data at room
pressure from Refs. 82 and 83, as reported in Ref. 52. The
solid line corresponds to the computed specific heat with the
largest SC explored, namely a C5 SC (see text for details);
the dashed curve is the corresponding constant-volume spe-
cific heat. On the right-hand side scale, the effect of the SC
size is shown: differences of the specific heat computed with
SCs of increasing size and that obtained with the largest one
are reported. All computed data are obtained with the PBE
functional.

been used in order to run such a large calculation.42 The
agreement with the experiment is shown to be rather
good. The dashed line in the figure represents the
constant-volume specific heat CV (T ) as computed with
the same SC. The difference CP (T )−CV (T ) is relatively
small, increases as a function of temperature and be-
comes non-negligible above 1000 K. In the same figure
(right-hand side scale), the effect of the SC size is also
explored. Differences are reported between the specific
heat computed with conventional SCs of increasing size
(one with L = 1 containing 8 atoms, C1, one with L = 2
containing 64 atoms, C2, one with L = 3 containing 216
atoms, C3 and one with L = 4 containing 512 atoms,
C4) and that obtained with the largest one, C5.84 It is
seen that the specific heat provided by the C1 SC is 13
% far from C5 at 1600 K. A conventional cell contain-
ing 64 atoms, C2, already assures a convergence within
2 % and constitutes the smallest model that one could
reliably use for studying thermodynamical properties of
diamond. The C3 SC is only 0.4 % apart from the limit
at 1600 K while C4 coincides with C5.

The main quantity to be computed in order to describe
the effect of temperature on structural properties of ma-
terials is the thermal expansion coefficient α(T ). In Fig-
ure 2, the linear expansion αl(T ) of diamond is reported
as a function of temperature, as measured by Slack and
Bartram48 (full circles; the corresponding error-bars are

FIG. 2. Linear thermal expansion coefficient for diamond as a
function of temperature. Experimental data at room pressure
by Slack and Bartram48 are reported with the corresponding
error-bars. The continuous line represents computed values
obtained with the Helmholtz free energy approach; dashed
line represents computed values from the Grüneisen approach.
On the right-hand side scale, the effect of the SC size is shown:
differences of the linear expansion coefficient computed with
SCs of increasing size and that obtained with the largest one,
C5, are reported for the Helmholtz free energy approach. All
computed data are obtained with the PBE functional.

also given) and as computed at PBE level with the largest
SC, C5, with both a Grüneisen approach (dashed line)
and a Helmholtz free energy approach (continuous line).
It is seen that the descriptions given by the two ap-
proaches almost coincide at low-temperatures and then
deviate from each other above room temperature; at 1600
K, the difference is as large as 10 %. The theoretical de-
scription given by Helmholtz’s approach is well within the
experimental error bars. The computed αl(T ) is found
to be slightly larger than experiment at about 800 K
and a bit smaller above 1200 K. A very similar behav-
ior has also been reported by Mounet and Marzari, in
2005, in their PBE density-functional perturbation the-
ory study,52 and by Herrero and Ramı́rez in their path-
integral Monte Carlo study, in 2000, which explicitly in-
cluded also anharmonic effects.55 Previous theoretical de-
terminations of the thermal expansion of diamond, both
using the Grüneisen and Helmholtz approaches, provided
lower values for αl(T ) thus confirming the inadequacy of
the former approach at high-temperatures and showing a
possible incompleteness of the lattice dynamical descrip-
tion in the latter.51,53

On the right-hand side scale of Figure 2, the effect of
the SC size is shown on αl(T ), as computed by minimiz-
ing Helmholtz free energy. Differences of the linear ex-
pansion coefficient computed with SCs of increasing size
and that obtained with the largest one, C5, are reported.
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As already observed for the specific-heat of Figure 1, also
in this case the C2 SC provides results which are almost
converged, still 2 % apart from the limit. C3 is 0.2 %
apart and convergence is fully reached with C4. In this
respect, let me anticipate some of the evidences to be
reported soon in a couple of forthcoming studies on the
thermal expansion of a family of alkali halides (LiF, NaCl,
KCl, NaF, KF, LiCl, LiBr, KBr, NaBr) and simple ox-
ides (MgO and CaO). All these crystals contains 2 atoms
in their primitive cells. In all cases, thermal expansion
properties are found to be perfectly converged with SCs
containing just 16 atoms, which makes such calculations
definitely affordable as regards their computational cost.
The case is a bit different (i.e. larger SCs have to be con-
sidered) if absolute thermodynamical properties, such as
entropy, specific heat and Helmholtz free energy, have to
be converged.

The effect of the adopted one-electron Hamiltonian on
computed zero-temperature structural properties, such
as V0 and K0, has already been shown in Table I; the
LDA and PBE determinations of V0 differ by 3.6 % and
those of K0 by 8.4 %, LDA describing a too compressed
structure with higher bulk modulus with respect to the
experiment and PBE. The question can now be asked
whether or not the choice of the adopted functional may
affect the description of the temperature dependence of
such structural properties. In order to investigate this
point, Figure 3 reports the linear thermal expansion co-
efficient αl(T ) (upper panel), the volume of the primitive
cell V (T ) (middle panel) and the bulk modulus K(T )
(lower panel) of diamond as a function of temperature.
Computed values are reported as obtained with three dif-
ferent functionals, belonging to different families, of the
DFT: LDA (thin continuous line), PBE (thick continu-
ous line) and B3LYP (dashed line). Experimental data
are also reported;48,49,76,81 by comparing with them, it
is seen that the temperature dependence of all quantities
in the figure is quite well reproduced by all the function-
als considered. In particular, this behavior is highlighted
in the upper panel of the figure where αl(T ) is reported
which is an entirely quasi-harmonic property. Differences
among functionals can be observed which, however, are
rather small if compared with those on harmonic prop-
erties such as V0 and K0. LDA provides a slightly lower
thermal expansion than B3LYP and PBE. If one com-
pares the equilibrium volumes at T = 1600 K (middle
panel), as given by LDA and PBE, a difference of 3.7
% is found between the two with respect to 3.6 % at
T = 0 K; the largest effect of the adopted functional on
the temperature dependence of the equilibrium volume
is then about only 0.1 %.

These findings are found to agree with the conclusions
drawn by Narasimhan and De Gironcoli who discussed
the relative performance of LDA and PBE functionals on
describing the thermal expansion of bulk copper.85 They
also found that, at all temperatures, LDA was systemat-
ically underestimating the equilibrium volume and PBE
overestimating it; the opposite behavior was reported for

FIG. 3. Linear thermal expansion coefficient αl(T ), volume
of the primitive cell V (T ) and bulk modulus K(T ) of dia-
mond as a function of temperature. Computed values are
reported as obtained with three different functionals of the
DFT: LDA (thin continuous line), PBE (thick continuous
line) and B3LYP (dashed line). Experimental data at room
pressure for αl(T ) are from Slack and Bartram,48 for V (T )
from Reeber and Wang49 and for K(T ) from Zouboulis et
al.76 (full circles) and Aguado and Baonza81 (full squares).

the bulk modulus as in the present study, as expected.
The LDA prediction of thermal expansion was found to
be lower than the PBE one, as here reported for diamond.

As illustrated in Section II B, Helmholtz’s free energy
approach allows for pressure and temperature effects on
structural properties of materials to be combined to-
gether. The equilibrium volume of a crystal at a given
temperature and pressure, V (P, T ), can be computed.
To do so, the volume range to be explicitly explored has
to be widened both as regards compression (for pressure)
and expansion (for temperature). In particular, two kind
of instructive representations can be given to the infor-
mation embodied in V (P, T ): i) the equation of state
(i.e. the pressure-volume relation) at different tempera-
tures and ii) the thermal expansion coefficient at differ-
ent pressures, α(T ; P ). Both quantities are reported in
Figure 4 as computed with the PBE functional. On the
left panel, experimental data at ambient pressure are by
Slack and Bartram,48 while, on the right panel, experi-
mental data at room temperature are from Aleksandrov
et al.86 The linear expansion coefficient is reported at
four different pressures: ambient, 4 GPa, 10 GPa and 20
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FIG. 4. (Left panel) linear thermal expansion αl(T ) of di-
amond as computed at different pressures. Experimental
data at ambient pressure are by Slack and Bartram.48 (Right
panel) V (P ; T )/V0(T ) as a function of pressure for diamond,
as computed at several temperatures. Experimental data at
room temperature are from Aleksandrov et al.86 All computed
data are obtained with the PBE functional.

GPa. It is seen that αl(T ; P ) is progressively reduced by
pressure. The V (P ; T )/V0(T ) ratio, where V0(T ) repre-
sents the equilibrium volume at temperature T and zero
pressure, is reported on the right panel as a function of
pressure for five different temperatures (T = 0, 300, 800,
1300 and 1600 K). The computed equation of state at
300 K is in relatively good agreement with experimental
data at room temperature. As temperature increases,
the compression of diamond induced by a given pressure
increases.

V. CONCLUSIONS

A series of ab initio theoretical techniques, based on
the DFT, for the combined study of temperature and
pressure effects on structural properties of materials has
been implemented, in a fully-automated fashion, into a
development version of the public Crystal14 program,
taking advantage of its optimized algorithms for (mas-
sive) parallel calculations. Crystals of any space group
can be treated by fully exploiting translation and point
symmetry. The accurate determination of the thermal
expansion coefficient requires the lattice dynamics of the
crystal to be properly described; a direct-space super-
cell approach is adopted (convergence of computed prop-
erties on super-cell size has to be carefully checked).
Anharmonic effects are included via the so-called quasi-
harmonic approximation which introduces an explicit de-
pendence of phonon frequencies on volume. The equilib-

rium structure at any temperature and pressure is ob-
tained by minimizing Helmholtz’s free energy.

These techniques are applied to the simple case of cu-
bic diamond; theoretical results are compared with avail-
able experimental determinations. A super-cell contain-
ing 64 carbon atoms is shown to provide a satisfactory
description of the thermal expansion of this crystal. The
effect on computed structural properties of the partic-
ular approximation made in describing the exchange-
correlation term of the electron-electron interaction is
discussed into detail. Three different families of func-
tionals are considered, which correspond to three differ-
ent rungs of Perdew’s “Jacob’s ladder”: a local-density
approximation (LDA), a generalized-gradient approxima-
tion (GGA) and the hybrid B3LYP functional that is ef-
ficiently implemented in the Crystal program. LDA
is found to systematically underestimate the equilibrium
volume and overestimate the bulk modulus. The oppo-
site is true for GGA, even though at a smaller extent.
B3LYP behaves similarly to GGA as regards volume but
increases the agreement with the experiment on the bulk
modulus. The temperature dependence of these proper-
ties is described very similarly by all functionals, LDA de-
scribing a slightly lower thermal expansion than B3LYP
and GGA.

Further applications of this scheme are currently in
progress to different families of crystals: simple ionic sys-
tems such as MgO, CaO, alkali halides, complex minerals
of geophysical interest such as silicate garnets, BN mono-
layer and nanotubes.
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