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Abstract. In common binary classification scenarios, the presence of
both positive and negative examples in training data is needed to build
an efficient classifier. Unfortunately, in many domains, this requirement
is not satisfied and only one class of examples is available. To cope with
this setting, classification algorithms have been introduced that learn
from Positive and Unlabeled (PU) data. Originally, these approaches
were exploited in the context of document classification. Only few works
address the PU problem for categorical dataset. Nevertheless, the avail-
able algorithms are mainly based on Naive Bayes classifiers. In this work
we present a new distance based PU learning approach for categorical
data: Pulce. Our framework takes advantage of the intrinsic relationships
between attribute values and exceeds the independence assumption made
by Naive Bayes. Pulce, in fact, leverages on the statistical properties of
the data to learn a distance metric employed during the classification
task. We extensively validate our approach over real world datasets and
demonstrate that our strategy obtains statistically significant improve-
ments w.r.t. state-of-the-art competitors.

Keywords: metric learning, partially supervised learning, categorical
data

1 Introduction

In common binary classification tasks, learning algorithms assume the presence
of both positive and negative examples. Sometimes this is a strong requirement
that does not fit real application scenarios. In fact, the process of labeling data is
a money- and time-consuming activity that needs high-level domain expertise. In
some cases this operation is quick, but usually, definining reliable labels for each
data example is a hard task. In the worst case, extracting examples from one or
more classes is simply impossible [3]. As a consequence, only a small portion of a
so-constituted training set is labeled. As a practical example of this phenomenon,
let us consider a company that aims at creating an archive of researchers’ home



pages, using web-crawling techniques. Once downloaded, a web page should be
classified to decide whether it is a researcher’s home page or not. In such a
context, the concept of positive example is well defined (the researcher’s home
page) while the idea of negative example is not well-established [12] because no
real characterization of what is not a home page is supplied. The same problem
occurs when trying to classify biological/medical data. Usually a biologist (or a
doctor) can comfortably supply positive evidences of what she wants to identify
but she is not able to provide negative examples. A known example of this
scenario is the classification of vascular lesions starting from medical images
[15], where labeling vascular lesions accurately could take more than one year,
while it is relatively easy to recognize healthy individuals. In these scenarios,
defining a method to exploit both positive and unlabeled examples could save
precious material and human resources and the expert may focus her effort to
only define what is good, skipping the ungrateful task of recognizing what is not
good.

To deal with this setting, the Positive Unlabeled (PU) learning task has
been introduced [4]. Roughly speaking, PU learning is a binary classification
task where no negative examples are available. Most research works in this area
are devoted to the classification of unstructured datasets such as documents
represented by bag-of-words, but similar scenarios may occur with categorical
data as well. Imagine, for instance, a dataset representing census records on a
population. An analyst can comfortably provide reliable positive examples of a
targeted class of people (e.g., unmarried young professional interested in adven-
ture sports), but identifying plausible counterexamples is not as easy. However,
very few PU learning approaches are designed to work on attribute-relation
data (such as categorical datasets). Unfortunately the techniques proposed in
text classification are not directly applicable to the context of attribute-relation
datasets. These approaches, in fact, employ metrics, such as the cosine distance,
that are not well suited for categorical data. Cosine distance, in fact, consid-
ers any mismatch of a binarized categorical variable in the same way. However,
for a categorical variable such as “age class”, value “child” is more similar to
“teenager” than to “adult” or “senior”. For categorical data, in addition, there is
no standard definition of distance [1]. This limitation makes it impossible to ap-
ply works on document classification to categorical data directly. The few works
that deal with PU learning in attribute-relation domains are principally based
on Naive Bayes classifiers. The major limitation of this kind of approaches is that
algorithms based on Naive Bayes assume that attributes are mutually indepen-
dent. To the best of our knowledge, no effort was devoted to the implementation
of other models or the extension of previously defined models from document
analysis.

Contribution In this paper we introduce a new distance-based algorithm,
named Positive Unlabeled Learning for Categorical datasEt (Pulce). Our work
aims at filling the gap between the recent and well-established advances in doc-
ument classification and the preliminary status of works existing for attribute-



relation data. In particular, we address the problem of classifying data described
by categorical attributes, which also includes the case of discretized numerical
attributes, leading to a general framework for attribute-relation data. The core
part of our approach is an original distance-based classification method which
employs a distance metric learnt directly from data thanks to a technique re-
cently presented by Ienco et al. [9]. Originally, this technique was designed to
exploit attribute dependencies in an unsupervised (clustering) scenario, and al-
lows to quantify the distance between any pair of values of the same categorical
attribute Xi by the way in which the values of the other attributes Xj are dis-
tributed in the dataset examples: if they are similarly distributed in the groups
of samples in correspondence of the distinct values of Xi a low value of distance
is obtained. Our PU learning approach uses this metric to train two discrimina-
tive models: one for the positive class, the other for the negative one. These two
models take intrinsically into account the existing attribute relationships, thus
overcoming the major limitation given by the independence assumption explic-
itly made by Naive Bayes-based methods. We provide the empirical evidence of
this property, showing that our method outperforms state-of-the-art competitors
and assessing the statistical significance of the results.

Related work Positive Unlabeled learning was originally studied by De Comité
et al. [4] who achieved the first theoretical results. The authors showed that un-
der the PAC (Probably Approximately Correct) learning model, the k-DNF (k-
Disjunction Normal Form) approach is able to learn from positive and unlabeled
examples. Following these preliminaries results, PU learning was first applied to
text document classification [12].

Other approaches dealing with PU classifiers in the context of text classifica-
tion have been presented in more recent years [6, 11, 14]. Elkan et al. [6] introduce
a SVM-based classifier method that assign weights to the examples belonging
to the unlabeled set. Xiao et al. [11] combine two techniques borrowed from in-
formation retrieval (Rocchio and Spy-EM) to extract a set of reliable negative
examples. Finally, Zhou et al. [14] modify the standard Topic-Sensitive proba-
bilistic Latent Semantic Analysis (pLSA) approach to perform classification with
a small set of positive labeled examples.

Calvo et al. [2] first attempted to deal with the PU learning setting in
attribute-relation datasets. Their paper introduces four methods based on Naive
Bayes for categorical data. In particular the authors modify classic and Tree
Augmented Naive Bayes [7] approaches to work with positive and unlabeled ex-
amples. They supply two ways to estimate the a priori probability of the negative
class: the first one takes into consideration the whole set of unlabeled examples
to derive this probability, while the second one considers a Beta distribution to
model the uncertainty. These methods are substantially limited by two aspects:
the strong (and often wrong) assumption of attribute independency adopted by
Naive Bayes and the use of the whole set of unlabeled examples to estimate a
model for the negative class. This work is extended by He et al. [8] to deal with
uncertainty data.



In conclusion, even though much work has been devoted to document clas-
sification, and some effort exists for specific kinds of applications, very few re-
searches address the problem of building reliable classifiers over positive and
unlabeled examples in attribute-relation data. To the best of our knowledge, our
work is the first one trying to cope with PU learning outside the document clas-
sification domain without any strong (and often wrong) attribute independency
assumption.

Paper organization The remainder of this paper is organized as follows: The
problem formulation, a brief overview of the distance learning algorithm, and
the full description of the proposed method are supplied in Section 2. In Section
3 we provide our empirical study and analyze its statistical significance. Finally,
Section 4 concludes.

2 A distance-based method for categorical data

In this section we introduce PU learning and describe Pulce, a new distance
based PU learning schema for categorical data. After some general definitions, we
briefly describe the distance learning framework we adopt in our approach. Then,
we provide the technical details of our distance-based PU learning algorithm.

We consider a datasetD = {P ∪U} composed by a set P of positive examples
and a set U of unlabeled examples all described by a set F = {X1, X2, . . . , Xm} of
m categorical attributes. The task of learning from both positive and unlabeled
examples consists in exploiting both labeled P and unlabeled U examples to
learn a model allowing the assignment of a label to new, previously unseen,
examples. The general process is performed in two steps:

1. detect a reliable set of negative examples RN ⊆ U ;
2. build a classifier over {P ∪RN}.

The key intuition behind our approach is that, if we learn a distance based on
positive examples only, negative examples will be differently distributed w.r.t.
this metric. In other terms, negative examples would not fit the learnt distance
model, and they will be easily detected and labeled as reliable negative. Fol-
lowing this preamble, we employ the distance learning framework for categorical
data presented by Ienco et al. [9] to learn a distance model for the attributes in F

on the sole set of positive example P . This distance model is used to weight each
unlabeled example in U . A cut-off threshold is then automatically computed,
and a set RN of reliable negative examples is supplied to a distance-based clas-
sifier. In particular, we adopt a modified version of k-NN that projects each test
example into each class space using the corresponding metric model and evalu-
ates the k nearest neighbors around it. The test example is assigned the class
that minimizes the sum of distances w.r.t. its k nearest neighbors.

In the following, we will first recall briefly the distance learning method
adopted in our framework. Then, we describe the ranking strategy used to iden-
tify a reliable set of negative examples. Finally, we introduce the classification
algorithm.



ID Age Gender Profession Product Sale dep.

1 young M student mobile suburbia
2 senior F retired mobile suburbia
3 senior M retired mobile suburbia
4 young M student smartphone suburbia
5 senior F businessman smartphone center
6 adult M unemployed smartphone suburbia
7 adult F businessman tablet center
8 young M student tablet center
9 senior F retired tablet center
10 senior M retired tablet center

(a) Sales table

mobile smartphone tablet
student 1 1 1

unemployed 0 1 0
businessman 0 1 1

retired 2 0 2

(b) Product-Profession contingency
table

mobile smartphone tablet
center 3 1 0

suburbia 0 2 4

(c) Product-Sales dep. contin-
gency table

Fig. 1. Sales: a sample dataset with categorical attributes (a) and two related contin-
gency tables (b and c).

2.1 Computing the distance model

Here we briefly summarizeDILCA (DIstance Learning for Categorical Attributes),
a framework for computing distances between any pair of values of a categor-
ical attribute. DILCA was introduced by Ienco et al. [9], but was limited to a
clustering scenario.

To illustrate this framework, we consider the dataset described in figure 1(a),
representing the set Sales. It has five categorical attributes: Age{young, adult, se-
nior},Gender{M,F}, Profession{student,unemployed,businessman,retired}, Prod-
uct{mobile,smartphone,tablet} and Sales department{center,suburbia}. The con-
tingency tables in Figure 1(b) and Figure 1(c) show how the values of attribute
Product are distributed w.r.t. the two attributes Profession and Sales depart-

ment. From Figure 1(c), we observe that Product=tablet occurs only with Sales

dep.=suburbia and Product=mobile occurs only with Sales dep.=center. Con-
versely, Product=smartphone is satisfied both when Sales dep.=center and Sales

dep.=suburbia. From this distribution of data, we infer that, in this particular
context, tablet is more similar to smartphone than to mobile because the prob-
ability to observe a sale in the same department is closer. However, if we take
into account the co-occurrences of Product values and Profession values (Fig-
ure 1(b)), we may notice that Product=mobile and Product=tablet are closer to
each-other rather than to Product=smartphone, since they are bought by the
same professional categories of customers to a similar extent.

This example shows that the distribution of the co-occurrence table may
help to define a distance between values of a categorical attribute, but also that
the context matters. Let us now consider the set F = {X1, X2, . . . , Xm} of m
categorical attributes and dataset D in which the instances are defined over
F . We denote by Y the target attribute, which is a specific attribute in F that



constitutes the target of the method, that is, on whose values we need to compute
the distances. DILCA allows to compute a context-based distance between any
pair of values (yi, yj) of the target attribute Y on the basis of the similarity
between the probability distributions of yi and yj given the context attributes,
called C(Y ) ⊆ F \ Y . For each context attribute Xi it computes the conditional
probability for both the values yi and yj given the values xk ∈ Xi and then
it applies the Euclidean distance. The Euclidean distance is normalized by the
total number of considered values:

d(yi, yj) =

√

∑

X∈C(Y )

∑

xk∈X(P (yi|xk)− P (yj |xk))2
∑

X∈C(Y ) |X |
(1)

The selection of a good context is not trivial, particularly when data are
high-dimensional. To select a relevant and non redundant set of features w.r.t. a
given one, The authors [9] propose to adopt FCBF, a feature-selection approach
originally presented by Yu and Liu [13]. Here we use exactly the same strategy,
which is based on the relevance and the redundancy criteria between attributes.
To evaluate the correlation for both relevance and redundancy they employ the
Symmetric Uncertainty measure (SU). SU is a normalized version of the Infor-

mation Gain [10] and it ranges between 0 and 1. Given two variables X and
Y : 1 indicates that knowledge of the value of either Y or X completely predicts
the value of the other variable; 0 indicates that Y and X are independent. Dur-
ing the step of context selection, a set of context attributes C(Y ) for a given
target attribute Y is selected. Informally, these attributes Xi ∈ C(Y ) should
have a high value of SU(Y,Xi) and are not redundant among them. SUY (Xi)
denotes the Symmetric Uncertainty of Xi for the target Y . DILCA first pro-
duces a ranking of the attribute Xi in descending order w.r.t. SU(Y,Xi). This
operation implements the relevance step. Starting from the ranking, it compares
each pairs of ranked attributes Xi and Xj. One of them is considered redundant
if the Symmetrical Uncertainty that links them is higher than the Symmetrical
Uncertainty that links each of them to the target. In particular, Xj is removed if
Xi is in higher position of the ranking w.r.t. Xj (SUX(Xj) < SUY (Xi)) and the
Symmetric Uncertainty that links them is higher than the SU that links each
of them to the target (SUXj

(Xi) > SUY (Xi) and SUXj
(Xi) > SUY (Xj)). This

second part of the approach implements the redundancy step. The results of the
whole procedure is the set of attributes C(Y ).

At the end of the process, DILCA returns a distance model M = {MXi
| i =

1, . . . ,m}, where each MXi
is the matrix containing the distances between any

pair of values of attribute Xi, computed using Eq. 1.

2.2 Detecting reliable negative examples

Here we present our solution to the problem of extracting a set of reliable negative
examples from U . The whole procedure is sketched in Algorithm 1. As first
step, we learn a distance model MP , using DILCA on P (see Section 2.1).
MP summarizes the relationships between attributes in P in such a way that



Algorithm 1: Pulce(P ,U)

MP ← DILCA(P );

τ ← 2
|P |(|P |−1)

∑|P |−1
i=1

∑|P |
j=i+1 dist(MP , pi, pj);

RN ← {∅};
forall the u ∈ U do

if (score(u, P,MP ) > τ) then

RN ← RN ∪ u;
end

end

MRN ← DILCA(RN);
returnMP ,MRN , RN ;

new examples drawn from the same distribution will be closer to P than new
examples drawn from a different distribution.

Using the model MP , for each example u ∈ U , we compute a score based on
the average distance between u and all examples p ∈ P . The score is computed
as follows:

score(u, P,MP ) =

∑

p∈P dist(MP , u, p)

|P |
(2)

where the function dist(MP , u, p) could be any distance function that uses only
the distance between two values of the same attribute. In our case we use the
Euclidean distance:

dist(MP , u, p) =

√

∑

MXi
∈MP

MXi
(u[Xi], p[Xi])2 (3)

where u[Xi] and p[Xi] are the values the attribute Xi takes in examples u and p

respectively, so that MXi
(u[Xi], p[Xi]) is the distance between values u[Xi] and

p[Xi] of attribute Xi.
Multiple different choices can be adopted for the selection of a reliable set

of negative examples given this score. A first possibility is to rank all examples
u ∈ U in decreasing order of score. Hence, examples from the negative class
are likely to be on top of the ranking and the user may decide to label the
first n examples as reliable negative. Instead, we provide a strategy to select a
reliable set RN of negative examples automatically: we mark as reliable negative
all examples u ∈ U such that the score(u, P,MP ) is greater than a threshold
τ , i.e., RN = {u ∈ U s.t. score(u, P,MP ) > τ}. The problem now is how
to tune correctly the value of τ in order to detect reliable negative examples.
Even though sophisticated strategies could be adopted, here we consider a simple
solution: we employ the mean of all distances within the set P :

τ =
2

|P |(|P | − 1)

|P |−1
∑

i=1

|P |
∑

j=i+1

dist(MP , pi, pj) (4)

where |P | is the cardinality of the set P of positive examples.



2.3 Classifying positive and reliable negative examples

We now dispose of the set P of positive examples and the set RN of reliable
negative examples, and we are able to build a discriminative model to recognize
and label new unseen examples. To perform our classification task we use a
revised k-NN (k nearest neighbors) approach. In particular, the major difference
with standard k nearest neighbors approaches consists in the adoption of two
different distances, one for the positive class and one for the negative class.
Each distance learnt by DILCA constitutes a way to summarize the attribute
dependencies within each class. This enables Pulce to build a specific model for
each class. Concerning the positive class, we use distance model MP . For the
negative class, we learn a distance model MRN by applying DILCA on the set
RN of reliable negative examples. The key intuition behind our classification
method is the following: if a new, unseen example t comes from a specific class,
the corresponding distance model should produce small distances with other
examples from its class w.r.t. other distance models learnt from other classes.
The classifier then considers the k examples from each class that are closest to t.
Finally, for each class, it sums the distances between the unseen example t and
its k nearest neighbors and assign it the class that minimizes this value. The
advantage of learning two distance models is now clear. A classifier based on a
unique model requires the definition of a threshold (or other more sophisticated
strategies) to decide whether an example can be considered positive or negative.
The use of a distance model for each class makes this complex step unnecessary.
Notice that, as DILCA provides values that are bounded between 0 and 1, the
two distances are comparable.

We formalize our nearest neighbors approach as follows. Given an unseen ex-
ample t, we callNNP (t) = {nnP

1 (t), . . . , nn
P
k (t)} the set of k nearest neighbors of

t in P under the distance model MP , and NNRN (t) = {nnRN
1 (t), . . . , nnRN

k (t)}
the set of k nearest neighbors of t in RN under the distance model MRN . Then,
the class of t is given by:

class(t) = argmin
c∈{P,RN}

k
∑

i

dist(Mc, nn
c
i (t), t) (5)

Notice that k is the only parameter of the whole PU learning approach, as
in many instance-based classifiers.

3 Experimental results

In this section we provide an exhaustive set of experiments to show the effec-
tiveness of our PU learning approach in categorical data. The experiments are
performed over 39 samples derived from 13 datasets, publicly available on the
UCI machine learning repository1. For each dataset we produce three differ-
ent samples that differ from each other in the number of examples labeled as

1 http://archive.ics.uci.edu/ml/



positive, respectively 30%, 40%, and 50% of the positive class. The remaining
positive examples plus all the negative examples are considered as unlabeled in-
stances. We assume the majority class as positive, the other one as negative. If
the dataset does not describe a binary classification problem we select the two
biggest classes (in the number of instances) to reduce the problem to a binary
classification task. Finally, as further pre-processing, all numerical attributes are
discretized into 10 bins with equal width. The details on all the 39 samples are
presented in Table 1. To evaluate the results of the different PU classifiers we
use the F-Measure as performance indicator.

3.1 Comparative results

We choose to compare Pulce with the four approaches based on Naive Bayes
proposed by Calvo et al. [2]: Positive Naive Bayes PNB, Average Positive Naive
Bayes APNB (both based on classic Naive Bayes), Positive TAN (PTAN) and
Average Positive TAN (APTAN), two variants of the tree augmented Naive
Bayes model [7]. The difference between PNB (resp. PTAN) and APNB (resp.
APTAN) lies in the way the a priori probability for the negative class is esti-
mated. For PNB and PTAN this probability is derived directly from the un-
labeled set of examples while for APNB and APTAN the uncertainty is mod-
elled by a Beta distribution. For these four approaches, we use the standard
parameter settings, as suggested by Calvo et al. [2]. For Pulce, instead, we use
k = {1, 3, 7, 11, 13}.

The results are reported in Table 1 (because of space limitations, only detailed
table for k = 7 is presented here), where we can observe the performances of Pulce
in comparison with those of the competitors. In general, the first remarkable
result is that Pulce outperforms the other methods both in terms of average
F-Measure and in terms of number of wins, independently of the value of k. In
detail, it wins 26 times (for k = 1), 25 times (k = 3), 29 times (k = 7), 25
(k = 11) and 28 times (when k = 13). The best competitor (APNB) wins only
10 times, no matter which value of k we consider. Furthermore, Pulce’s average
F-Measure (0.72, for k = {1, 3} and 0.73 for k = {7, 11, 13}) is sensibly higher
than competitors’ one: APNB and PNB do not go above 0.67. Notice also that,
when Pulce is not the best PU method, its results are in line with the ones
achieved by the competitors.

We may also observe that in chess, dermatology, mushroom, nursery and vote

the improvements w.r.t. the F-Measure evaluated for the competitors are clearly
visible. This result is somehow expected and it is due to the fact that these
datasets are dense and correlated. Pulce exploits the dependencies among at-
tributes and overcomes the limitation of the Naive Bayes model, which is funded
on the independence assumption. In general, this assumption is wrong, espe-
cially in the dataset listed above. Results on audiology deserve some comments
as well. This dataset is relatively high-dimensional. Few data instances (226)
are described by an high number of attributes (69). This is also a limitation
for Naive Bayes approaches, but not for Pulce, that is able to exploit attribute
dependency and, in this case, outperforms all other competitors by far.



Dataset N. Attr. % pos. N. Pos. N. Unlab. PNB PTAN APNB APTAN Pulce

audiology 69
30% 15 79 0.68 0.66 0.70 0.66 0.74

40% 20 74 0.75 0.71 0.74 0.66 0.85

50% 26 68 0.80 0.78 0.80 0.71 0.90

breast-cancer 9
30% 54 203 0.40 0.43 0.39 0.43 0.53

40% 72 185 0.42 0.43 0.40 0.45 0.44
50% 91 166 0.42 0.44 0.41 0.44 0.44

chess 36
30% 451 2425 0.58 0.59 0.64 0.64 0.70

40% 601 2275 0.58 0.60 0.64 0.64 0.69

50% 751 2125 0.58 0.60 0.64 0.64 0.66

connect4 9
30% 169 693 0.47 0.48 0.47 0.39 0.54

40% 225 637 0.48 0.51 0.47 0.42 0.57

50% 282 580 0.49 0.49 0.48 0.43 0.41

dermatology 34
30% 30 136 0.57 0.57 0.57 0.56 0.99

40% 40 126 0.57 0.57 0.58 0.57 0.99

50% 50 116 0.59 0.57 0.60 0.58 0.99

heart-c 13
30% 45 228 0.73 0.63 0.70 0.64 0.72
40% 60 213 0.77 0.63 0.78 0.70 0.75
50% 75 198 0.77 0.63 0.77 0.68 0.77

hepatitis 19
30% 9 130 0.87 0.85 0.87 0.86 0.87

40% 12 127 0.88 0.85 0.88 0.85 0.88

50% 15 124 0.88 0.86 0.88 0.85 0.88

lymph 18
30% 17 111 0.84 0.79 0.85 0.84 0.84
40% 22 106 0.84 0.79 0.83 0.81 0.83
50% 28 100 0.86 0.81 0.87 0.82 0.80

mushroom 22
30% 1136 6176 0.72 0.68 0.67 0.67 0.74

40% 1515 5797 0.75 0.73 0.67 0.68 0.76

50% 1894 5418 0.75 0.74 0.68 0.69 0.82

nursery 8
30% 1166 6562 0.65 0.56 0.65 0.50 0.74

40% 1555 6173 0.69 0.61 0.69 0.56 0.77

50% 1944 5784 0.69 0.74 0.70 0.44 0.81

pima 8
30% 135 556 0.49 0.50 0.50 0.50 0.53

40% 180 511 0.49 0.50 0.50 0.51 0.55

50% 225 466 0.49 0.50 0.51 0.52 0.52

soybean 35
30% 25 140 0.81 0.80 0.86 0.81 0.73
40% 33 132 0.86 0.84 0.86 0.83 0.76
50% 42 123 0.92 0.88 0.92 0.86 0.83

vote 16
30% 72 319 0.62 0.56 0.62 0.55 0.68

40% 96 295 0.71 0.58 0.71 0.54 0.80

50% 120 271 0.77 0.61 0.77 0.56 0.82

N. of wins 9 2 10 2 29

Avg. F-Meas. 0.67 0.64 0.67 0.62 0.73

Avg. ranking 2.884 3.679 2.756 3.833 1.846

Table 1. F-Measure results over the 39 samples with k = 7 (χ2
F = 39.7432)



Finally, let us make some comments concerning the number of positive exam-
ples involved in the learning step. The accuracy of this kind of approaches should
improve as the number of available positive examples grows, according to the
theory that, with a large enough set of positive examples the performance of PU
classifiers could be the same of standard binary classifiers learnt over both posi-
tive and negative examples [4]. From Table 1 it turns out that this is not always
the case in our experiments. Except for connect4 and chess which are related to
strategy games, other factors that should be taken into account are related to
under/overfitting phenomena. Our approach has two learning phases: the dis-
tance learning step and the k-NN step. Each of these steps suffers from typical
(and sometimes unpredictable) classification biases. In some cases, too many
positive examples may bias the classification task towards a major accuracy for
the positive class. In some other cases, the problem is inverted. However, it can
be noticed that when the number of positive examples is low (30%) our approach
wins 9 times over 13 for k = {1, 3, 11} and 10 times over 13 for k = {7, 13}, for
a win-ratio which is always higher than the overall win-ratio.

3.2 Statistical significance of the results

To asses the statistical quality of our approach we use the Friedman statistics
and the Nemenyi test [5]. These techniques are usually employed to deal with the
problem of evaluating the statistical relevance of results of different classifiers
over multiple datasets. We compare Pulce with all the competitors (PNB, APNB,
PTAN, APTAN over 13 datasets with 3 different percentage of labeled positive
examples, for a total of 39 datasets. In this statistic test the null hypothesis is
that all the methods obtains similar performances, i.e., the χ2

F value is similar
to the critical value for the chi-square distribution with 4 degrees of freedom.
At significance level of α = 0.001, the critical values of the chi-square is equal
to 18.467. In our test we obtain values from 27.1488 to 39.7432 for the χ2

F

statistics (see captions of Table 1, hence the null hypothesis of the Friedman test
is comfortably rejected and we can now proceed with the post-hoc Nemenyi test.
According to this test, the performance of two classifiers is significantly different
if the corresponding average ranks differ by at least the critical difference. Then,
we compare the five methods at the critical value of q0.1 = 2.459. The ranking
table is shown on bottom of Table 1. The critical difference is CD = 0.8805 (at
significance level α = 0.1). We observe that Pulce brings a statistically significant
improvement w.r.t. all the four competitors, with an average rank of 1.846.

4 Conclusion

We have introduced Pulce, a distance based approach for Positive Unlabeled
learning (PU) in categorical data. Unlike the few existing approaches based on
Naive Bayes, it takes into account data dependencies and learns a distance model
from attribute relationships to train a k-NN-like classifier. Statistically signifi-
cant classification results on real world datasets have validated our strategy, also



comparing to state-of-the-art approaches, Finally, the sensibility analysis on the
only required parameter and the study on variations of the proposed threshold
for selecting a good example-set for the negative class and have shown that Pulce
is stable and robust.
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