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Abstract 

A new calculation methodology for determining the static energy density at 0K of each layer 

forming the slab (i.e., how the static energy density varies within the slab) is proposed. This work is 

the continuation of a previous one in which the vibrational free energy density of a slab was 

estimated. Now, it becomes possible to determine the free energy density profile of a slab delimited 

by any (hkl) surface and temperature, by adding the static contribution to the vibrational one. 

Moreover, it is now possible to estimate the surface free energy of a crystal face without calculating 

the free energy of the bulk. Finally, this model can be extended to the calculation of the free energy 

of the interface between (i) two identical crystals in a twinning relationship and (ii) two different 

crystals in an epitaxial relationship. 

The model was applied to the (10.4) (twinned and untwinned), (10.0) and (01.2) slabs of calcite 

(CaCO3): their free energy density profiles were calculated, as well as their surface/interface free 

energies. At the best of my knowledge, this is the first time that it is evaluated how a planar defect 

like a surface/interface affects the thermodynamic behavior of the underlying layers forming the 

crystal. 
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1. Introduction 

The study of the crystal surfaces (e.g., surface structure, adsorption phenomena, epitaxy, surface 

energy) is generally considered unconnected to that of the crystal bulk. The surface is usually 

interpreted as a sudden interruption of the bulk that does not generate particular repercussions on 

the thermodynamic and structural properties of the inner crystal. This point of view is likely the 

consequence of two factors: (i) a lacking of interest for this argument on the part of surface’s 

scientists and (ii) the inability to determine how the main thermodynamic quantities (i.e., free 

energy, entropy, static energy), which describe the state of the system, vary from surface to bulk of 

the crystal. As concerns point (i) I am not able to intervene, while a contribution to the solution of 

the problem (ii) is furnished in this paper. To date, a first contribution to this item was recently 

given by Bruno and Prencipe,1 which conceived a new calculation methodology for determining the 

vibrational contribution of each layer forming the slab (i.e., how the vibrational free energy density 

at the temperature T varies within the slab), where the latter is a slice of crystal delimited by two 

parallel (hkl) faces. Their model uses the frequencies of the vibrational modes of a slab and it is 

based on the construction of a weight function taking into account how the vibrational amplitude of 

the atoms involved in the vibrational mode is modified by the presence of the surface.  

The natural evolution of that work consists in the determination of the static energy 

contribution at 0K of each layer forming the slab (i.e., potential energy density profile) to add to the 

vibrational one for obtaining the Helmholtz free energy density profile. Therefore, in the present 

work I aim at determining the free energy density of a finite crystal, that is the Helmholtz free 

energy per volume unit (J m-3) of a crystalline phase delimited by {hkl} forms. I expect a strong 

variation of this thermodynamic quantity when moving from a (hkl) free surface to the center (bulk) 

of the crystal. Not only, a peculiar behavior of the free energy density should arise in proximity of 

each of the different (hkl) surfaces delimiting the crystal. As such modification is likely to be 

produced in the layers which are closer to the free surface, with respect to those more deeply buried 

in the crystal, it is interesting to analyze the contribution of the various layers to this quantity, as a 

function of the distance of each of them from the surface. For doing this, a new calculation 

methodology for determining the static energy density profile of a slab is proposed, which permits, 

by combining it with the one developed by Bruno and Prencipe1 for the vibrational contribution, to 

study how the free energy density varies inside a crystal.  

Moreover, by means of this new calculation methodology, it becomes possible to estimate 

the surface free energy of a (hkl) crystal face ( T
hkl)(γ ) at the temperature T of interest without 

calculating the free energy of the bulk. Furthermore, the calculation strategy here reported can be 
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extended to the study of the interface between (i) two identical crystals in twinning relationship, and 

(ii) two different crystals in epitaxial relationship. 

 Finally, in order to test the validity of the model, the free energy density profiles across the 

(10.4), (10.0) and (01.2) slabs of calcite (CaCO3) are determined and discussed, as well as the free 

energy density profile of the (10.4) twinned slab. I decided to study the (10.4), (10.0) and (01.2) 

faces because they are the main ones entering the equilibrium and growth shapes of calcite.2-4 At the 

best of my knowledge, this is the first time that it is evaluated in a quantitative way how the crystal 

surfaces modify all of the thermodynamic properties of the bulk. That is, how a planar defect like a 

surface/interface affects the thermodynamic behaviour of the underlying layers forming the crystal. 

 

2. Free energy density of a crystal 

In order to determine the free energy density profile of a crystal, it is necessary to use the well 

known slab model, where a 2D periodic structure (slab) is generated by cutting the bulk crystal 

parallel to the hkl plane of interest. In this manner one is able to create a portion of the crystal 

having the thickness and surface termination desired, and obtain the Helmholtz free energy density 

associated to each layer of a n-layer slab, jA  (j = 1, …, n). Obviously, to acquire a 3D picture of the 

free energy density of a crystal, several slabs with different (hkl) terminations must be taken into 

account. But before to describe the calculation strategy to employ for determining jA , it is 

fundamental to highlight the following points: 

(i) jA  (J m-3) is the sum of two terms (both referred to the j-th layer): 

vib
jjj AEA += 0   (1) 

where 0
jE  (J m-3) is the static energy density at 0K and vib

j
vib
j

vib
j TSEA −=  is the vibrational 

free energy density at the temperature T of interest; vib
jE  (J m-3) and vib

jS  (J m-3 K-1) are the 

vibrational energy density (including the zero point energy) and vibrational entropy 

density, respectively, at the temperature T (K). 

(ii) The slab is composed by n-layer, each one with thickness dhkl (interplanar distance: the 

distance between adjacent hkl planes). 

(iii) 0
jE  can be determined by using several codes developed for performing empirical (i.e., 

GULP,5 TINKER6), semi-empirical (i.e., MOPAC7) and ab initio quantum-mechanical 

(i.e., ABINIT,8,9 CASTEP,10 CRYSTAL,11 Quantum ESPRESSO,12 VASP13) calculations 

on crystalline materials.  
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(iv) Instead, as detailed in a later paragraph, the estimate of vib
jA  requires the use of two 

computational codes in sequence: (a) initially, a code (GULP or CRYSTAL) for the 

calculation of the frequencies of the vibrational modes of a slab; (b) successively, the 

SLAB code,1 which reads the output files generated by GULP or CRYSTAL and computes 
vib
jA  by means of the relations reported in the paragraph 2.2. 

 

FIGURE 1 

 

2.1. Static energy density 

For determining the static energy density of a slab at 0K, 0
jE  (J m-3), a remarkable number of 

calculations have to be performed. In order to detail the calculation procedure, the sequence of 

operations to perform is listed below: 

(i) First of all, it is needed to optimize the structure of the n-layer slab delimited by the (hkl) 

faces of interest (Fig. 1a). As a consequence, a static energy 0E  results to be associated to 

the optimized slab. Usually, the calculation programs express 0E  as J/(z f.u.), where z is 

the number of formula units (f.u.) forming the slab. But, for convenience, one converts this 

unit of measurement in J m-3, multiplying 0E  by the factor ( )WA zMN ρ , where NA is the 

Avogadro’s number, ρ is the density of the phase (kg m-3) and MW is the molecular weight 

of a f.u. (kg mol-1). 

(ii) Then, one isolates the j-th layer (j = 1,..., n) from the optimized slab and calculates its static 

energy ( jE ); this calculation must be performed for each layer forming the slab (Fig. 1b). 

As in the case of 0E , one multiplies jE  by ( )WA tMN ρ  for converting the energy term 

from J/(t f.u.) to J m-3, where t is the number of f.u. forming the layer. 

(iii) Successively, one isolates the couple of layers from the optimized slab with indexes j = 

1,…, n-1 and i = j+1 (Fig. 1c), and calculates its static energy ( ijE , ). Also in this case, one 

multiplies ijE ,  by ( )WA tMN ρ  for having the energy term in J m-3. This procedure must be 

carried out for all of the couples of layers forming the slab: for a n-layer slab the number of 

couples to consider is given by ( )∑
−

=

−
1

1

n

i
in . Overall, by also considering the points (i) and 

(ii), the number of calculations to perform is ( )∑
−

=

−++
1

1

1
n

i

inn .  
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(iv) Finally, one is able to calculate the static energy density at 0K of the j-th layer included in 

the optimized slab ( 0
jE ), by taking into account its interaction energy with all of the others 

layers, by means of the equation:  

 

( )[ ]∑
+=

+−+=
n

ji
ijijjj EEEEE

1
,

0

2
1   (2) 

 
0
jE  describes how the static energy density varies across a slab, from the surface layers to 

the bulk ones (i.e., the layers at the center of the slab).  

For a thick slab, the number of calculations could be drastically reduced by verifying when the term 

( )ii EEE −− 1,1  approaches to zero with the increase of the index i. Indeed, if one finds that this 

difference is close to zero, e.g., for the layer having index i = 4, then it is sufficient to determine the 

contributions 1, +jjE , 2, +jjE  and 3, +jjE  for j = 1, …, n-1.  

 

2.2. Vibrational free energy density 

The strategy and equations for determining the vibrational contribution of each layer or atom 

forming a slab were described in a recent paper by Bruno and Prencipe.1 Therefore, in the present 

work I only detail the operating procedure to follow for calculating vib
jA . A two-step procedure can 

be envisaged:  

(i) By using GULP or CRYSTAL, one computes for the optimized slab the frequencies 

(eigenvalues) of the vibrational modes and the eigenvectors of the mass weighted Hessian 

matrix describing the vibrational modes, which are listed in an output file. 

(ii) Successively, the SLAB program reads the frequencies and eigenvectors from the output 

file created by GULP or CRYSTAL, and calculates the thermodynamic quantity vib
jE , vib

jS  

and vib
jA  for each layer forming the slab ( j = 1, …, n). Since SLAB gives the values of 

energy ( vib
jE  and vib

jA ) and entropy vib
jS  in J (and J K-1) per mole of z f.u., it is necessary to 

multiply them by ( )WtMρ  for having J m-3 and J m-3 K-1.  

 

3. Application of the model to the (10.4), (10.0) and (01.2) faces of calcite 

Structure optimization and calculation of the vibrational frequencies of the (10.4), (10.0) and (01.2) 

slabs of calcite were performed at empirical level by using the calcite force field developed by Rohl 
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et al.14 and the version 4.0 of the GULP simulation code.5 The Rohl’s force field very successfully 

reproduced the equilibrium geometries and the surface energy values at T = 0K of the {10.4} and 

{01.2} faces obtained from ab initio calculations at DFT (Density Functional Theory; B3LYP15 and 

PBE16 Hamiltonians) level,17-19 as well as the experimental observations of the surface relaxation of 

the {10.4} form.14 A detailed discussion on the ability of the Rohl potential14 to reproduce the 

surface energy values of the crystal faces discussed in this work is reported in the paper by Bruno et 

al.2 In the same paper,2 the comparison between experimental and theoretical determinations of the 

surface energy of the main crystal faces of calcite is also done. Furthermore, a fairly good 

agreement exists between the twinning energies of the four twin laws of calcite calculated with the 

Rohl potential20 and those determined at DFT level.21  

The geometry optimization was performed by considering (10.4), (10.0) and (01.2) slabs 

formed by 10, 15 and 12 layers, respectively; the number of f.u. (zCaCO3) forming the (10.4), 

(10.0) and (01.2) slabs is 60, 90 and 72, respectively. These thicknesses are sufficient to satisfy the 

criterion of convergence, that is the bulk-like properties are reproduced at the center of the slab. The 

center of inversion was retained in the calculations, to ensure that the dipole moment perpendicular 

to the slab was equal to zero.  

The vibrational thermodynamic properties were calculated at T = 298.15K. The frequencies 

of the vibrational modes of the (10.4), (10.0) and (01.2) slabs were calculated by considering 30 k 

points. As discussed later, this number of k points is sufficient to obtain a reliable estimate of the 

vibrational thermodynamic quantities. 

 

FIGURE 2 

 

3.1. (10.4) face 

In Fig. 2 (left column) the quantities jA , 0
jE  and vib

jA  are plotted; their numerical values, along 

with those of vib
jE  and vib

jS , are listed in Table S1 (ESI). By analyzing Fig. 2, one observes an 

abrupt decrease of jA  and 0
jE  moving from the surface (layers 1 and 10) toward the center of the 

slab, whereas vib
jA  shows an opposite behavior, it increases from the surface to the center of the 

slab. Moreover, it is interesting to note that: 

(i) all of these quantities converge very quickly to their bulk value. Indeed, only the 

thermodynamic values of the layers j =1, 2 and 3 show significant differences with respect 

to those at the center of the slab (i.e., bulk values); in particular, it is the layer 1 (or its 
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equivalent: layer 10) to show the highest variation. This put in evidence that the thickness 

of the crystal mainly interested by the perturbation generated by the presence of the (10.4) 

surface, is ~ 10 Å. 

(ii) The contribution of vib
jA  to jA  is always < 1% (Table S1 in ESI): 0.78% for the layer 1 

(and 10) and 0.85% for all others ones. This reveals that for the (10.4) slab the vibrational 

contribution is higher for the bulk than for the surface. 

(iii) At 298.15K, one observes that for each layer vib
jE  is about twofold the term vib

jTS . Such a 

relation is valid also for the (10.0) and (01.2) slabs analyzed in the following paragraphs. 

Now, one is able to calculate the surface free energy at 298.15K of the (10.4) face, ( 15.298
)4.10(γ ; 

the specific Helmholtz free energy needed for the creation of a crystal surface at the temperature T 

of interest), by using the equation proposed by Bruno and Prencipe:1 

 

2
4.10

2
1

15.298
)4.10(

dnAA n

n

j
j

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=

γ   (3) 

 

The term inside the square bracket is the difference between the free energy of the slab (with n = 

10) and that of the bulk: indeed, 2nA  is the free energy value at the center of the slab, representing 

the bulk value (i.e., in this case 52 AAn = ); 4.10d  = 3.0338×10-10 m; 2 accounts for the existence of 

two surfaces delimiting the slab. According to eq. 3, 15.298
)4.10(γ  results to be 0.499 J m-2 (Table 1). 

Furthermore, always according to the work by Bruno and Prencipe,1 it is licit to write 15.298
)4.10(γ  

as the sum of two terms: 

 
vib,15.298

)4.10(
0

)4.10(
15.298
)4.10( γγγ +=   (4) 

 

where 0
)4.10(γ  is the surface energy at T = 0K (the specific work needed for creating and relaxing a 

crystal face at 0K and without considering vibrational zero point effects); vib,15.298
)4.10(γ  is the vibrational 

(thermal) contribution (the specific internal vibrational energy and vibrational entropy at the 

temperature T, including the zero point energy contribution). 0
)4.10(γ  and vib,15.298

)4.10(γ  can be calculated 

by inserting 0
jE  ( 0

5E ) and vib
jA  ( vibA5 ) in eq. 3, respectively, at the place of jA : 0.499 and -0.027 J 
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m-2 are the resulting values (Table 1). As expected, the contribution of vib,15.298
)4.10(γ  to 15.298

)4.10(γ  is very 

low, ~5%; 0
)4.10(γ  is poorly modified at room temperature by vibrational contributions. 

 In order to verify the criterion of convergence, the estimate of vib,14.298
)4.10(γ  calculated for the 10-

layer slab and with 30 k points can be compared with the value (-0.030 J m-2) obtained in a previous 

work,2 where the (10.4) slab and bulk entropy of calcite at T = 300K were determined, by means of 

another calculation method and respecting the convergence criteria on the number of k points and 

slab thickness, but always using the Rohl’s potential and GULP simulation code. The good 

agreement between these two independent estimates, is guarantee of adequacy on the number of k 

points adopted in this work. 

  

 

Table 1. Surface energy at 0K ( 0
)(hklγ ), and surface free energy ( 15.298

)(hklγ ) and surface vibrational 

energy at 298.15K ( vib
hkl

,15.298
)(γ ) of the (10.4), (10.0) and (01.2) faces of calcite; all of these quantities 

are expressed in J m-2. The percentage contribution of vib
hkl

,15.298
)(γ  to 15.298

)(hklγ  is also reported, Δ(%)=

10015.298
)(

,15.298
)( ×hkl

vib
hkl γγ . 

face 15.298
)(hklγ 0

)(hklγ vib
hkl

,15.298
)(γ Δ(%)

(10.4) 0.499 0.526 -0.027 5.1 

(10.0) 0.725 0.719 0.006 0.8 

(01.2) 0.736 0.738 -0.002 0.3 

 

 

3.2. (10.0) face 

In Fig. 3 (left) jA , 0
jE  and vib

jA  are plotted; their numerical values, along with those of vib
jE  and 

vib
jS , are listed in Table S2 (ESI). For a detailed description of the (10.0) surface structure, see the 

paper by Massaro et al.22 

As for the (10.4) face, one observes an abrupt decrease of jA  and 0
jE  moving from the 

surface (layers 1 and 15) toward the center of the slab (layer 8), whereas a totally different behavior 

of vib
jA  is registered, whose more evident features are: (i) the highest and lowest values placed in 

correspondence of layers 1 and 2, respectively, and (ii) a surface value ( vibA1 ) higher than the bulk 

one ( vibA8 ). Also for the (10.0) face, it is interesting to underline: 
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(i) a very rapid convergence of jA , 0
jE  and vib

jA  to their bulk values, since only the 

thermodynamic values related to layers j =1, 2 and 3 show significant differences with 

respect to those at the center of the slab. As a consequence, a thickness of ~ 13 Å results to 

be perturbed by the presence of the (10.0) surface. 

(ii) The contribution of vib
jA  to jA  is always < 1% (Table S2 in ESI), but in this case the 

importance of the vibrational term is greater for surface layer (1 or 15), 0.88%, than for the 

bulk (layer 8), 0.85%.  

By inserting in eq. 3 the quantities related to the (10.0) slab ( 0
8E , vibA8 , 8A , n = 15, 0.10d  = 

4.3140×10-10 m), one obtains 15.298
)0.10(γ , 0

)0.10(γ , and vib,15.298
)0.10(γ , whose values are listed in Table 1. The 

low and positive value of vib,15.298
)0.10(γ  (0.006 J m-2) is likely of the order of magnitude of the numerical 

error that affects the calculations, therefore one can consider negligible the vibrational contribution 

to the surface free energy of the (10.0) face. 

 

3.3. (01.2) face 

In Fig. 3 (right) and Table S2 (ESI), the thermodynamic quantities jA , 0
jE  and vib

jA  of the (01.2) 

face are reported; the (01.2) surface structure is described in the paper by Bruno et al.17 

The main feature of the (01.2) slab concerns the behavior of vib
jA : the surface (layers 1 and 

12) and bulk (layer 6) show similar values of vib
jA , whereas the layer 2 (and 11) displays the lowest 

one. Instead, the functions jA  and 0
jE  show a trend similar to that previously described for the 

(10.4) and (10.0) slabs, as well as the slab thickness altered by the (01.2) surface (~ 12 Å). 

 The thermodynamic surface quantities of the (01.2) face (calculated with: 0
6E , vibA6 , 6A , n = 

12, 2.01d  = 3.8501×10-10 m) have strong analogies with those of the (10.0) one (Table S2 in ESI). In 

particular, the value of vib,15.298
)2.01(γ  (-0.002 J m-2) is negligible when compared to that of 0

)2.01(γ  (0.738 J 

m-2). 

 

4. Application of the model to the (10.4) twinned calcite 

Structure optimization and calculation of the vibrational frequencies of the (10.4) twinned slab of 

calcite were performed by using the Rohl’s force field14 and GULP.5  

A twinned slab, made by slabs A and B, was generated in the following way: (i) the slab A 

of a given thickness was made by cutting the bulk structure parallel to the hkl twin plane of interest; 

(ii) the slab B was made by applying the appropriate twin law (i.e, a mirror plane parallel to 10.4) to 



10 
 

the atomic coordinates of the slab A; (iii) then, the twinned slab geometry (atomic coordinates) was 

optimized by considering all the atoms free to move. For more details on the construction of the 

twinned slab see the paper by Bruno et al.20 

The calculations were performed at T = 298.15K by considering the (10.4) twinned slab 

formed by 24 layers (12 layers both for A and B) and 144 f.u. (zCaCO3). The frequencies of the 

vibrational modes of the (10.4) twinned slab were calculated by considering only 2 k points. The 

thickness and the number of k points are not sufficient to satisfy the criterion of convergence, that is 

the bulk-like properties are not reproduced at the center of the slabs A and B. Unfortunately, at the 

time being, I am not able to take into account a thicker slab and more k points. This restriction is 

due to the fact that one must read the eigenvectors (representing the normal modes) from the output 

file of GULP, which is enormous (and as a consequence, it is not manageable) when a high number 

of atoms and k points is used. Therefore, in order to reach convergence, it should be necessary to 

implement the calculation strategy in the GULP code. Nevertheless, a reliable estimate of the 

thermodynamic properties of the twinned slab was obtained. 

jA , 0
jE  and vib

jA  are plotted in Fig. 1 (right), whereas their numerical values are listed in 

Table S1 (ESI). The existence of the (10.4) twinned interface generates an oscillation of the 

thermodynamic functions that propagates throughout the whole slab. This is a clear evidence that 

the slab thickness used to model the twinned crystal is not sufficient for reproducing the bulk 

properties at the center of the slabs A and B. Despite that, an evident increment of jA  is identifiable 

at the surface (layers 1 and 24) and at the twinned interface (layers 12 and 13). As well as it is 

interesting to note that, at variance with the free surface, an increase of vib
jA  is detected in the layers 

forming the twinned interface. 

A fundamental thermodynamic quantity related to a twinned slab is the twinning free energy 

( 15.298
TEγ ; J m-2), which is the excess free energy required to form a unit area of the twin boundary 

interface at the temperature T of interest (i.e., 298.15K). It can be calculated with the following 

relation, developed by Bruno and Prencipe1 and adapted in this work to the studied case: 

 

4.106

19

6

15.298 6 dAA
j

jTE
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=

γ   (5) 

 

which gives 15.298
TEγ = 0.252 J m-2. In analogy with the surface free energy, it is possible to write 

15.298
TEγ  as the sum of two terms: 
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vib

TETETE
,15.298015.298 γγγ +=   (6) 

 

where 0
TEγ  is the excess static energy at 0K required to form a unit area of the twin boundary 

interface and vib
TE

,15.298γ  is the vibrational contribution of the twin boundary interface at T = 298.15K. 

By inserting 0
jE  ( 0

6E ) and vib
jA  ( vibA6 ) in eq. 5 at the place of jA  ( 6A ), one obtains 0

TEγ = 0.234 and 

vib
TE

,15.298γ = 0.018 J m-2. At variance with the (10.4) surface free energy, the vibrational contribution 

tends to increase the value of 0
TEγ . 

 

FIGURE 3 

 

5. Conclusions 

In this paper a calculation methodology for determining the static energy density at 0K of each layer 

forming the slab (i.e., how the static energy density varies within the slab) is described. This work is 

the continuation of a previous one1 in which the vibrational free energy density of a slab was 

estimated. Now, by putting together the static and vibrational contributions, it becomes possible to 

determine the free energy density profile of a slab delimited by any (hkl) surface and temperature. 

Moreover, it is now possible to estimate the surface free energy of a crystal face ( T
hkl)(γ ) without 

calculating the free energy of the bulk. Finally, this model can be extended to the calculation of the 

free energy of the interface between (i) two identical crystals in a twinning relationship and (ii) two 

different crystals in an epitaxial relationship. 

 In order to test the model, the following systems were studied: (i) surfaces: 10-layer (10.4), 

15-layer (10.0) and 12-layer (01.2) slabs of calcite (CaCO3); (ii) interface: 24-layer (10.4) twinned 

slab of calcite. In all of these cases, the static energy, vibrational energy, vibrational entropy, 

vibrational free energy and free energy of the optimized slab, and the contribution to these 

quantities of each layer forming the slab were calculated; the vibrational contribution were 

determined at T = 298.15K. Then, the surface free energy at 298.15K of the (10.4), (10.0) and 

(01.2) faces were evaluated, as well as the twinning free energy of the (10.4) twinned slab. At my 

knowledge, this is the first time that a complete thermodynamic analysis of a crystal and its main 

faces was performed. In particular, it is the first time that the effect of the surfaces on the 

thermodynamic behaviour of the underlying layers forming the crystal is evaluated in a quantitative 

way. 
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 Another interesting application of the present model concerns the study of the interface 

between two different phases in epitaxial relationship. The calculation methodology to apply for 

such a system is the same adopted for the twinned slab described in this paper. The only difference 

consists in having a slab made up of two portions with different chemical composition at the place 

of two portions with the same one. The determination of its free energy density profile could give 

new and interesting ideas to explain the origin of the epitaxy from a thermodynamic point of view. 

Then, since the epitaxy is a fundamental phenomenon usually observed during nucleation and 

growth of electronic materials above crystalline templates, the calculation method proposed in this 

work could be a valid instrument to gain more insights on its formation mechanisms.  

At present the calculation methodology described in this work for determining the static 

energy density, is not implemented in a computational code. It requires a remarkable number of 

calculations, which can become prohibitive when a large system with a complex stoichiometry is 

analyzed at quantum-mechanical level. A possible way to reduce drastically the number of 

calculations could consist in the identification of a weight function relating the contribution of each 

layer to the static energy of a slab with a suitable parameter that describes the evolution of the slab 

structure from its surface to bulk (e.g., variation of dhkl across the slab). But for identifying a similar 

weight function, it is necessary to perform a detailed structural analysis of the slab and to build 

tentatively the structural parameter that fits better the behavior of the static energy density profile, 

as determined with the strategy employed in this work. Then, a future development of the present 

work can concern the creation of this weight function. 

A further progression, on which I am already working, concerns the conception of a 

analytical model for the determination of the thermodynamic properties of the crystal/aqueous 

solution interface. By describing the crystal with the present model and doing some assumptions on 

the behavior of the fluid in proximity of the crystal surface, one will be able to estimate the free 

energy of the crystal/solution interface at whatever temperature, a crucial quantity to estimate the 

probability of nucleation of a phase and, then, to observe it in laboratory or Nature.  
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Figure captions 

Figure 1. Graphical representation of the calculation sequence to perform for determining 0
jE . (a) 

Optimization of the structure of the n-layer slab: in this way a static energy at 0K equal to 0E  is 
obtained; (b) extraction of the layer j = 2 from the optimized slab and determination of its energy 

2E ; (c) extraction of a couple of layers (j = 2 and n) from the optimized slab and determination of 
its energy nE ,2 . 

Figure 2. Free energy ( jA ), static energy ( 0
jE ) and vibrational free energy ( vib

jA ) density of the 

layers forming the (10.4) slab and (10.4) twinned slab of calcite; free energy and vibrational free 
energy were calculated at T = 298.15K. Each point in the graph represents a layer of the slab: only 
the numbers that identify the surface layers are reported; in the abscissa the distance between layer 
1 (chosen as zero) and n is reported. The red dotted line shows the center of the slab. 

Figure 3. Free energy ( jA ), static energy ( 0
jE ) and vibrational free energy ( vib

jA ) density of the 

layers forming the (10.4) and (01.2) slabs of calcite; free energy and vibrational free energy were 
calculated at T = 298.15K. Each point in the graph represents a layer of the slab: only the numbers 
that identify the surface layers are reported; in the abscissa the distance between layer 1 (chosen as 
zero) and n is reported. The red dotted line shows the center of the slab. 
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Graphical Abstract 

 
 
 
 

 

 
 
 
 

A new calculation methodology for determining the static energy density at 0K of each layer 

forming the slab (i.e., how the static energy density varies within the slab) is proposed. Now, it 

becomes possible to determine the free energy density profile of a slab delimited by any (hkl) 

surface and temperature. 

 

 


