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Abstract 

Aims: Loss of pericytes in the early phases of diabetic retinopathy (DR) may disrupt their stable association 

with endothelial cells (EC), leading to EC proliferation and, eventually, angiogenesis. Extracellular vesicles 

(EV) are small membrane particles derived from different cells which contain biologically active proteins and 

RNA and are known to promote phenotypic changes in target cells. In diabetic-like conditions, EV derived 

from MSC may play a role in vessel destabilization by interfering with the strict interactions between 

EC/pericytes and pericyte/extracellular matrix.  

Methods: We examined the behaviour of retinal pericytes exposed to EV derived from MSC cultured in 

physiological and diabetic-like conditions (high glucose and/or hypoxia). 

Results: MSC-derived EV are able to enter the pericytes, cause their detachment and migration from the 

substrate, and increase blood-barrier permeability. Moreover, EV added to EC/pericytes co-cultures in 

Matrigel promote in vitro angiogenesis. These effects may be mediated by matrix metalloproteinase-2, 

expressed by both EV and EV-stimulated pericytes, and are exacerbated if MSC are previously cultured in 

conditions (high glucose and/or hypoxia) mimicking the diabetic microvascular milieu. 

Conclusions: We confirm that MSC-derived EV contribute to angiogenesis, showing that they may not only 

exert a direct stimulus to EC proliferation, but also induce pericyte detachment, thus leaving EC free to 

proliferate. In addition, we demonstrate a possible link between EV and the early stages of the pathogenesis 

of DR. Diabetic-like conditions may influence vessel remodelling during angiogenesis through EV paracrine 

signalling.  

 

Keywords: extracellular vesicles, mesenchymal stem cells, pericytes, endothelial cells, diabetic retinopathy, 

angiogenesis 

 

Abbreviations: DR, diabetic retinopathy; EC, endothelial cells; ECM, extracellular matrix; EV, extracellular 

vesicles; FCS, fetal calf serum; FITC, fluorescein isothiocyanate; HG, high glucose; HRP, human retinal 

pericytes; hypo, hypoxia; MMP, matrix metalloproteinases; MSC, mesenchymal stem cells; NG, normal 

glucose. 
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Introduction 

Micro- and macrovascular alterations are key features of the diabetic condition. However, while the retina 

may be affected by increased revascularization, leading to proliferative diabetic retinopathy (DR), other 

organs show a marked inhibition of angiogenesis, which in turn leads to peripheral vascular and coronary 

heart disease (the angiogenic paradox in diabetes) [1]. 

Pericytes and their interactions with endothelial cells (EC) in the vessel wall have come into focus as central 

processes in the regulation of vessel formation, stabilization and remodelling [2], thus playing a key role in 

the pathogenesis of such vascular abnormalities as diabetic microangiopathy (in particular DR), 

hypertension, stroke, tumour formation and neurodegenerative diseases [3, 4]. If EC are exposed to the 

complex signals deriving from the blood flow, pericytes receive, and transmit to the endothelium, signals from 

the surrounding tissues.  

Mesenchymal stem cells (MSC) are ubiquitous pluripotent stem cells, whose presence in human eye tissues 

such as retrocorneal membranes, vitreous, orbital adipose tissue, has been ascertained [5]. A possible 

contribution of MSC to the physiological and pharmacological repair of tissue damage in several organs has 

been postulated [5-7]. This may be mediated through transfer of genetic information by extracellular vesicles 

(EV) [8-11], small membrane particles which include exosomes and microvesicles [12] and represent one of 

the most promising paracrine signalling pathways. They are released by several cell types in physiological 

conditions and in response to stress or pathological stimuli [13] and are able to regulate cell migration, 

proliferation and differentiation, as they contain several biologically active molecules [13-15]. In particular, an 

important role of EV in the induction of angiogenesis has been suggested [12-15]. 

EV have been described as potential biomarkers for metabolic diseases, in particular type II diabetes [13]. 

Circulating EV concentration is increased in diabetic animal models [13] and in subjects with type II diabetes 

[16] or the metabolic syndrome [17, 18], compared with healthy controls. Monocyte-derived EV have been 

found increased in patients with diabetic nephropathy and could be markers of microangiopathy [19]. 

Pericyte survival depends also on their interactions with the extracellular matrix (ECM), whose proteins are 

susceptible to rapid degradation by metalloproteinases (MMP). Hyperglycaemia-induced upregulation of 

MMP-2 has been demonstrated in the arterial vasculature in vivo [20] and, in vitro, in several cell types [21, 

22] including pericytes [23]. 

Our working hypothesis is that, in diabetic-like conditions, EV derived from MSC may play a role in vessel 

destabilization by interfering with the strict EC/pericytes and pericyte/ECM interactions. In particular, EV 

might stimulate pericyte migration and their loss of contact with EC, thus influencing abnormal angiogenesis. 

Hence, this study was aimed at examining the behaviour of retinal pericytes exposed to EV derived from 

MSC cultured in physiological and diabetic-like conditions (hyperglycaemia and/or hypoxia) and to evaluate 

the possible role of MMP-2. 

 



4 
 

Materials and Methods 

Reagents were purchased by Sigma-Aldrich, unless otherwise stated. 

Cell cultures 

Human retinal pericytes (HRP) were immortalized in our laboratory [24]. Human bone marrow and adipose 

MSC, and human microvascular EC (HMEC) were purchased from Lonza. HRP and MSC were grown in 

DMEM + 10%FCS, HMEC in EBM-2 growth medium (Lonza) supplemented with angiogenic factors, 

according to the instructions. 

 

EV isolation  

MSC were cultured for 8 days in physiological (5.6 mmol/L, NG) or high glucose (28.0 mmol/L, HG). Hypoxic 

conditions were obtained by keeping cultures in 5%CO2 / 94%N2 /1%O2 gas mixture for the last 24 hrs (NG 

hypo, HG hypo). MSC were serum-deprived 24 hrs prior to EV isolation. 

Cell debris and apoptotic bodies were removed from the supernatants by centrifugation for 30’ at 3,000 and 

10,000g respectively, then EV were isolated by a further ultracentrifugation at 100,000g for 3 hrs at 4°C. 

They were used immediately or stored at −80°C in DM EM + 5%DMSO. No differences in biological activity 

were observed between fresh and stored EV. EV protein content was quantified by Bradford method, and 

their size distribution and number using a NanoSight LM10, through the Nanoparticle Tracking Analysis 

software. For all experiments an EV concentration correspondent to that in MSC supernatants (1×1011 ± 

1×103 EV/ml, corresponding to 1×105 ± 1×102 EV/cell) was used. 

To investigate EV uptake by HRP, EV were labelled with the red fluorescent aliphatic chromophore PKH26 

dye, which intercalates into lipid bilayers. HRP were stained with a FITC-conjugate anti-α-smooth muscle 

actin, and nuclei counterstained with DAPI. Confocal microscopy was performed using a Zeiss microscope, 

model LSM 5 PASCAL (Jena). 

For MMP inhibition studies, EV were pre-incubated with 1 µmol/L batimastat (Abcam) for 15 min prior to 

addition to HRP. 

 

Cell survival variables 

Cell were counted in Bürker chambers after Trypan blue staining by 2 individual operators. Apoptosis was 

evaluated by the DeadEnd Colorimetric TUNEL System (Promega). Positive controls were HRP treated with 

30 U/ml RNase-free DNase I (Roche), while negative control cells were incubated without the Terminal 

Deoxynucleotidyl Transferase. Images were taken under a Leica DM 2000 microscope, equipped with a 

Leica DFC 320 camera and Leica QWin Plus 2003 digital processing and analysis software. 

 

Migration 

HRP migration was investigated through a MicroImage analysis system (Casti Imaging), by digitally saving 

images of the same fields at 30-min intervals over a 12hr period. Migration tracks were generated by marking 

the position of the nuclei of individual cells on each image [25]. 
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Permeability 

40,000 EC/well were seeded on the inner surface of 0.45-µm pore-transwell inserts (Corning) and left to 

adhere for 24 hrs. 40,000 HRP were subsequently added onto the same insert, as previously described [26]. 

After another 24 hrs, inserts were washed and moved to clean the wells. 600 µl DMEM without red phenol 

and FCS were added to the lower chamber, while 200 µl of the same medium supplemented with EV was 

added into the inserts. After 2 hrs, FITC-dextran (100 µg/ml final concentration) was added into the upper 

chamber, and fluorescence measured in the lower chamber after another 30’, 1, 2, 3, 4 and 24hrs, through a 

Victor-3 Multilabel Plate Reader (Perkin Elmer).  

Vessel-like formation assay 

15,000 HRP and 15,000 EC/well were seeded together onto Matrigel-coated 24-well plates and cultured in 

serum-deprived DMEM added with EV. Control cultures were obtained seeding 30,000 HRP or 30,000 EC 

alone in Matrigel-coated wells. 

After 24 and 48 hr incubation, phase-contrast images were recorded, and the total length of the network 

structures measured using the MicroImage analysis system [27] in five random fields and expressed as ratio 

of control without EV. 

Zymography 

Zymography was performed on EV (3 µg proteins/well) and HRP conditioned media (30 µl/well), using Ready 

Zymogram Precast Gels (Biorad) (10%) copolymerized with 1 mg/ml gelatine. Samples were mixed with 

Laemmli’s buffer without β-mercaptoethanol and incubated for 10’ at RT. After electrophoresis, gels were 

washed twice for 30’ in 2.5% Triton X-100 at RT, incubated ON in collagenase buffer (50 mM Tris-HCl pH7.5, 

10 mM CaCl2, 150 mM NaCl) at 37°C, and then stained with Cooma ssie brilliant blue. Gelatinolytic activity 

was visualized as clear bands on a blue background, signal strengths were quantified using a densitometric 

software (1D Image Analysis System, Kodak). 

Statistical analysis 

Results are mean ± SD of 5 independent experiments, normalized against control (NG cultures without EV). 

Statistical comparisons among groups were carried out by two-tailed Student’s t-test for paired data or 

Wilcoxon’s Signed Ranks test, as appropriate. Results were considered significant for p≤0.05. SPSS 

software version 22.0 (IBM) was used for statistical analysis. 
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Results  

1. EV are internalized into human retinal pericytes (HRP) 

EV were collected from the supernatant of bone marrow-derived MSC cultured in the above described 

conditions (NG, HG, NG hypo, HG hypo), to mimic the diabetic milieu, especially of the retina, where 

pericytes play a major role in the development of the microvascular disease and hypoxia is a recurrent 

condition. 

NanoSight analysis showed super-imposable concentrations and similar mean size for EV obtained in all 

conditions (NG: 128±49 nm, HG: 148±41 nm, NG hypo: 138±43 nm, HG hypo: 140±44 nm), while agarose 

gel electrophoresis demonstrated that EV contain RNA, but not DNA. 

EV were able to enter pericytes already after 1hr incubation and locate inside the cytoplasm, as shown by 

confocal microscopy, when PKH26-marked EV were added to HRP (Fig.1). No differences in HRP 

internalization was observed using EV obtained in different conditions.  

2. MSC-derived EV stimulate HRP detachment and migration 

EV were added to sub-confluent HRP cultures and the number of HRP still attached was determined at 0, 2, 

4, 6 and 24 hrs. We observed a time-dependent detachment of HRP induced by EV obtained in all conditions 

(Fig. 2a), the major effect occurring after 2 hrs. Detachment was higher when HRP were exposed to EV 

obtained in diabetic-like conditions. HRP number after 2 hrs exposure to EV obtained in NG (NG-EV) was -

31.8% in comparison with control (HRP not exposed to EV, p<0.05); HG-EV: -62.9% (p<0.05 vs control and 

NG-EV), NG hypo-EV: -48.8% (p<0.05 vs control and NG-EV), HG hypo-EV: -66.2% (p<0.05 vs control and 

NG-EV) (Fig. 2b). These results indicate that EV exposure leads to pericyte detachment from their substrate, 

and that diabetic-like conditions exacerbate such effect. 

Increased HRP motility was observed after addition of EV, particularly those obtained in hypoxia (Fig. 2c). 

The higher increase was observed after 1 hr EV exposure in all experimental conditions: NG-EV +37.1% vs 

control (NS), HG-EV +43.6% (p<0.05), NG hypo-EV +47.0% (p<0.05), HG hypo-EV +56.0% (p<0.05) (Fig. 

2d). This suggests that exposure to EV may enhance HRP migration. 

To evaluate if these effects were tissue-specific, we checked our findings on HRP detachment using, in 

addition to EV from bone marrow MSC, EV extracted from adipose MSC and from EC, in physiological 

conditions (NG). A significant decrease in the number of pericytes exposed to EV from both types of MSC 

was observed. After 2 hrs, bone marrow MSC-EV: -23.6% (p<0.005 vs control), adipose MSC-EV: -17.4%, 

(p<0.005), while EV from EC had no effect at all. Interestingly, after 24 hrs HRP treated with HMEC-EV were 

significantly increased in number (+5.0% vs untreated HRP, p<0.005) (Fig. 2e). Hence, we suppose that EV 

effects on pericyte detachment are common to MSC of different tissue-origin, while EC-derived MSC have an 

opposite effect, probably due to in vivo tight interactions with pericytes. 

3. EV stimulation does not change survival parameters in HRP 

HRP released in the supernatant, i.e. the cells that had detached after EV stimulation, were collected and 

seeded in new plates, where they were able to re-attach. The percentage of dead cells, measured by Trypan 

blue staining, was <10%. TUNEL assay performed on these new cultures showed no signs of apoptosis (Fig. 

3), confirming that detached pericytes maintain their viability. 
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4. EV increase blood-barrier permeability 

FITC filtration through our blood-barrier model was augmented by exposure to EV (Fig. 4a), the highest 

percentage increase occurring after 6 hrs of EV exposure (2 hrs pre-treatment + 4 hrs FITC).  Permeability 

was further increased when co-cultures were exposed to EV obtained in hyperglycaemic and/or hypoxic 

conditions: NG-EV +19.8% (p<0.05 vs control without EV), HG-EV +33.8% (p<0.005 vs control, p<0.05 vs 

NG-EV), NG hypo-EV +25.6% (p<0.05 vs control, p=0.000 vs NG-EV), HG hypo-EV +35.8% (p<0.05 vs 

control and NG-EV) (Fig. 4b). Therefore we hypothesize that EV (especially those in diabetic-like conditions) 

are able to enhance the retinal blood-barrier permeability. 

5. EV enhance in vitro formation of vessel-like structures by HRP/EC co-cultures 

Addition of EV to HRP/EC co-cultures on Matrigel promoted the formation of vessel-like structures. In control 

wells, after 48 hrs in serum-free medium, EC and HRP grown separately were simply sub-confluent and no 

vessel-like structures were present. On the contrary, in wells where EC and HRP had been seeded together, 

vessel-like structures had formed. EV addition to EC/HRP co-cultures enhanced the number of newly-formed 

structures in all cases, in particular with EV obtained in hyperglycaemic conditions (+34.6% vs control 

without EV, p<0.05), while hypoxia together with HG had a synergist effect (+54.3%, p<0.05 vs control and 

HG alone) (Fig. 5).  

6. EV action on HRP is mediated by MMP-2 

EV from MSC in all experimental conditions contained the active form of MMP-2 (62 kDa) (Fig. 6a), which on 

the contrary was scarcely expressed by EC-derived EV (Fig. 6b). In addition, after 48 hr EV stimulation, the 

expression of active MMP-2 in HRP supernatants was significantly increased in comparison with untreated 

controls (NG-EV: +51.1%, p<0.05; HG-EV:+48.0, p<0.005; NG hypo-EV: +75.8%, p<0.05; HG hypo-EV: 

+37.9%, p<0.05) (Fig. 6c). Consistently with the above results (Fig. 6b), supernatants of HRP treated with 

EC-derived EV showed very low MMP-2 expression (Fig. 6d). 

To check the role of MMP-2, we pre-treated EV with batimastat, a broad-spectrum MMP inhibitor, whose 

effect on MMP-2 has been described [28], and subsequently exposed HRP to them. HRP number decreased 

after 2hr incubation with untreated EV in all conditions, consistently with previous observations described in 

Fig.2 a-b, while pre-incubation of EV with batimastat completely reverted their effect on pericyte detachment 

in all conditions, thus confirming MMP involvement in pericyte destabilization (Fig. 6e). 

Finally, to check that batimastat does not impede EV internalization into HRP, we exposed HRP to PKH26- 

stained EV obtained in all diabetic-like conditions, with or without pre-treatment with batimastat. We found no 

difference in EV internalization in all cases. Figure 6 f-g show sample images of HRP exposed to EV (f) and 

batimastat pre-treated EV (g). 
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Discussion 

Our results show that MSC-derived EV are able to enter the pericytes, causing their detachment from the 

substrate and migration, possibly contributing to increased blood-barrier permeability in vivo. Moreover, EV 

stimulate angiogenesis in vitro. These effects are mediated by MMP-2, expressed by both EV and EV-

stimulated pericytes.  

Previous studies had demonstrated that EV derived from MSC of different origin induce angiogenesis, 

contributing to tissue remodelling after injury [12, 29]. However, what is a beneficial effect in most tissues 

and in several diseases, may not be necessarily the same in others. A sort of angiogenesis paradox 

operates in diabetes: while inappropriate neovascularization may occur in the retina, leading to proliferative 

DR, in other districts marked inhibition of angiogenesis may lead to peripheral vascular and coronary heart 

disease [1]. 

In this work we demonstrate that EV are able to induce angiogenesis not only through direct stimulation of 

EC growth, but also indirectly, inducing pericyte detachment and migration. This may lead to a lack of control 

on EC proliferation and thus to angiogenesis. This is confirmed by the finding that addition of EV to 

EC/pericytes co-cultures in Matrigel increases the number of newly-formed vessels. 

Loss of pericytes, together with thickening of the basement membrane, is considered hallmarks of the early 

phases in the pathogenesis of DR, with major consequences on vessel remodelling [2, 4, 30]. Pericytes 

regulate capillary tone and pressure and play a major role in EC proliferation [31]: when their control fails, 

endothelium enters an angiogenic process, which may lead to proliferative DR [30]. Systemic and local 

hypertension, hyperglycaemia, advanced glycation end-product (AGE) formation and hypoxia can induce 

angiogenesis and retinal neovascularisation. Another hallmark of DR is increased vascular permeability, also 

linked to early loss of pericytes [29]. In this paper, we show increased filtration through EC/pericytes bi-layers 

exposed to EV. 

Consistently with the hypothesized role of EV in the pathogenesis of DR, the above described effects of 

MSC-derived EV exposure on pericytes and EC/pericytes co-cultures are exacerbated if MSC are previously 

cultured in conditions (high glucose and/or hypoxia) that mimic the diabetic microvascular milieu. 

It is generally acknowledged that hypoxia, a cause of proliferative DR [30], is also a mediator of tumour 

development and aggressiveness [32], through the induction of growth factors, proteases and cytokines that 

leads to angiogenesis [33]. Recent data show that EV derived from glioblastoma cells cultured in hypoxic 

conditions induce angiogenesis ex vivo and in vitro through phenotypic EC modulation, and EC treated with 

glioblastoma cell-derived EV in hypoxia stimulate pericyte migration [32]. A role for hypoxia and 

inflammation, but not for high glucose, has been claimed for the altered protein and RNA content of EC-

released EV in stress conditions [34]. Pre-treatment of cultured mesangial cells with high glucose has been 

shown to increase miR-145 content in mesangial cells-derived EV [35]. 

However, a link between hyperglycaemic-like conditions and increased angiogenic potential of EV had not 

been hypothesized so far. In our experimental setting, we show that pericyte detachment from the substrate 

and permeability through EC/pericyte bi-layers is increased to a greater extent when EV are obtained from 
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MSC pre-cultured in high glucose and/or hypoxia conditions, while vessel formation in vitro seems to be 

increased by hyperglycaemic-like conditions, more than hypoxia.  

Pericytes detached from their substrate following EV stimulation maintain their viability, as they were able to 

re-attach to new culture substrate and did not undergo apoptosis. Since pericytes are necessary for the 

stabilization of newly-formed vessels during angiogenesis [36], we hypothesize that pericytes detached from 

old vessels following EV stimulation might be able to migrate to other districts, possibly to stabilize new 

vessels, consistently with previous observations [37].  

We also demonstrate that EV-induced pericyte detachment is specific to EV derived from MSC, as EV 

extracted from EC supernatants not only showed no effect, but seemed to increase pericyte number. This is 

confirmed by our finding of a lower content of MMP-2 in EC-EV in comparison with MSC-derived ones, as 

well as in supernatants of HRP exposed to them, and it is consistent with the fact that in vivo, especially in 

the retina, pericytes and EC live in tight contact and exert control on each other proliferation [31]. 

MMP are a class of enzymes which play a crucial role in angiogenesis: they proteolytically cleave several 

ECM components, determining release of pericytes and loosening of EC/ECM bounds, thus facilitating EC 

colonization [38]. MMP expression is usually low in physiological conditions, but is strongly up-regulated 

when ECM remodelling is required, such as in tumour invasion [39]. Hyperglycaemia-induced upregulation of 

MMP-2 has been demonstrated in several cell types [20-22], including pericytes [23]. Consistently with 

previous data [12], EV extracted from MSC in our lab strongly express MMP-2, while those extracted from 

EC scarcely do. Moreover, exposure of pericytes to MSC-derived, but not EC-derived, EV increase MMP-2 

expression, and this may explain their detachment from the substrate, when exposed to EV stimulation. The 

key-role of MMP-2 in our findings is confirmed by the fact that its inhibition by pre-incubating EV in 

physiological and pathological conditions with the MMP-inhibitor batimastat completely reverted EV effect on 

pericyte detachment.  

In conclusion, we confirm the contribution of MSC-derived EV to angiogenesis, showing that they may not 

only constitute a direct stimulus to EC proliferation, but also induce pericyte detachment, leaving EC free to 

proliferate. In addition, we demonstrate, for the first time in our knowledge, a possible link between 

extracellular vesicles and the early stages of DR. We can therefore hypothesize that diabetic-like conditions 

may influence vessel stabilization during angiogenesis through EV paracrine signalling. However, studies are 

needed to further investigate the molecular mechanisms involved in these new findings. 
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Fig. 1 EV internalize into HRP a) control: anti-α-smooth muscle actin and DAPI-stained HRP (green and 

blue, respectively) without EV; b) HRP incubated for 2 and c) 4 hrs with PKH26-stained EV (red) 

 

Fig. 2 MSC-derived EV stimulate HRP detachment and migration a) time-course response of HRP to EV 

stimulation: number of HRP still attached to the well, percentages of control (HRP cultures without EV); b) 

HRP number after 2 hr EV incubation, percentages of control, *=p<0.05 vs control, $ = p<0.05 vs cultures 

treated with EV obtained in physiological conditions (NG-EV); c) HRP migration following EV stimulation, 

time-course, µm/hr; d) HRP migration after 1 hr EV incubation, *=p<0.05 vs control; e) HRP number after 2 

and 24 hr incubation with EV derived from bone-marrow MSC (light grey bar), adipose MSC (dark grey), and 

EC (black), in comparison with untreated control (white). * p<0.05 vs control (negative difference), $ p<0.05 

vs control (positive difference) 
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Fig. 3 Viability of detached HRP after EV stimulation (TUNEL assay) a) positive control (HRP treated with 

DNase); b) negative control (untreated HRP culture); c) HRP detached from cultures following EV stimulation 

and re-seeded in new wells 

 

 

 

Fig. 4 EV increase blood-barrier permeability a) time-course permeability of EC/HRP co-cultures on 

transwell inserts, after EV stimulation; b) permeability after 6 hr exposure. *=p<0.05 vs control without EV, $ 

= p<0.05 vs cultures treated with NG-EV 
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Fig. 5 EV enhance in vitro formation of vessel-like structures by HRP/EC co-cultures a) quantitative 

analysis of newly-formed vessel-like structures after 48 hr EV incubation, percentages of untreated control. * 

p<0.05 vs control, $ p<0.05 vs HG-EV. b-h) vessel-like structure formation by EC/HRP co-cultures: b) HRP 

alone; c) EC alone; d) untreated HRP/EC co-cultures (ctrl no EV); e) NG-EV; f) HG-EV, g) NG hypo-EV; h) 

HG hypo-EV 
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Fig. 6 EV action on HRP is mediated by MMP-2 a) representative zymography of EV showing active MMP-

2 (62 kDA) expression; b) comparison of MMP-2 content between MSC- and EC-derived EV; c) quantitative 

analysis of band densities after zymography of HRP supernatants following EV stimulation and image of one 

representative gel; d) comparative zymography of HRP supernatants following stimulation with MSC- and 

EC-derived EV; e) HRP number after exposure to NG-EV, HG-EV, NG hypo-EV, HG hypo-EV with (grey 

bars) or without (white bars) pre-incubation with the MMP inhibitor batimastat, percentages of untreated 

control * = p<0.05 vs ctrl noEV, $ = p<0.05 vs correspondent EV without batimastat; f-g) batimastat does not 

impede EV internalization into pericytes: HRP incubated for 2 hrs with EV (f) and batimastat pre-treated EV 

(g) 


