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Abstract 

STAT3, a pleiotropic transcription factor acting downstream of cytokines and growth factors, is 

known to enhance proliferation, migration, invasion and aerobic glycolysis in tumors upon aberrant 

activation. In the murine epidermis, STAT3 is necessary for experimentally induced carcinogenesis, 

which is enhanced by the overexpression of the constitutively active STAT3C mutant that also 

induces robust, psoriasis-like epidermal hyperplasia. We show that STAT3C expression at 

physiological levels in knock-in mice leads to mild epidermal hyperplasia and attenuated expression 

of terminal differentiation markers. This delayed differentiation is confirmed in isolated primary 

epidermal keratinocytes in vitro, correlating with enhanced proliferative and clonogenic potential, 

attenuated senescence and, strikingly, spontaneous immortalization at high frequency. These results 

suggest that moderate levels of continuous STAT3 activation, which more closely resemble those 

triggered by chronic inflammation or persistent growth factor stimulation, may favor epidermal 

carcinogenesis in part by promoting the escape of epidermal progenitor cells from differentiation 

and senescence checkpoints. 
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Introduction 

Signal Transducers and Activators of Transcription (STAT) factors become activated via tyrosine-

phosphorylation (Y-P) and concentrate into the nucleus to regulate the expression of target genes 

(1). STAT3 can be activated by a wide variety of cytokines, growth factors and oncogenes (2), and 

plays pleiotropic roles in cell growth and survival including liver regeneration, B lymphocytes 

proliferation, terminal differentiation and growth arrest in monocytes, lysosome-mediated apoptosis 

during mammary gland involution, and maintenance of pluripotency in embryonic stem cells (3, 4). 

STAT3 is considered as an oncogene, being constitutively Y-P in many tumors that often become 

addicted to its activity (5-7), and required for cell transformation downstream of v-Src and other 

oncogenes that trigger its Y-P (8, 9). Additionally, overexpression of the constitutively active 

mutant STAT3C can transform immortalized fibroblasts and epithelial cells (6, 10, 11). In tumors, 

STAT3 can enhance cell survival and proliferation, promote immune escape, angiogenesis, invasion 

and metastasis, and modify energy metabolism (12, 13). Moreover, STAT3 is a key player in 

mediating inflammation-driven tumorigenesis, downstream of chronically high levels of the pro-

inflammatory cytokine IL-6 (14), and its activity has been implicated in the maintenance of both 

normal and cancer stem cells (SC) (13). 

The murine skin provides an excellent model to investigate epithelial SC biology and 

carcinogenesis (15-17). Conditional gene targeting in the epidermis and hair follicles has shown 

that STAT3 is required both for the initiation and promotion phases in DMBA-TPA skin 

tumorigenesis and for UVA-induced papilloma development (18, 19). Conversely, keratinocyte-

specific STAT3C overexpression (keratin 5-STAT3C TG mice) enhanced both DMBA-TPA and 

UVA-induced tumorigenesis and elicited the appearance of psoriatic lesions in aging mice (20-22).  

Moreover, in the aging mouse skin, gains in endogenous JAK/STAT3 signaling downstream of 

inflammatory cytokines is responsible for impaired functionality of hair follicle SCs (23). 

In an effort to model STAT3 activity in tumors, which is usually characterized by low-level, 

continuous activity rather than by overexpression, we have recently generated knock-in mice 
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expressing physiological levels of STAT3C and shown its in vivo oncogenic potential (24). 

STAT3C/C mice die between four and six weeks of age due to the development of immune-mediated 

myocarditis (25), and could therefore not be used for studies on adult mice. Making use of 

STAT3C/C mouse embryonal fibroblasts (MEFs), we could show that constitutively active STAT3 

enhances proliferation and promotes resistance to apoptosis and senescence, correlating with a 

switch towards aerobic glycolysis and with tumor transformation upon spontaneous 

immortalization, thus acting as a first hit in malignant transformation (26, 27). 

Here, we analyze the outcome of STAT3C expression in the skin and show that continuous aberrant 

STAT3 activity, which can be observed under chronic inflammatory conditions, alters the pool of 

clonogenic and proliferative precursors in the epidermis promoting, like in fibroblasts, pre-

oncogenic features.
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Materials and methods 

 

Mice and treatments 

STAT3C/C mice were generated as described (28) and maintained in the transgenic unit of the MBC 

with water and food ad libitum. Genetic screening was performed by PCR as previously described 

(28). Procedures were conducted in conformity with national and international laws and policies as 

approved by the Faculty Ethical Committee. 

Cell culture, treatment and viral transduction 

Primary mKCs were isolated from 3-day-old mice and cultured in low calcium medium (50 µM 

CaCl2) as described (29, 30). 12-O-tetradecanoylphorbol-13-acetate (TPA) in DMSO was used at 

100ng/ml (31, 32). Cells were passaged at subconfluency for serial propagation and immortalization 

analysis. For morphological analyses of cultured cells Axiovert 200M Zeiss microscope was used. 

Colony forming efficiency assay (CFE) were performed as described (33) with minor 

modifications. Briefly, 104 cells were plated on a feeder layer of lethally irradiated 3T3-J2 and after 

12 days colonies were fixed and stained with Rhodamine-B, and scored under a dissecting 

microscope. Total colonies were calculated as a percentage of total plated cells (number of colonies 

x 100/number of cells plated).  

pLKO.1 lentiviral vectors (Open Biosystems, Huntsville AL, USA) contained the following 

sequences:  

scr, CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAACCTTAGG)  

shST3-H3: CGACTTTGATTTCAACTACAACTCGAGTTGTAGTTGAAATCAAAGTCG   

shST3-H4: CACCATTCATTGATGCAGTTTCTCGAGAAACTGCATCAATGAATGGTG; 

lentiviral particles produced by co-transfecting 293T cells with packaging plasmids pCMV-dR8.74 

and pMD2.G, harvested and concentrated as described (33), were used to transduce immortalized 

mKCs for 12 hours, followed by puromycin selection for 48 hours. 

IF, immunohistochemistry and image analysis 
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Skin sections obtained from 3-day-old mice were embedded in OCT (Tissue Tek; American Master 

Tek Scientific) and fixed in methanol-acetone (1:1) at -20 °C. Cryosections were then processed for 

IF and IHC staining as described (29) with the following primary antibodies: Loricrin, Filaggrin and 

Keratin 14 (Covance); p-STAT3 (Cell Signaling and Technology); PCNA (Santa Cruz). For IF 

samples were counterstained with DAPI and mounted in Vectashield aqueous medium (Vector 

Labs, Burlingame, CA), then analyzed using a Leica TSCII SP5 confocal microscope (multi-track 

analysis was used for image acquisition) or a Zeiss Axiobserver microscope with Apotome module. 

H&E and IHC staining samples were analyzed using Olympus BH2 microscope. For the 

quantitative analysis of H&E, IF and IHC performed on skin sections, the ImageJ software (NIH) 

was used. 

Real-time PCR 

Total RNA was extracted from primary mKCs and reverse-transcribed as previously described (34).  

Taqman PCR reactions were performed using the Universal Probe Library system (Roche Italia, 

Monza, Italy) as previously described (34), on an AB 7300 Real Time PCR System (Applied 

Biosystem, Foster city, CA, USA). The 18S rRNA predeveloped TaqMan assay (Applied 

Biosystems, Foster city, CA, USA) was used as an internal control. Specific primers and UPL 

probes used are listed in Supplementary informations.  

Western blot analysis 

Total protein extracts were obtained in 2%SDS, 50 mM Tris/HCl (pH 7.4) lysis buffer 

supplemented with 1mM PMSF, 1 mM Na3VO4, 10 mM NaF and 40mg/ml protease inhibitor 

cocktail (Complete, Roche). Proteins were boiled at 95°C for 5min, cleared by centrifugation 

(12000 g for 10 min at 4◦C) and the concentration was measured using the Bradford assay (Bio-

Rad). Samples were fractionated on SDS/PAGE and transferred on to PVDF membrane (Millipore) 

for immunoblotting with the following antibodies: total STAT3 (K15, Santa Cruz Biotechnology), 

actin (Santa Cruz Biotechnology) and horseradish peroxidase-conjugated secondary antibodies 
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(Sigma-Aldrich). Immunoblots were acquired with the molecular imager ChemiDoc XRS, and 

densitometric analysis was performed with Quantity One software (Bio-Rad). 

Statistical analysis 

Data obtained from analysis of cellular growth, CFE assay, IF, IHC and RT-PCR were plotted as 

mean ± SEM. Results were assessed for statistical significance by a standard two-tailed Student’s t 

test as indicated. p values *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. 
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Results 

 

STAT3C/C newborn mice display epidermal hyperplasia and differentiation abnormalities. 

Histological analysis of STAT3C/C newborn mice revealed significantly increased epidermal 

thickness, suggestive of a mild tissue hyperplasia (Fig. 1a). Consistently, STAT3C/C epidermis 

displayed ectopic expression of keratin14 in suprabasal cell layers, with a concomitant decreased 

expression of the granular layer markers filaggrin (FLG) and loricrin (LOR) (15) (Fig. 1b). STAT3 

Y-P in the epidermis was increased, confirming enhanced activation, and correlated with higher 

expression of the proliferative marker PCNA (Fig. 1c). A similar unbalance between proliferation 

and differentiation markers was confirmed by quantitative RT-PCR analysis of freshly isolated 

mouse keratinocytes (mKCs) of the two genotypes (Fig. 1d). Thus, constitutively active STAT3 

appears not only to enhance the proliferative rate of epidermal mKCs, but also to interfere with their 

differentiation program. 

 

Delayed TPA-induced differentiation of primary STAT3C/C mKCs. 

To test this idea, we evaluated the in vitro differentiation ability of STAT3C/C mKCs in response to 

the in vitro differentiating agent TPA (31, 32, 36, 37). Freshly isolated KCs from either STAT3C/C 

or STAT3WT/WT newborn mice were seeded on collagen-coated dishes for 4 hours before TPA 

addition, followed by 7 or 24 hours incubation (Fig. 2a). TPA treatment triggered differentiation of 

STAT3WT/WT mKCs already by 7 hours, as indicated by the sharp reduction in the mRNAs levels 

for the KRT14 and p63 proliferative markers, paralleled by a strong increase in the levels of the 

mRNAs for the differentiation markers FLG and LOR. In contrast, downregulation of KRT14 and 

p63 mRNAs was partial at this time point in STAT3C/C mKCs and, even more strikingly, FLG and 

LOR mRNAs were unaffected. By 24 hours of treatment however, the levels of these markers 

became indistinguishable between the two genotypes, indicating that TPA-induced differentiation is 

only delayed in STAT3C/C mKCs.  Taken together, these results are in agreement with the in vivo 
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observations, and suggest that STAT3C/C mKCs possess an intrinsic defect in the response to 

differentiating stimuli. 

 

Increased proliferative potential and delayed senescence in primary STAT3C/C mKCs.  

To directly assess their proliferative potential, primary mKCs were isolated from 3-days old 

STAT3WT/WT and STAT3C/C mice and serially passaged in low calcium medium (30, 31). Under 

these conditions, mKCs are unable to withstand prolonged subcultivation, owing to the depletion of 

proliferating cells by senescence and/or differentiation (38). At early passages, both morphology 

and proliferation rates of STAT3C/C mKCs were indistinguishable from those of their wild-type 

counterparts (Fig. 2b, passage (p) 1 and data not shown). As expected, proliferation of STAT3WT/WT 

mKCs progressively dropped in later passages, correlating with the appearance of morphological 

features of differentiation and/or senescence, reaching complete proliferative arrest around p 9-10 

(Fig. 2b, p7 and p9). In contrast, STAT3C/C cells maintained higher proliferation rates, displaying a 

typical proliferating morphology with small, tightly packed cells until at least p 7 (compare images 

at p7 of the two genotypes in Fig. 2b). Accordingly, quantification of senescence-associated β-

galactosidase (SA β-gal) activity showed a sharp increase in the numbers of β-gal-positive cells 

starting at passage 4 in STAT3WT/WT mKCs, while this increase was substantially delayed in 

STAT3C/C mKCs (Fig. 2c).  

 

Primary STAT3C/C mKCs display enhanced clonogenic potential. 

We thus decided to assess the clonogenic potential of freshly isolated mKCs by means of a low 

density colony forming efficiency (CFE) assay. In this setting, the number of total colonies 

indicates the overall ability of cells to initiate a culture, whereas colony size and morphology 

reflects the intrinsic proliferative potential of individual colony-initiating cells (39, 40). Cells were 

isolated from newborn STAT3WT/WT and STAT3C/C mice, seeded on a layer of mitotically-

inactivated feeder cells and cultivated for 12 days (Fig. 3a, c). In order to assess colony size and cell 
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morphology, colonies were classified into three groups: small colonies (<2 mm); intermediate 

colonies (2-4 mm); and large colonies (> 4 mm). Small colonies are typically formed of large cells 

with senescent morphology, while intermediate and large colonies include areas of both senescent 

and proliferative cells (Fig. 3b). Although the total number of colonies did not differ between 

primary STAT3C/C and STAT3WT/WT mKCs (Fig. 3d, 1st generation), the two genotypes originated 

colonies of strikingly different size (Fig. 3a). Whereas in STAT3WT/WT mKCs the majority of 

colonies fell in the smallest category, STAT3C/C cells generated significantly higher numbers of 

large colonies with “holoclone-like” morphology, and lower numbers of small-intermediate 

colonies (Fig. 3a, c). Both intermediate and large STAT3C/C colonies presented large areas of small, 

tightly packed cells, typical of actively-proliferating mKCs (Fig. 3b). In contrast, STAT3WT/WT 

intermediate/large colonies were mainly composed of flattened cells with senescent/differentiated 

appearance. Moreover, despite similar numbers of total colonies in 1st generation assays, when cells 

where tested for their secondary CFE after one week in culture under standard conditions, 

STAT3C/C mKCs exhibited significantly higher numbers of total colonies (Fig. 3d, 2nd generation), 

in addition to maintaining in average a larger colony size (data not shown). Thus, STAT3C/C mKCs 

contain an enlarged pool of clonogenic cells endowed with high proliferative potential, reminiscent 

of cultured keratinocyte SCs (holoclones).  

 

STAT3C/C primary mKCs become spontaneously immortalized at high frequency. 

Spontaneous immortalization of mKCs is a rare event, unless cells are propagated under specific 

conditions (38, 41). Accordingly, immortalization was never observed in wild type mKCs when 

serially passaged in low calcium medium (0 out of 8 individual cultures). In contrast, STAT3C/C 

cells became immortalized in 50% of the cases (4 out of 8 individual cultures). Immortalization was 

accompanied by progressively higher numbers of small, tightly-packed cells with undifferentiated 

morphology and by a remarkable increase in cell clonogenicity (Fig. 4a, b). Immortalized cells 

expressed high KRT14 and p63 mRNA levels, while FLG and LOR mRNAs were almost 
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undetectable as compared to STAT3C/C primary mKCs (Fig. 4c), indicating a differentiation 

roadblock. Consistently, in immortalized STAT3C/C lines, no differentiation morphological changes 

occurred in response to TPA (Fig. 4d). Of note, both wild type and STAT3C/C KCs similarly 

acquired the immortal phenotype when propagated under specific inducing conditions (41) (data not 

shown). These results suggest that constitutive STAT3 activation predisposes mKCs to escape 

replicative senescence, overcoming a block normally forbidding immortalization under standard 

culture conditions. Immortalized STAT3C/C mKCs did not exhibit features of transformed cells, as 

judged by failure to form colonies in soft agar (not shown).   

To determine whether STAT3 activity was required to maintain the immortalized cell phenotype, 

shRNA-mediated STAT3 silencing was performed in the STAT3C/C line 1. Supplementary Fig. 1a 

shows efficient lentiviral-mediated STAT3 downregulation. STAT3-silenced immortalized cells 

maintained a tightly packed morphology (Suppl. Fig. 1b), and their clonogenic potential was 

unaffected (Fig. 4e), suggesting that STAT3 activity favors the immortalization process to become 

then dispensable.  However, STAT3 silencing decreased the expression of both KRT14 and p63 

mRNAs, while that of LOR was increased (Fig. 4f), suggesting that STAT3 participates to the 

regulation of these genes even in immortalized cells. 

 

Discussion 

In this study, we show that the expression of physiological levels of constitutively active STAT3 in 

Stat3C-knockin mouse model (24) alters epidermal homeostasis. Indeed, we observed mild 

epidermal hyperplasia coupled to impaired keratinocyte terminal differentiation in the suprabasal 

cell layers of the newborn skin in vivo. This is in partial agreement with the strong tissue 

hyperplasia, reminiscent of human psoriatic lesions, observed in a model of ectopic STAT3C 

overexpression via a Keratin-5 promoter (22). The less dramatic phenotype observed in our knockin 

mice is likely due to the lower STAT3C expression levels, which potentially allow the observation 

of more subtle effects. Indeed, moderate levels of continuous STAT3 activation with minor 
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increases in expression levels more closely resemble those observed during chronic inflammation or 

persistent growth factor stimulation. 

Keratinocyte differentiation was reduced, but not abrogated in our STAT3C/C mice in vivo, 

suggesting that Stat3C expression may rather affect the choices of epidermal progenitor cells 

between proliferation and differentiation. STAT3C/C knockin mice die within few weeks from birth 

(25), thus precluding the analysis of long-term effects of Stat3C expression on epidermal 

homeostasis or hair follicle cycling in vivo.  However, by using primary epidermal cells isolated 

from newborn STAT3C/C mice, we observed a remarkable correspondence with the in vivo 

phenotype, suggesting epidermal cell-autonomous defects. For example, isolated STAT3C/C display 

altered responses to TPA, a potent inducer of granular layer markers expression and of keratinocyte 

terminal differentiation in vitro (31, 32, 36, 37), with a significant delay in the induction of the LOR 

and FLG mRNAs, encoding for markers of terminal differentiation, and a symmetrically retarded 

downregulation of mRNAs encoding for proliferative markers such as p63 and KRT14. Therefore, a 

persistently elevated STAT3 signaling similar to that observed under chronic inflammatory 

conditions appears to make keratinocytes intrinsically more resistant to differentiating stimuli by 

enforcing their stay in the proliferative compartment. This could be due in part to STAT3-

dependent activation of proliferative genes such as Cyclin D1 and cMyc in epidermal cells (data not 

shown), which may oppose the exit of keratinocytes from the cell cycle to engage terminal 

differentiation. Increased proliferation does not appear however to represent an intrinsic cell-

autonomous feature of STAT3C/C mKCs, since their proliferation rates in culture are comparable to 

those of the wild type controls. The effects of STAT3C on cell proliferation may thus depend on 

specific tissue environmental contexts, which are likely not entirely recapitulated in vitro. On the 

other hand, STAT3 signaling may enforce keratinocytes within the undifferentiated stem/progenitor 

compartment by acting on cell fate choices independently of quantitative effects on mitotic rates, 

similar to what reported in embryonic SCs, where STAT3 has a master role in the maintenance of 

the “naïve” pluripotent state downstream of LIF (42, 43). This hypothesis is supported by the 
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finding in CFE assays of a selective increase in the number of cells originating large, 

undifferentiated colonies with holoclone-like morphology in STAT3C/C mKCs. Moreover, 

STAT3C/C cells show a significant increase in their long-term proliferative potential upon sustained 

subcultivation, feature typical of keratinocyte cultures enriched for stem/progenitor cells (44, 45). 

Finally, STAT3C/C mKCs show a delay in the upregulation of SA β−Gal activity, and fail to acquire 

a senescent morphology even upon prolonged subcultivation. Protection from senescence and 

resistance to differentiation play key roles in SC maintenance in the majority of cellular contexts 

(46, 47). Our data suggest that mild gains in STAT3 activity, by opposing differentiation and/or 

senescence programs, may favor maintenance of self-renewal ability in cultured epidermal 

keratinocyte progenitors.  

Resistance to both differentiation and senescence may also underlie the remarkable ability of 

STAT3C/C mKCs to become spontaneously immortalized under culture conditions that normally 

promote the exhaustion of proliferative potential in murine keratinocytes (38). Interestingly, 

immortalized STAT3C/C mKCs do not display features of malignant transformation, in contrast with 

what observed in MEFs, where the expression of STAT3C serves as a first oncogenic hit (27). This 

difference underscores the tissue and context-specificity of tumor transformation and may partly 

explain why, in contrast with other chronic inflammatory conditions characterized by high levels of 

IL-6 and STAT3 activity (14), psoriasis does not appear per se to significantly predispose to 

developing skin cancer  (48). 

Our data indicating a role of STAT3 in protection from cell senescence are in agreement with what 

observed in both STAT3C/C MEF cells and STAT3-addicted tumor cells (26), and consistent with 

previous work indicating that deletion of Stat3 in the epidermis leads to skin alterations that are 

reminiscent of anticipated aging (49), which could be attributed in part to a reduced ability of aging 

SCs to repair tissue damage.  Consistently, specific deletion of STAT3 in KCs of the hair follicle 

bulge leads to significant reduction of DMBA-TPA-induced tumors, correlating with a decrease in 
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CD34 and α6-integrin double-positive cells in the bulge (50). Interestingly however, STAT3C 

overexpression under the K5 promoter was also shown to decrease the number of CD34+, α6+  cells, 

in line with recent work indicating that increased JAK/STAT3 signaling generated by chronic 

inflammatory conditions contributes to the loss of functional hair follicle SCs occurring in the aging 

murine skin (23). Thus, like in many other systems, balanced STAT3 activity is required for tissue 

homeostasis, and depending on the specific context, both gain and loss of activity may contribute to 

skin aging and SC dysfunctions.  
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Figure legends 

Figure 1. STAT3C/C mice display epidermal hyperplasia and reduced differentiation. (a-c) 

Representative images of skin sections obtained from 3 day-old STAT3C/C and STAT3WT/WT mice. 

Epi: epidermis; Der: dermis. Grey bars, STAT3WT/WT mice; black bars, STAT3C/C mice. (a) H&E 

staining of paraffin sections (magnification 10X). Bars represent mean ± SEM of the epidermal 

thickness (n=10 fields/genotype). (b) Confocal analysis of cryo-sections subjected to 

immunofluorescence with the indicated antibodies (red), counterstained with DAPI (blue). Dotted 

lines indicate the border between epidermis and dermis. Bar: 50µm. Bars represent mean ± SEM 

thickness of the epidermal layer stained by the corresponding antibody determined as in (a). (c) IHC 

analysis with anti-p-STAT3 and anti-PCNA antibodies (magnification 20X). Bars represent the 

mean positive area per epidermal area  ±  SEM (n= 5 fields/genotype), measured using the 

Metamorph Image Software (Zeiss). (d) Taqman RT-PCR on total RNA from primary STAT3C/C 

and STAT3WT/WT mKCs, represented as mean  ±  SEM of the values normalized to the 18SrRNA 

internal control. n=3 per genotype. KRT14, keratin 14; FLG, filaggrin; LOR, loricrine; INV, 

involucrin. 

 

Figure 2. Cultured primary STAT3C/C mKCs display enhanced lifespan and delayed 

senescence. (a) Freshly isolated mKCs from STAT3C/C (black bars) and STAT3WT/WT (grey bars) 

mice were seeded for 4 hours, then treated with DMSO (-) or TPA for 7 or 24 hours. Total RNA 

was analyzed by Taqman RT-PCR for the indicated markers of epidermal proliferation (KRT14, 

p63) and differentiation (LOR, FLG). Data are mean ±  SEM of 3 samples/genotype. (b-c) mKCs of 

the indicated genotypes were serially cultured for the indicated passages (p) and analyzed (b) by 

phase contrast imaging. All STAT3WT/WT cells were dead by p9 (+). Magnification 10X. (c) 

Percentage of SA β-gal+ STAT3WT/WT and STAT3C/C cells at the indicated passages, calculated on  

at least 300 cells per genotype (n=3) from 2 independent experiments. 
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Figure 3. STAT3C/C mKCs display increased colony forming efficiency. (a-d) CFE assay. 4*103 

primary STAT3C/C and STAT3WT/WT mKCs were seeded under clonogenic conditions. After 12 

days colonies were fixed and stained with Rodamine-B (a). (b) Phase contrast images of 

representative colonies (Magnification 10X). (c) Bars represent the mean percentage of colonies of 

the indicated sizes ± SEM of at least 100 colonies/genotype, from two independent experiments 

performed in duplicate (n=4 per genotype). (d) The total colony numbers of CFE assay were 

determined on 1st and 2nd generation (grey bars, STAT3WT/WT; black bars, STAT3C/C), and reported 

to the unitary value of 1st generation STAT3WT/WT cells.  

 

Figure 4. Spontaneous immortalization of STAT3C/C mKCs. (a,b) Representative images of 

STAT3C/C KCs at passage 1 (P, left) and after spontaneous immortalization (I, right). (a) Phase 

contrast images of cultuterd cells; (b) Rhodamine-B stained CFE assay. (c) Total RNA from P 

(black bars) or I (striped bars) STAT3C/C mKCs was analyzed by Taqman RT-PCR for the indicated 

markers. Data are mean  ±  SEM of 3 samples per condition. (d-f) Immortalized STAT3C/C mKCs 

were: (d) exposed to DMSO (-) or TPA for 24h (phase contrast images are shown);  transduced 

with lentiviral vectors expressing scrambled (scr) or STAT3-directed shRNA (Stat3 H3) and (e)  

analyzed for colony forming efficiency (Rhodamine-B staining) or (f) for the expression of the 

indicated markers by Taqman RT-PCR.  Data are mean  ±  SEM of the values from at least 3 

independent experiments, normalized to the 18SrRNA internal control and reported to those 

obtained with the scr samples.  
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Supplementary informations 

 

 

 

 

 

 

 

 

 

 

Figure S1. STAT3 silencing in immortalized STAT3C/C mKCs. Immortalized 

STAT3C/C mKCs at p13 were transduced with lentiviral vectors expressing two 

independent shRNA constructs targeted to STAT3 (shST3-H3, shST3-H4) and a 

scrambled control shRNA (scr). (a) The histograms represent Taqman RT-PCR 

analysis of STAT3 mRNA levels in the transduced cells (mean values ± SEM) of 3 

independent experiments as normalized to the 18S internal control and reported to 

those obtained with the scr controls. The right panel shows Western blot analysis with 

antibodies against STAT3 and actin as a loading control. The shST3-H3 induces a 

nearly 90% STAT3 downregulation and was used for the experiments shown in 

Figure 4 (e-f). (b) Phase contrast images of transduced cells grown at subconfluency.  
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Specific primers and UPL probes: 

KRT14, Fw–atcgaggacctgaagagcaa, Rv–tcgatctgcaggaggacatt, UPL #83; 

FLG, Fw–gcctctgcaggtggactg, Rv–gaatggactggctgtcactg, UPL #20; 

LOR, Fw–ggttgcaacggagacaaca, Rv–catgagaaagttaagcccatcg, UPL #11; 

INV, Fw–ggatctgcctgatcaaaagtg, Rv–cagctgctgcttttgtgg, UPL#71; 

p63, Fw–ggaaaacaatgcccagactc, Rv–aatctgctggtccatgctgt, UPL #45; 

SOCS3, Fw–atttcgcttcgggactagc, Rv–aacttgctgtgggtgaccat, UPL #83; 

STAT3, Fw–tggcaccttggattgagag, Rv–caacgtggcatgtgactctt, UPL #71; 
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