
14 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Global Progress for Dynamically Interleaved Multiparty Sessions

Published version:

DOI:10.1017/S0960129514000188

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/154508 since 2019-10-28T12:17:45Z



Under consideration for publication in Math. Struct. in Comp. Science

Global Progress for Dynamically Interleaved
Multiparty Sessions
Mario Coppo1, Mariangiola Dezani-Ciancaglini1, Nobuko Yoshida2, Luca Padovani1

1Dipartimento di Informatica, Università di Torino
2Department of Computing, Imperial College London

Received 26 August 2014

A multiparty session forms a unit of structured communication among many participants which
follow communication sequences specified as a global type. When a process is engaged in two or
more sessions simultaneously, different sessions can be interleaved and can interfere at runtime.
Previous work on multiparty session types has ignored session interleaving, providing a limited
progress property ensured only within a single session, by assuming non-interference among
different sessions and by forbidding delegation. This paper develops, besides a more traditional,
compositional communication type system, a novel static interaction type system for global
progress in dynamically interleaved and interfered multiparty sessions. The interaction type system
infers causalities of channels making sure that processes do not get stuck at intermediate stages of
sessions also in presence of delegation.

1. Introduction

Some important standardisation bodies for web-based business and finance protocols (Web Ser-
vices Choreography Working Group, 2002; UNIFI, 2002; Savara, 2010) have recently investi-
gated design and implementation frameworks for specifying message exchange rules and validat-
ing business logic based on a notion of multiparty sessions, where a global type plays as a “shared
agreement” between teams of programmers developing possibly large and complex distributed
protocols or software systems. Multiparty sessions, introduced in (Honda et al., 2008), provide
a framework to represent messages-exchanges among concurrently running multiple peers in a
distributed environment, generalising the existing dyadic sessions (Honda et al., 1998), where
only two participants were assumed to interact.

A multiparty session is meant to describe the interaction of some participants on a specific
subject of conversation (e.g., accessing an online e-commerce service) so that a specific goal can
be achieved (e.g., buying a book). Nonetheless, it is often the case that the achievement of the
goal requires distinct yet related interactions to be carried out (e.g., the communication with the
e-commerce service, on one side, and the agreement between the buyers to establish the con-
tribution of each, on the other side). We need then consider systems in which processes may
be simultaneously engaged in different sessions, independently characterised by corresponding
global types. When this happens, actions pertaining different sessions may interleave leading
to interferences between the sessions: even if each process respects the global types of the ses-



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 2

sions in which it participates, the system as a whole may be unable to make progress because of
mutual dependencies between different sessions. Moreover, the mechanism of delegation (first
introduced in (Honda et al., 1998)) may dynamically change the communication topology be-
tween the interacting processes, making the analysis of such systems even more complicated.

Previous works on (multiparty) sessions have ignored interferences among different sessions,
guaranteeing a limited progress property only within a single session. More precisely, although
previous type systems assure that all the participants of a session respect its global type, by
checking the types of exchanged messages and the order of communications, they cannot guar-
antee the global progress property. By “global progress property” we intend, roughly, that each
participant in a session, once the session has started, will always be allowed to perform its ac-
tions (regardless of whether the session will eventually terminate or not) without getting stuck in
a local deadlock generated by the interaction of two (or more) different sessions. This notion of
progress is different from other similar notions presented in the session type literature, and needs
a careful definition and a non-trivial treatment.

To illustrate the subtleties and difficulties that arise in analysing the global progress property,
let us discuss here some simple examples. For the sake of discussion, we consider only dyadic
sessions written in a simplified syntax, but all examples can be easily generalised to sessions with
many participants (this would require the complete syntax which is introduced later). Consider
the processes

p1 = a(y).y?(x).0 p2 = a(y).y!〈true〉.0
p3 = b(z).z?(x).0 p4 = b(z).z!〈2〉.0

where p1 and p2 initiate a session identified by the service name a while p3 and p4 initiate a
session identified by the service name b. In both sessions only a single message is exchanged:
the true value from p2 to p1 in the session identified by a and the number 2 from p4 to p3

in the session identified by b. The composition p1 | p2 | p3 | p4 describes a system in which
both sessions are opened. Because the two sessions are totally independent (they are carried out
by different processes), there is no interference and the sessions complete without problems.
Consider now the processes

p5 = a(y).b(z).y?(x).z!〈2〉.0 p6 = a(y).b(z).z?(x).y!〈true〉.0

which open the same two sessions. It is easy to see that the system p5 | p6 does not have progress
since, after the sessions are initiated, each process gets stuck waiting for a message that is sent
only after the other process has sent its own. Instead, if we take the system p5 | p7 where

p7 = a(y).b(z).y!〈true〉.z?(x).0

both sessions terminate successfully. Note that both p5 | p6 and p5 | p7 are well typed in the type
system of (Honda et al., 2008) as well as in the communication type system introduced in this
paper, but only the latter has progress.

The notion of progress we are seeking for is not simply deadlock-freedom. In fact, it shares
many analogies with the notion of lock-freedom in (Kobayashi, 2002). For example, consider a
process p in which two (or more) participants of a session are engaged in an endless but mean-
ingful conversation (like some components in a scheduler of an operating system). Even though
the process p is always able to reduce and so is the system p5 | p6 | p, we do not want to
consider p5 | p6 | p as having the global progress property because p5 and p6 are unable to per-



Global Progress for Dynamically Interleaved Multiparty Sessions 3

form their planned interaction. Notice that this process has progress according to the definition
given in (Bettini et al., 2008). At the same time, an isolated process (like p5) that is unable to
make progress only because some participants of the sessions in which it is involved are missing
should not be considered as lacking the global progress property a priori. For instance p5 can
start a successful session when composed in parallel first with p2 and then with p4. The assump-
tion that session participants can be added is natural in an open ended environment in which new
processes asking for interactions can join the system.

The main contributions of this article can be summarised as follows:

— We define a calculus of asynchronous, multiparty sessions (§3) as well as a communication
type system (§4) assuring that processes behave correctly with respect to the sessions in which
they are involved. With respect to (Honda et al., 2008), we replace private communication
channels within sessions with participant indexes. This choice leads to a simpler presentation
of both processes and types.

— We define a notion of global progress (§5) which assures that all participants in openable
sessions can perform all their communications, possibly with the help of suitable parallel
processes. This is stronger than requiring that a system can always reduce and is weaker than
requiring that all sessions can initiate.

— We develop a static interaction type system (§6) that assures global progress in dynamically
interleaved, asynchronous, multiparty sessions.

This article is a thoroughly revised version of (Bettini et al., 2008) including a stronger notion
of global progress, detailed definitions and full proofs. The new definition of progress, in par-
ticular, requires an original and non-trivial treatment. Before moving to the technical content as
outlined above, we devote §2 to illustrating both the calculus and the type languages by means
of an extended example involving the online e-commerce service that we hinted at earlier. §7
presents a detailed discussion of related work, while §8 concludes and discusses future work.
For the sake of readability, auxiliary technical material and the proofs of the results have been
postponed to the appendices.

2. The Three Buyer Protocol

In this section we present a simple but non-trivial example that illustrates the basic functionalities
and features of the process calculus that we work with. This example comes from a Web service
usecase in Web Service Choreography Description Language (WS-CDL) Primer 1.0 (Web Ser-
vices Choreography Working Group, 2002), capturing a collaboration pattern typical to many
business and distributed protocols (OOI, 2010; UNIFI, 2002; Scribble, 2008). The setting is that
of a system involving Alice, Bob, and Carol that cooperate in order to buy a book from a Seller.
The participants follow a protocol that is described informally below:

1 Alice sends a book title to Seller and Seller sends back a quote to Alice and Bob. Alice tells
Bob how much she can contribute.

2 If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts, then sends
his address to Seller and Seller answers with the delivery date.

3 If the price exceeds Bob’s budget, Bob asks Carol to collaborate by establishing a new ses-
sion. Bob sends Carol how much she has to contribute and delegates the remaining interac-
tions with Alice and Seller to her.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 4

4 If Carol’s contribution is within her budget, she accepts the quote, notifies Alice, Bob and
Seller, and continues the rest of the protocol with Seller and Alice as if she were Bob. Other-
wise, she notifies Alice, Bob and Seller to quit the protocol.

Figure 1 depicts an execution of the above protocol where Bob asks Carol to collaborate (by
delegating the remaining interactions with Alice and Seller) and the transaction terminates suc-
cessfully.

Multiparty session programming consists of two steps: specifying the intended communication
protocols using global types and implementing these protocols using processes. The specifica-
tions of the three-buyer protocol are given as two distinct global types: one is Ga among Alice,
Bob and Seller and the other is Gb between Bob and Carol. In Ga Alice plays role 2, Bob plays
role 1, and Seller plays role 3, while in Gb Bob plays role 2 and Carol plays role 1. We annotate
the global types with line numbers (i) so that we can easily refer to the actions in them.

Ga =

(1) 2 −→ 3 : 〈string〉.
(2) 3 −→ {1,2} : 〈int〉.
(3) 2 −→ 1 : 〈int〉.
(4) 1 −→ {2,3} : {ok : 1−→ 3 : 〈string〉.
(5) 3−→ 1 : 〈date〉.end,
(6) quit : end}

Gb =

(1) 2 −→ 1 : 〈int〉.
(2) 2 −→ 1 : 〈T〉.
(3) 1 −→ 2 : {ok : end,quit : end}

T =⊕〈{2,3},{ok : !〈3,string〉.?(3,date).end,quit : end}〉
Global types provide an overall description of the two conversations, directly abstracting the

scenario of the diagram. In Ga, line (1) denotes Alice sending a string value to Seller. Line (2)

says that Seller multicasts the same integer value to Alice and Bob and line (3) says that Alice
sends an integer to Bob. In lines (4–6) Bob sends either ok or quit to Seller and Alice. In the first
case Bob sends a string to Seller and receives a date from Seller, in the second case there are no
further communications.

Line (2) in Gb represents the delegation of a channel with the communication behaviour speci-
fied by the session type T from Bob to Carol (note that Seller and Alice in T concern the session
on a).

Table 1 shows an implementation of the three buyer protocol conforming to Ga and Gb for the
processes Seller, Alice, Bob, and Carol in the calculus that we will formally define in §3.1. The
service name a is used for initiating sessions corresponding to the global type Ga. Seller initiates a
three party session by means of the session request operation a [3](y), where the index 3 identifies
Seller. Since 3 is also the overall number of participants in this session, a occurs with an over-bar.
Alice and Bob get involved in the session by means of the session accept operations a[1](y) and
a[2](y) and the indexes 2 and 1 identify them as Alice and Bob, respectively. Once the session has



Global Progress for Dynamically Interleaved Multiparty Sessions 5

Alice Seller Bob Carol
2 [INIT] a 3 [INIT] a 1

"Title"

quote quote

quotediv 2

2 [INIT] b 1

quote− contrib−99

y

ok

okok

"Address"

date

Fig. 1. An execution of the three buyer protocol.

Seller = a [3](y).y?(2, title).y!〈{1,2},quote〉.y&(1,{ok : y?(1,address).y!〈1,date〉.0,quit : 0})

Alice = a[2](y).y!〈3,"Title"〉.y?(3,quote)).y!〈1,quotediv 2〉.y&(1,{ok : 0, quit : 0})

Bob = a[1](y).y?(3,quote).y?(2,contrib).if (quote− contrib < 100) then y⊕〈{2,3},ok〉.y!〈3,"Address"〉.y?(3,date).0
elseb [2](z).z!〈1,quote− contrib−99〉.z!〈〈1,y〉〉.z&(1,{ok : 0,quit : 0})

Carol = b[1](z).z?(2,x).z?((2, t)).if (x < 100) then z⊕〈2,ok〉.t⊕〈{2,3},ok〉.t!〈3,"Address"〉.t?(3,date).0
else z⊕〈2,quit〉.t⊕〈{2,3},quit〉.0

Table 1. Implementation of the three buyer protocol.

started, Seller, Alice and Bob communicate using their private channels y. Each channel y can be
interpreted as a session endpoint connecting a participant with all the others in the same session;
the receivers of the data sent on y are specified by giving the participant numbers. Line (1) of
Ga is implemented by the matching output and input actions y!〈3,"Title"〉. and y?(2, title).
Line (3) of Gb is implemented by the selection and branching actions z⊕〈2,ok〉, z⊕〈2,quit〉 and
z&(1,{ok : 0,quit : 0}).

In process Bob, if the quote minus Alice’s contribution exceeds 100, another session between
Bob and Carol is established through the shared service name b. Delegation occurs by passing
the private channel y from Bob to Carol (actions z!〈〈1,y〉〉 and z?((2, t))), so that the rest of the
session with Seller and Alice is carried out by Carol.

In this particular example it is fairly easy to see that no deadlock is possible, even if different
sessions are interleaved with each other and the communication topology changes because of
delegation. We formally state this in Corollary 6.5.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 6

P ::= u [p](y).P Multicast request
|| u[p](y).P Accept
|| c!〈Π,e〉.P Value sending
|| c?(p,x).P Value reception
|| c!〈〈p,c′〉〉.P Channel delegation
|| c?((q,y)).P Channel reception
|| c⊕〈Π, l〉.P Selection
|| c&(p,{li : Pi}i∈I) Branching
|| if e then P else Q Conditional
|| P | Q Parallel
|| 0 Inaction
|| (νa : G)P Service name hiding
|| def D in P Recursion
|| X〈e,c〉 Process call
|| (νs)P Session hiding
|| s : h Message queue

D ::= X(x,y) = P Declaration
E ::= [ ] || P || (νa : G)E Evaluation context

|| (νs)E || def D in E
|| E | E

a, b Service name
x Value variable

y, z, t Channel Variable
s Session name

p, q Participant number
X , Y Process variable

l Label
s[p] Channel with role

u ::= x || a Identifier
v ::= a || true Value

|| false
e ::= v || x

|| e and e′ Expression
|| not e . . .

Π ::= {p} || {p}∪Π Set of participants
c ::= y || s[p] Channel

m ::= (q,Π,v) Message in transit
|| (q,p,s[p′])
|| (q,Π, l)

h ::= h ·m || � Queue

Table 2. Process syntax and naming conventions.

3. The Calculus for Multiparty Sessions

3.1. Syntax

The present calculus is a variant of the calculus in (Honda et al., 2008), as explained in §7. The
syntax of processes, ranged over by P,Q . . . , and expressions, ranged over by e,e′, . . . , is given
by the grammar in Table 2, which shows also naming conventions.

The operational semantics is defined by a set of reduction rules. In the reduction of processes
it is handy to introduce elements, like queues of messages and runtime channels, which are not
expected to occur in the source code written by users (user processes). These elements, which
are referred as runtime syntax, appear shaded .

The processes of the form u [p](y).P and u[p](y).P cooperate in the initiation of a multiparty
session through a service name identified by u, where p denotes a participant to the session.
Participants are represented by progressive numbers and are ranged over by p, q,... The barred
identifier is the one corresponding to the participant with the highest number, which also gives the
total number of participants needed to start the session. The (bound) variable y is the placeholder
for the channel that will be used in the communications. After opening a session each channel
placeholder will be replaced by a channel with role s[p], which represents the runtime channel of
the participant p in the session s.

Process communications (communications that can only take place inside initiated sessions)
are performed using the next three pairs of primitives: the sending and receiving of a value; the
channel delegation and reception (where the process performing the former action delegates to
the process receiving it the capability to participate in a session by passing a channel associated
with that session); and the selection and branching (where the former action sends one of the
labels offered by the latter). The input/output operations (including the delegation ones) specify
the channel and the sender or the receivers, respectively. Thus, c!〈Π,e〉 denotes the sending



Global Progress for Dynamically Interleaved Multiparty Sessions 7

of a value on channel c to all the participants in the non-empty set Π; accordingly, c?(p,x)
denotes the intention of receiving a value on channel c from the participant p. The same holds
for delegation/reception (but the receiver is only one) and selection/branching. We use c!〈p,e〉.P
and c⊕〈p, l〉.P as short for c!〈{p},e〉.P and c⊕〈{p}, l〉.P, as already done in previous examples.

An output action is a value sending, channel delegation or label selection: an output process
is a process whose first action is an output action. An input action is a value reception, session
reception or label branching: an input process is a process whose first action is an input action.
A communication action is either an output or an input action.

In the hiding of service name a, G denotes the global type of a, see next §.
For simplicity each recursively defined process has exactly one data parameter and one channel

parameter.
As usual evaluation contexts are processes with some holes.
As in (Honda et al., 2008), we use message queues in order to model TCP-like asynchronous

communications (where message order is preserved and sending is non-blocking). A message in
a queue can be a value message, (q,Π,v), indicating that the value v was sent by the participant
q and the recipients are all the participants in Π; a channel message (delegation), (q,p,s[p′]),
indicating that q delegates to p the role of p′ on the session s (represented by the channel with
role s[p′]); and a label message, (q,Π, l) (similar to a value message). The empty queue is denoted
by�. By h ·m we denote the queue obtained by concatenating m to the queue h. With some abuse
of notation we will also write m ·h to denote the queue with head element m. By s : h we denote
the queue h of the session s. Queues and channels with role are generated by the operational
semantics (described later).

We call pure a process which does not contain message queues.
There are many binders: request/accept actions bind channel variables, value receptions bind

value variables, channel receptions bind channel variables, declarations bind value and channel
variables, recursions bind process variables, hidings bind service and session names. In (νs)P
all occurrences of s[p] and the queue s inside P are bound. We say that a process is closed if the
only free names in it are service names (i.e. if it does not contain free variables or free session
names).

3.2. Operational Semantics

Table 3 shows the reduction rules of processes (we use −→∗ and −→k with the expected mean-
ings).† Rule [Init] describes the initiation of a new session among n participants that synchronise
over the service name a. The last participant a [n](y).Pn, distinguished by the overbar on the ser-
vice name, specifies the number n of participants. After the initiation, the participants will share
the private session name s, and the queue associated to s, which is initially empty. The variable
y in each participant p will be replaced by the corresponding channel with role s[p]. The output
rules [Send], [Deleg] and [Sel] enqueue values, channels and labels, respectively, into the queue
of the session s (in rule [Send], e ↓ v denotes the evaluation of the expression e to the value v). The

† For easiness of reading we have enclosed the tags of the reduction rules in square brackets, the tags of the communi-
cation type system rules in round brackets (see Tables 6, 10, 12) and the tags of the interaction type system rules in
curly brackets (see Tables 7, 8).



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 8

a[1](y).P1 | ... | a[n−1](y).Pn−1 | a [n](y).Pn−→
(νs)(P1{s[1]/y} | ... | Pn−1{s[n−1]/y} | Pn{s[n]/y} | s : �) [Init]

s[p]!〈Π,e〉.P | s : h−→ P | s : h · (p,Π,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉.P | s : h−→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈Π, l〉.P | s : h−→ P | s : h · (p,Π, l) [Sel]

s[p]?(q,x).P | s : (q,p,v) ·h −→ P{v/x} | s : h [Rcv]

s[p]?((q,y)).P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [SRcv]

s[p]&(q,{li : Pi}i∈I) | s : (q,p, l j) ·h −→ Pj | s : h ( j ∈ I) [Branch]

if e then P else Q−→ P (e ↓ true) if e then P else Q−→ Q (e ↓ false) [If-T, If-F]

def X(x,y) = P in (X〈e,s[p]〉 | Q) −→ def X(x,y) = P in (P{v/x}{s[p]/y} | Q) (e ↓ v) [ProcCall]

P−→ P′ ⇒ E [P]−→ E [P′] [Ctxt]

P≡ P′ and P′ −→ Q′ and Q≡ Q′ ⇒ P−→ Q [Str]

Table 3. Reduction rules.

P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)

(νr)P | Q≡ (νr)(P | Q) if r /∈ fn(Q)

(νr)(νr′)P≡ (νr′)(νr)P (νa : G)0≡ 0 (νs)(s : �)≡ 0

where r ::= a : G || s

def D in 0≡ 0 def D in (νr)P≡ (νr)def D in P if r /∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D′ in (def D in P) if (dpv(D)∪ fpv(D))∩dpv(D′) = dpv(D)∩ (dpv(D′)∪ fpv(D′)) = /0

s : h · (q,Π,ζ ) · (q′,Π′,ζ ′) ·h′ ≡ s : h · (q′,Π′,ζ ′) · (q,Π,ζ ) ·h′ if Π∩Π′ = /0 or q 6= q′

s : h · (q,Π,ζ ) ·h′ ≡ s : h · (q,Π′,ζ ) · (q,Π′′,ζ ) ·h′ if Π = Π′ ∪Π′′ and Π′ ∩Π′′ = /0

where ζ ::= v || s[p] || l

P≡ P′ ⇒ E [P]≡ E [P′]

Table 4. Structural equivalence.

input rules [Rcv], [SRcv] and [Branch] perform the corresponding complementary operations.
Note that these operations check that the sender matches, and also that the message is actually
meant for the receiver.

Processes are considered modulo structural equivalence, denoted by ≡, and defined adding
α-conversion to the rules in Table 4. By r /∈ fn(Q) we mean that a is not a free name in Q if
r = a : G and that s is not a free name in Q if r = s. The meaning of r /∈ fn(D) is similar. We
denote by dpv(D) the set of process variables declared in D and by fpv(Q) the set of process
variables which occur free in Q. Besides the standard rules (Milner, 1999), we have a rule for
rearranging messages in a queue when the senders or the receivers are not the same, and a rule
for splitting a message with more than one receiver.



Global Progress for Dynamically Interleaved Multiparty Sessions 9

S ::= bool | . . . | G Sorts
U ::= S | T Exchange types

Global types
G ::= p→Π : 〈S〉.G Value exchange

|| p→ p : 〈T〉.G Channel exchange
|| p→Π : {li : Gi}i∈I Branching
|| µt.G || t || end Recursion/end

Session types
T ::= !〈Π,S〉.T send value

|| !〈p,T〉.T Send channel
|| ?(p,U).T Receive
|| ⊕〈Π,{li : Ti}i∈I〉 Selection
|| &(p,{li : Ti}i∈I) Branching
|| µt.T || t || end Recursion/end

Table 5. Global and session types.

4. Communication Type System for Pure Processes

This section introduces the communication type system for pure processes, by which we can
check type soundness of the communications. This type system corresponds essentially to the
one introduced in (Honda et al., 2008), but it is slightly simpler owing to the new formulation of
the calculus. We need to introduce it here since we use it for defining progress property in next
§. Instead we give the typing rules for message queues and run time processes in Appendix A,
since they are not central in our development.

4.1. Global and Session Types

Global types describe the whole conversation scenarios of multiparty session. Session types cor-
respond to projections of global types on the individual participants: they are types of pure pro-
cesses. The grammar for global and session types is given in Table 5. This grammar is slightly
more permissive than necessary, in the sense that it allows session types that cannot be obtained
as projections of global types. In practice, we are only interested in the subsets of well-formed
session types (those that can be obtained as projections of well-formed global types) and well-
formed global types (those that only contain well-formed session types). The formal notions of
global type projection and well-formed global/session types will be given in Definitions 4.1 and
4.2.

Sorts S,S′, . . . are associated to values (either base types or closed global types, ranged over by
G). Exchange types U,U ′, ... consist of sort types or closed session types, ranged over by T.

The global type p→ Π : 〈S〉.G says that participant p multicasts a value of sort S to the non-
empty set of participants Π and then the interactions described in G take place. Similarly, the
global type p→ q : 〈T〉.G says that participant p 6= q delegates a channel of type T to participant q
and the interaction continues according to G. Obviously only one receiver is expected in this case.
When it does not matter we use p→Π : 〈U〉.G to refer both to p→Π : 〈S〉.G and p→ q : 〈T〉.G.
Type p→Π : {li : Gi}i∈I says participant p multicasts one of the labels li to the set of participants
Π. If l j is sent, interactions described in G j take place. In both cases we assume p /∈ Π. Type



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 10

µt.G is a recursive type, assuming type variables (t, t′, . . . ) are guarded in the standard way, i.e.,
type variables only appear under some prefix. We take an equi-recursive view of recursive types,
not distinguishing between µt.G and its unfolding G{µt.G/t} (Pierce, 2002, §21.8). Type end

represents the termination of the session.
The send types !〈Π,S〉.T , !〈p,T〉.T express, respectively, the sending of a value of sort S to

all participants in Π or the sending of a channel of type T to participant p followed by the
communications described by T . The selection type⊕〈Π,{li : Ti}i∈I〉 represents the transmission
to all participants in Π of a label li chosen in the set {li | i ∈ I} followed by the communications
described by Ti. The receive and branching types are dual of send and selection types: in them
only one sender is considered. Recursion is guarded also in session types, and we consider them
modulo fold/unfold as done for global types.

As in processes, when Π = {p} is a singleton we identify Π with p.

The relation between global and session types is formalised by the notion of projection as in
(Honda et al., 2008). We use this notion also for defining when global and session types are well
formed.

Definition 4.1. The projection of a global type G onto a participant q (G � q) is defined by
induction on G:

(p→Π : 〈U〉.G′) � q=


!〈Π,U〉.(G′ � q) if q= p,

?(p,U).(G′ � q) if q ∈Π,

G′ � q otherwise.

(p→Π : {li : Gi}i∈I) � q=


⊕(Π,{li : Gi � q}i∈I) if q= p

&(p,{li : Gi � q}i∈I) if q ∈Π

Gi0 � q where i0 ∈ I if q 6= p,q 6∈Π

and Gi � q= G j � q for all i, j ∈ I.

(µt.G) � q=

{
µt.(G � q) if G � q 6= t,
end otherwise.

t � q= t end � q= end.

As an example, we list two of the projections of the global types Ga and Gb of the three-buyer
protocol in §2.

Ga � 3 = ?(2,string).!〈{1,2}, int〉;&(1,{ok :?(1,string).!〈1,date〉.end,quit : end})
Gb � 1 = ?(2, int).?(2,T).⊕〈2,{ok : end,quit : end}〉

where T is defined at page 4.

Well-formed global and session types can then be defined as the ones satisfying the following
(mutually recursive) conditions:

Definition 4.2.
1 A global type is well formed if all session types occurring in it are well formed and closed.
2 A session type is well formed if it is the projection of some well-formed global type.

Notice that a global type without occurrences of session types (i.e. without channel exchanges)
is always well formed. It is quite natural that when building a global type including the delegation



Global Progress for Dynamically Interleaved Multiparty Sessions 11

of a channel of type T, the designer has already designed the global type G which includes the
communications represented by T. In this case T is obtained from the projection of G onto one
of its participants, assuring its well-formedness.

As an example, the global types Ga, Gb and the session type T introduced in §2 are all well
formed. In fact Ga is well formed since it contains no session types, T is well formed since it
is the projection onto participant 1 of the global type defined by lines (4), (5), and (6) of the
definition of Ga, and Gb is well formed since the exchanged type T is well formed.

According to the methodology first advocated in (Honda et al., 2008) and pursued in this work,
a distributed system is first designed in terms of global types and then implemented as a set of
processes respecting session types that are obtained as projections of such global types. For this
reason, the notion of well-formed global/session type arises naturally and is not restrictive in
such framework.

From now on we will implicitly make the assumption that all global and session types are well
formed.

4.2. Typing Rules for Pure Processes

The typing judgements for expressions and pure processes are of the shapes:

Γ ` e : S and Γ ` P.∆

where

- Γ is the standard environment which associates variables to sort types, service names to
closed global types and process variables to pairs of sort types and session types;

- ∆ is the session environment which associates channels to session types.

Formally we define:

Γ ::= /0 || Γ, x : S || Γ, a : G || Γ,X : S T and ∆ ::= /0 || ∆,c : T

assuming that we can write Γ,x : S only if x 6∈ dom(Γ), where dom(Γ) denotes the domain of Γ,
i.e., the set of identifiers which occur in Γ. We use the same convention for a : G, X : S T and
c:T (thus we can write ∆,∆′ only if dom(∆)∩dom(∆′) = /0).

Table 6 presents the typing rules for expressions and pure processes.
Rule (NAME) is standard: recall that u stands for x and a and S includes G.
Rule (MCAST) permits to type a request on a service identified by u, if the type of y is the

p-th projection of the global type G of u and the maximum participant in G (denoted by mp(G))
is p. Rule (MACC) permits to type the p-th participant identified by u, which uses the channel y,
if the type of y is the p-th projection of the global type G of u and p< mp(G).

In the typing of the example of the three-buyer protocol the types of the channels y in Seller and
z in Carol are respectively the third projection of Ga and the first projection of Gb. By applying
rule (MCAST) we can then derive a : Ga ` Seller. /0. Similarly by applying rule (MACC) we can
derive b : Gb ` Carol. /0. (The processes Seller and Carol are defined in Table 1.)

The successive six rules associate the input/output processes to the input/output types in the
expected way. For example we can derive:

` t⊕〈{2,3},ok〉.t!〈3,"Address"〉; t?(3,date).0.{t : T}



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 12

Γ,u : S ` u : S (NAME) Γ ` true, false : bool (BOOL)
Γ ` ei : bool (i = 1, 2)

Γ ` e1 and e2 : bool
(AND)

Γ ` u : G Γ ` P.∆,y : G � p p= mp(G)
(MCAST)

Γ ` u [p](y).P.∆

Γ ` u : G Γ ` P.∆,y : G � p p< mp(G)
(MACC)

Γ ` u[p](y).P.∆

Γ ` e : S Γ ` P.∆,c : T
(SEND)

Γ ` c!〈Π,e〉.P.∆,c : !〈Π,S〉.T

Γ,x : S ` P.∆,c : T
(RCV)

Γ ` c?(q,x).P.∆,c :?(q,S).T

Γ ` P.∆,c : T
(DELEG)

Γ ` c!〈〈p,c′〉〉.P.∆,c : !〈{p},T〉.T,c′ : T

Γ ` P.∆,c : T,y : T
(SRCV)

Γ ` c?((q,y)).P.∆,c :?(q,T).T

Γ ` P.∆,c : Tj j ∈ I
(SEL)

Γ ` c⊕〈Π, l j〉.P.∆,c :⊕〈Π,{li : Ti}i∈I〉

Γ ` Pi .∆,c : Ti ∀i ∈ I
(BRANCH)

Γ ` c&(p,{li : Pi}i∈I).∆,c : &(p,{li : Ti}i∈I)

Γ ` P.∆ Γ ` Q.∆
′

(PAR)
Γ ` P | Q.∆,∆′

Γ ` e : bool Γ ` P.∆ Γ ` Q.∆

(IF)
Γ ` if e then P else Q.∆

∆ end only
(INACT)

Γ ` 0.∆

Γ,a : G ` P.∆

(NRES)
Γ ` (νa : G)P.∆

Γ ` e : S ∆ end only
(VAR)

Γ,X : S T ` X〈e,c〉.∆,c : T

Γ,X : S t,x : S ` P. y : T Γ,X : S µt.T ` Q.∆

(DEF)
Γ ` def X(x,y) = P in Q.∆

Table 6. Typing rules for expressions and pure processes.

where T = ⊕〈{2,3},{ok :!〈3,string〉.?(3,date).end, quit : end}〉. Note that, according to our
notational convention on environments, in rule (DELEG) the channel which is sent cannot appear
in the session environment of the premise, i.e., c′ 6∈ dom(∆)∪{c}.

Rule (PAR) permits to put in parallel two processes only if their session environments have
disjoint domains.

In rules (INACT) and (VAR) we take environments ∆ which associate end to arbitrary channels,
denoted by “∆ end only”.

The present formulation of rule (DEF) forces to type process variables only with µ-types,
while the formulation in (Bettini et al., 2008; Honda et al., 2008):

Γ,X : S T,x : S ` P. y : T Γ,X : S T ` Q.∆

Γ ` def X(x,y) = P in Q.∆

allows to type unguarded process variables with arbitrary types, which can be meaningless. For
example with the more permissive rule we can derive ` def X(x,y)=X(x,y) in X〈true,z〉.{z :T}
for an arbitrary closed T, while in our system we cannot type this process since its only possible
type would be µt.t, which is not guarded and then forbidden.



Global Progress for Dynamically Interleaved Multiparty Sessions 13

4.3. Subject Reduction

We end this section by formulating subject reduction for closed user processes. We clearly need
typing judgments for run time processes. In these judgments the turn style is decorated by sets
of session names, which are the names of the current queues. Reducing a closed user process
we obtain processes in which all session names are bound, so the turn style is decorated by the
empty set.

Theorem 4.3 (Subject Reduction for Closed User Processes). If Γ ` P. /0 and P−→∗ P′, then
Γ ` /0 P′ . /0.

Appendix A gives the typing rules for run time processes and the proof of subject reduction for
arbitrary processes.

5. Progress

5.1. The Notion of Progress for Multiparty Sessions (Informal)

As a first approximation, we say that a process P has the progress property if all the interactions
that are supposed to occur in P can (eventually) take place. Since a formal definition of progress is
not straightforward, we begin by illustrating the pitfalls and the key ideas incrementally through
a number of small examples.

A paradigmatic example of process without progress is the process p5 | p6 given in the intro-
duction, that with the syntax of §3 becomes P1 | P2, where:

P1 = a[1](y).b[1](z).y?(2,x1).z!〈2, false〉.0
P2 = a [2](y).b [2](z).z?(1,x2).y!〈1, true〉.0

The process P1 | P2 reduces to:

(νs1)(νs2)(s1[1]?(2,x1).s2[1]!〈2, false〉.0 | s2[2]?(1,x2).s1[2]!〈1, true〉.0 | s1 :� | s2 :�)

Note that the resulting process corresponds to a configuration where two sessions have been
initiated but have not terminated yet. Also, the configuration is irreducible, because it involves
two input processes waiting to receive messages from two empty queues, and there is no way to
induce further reductions even assuming that helper processes join the system, because the two
blocked input processes are waiting on private session channels. This configuration is locked
because the output actions of both sessions are prefixed by input actions of the other session.

On the contrary, the process P1 | P′2 where

P′2 = a [2](y).b [2](z).y!〈1, true〉.z?(1,x2).0

has progress because it eventually reduces to 0.
In general, however, the technically simple definitions of progress are either too strong or

too weak. For example, defining global progress as the possibility that each opened session can
be successfully completed may be considered too demanding, as there are several reasonable
protocols involving non terminating interactions. At the same time, the naive idea of defining
progress as the possibility of reduction unless successful termination is reached, assigns progress
to systems in which some processes engage an infinite chatter, while others hopelessly starve



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 14

waiting for messages that are never sent. For example, the process P1 | P2 | P3 | P4 where P1 and
P2 are as before and

P3 = b[1](t).def X(x3,z3) = z3!〈4,x3〉.X〈x3,z3〉 in X〈true, t〉
P4 = b [2](t).def Y (x4,z4) = z4?(3,x).Y 〈x4,z4〉 in Y 〈true, t〉

leads to a configuration where P1 and P2 are stuck, but that can always reduce because of the
interactions between processes P3 and P4. It would be unfortunate to say that P1 | P2 | P3 | P4

has progress only for this reason, because then any process, no matter how broken, could be
“repaired” by coupling it with an independent, diverging subsystem. Notice that this process has
progress according to the definition of (Bettini et al., 2008).

Building on Kobayashi’s definition of lock-freedom (Kobayashi, 2002) and on the definition
of communication safety of (Deniélou and Yoshida, 2011) we require that, in a process with the
global progress property:

(1) every input process will always (eventually) receive a message, and
(2) every message in a queue will always (eventually) be received by an input process.

There is still one crucial aspect that we must address in some way and that affects significantly
the formal definition of progress. We have seen why the compound process P1 | P2 does not
have the progress property, but what about the processes P1 and P2, when they are considered in
isolation? Is the fact that such processes cannot reduce enough to conclude that neither P1 nor P2

do have progress property? The point is that a process like P1 is not flawed per se, and the reason
why it cannot make any progress is just that some of the participants to initiate the sessions on
a and b are missing, while the reduction rule [Init] requires all of the participants to be available
for the session to begin. However, in an open ended scenario it is reasonable to assume that such
missing participants can join in the future. Therefore, in defining the notion of progress for a
process P, we consider that an incomplete service a occurring in P can always be allowed to start
by composing P with some other processes containing the missing participants for a. We call
such processes catalysers because they enable the initiation of sessions. Constructions that are
similar to catalysers are given in (Dezani-Ciancaglini et al., 2008) and in (Carbone and Debois,
2010). For example, the process

P5 = a [2](y).y!〈1, true〉.0

is a catalyser that, when composed with P1, allows the session on a to begin. Note that, by
composing P1 with the catalyser P5, we have the reduction

P1 | P5 −→∗ (νs1)(b[1](z).s1[1]?(2,x).z!〈2, false〉.0 | s1 : (2,1, true))

leading to an irreducible configuration where there there is one message (2,1, true) in the queue
associated with session s. However, unlike the irreducible configuration reachable from P1 | P2,
in this case it is still possible to enable further reductions by adding one more catalyser

P6 = b [2](z).z?(1,x2).0

which initiates the session on the shared name b and ultimately allows the message in the queue
to be received.

It is also important to notice that catalysers are needed to initiate sessions which produce stuck



Global Progress for Dynamically Interleaved Multiparty Sessions 15

processes. For example without catalysers the process

P7 = c[1](t1).P1 | P2

would not reveal the deadlock.
In conclusion, we consider a notion of global progress in which a process with the progress

property satisfies the conditions (1) and (2) above, possibly with the help of catalysers.
There are two important properties concerning catalysers that are consequences of the fact

that we only allow catalysers to be composed in parallel with the process under exam, so as
to represent missing participants of sessions. First of all, catalysers cannot be used for helping
processes that can reach a locked configuration on private session channels. In particular, there is
no catalyser that can prevent P1 | P2 from getting stuck. Second, catalysers cannot help to restart a
process when the shared name on which there are missing participants is restricted. For example
the process

P8 = (νa : 1→ 2 : 〈bool〉.end)(a[1](y).y!〈2, true〉.0)
behaves like 0 in any context. We can therefore say that P7 has progress in a trivial way.

5.2. The Notion of Progress for Multiparty Sessions (Formal)

We will now introduce catalysers as service participants that we will use to complete a process
in order to start sessions. We will build catalysers in such a way they cannot cause deadlocks. In
particular, catalysers never interleave different sessions, that is only actions on the same session
channel can prefix each other, with the exception of channel delegation and reception.

The formalisation of catalysers is made tricky by two aspects:

C1 the construction of a process sending a channel requires another set of catalysers which in-
teract with the delegated channel, and

C2 the construction of a recursive process requires keeping track of the correspondence between
type variables and term variables.

We build now the body of a catalyser P(T,y,M ) which communicates through the channel y
according to the session type T , using the mapping M to deal with recursion.

For delegating a channel (point C1 above), we need three mappings defined on well-formed
and closed session types T. The first two mappings (denoted g and r) give respectively a well-
formed, closed global type G and a participant p such that T= G � p, i.e. T= g(T) � r(T). The
definition of well-formed global and session types (Definition 4.2) assures that g and r can be
defined. The third mapping (denoted f ) gives a fresh session name.

For handling recursions (point C2 above), we devise a mapping (denoted M ) between type
variables and term variables. By construction, M is empty when T is closed.

In order to get a deterministic construction, we make some (arbitrary) choices: for the outputs
with base types, we choose a characteristic value for each sort type; for the outputs with global
types, we choose fresh bound service names; for the selection types we always select the label
with the minimum index. We build also characteristic environments which are needed to type
catalysers.

Definition 5.1.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 16

1 The characteristic process of the session type T using channel y and mapping M , written
P(T,y,M ), is defined by induction on T through the following equations‡:

P(!〈Π,bool〉.T,y,M ) = y!〈Π, true〉.P(T,y,M )

. . . = . . .

P(!〈Π,G〉.T,y,M ) = (νa : G)y!〈Π,a〉.P(T,y,M )

P(!〈p,T〉.T,y,M ) = f (T)[1](z).P(g(T) � 1,z, /0)) | . . .
f (T)[r(T)](z).y!〈〈p,z〉〉.P(T,y,M ) | . . .
f (T) [n](z).P(g(T) � n,z, /0))

where n = mp(g(T))
P(?(q,S).T,y,M ) = y?(q,x).P(T,y,M )

P(?(q,T).T,y,M ) = y?((q,z)).(P(T,y,M ) |P(T,z, /0))
P(⊕〈Π,{li : Ti}i∈I〉,y,M ) = y⊕〈Π, lk〉.P(Tk,y,M ) (k is the smallest index in I)
P(&(q,{li : Ti}i∈I),y,M ) = y&〈q,{li : P(Ti,y,M )}i∈I〉
P(µt.T,y,M ) = def X(x,z) = P(T,z,M ∪{t 7→ X〈x,z〉}) in X〈true,y〉

(X fresh)
P(t,y,M ) = M (t)
P(end,y,M ) = 0

2 The characteristic environment of the session type T , written ¶(T ), is defined by induction
on T through the following equations:

¶(!〈Π,S〉.T ) = ¶(?(q,U).T ) = ¶(µt.T ) = ¶(T )
¶(!〈p,T〉.T ) = { f (T) : g(T)}∪ ¶(T)∪ ¶(T )

¶(⊕〈Π,{li : Ti}i∈I〉) = ¶(&(q,{li : Ti}i∈I)) =
⋃

i∈I ¶(Ti)

¶(t) = ¶(end) = /0

As an example with delegation take P(!〈4,T〉.end,y, /0) where T= ?(2,bool).end. If g(T) = 2→ 1 : 〈bool〉.end,
r(T) = 1 and f (T) = a we get

P(!〈4,?(2,bool).end〉.end,y, /0) = a[1](z).y!〈〈4,z〉〉.P(end,y, /0) |
a [2](z).P((2→ 1 : 〈bool〉.end) � 2,z, /0)

= a[1](z).y!〈〈4,z〉〉.0 | a [2](z).z!〈1, true〉.0

¶(!〈4,?(2,bool).end〉.end) = {a : (2→ 1 : 〈bool〉.end)}

An example of characteristic process for a recursive type is:

P(µt.!〈1,bool〉.t,y, /0) = def X(x,z) = P(!〈1,bool〉.t,z,{t 7→ X〈x,z〉}) in X〈true,y〉
= def X(x,z) = z!〈1, true〉.P(t,z,{t 7→ X〈x,z〉}) in X〈true,y〉
= def X(x,z) = z!〈1, true〉.X〈x,z〉 in X〈true,y〉

It is easy to verify that, whenever T is a closed type, we can derive:

¶(T) `P(T,y, /0).{y : T}

‡ For channel delegation if r(T) = 1 or r(T) = n the definition must be adapted in the obvious way. If T= end we get
g(T) = end and we assume mp(end) = 1.



Global Progress for Dynamically Interleaved Multiparty Sessions 17

which implies

{a : G}∪ ¶(G � n) ` a [n](y).P(G � n,y, /0). /0 {a : G}∪ ¶(G � p) ` a[p](y).P(G � p,y, /0). /0

where n = mp(G) and p< n.
Catalysers are parallel compositions of processes obtained by prefixing characteristic pro-

cesses of session types with requests and accepts:

Definition 5.2 (Catalyser). The characteristic request of the closed global type G for the service
a is the process a [n](y).P(G � n,y, /0) where n = mp(G). The characteristic accept of the closed
global type G for the service a and participant p < mp(G) is the process a[p](y).P(G � p,y, /0).
A catalyser is a parallel composition of characteristic requests and accepts, which can be typed
in the communication type system.

Notice that the process 0 is a catalyser, being the parallel composition of no process.

The last auxiliary notion we need before defining progress is a duality between input processes
and message queues which only takes into account top inputs and top messages.

Definition 5.3. The duality
−
1 between input processes and message queues is the least symmet-

ric relation defined by:

s[p]?(q,x).P
−
1 s : (q,p,v) ·h s[p]?((q,y)).P

−
1 s : (q,p,s′[p′]) ·h

s[p]&(q,{li : Pi}i∈I)
−
1 s : (q,p, lk) ·h (k ∈ I)

Recall that E ranges over evaluation contexts (see Table 2). The main definition follows:

Definition 5.4 (Progress). A process P has the progress property if for all catalysers Q such that
P | Q is well typed in the communication system, if P | Q−→∗ E [R], where R is an input process
or a not empty message queue, then there are a catalyser Q′, and E ′,R′ such that P | Q | Q′ is

well typed in the communication system and E [R] | Q′ −→∗ E ′[R][R′] and R
−
1 R’.

The well-typing of P |Q |Q′ in the communication system assures that in building the catalyser
Q | Q′ we use global types for the free service names in P which allow to type P.

Thanks to the universal quantification over all catalysers Q we do not need to require that
E [R] | Q′ has the progress property. This is because Q | Q′ is a catalyser and we could just start
from P | Q | Q′.

Notice that in the definition of progress catalysers play two different roles. The universally
quantified catalyser Q allows to initiate sessions which can produce deadlocks. Without this
catalyser the process P7 defined at page 15 would have trivially progress. Instead the existentially
quantified catalyser Q′ allows to to initiate sessions in order to avoid deadlocks. For example the
process P1 | P5 has progress thanks to the catalyser P6 (see page 14).

It is interesting to remark that adding catalysers avoids the standard problems of racing for
session initiations, since catalysers assure there are always enough participants to start sessions.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 18

6. Interaction Type System

The interaction type system ensures that the typable processes always have the progress property.
The basic ideas of this system are discussed in §6.1 and the typing rules are given in §6.2.

6.1. Channel/Service Dependency and Sets of Service Names

The progress property will be analysed via:

- an irreflexive and transitive pre-order relation D (called the channel/service dependency)
among channel and service names and

- three finite disjoint sets of service names R, N and B.

Below we illustrate the relation and the sets, explaining their roles by examples.

Channel/Service Dependency and Relative Services. The channel/service dependency (csd for
short) is our basic tool to analyse the dependencies between sessions. We write a ≺ b to denote
that a precedes b in a csd. The meaning of a≺ b is that some input action of a session on service
a must be performed before some communication action of a session on service b. Csds are then
transitive. We will see that we can assure progress of a process P if the csd of P does not contain
loops, i.e. if do not have a ≺ b ≺ a for any a, b occurring in P. In case of loop, for example,
two input actions on a and b can mutually block the corresponding output actions on the other
session producing a deadlock.

Take for instance the process P1 | P2, where P1, P2 are the processes defined in §5.1 (page 13).
In process P1 we have that an input action on service a blocks an output action on service b and
this determines a ≺ b . In process P2 the situation is inverted, determining b ≺ a. In P1 | P2 we
then have the loop a≺ b≺ a. As remarked in §5.1 this process produces a deadlock. On the other
hand if we take instead P1 | P′2, where P′2 is as in §5.1 (page 13), the csd of the whole process
is a ≺ b, since in P′2 the input action does not precede any other action, and we can so assure
progress.

If we replace service b by service a in a slight modification of P1 and P2 we obtain:

P9 = a[1](y).a [2](z).y?(2,x).z!〈1, false〉.0
P10 = a [2](y).a[1](z).z?(2,x′).y!〈1, true〉.0

with two instances of service a and the dependency a ≺ a. Also P9 | P10 reduces to a stuck
process. Hence we must also forbid loops on single service names. This implies that csds cannot
be reflexive.

Note that the csd of a single session turns out to be empty. Therefore a well-typed process
with a single session has always progress as an immediate consequence of the Progress Theorem
(Theorem 6.4).

The dependency-based mechanism captured by csds is quite conservative, in the sense that
there exist practically relevant session patterns that yield reflexive csds but do not generate dead-
locks. Moreover we need to take special care when we restrict service names. For this reason
we introduce the three sets R, N , and B to distinguish between three different ways to type
session initiations. The set R contains all service names which occur in D : these services have
the relative property of not being involved in circular dependencies with respect to D . The sets



Global Progress for Dynamically Interleaved Multiparty Sessions 19

N and B contain service names which may be involved in circular dependencies, but which
cannot cause deadlocks because of the peculiar, albeit recurrent, patterns in which they are re-
lated with other services. In particular the services in B can be safely restricted. We devote the
next paragraphs to illustrate these patterns and how they are addressed with respect to the sets
N and B.

Nested Services. Let us consider the following process:

R1 = a [2](y).y?(1,x).a [2](z).z?(1,x′).z!〈1, true〉.y!〈1, false〉.0

In this process we have an input action on z which blocks an action on y. Therefore reasoning as
before we would get a≺ a between the corresponding service names. But note that all actions on z
are nested between the actions on y. More generally, there is no blocking action of the outermost
invocation of a that is interleaved with actions of the innermost invocation of a. In fact, this
interaction structure closely resembles an ordinary function call of a sequential programming
language, where a caller function is suspended until the callee has terminated. If R1 is put in
parallel with another process in which the service a (and its associated channel variable) has the
same behaviour we can assure progress despite the loop in the csd. For instance the process:

R2 = a[1](y).y!〈2, false〉.a[1](z).z!〈2, true〉.z?(2,x′).y?(2,x).0

is such that R1 | R2 reduces to 0. This will be proved to be a general property. To take it into
account we allow to put service names like a in N instead of putting them in the csd, avoiding
then the loops they could produce.

We say that a service satisfies the nesting condition if all the communication actions on the
channel bound by the service are interleaved only with outputs on different free channels and
with services satisfying the same condition. This condition will be formalised in §6.2.

Note that we can put a service name in N only if all the occurrences of the service (in both
multicast requests and accepts) respect the nesting condition. Take for instance the process:

R3 = a[1](y).y!〈2, false〉.a[1](z).y?(2,x).z!〈2, true〉.z?(2,x′).0

It does not respect the nesting condition since an input action on y precedes an action on z. Indeed
reducing R1 | R3 we obtain the stuck process:

(νs1)(νs2) (s2[2]?(1,x′).s2[2]!〈1, true〉.s1[2]!〈1, false〉.0 |
s1[1]?(2,x).s2[1]!〈2, true〉.s2[1]?(2,x′).0 | s1 :� | s2 :�)

Nesting is also useful for dealing with different services. As an example, consider the pro-
cesses:

R4 = a [2](y).b [2](z).z?(1,x).y?(1,x′).0
R5 = b [2](z).a [2](y).y?(1,x).z?(1,x′).0

representing two clients which, for unspecified reasons, request the two services a and b in dif-
ferent orders. For R4 | R5 we get the circular csd a≺ b≺ a, but a and b are both nested, so putting
them in N we can avoid this loop. For example if

R6 = a[1](y).y!〈2, false〉.0 | b[1](z).z!〈2, true〉.0 | a[1](y).y!〈2, false〉.0 | b[1](z).z!〈2, true〉.0

then R4 | R5 | R6 −→∗ 0.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 20

Considering again the processes P1 and P2 of page 13 we notice that the services a,b are nested
in P2 but they are not nested in P1. So by putting a,b in R for P1 we get the csd a ≺ b and by
putting a,b in N for P2 we get the empty csd. For this reason we always require that the same
service cannot occur both in R and in N .

Boundable Services. If we want to allow restrictions of service names the nesting condition is
not enough. For example the process:

R7 = a[1](y).(νb : end)(b[1](z).y!〈2, false〉.0)

reduces to a deadlock when put in parallel with the catalyser a [2](y).y?(2,x).0. We need then
ask also that all initiations of restricted services do not block any channel of another service,
together with the requirement of being nested. We call this the boundable service condition.
Also this condition will be formalised in §6.2. On the other hand we can allow that other services
are requested or accepted after the actions of a boundable service are ended. For example, take
the following process:

R8 = (νa : 1→ 2 : 〈bool〉.end)(a[1](y).y!〈2, false〉.R′ | a [2](y).y?(1,x).R′′)

We observe that the process R8 reduces to R′ | R′′, without interacting with the context. If pro-
cesses R′, R′′ do not contain free channels (either channel variables or channels with roles) we
can assure progress, provided R′ | R′′ assures it. In fact R8 reduces to R′ | R′′ from which the
computation can go on. On the other hand the process

R9 = (νa : 1→ 2 : 〈bool〉.end)(a[1](y).y!〈2, false〉.R′)

where participant 2 is missing and R′ does not contain free channels has trivially progress. More-
over R8 and R9 cannot cause deadlocks in any context, since they cannot participate to any inter-
action.

We can then put the service names satisfying both the nesting and the boundable service con-
dition in the set B which is disjoint from R and N .

The nesting condition is not enough also for service initiations on variables, as shown by the
process:

a[1](y).y?(2,x).x[1](z).y!〈2, false〉.0 | (νb : 1→ 2 : 〈bool〉.end)(a [2](y).y!〈1,b〉.y?(1,x′).0)

which reduces to the stuck process

(νs)(νb : 1→ 2 : 〈bool〉.end)(b[1](z).s[1]!〈2, false〉.0 | s[2]?(1,x′).0 | s :�)

Therefore we require that all service initiations on variables satisfy both the nesting and the
boundable service condition.

First-class services. Finally we consider that service names are first-class entities and can be
sent as messages. In this case, the dependency analysis for preventing deadlocks turns out to be
too weak, because as the system evolves – and service names are passed around – the actual
dependencies between services may dynamically change. To illustrate the issue, consider the



Global Progress for Dynamically Interleaved Multiparty Sessions 21

processes

R10 = c[1](t).t?(2,x).x[1](y).b[1](z).y?(2,x′).z!〈2, true〉.0
R11 = c [2](t).t!〈1,a〉.0

and observe that R11 sends to R10 the name of service a. The analysis of process R10 may de-
termine the relation x ≺ b, because there is an action pertaining service x that blocks another
action pertaining service b. However, since x is a bound variable in R10, there is no obvious way
to associate this dependency with R10. On the other hand, the analysis of process R11 yields no
apparent dependencies for a. Overall, no dependency is inferred for R10 | R11, even though at run-
time the system will reduce to a configuration that yields the relation a≺ b. Then, if R10 | R11 is
composed with a process that yields the inverse dependency b≺ a, a deadlock can occur. Indeed
R10 | R11 | P2 reduces to P1 | P2 which leads to a deadlock, as we have seen at page 13.

To overcome this problem, we ask that a free service name which is sent complies with the
nesting condition that can safely deal with circular dependencies. Therefore a sent service name
must belong to the union of N and B. This strategy is conservative, because it may happen that
a service is never actually involved in circular dependencies with other services throughout the
whole evolution of a system.

6.2. Typing Rules

We define the channel qualifier of a channel as either a channel variable or a session name.

Definition 6.1. Let c be a channel variable or a channel with role, its channel qualifier f(c) is
given by:

f(c) =

{
y if c = y ,

s if c = s[p].

We consider csds over the set of all service names and all channel qualifiers, which we call Λ

(ranged over by λ ). We denote by λ ≺ λ ′ the elements of the Cartesian product Λ×Λ. The
meaning of λ ≺ λ ′, roughly, is that an input action or a delegation on a channel (qualified by) λ

or bound by service λ can block a communication action on a channel (qualified by) λ ′ or bound
by service λ ′.

The progress property will be analysed, using the notions described above, via the interaction
typing system, whose rules are given in Tables 7 and 8. The judgements are of the shape:

Θ;R;N ;B ` P I D

where:

- D is a csd,
- R,N ,B are sets of service names and
- Θ is a set of assumptions of the shape X[y] ID (for recursive definitions) with the variable

y representing the channel parameter of X . We require that y is the only channel which may
occur in D . This agrees with rule (VAR), which allows only y to get a type different from
end.

The sets D ,R,N ,B have the following meanings:



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 22

Θ;R;N ;B ` P I D a ∈R
{INITR}

Θ;R;N ;B ` ã[p](y).P I D{a/y}+

Θ;R;N ;B ` P I D a ∈N
{INITN}

Θ;R;N ;B ` ã[p](y).P I D \\y

Θ;R;N ;B ` P I D a ∈B fc(P)⊆ {y}
{INITB }

Θ;R;N ;B ` ã[p](y).P I D \\y

Θ;R;N ;B ` P I D fc(P)⊆ {y}
{INITV}

Θ;R;N ;B ` x̃[p](y).P I D \\y

Θ;R;N ;B ` P I D e ∈S ⇒ e ∈N ∪B
{SEND}

Θ;R;N ;B ` c!〈Π,e〉.P I D

Θ;R;N ;B ` P I D
{RCV}

Θ;R;N ;B ` c?(q,x).P I (pre(c, fc(P))∪D)+

Θ;R;N ;B ` P I D
{DELEG}

Θ;R;N ;B ` c!〈〈p,c′〉〉.P I ({f(c)≺f(c′)}∪D)+

Θ;R;N ;B ` P I D D \S ⊆ {f(c)≺ y}
{SRCV}

Θ;R;N ;B ` c?((q,y)).P I D \{y}

{INACT}
Θ;R;N ;B ` 0 I /0

Θ;R;N ;B ` P I D a ∈B
{NRES}

Θ;R;N ;B \{a} ` (νa : G)P I D

Θ;R;N ;B ` P1 I D1 Θ;R;N ;B ` P2 I D2
{PAR}

Θ;R;N ;B ` P1 | P2 I (D1 ∪D2)
+

Θ;R;N ;B ` P1 I D1 Θ;R;N ;B ` P2 I D2
{IF}

Θ;R;N ;B ` if e then P1 else P2 I (D1 ∪D2)
+

Θ;R;N ;B ` P I D
{SEL}

Θ;R;N ;B ` c⊕〈Π, l〉.P I D

Θ;R;N ;B ` Pi I Di ∀i ∈ I
{BRANCH}

Θ;R;N ;B ` c&(p,{li : Pi}i∈I) I (pre(c,
⋃
i∈I

fc(Pi))∪
⋃
i∈I

Di)
+

e ∈S ⇒ e ∈N ∪B
{VAR}

Θ,(X [y] I D);R;N ;B ` X〈e,c〉 I D{f(c)/y}

Θ,(X [y] I D);R;N ;B ` P I D Θ,(X [y] I D);R;N ;B ` Q I D ′

{DEF}
Θ;R;N ;B ` def X(x,y) = P in Q I D ′

Table 7. Interaction typing rules I.

{QINIT}
Θ;R;N ;B ` s : � I /0

Θ;R;N ;B ` s : h I D v ∈S ⇒ v ∈N ∪B
{QADDVAL}

Θ;R;N ;B ` s : h · (q,Π,v) I D

Θ;R;N ;B ` s : h I D
{QADDSESS}

Θ;R;N ;B ` s : h · (q,p,s′[p′]) I {s≺ s′}∪D

Θ;R;N ;B ` s : h I D
{QSEL}

Θ;R;N ;B ` s : h · (q,Π, l) I D

Θ;R;N ;B ` P I D
{SRES}

Θ;R;N ;B ` (νs)P I D \ s

Table 8. Interaction typing rules II.

- D (csd) is an irreflexive pre-order between channel, session and service names;
- R (relative service set) contains the service names which may occur in D ;
- N (nested service set) is a set of services that satisfy the nesting condition in all their occur-

rences;
- B (boundable service set) is a set of services that satisfy the boundable service condition in

all their occurrences.



Global Progress for Dynamically Interleaved Multiparty Sessions 23

Note that the typing rules are applied following the structure of the analysed process. The
sets R, N , and B are not synthesised by the rules. The interaction type system simply checks
that services are used correctly depending on the set in which they occur. For this reason, these
sets are not changed by the rules of the interaction type system, except obviously for the case of
service name restriction. The csd D instead accumulates the dependencies relation on channel
variables, session and service names.

We convene that we can apply a typing rule only if the judgment is well formed, i.e. the
obtained csd is defined and irreflexive.

Initiation. When a channel is bound by a session initiation the channel is removed from D by:

- replacing it in D by the service name if the service belongs to R and this does not create a
loop in the transitive closure of the obtained csd;

- erasing it from D if the service belongs to N and the channel is minimal in D ;
- erasing it from D if the service belongs to B and the channel is minimal in D and the process

does not contain other free channels;
- erasing it from D in case of a service variable if the channel is minimal in D and the process

does not contain other free channels.

We get therefore four rules for service initiation, where we use ã for either a or a.

(1): {INITR}. This rule requires a ∈R and it corresponds to the more liberal policy with respect
to the occurrences of the channel y in P. The service name a replaces y in D if this replacement
does not generate a loop in the transitive closure (denoted by +) of the obtained csd, otherwise
the initiation cannot be typed.

(2). {INITN}. This rule can be applied only if a ∈N and the channel y bound by the request or
accept on a is minimal in D , i.e. for no λ we have λ ≺ y ∈D . To this aim we define D \\y by:

D \\y =

{
{λ ≺ λ ′ ∈D | λ 6= y} if y is minimal in D

undefined otherwise

This formalises the nesting condition.

(3) {INITB}. This rule requires a ∈B. Moreover we do not only ask that y is minimal (since
D \\y must defined), but also that y is the only free channel in the process P. This condition is
assured by the premise fc(P) ⊆ {y}, since we denote by fc(P) the set of free channels which
occur in P. This formalises the boundable condition.

(4) {INITV} This rule requires both the nesting and the boundable conditions for typing an
initiation on a service variable.

Sending and Receiving. Rule {RCV} asserts that the input action can block all other actions in
P. This is obtained by prefixing the channel qualifier of the input action to all qualifiers of free
channels in P but itself, since we define:

pre(c,C) = {f(c)≺f(c′) | c′ ∈ C ∧ f (c′) 6=f(c)}

where C is a set of channels.
Rule {SEND} simply checks that if the sent value belongs to the set S of service names, then

it occurs in N or B, see the discussion at page 20.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 24

Delegation. Rule {DELEG} is similar to {SEND} but it asserts that a use off(c) must precede a
use of f(c′): the dependency f(c)≺f(c′) needs to be registered since an action blocking f(c)
also blocks f(c′). Rule {SRC} forbids to create a process where two different roles in the same
session are put in sequence (Dezani-Ciancaglini et al., 2006; Yoshida and Vasconcelos, 2007).
As an example consider the processes

P11 = b[1](z).a[1](y).y!〈〈2,z〉〉.0
P12 = b [2](z).a [2](y).y?((1, t)).t?(2,w).z!〈1, false〉.0

and note that P11 | P12 reduces to (νs)(s[1]?(2,w).s[2]!〈1, false〉.0) which is stuck. The process
P11 | P12 is typable in the communication type system, but P12 is not typable in the interaction
type system, since by typing y?((1, t)).t?(2,w).z!〈1, false〉.0 we get y ≺ z which is forbidden by
rule {SRC}.

Inaction and Restriction. Rule {INACT} asserts that process 0 has empty csd starting from arbi-
trary sets of service names.

Rule {NRES} checks that a occurs in the boundable service set.

Parallel and Conditional Compositions. Rule {PAR} is the key to calculate the csds of parallel
processes. The resulting process can exhibit the behaviour of both its constituents and then we
take the transitive closure of the union of all the csds of the composed processes. Rule {IF} is
similar, even if we could consider more permissive conditions, at the price of having hereditarily
finite sets of csds. We cannot type, for example, the process:

P13 = a[1](y).b[1](z).c[1](t1).t1?(2,x).if x then y?(2,x1).z?(2,x′1).0 else z?(2,x′2).y?(2,x2).0

since the csd of the conditional is {y,z,y ≺ z,z ≺ y}. Note that this process in parallel with a
process where requests on a and b are in parallel, like in the process

P14 = a [2](y).y!〈1, true〉.0 | b [2](z).z!〈1, false〉.0 | c [2](t2).t2!〈1,bv〉.0

with bv ∈ {true, false}, reduces with no deadlocks.

Branching and Selection. Rule {SEL} is similar to rule {SEND}, while rule {BRANCH} needs
to record the causality as a union of all csds as in {PAR} and {IF} rules.

Process Declarations. Rule {VAR} replacesf(c) to y in the csd and if the expression is a service
name checks that it belongs to N ∪B (like {SEND}).

Rule {DEF} requires that:

- the typing of a term variable coincides with the typing of the process which will replace the
variable;

- the body of the definition is typable.

Rules for Queues and Session Restriction. (See Table 8). The first four rules can be understood
by comparing them to the rules {INACT}, {SEND}, {DELEG} and {SEL}, respectively. Rule
{SRES} deletes the session name from the csd.



Global Progress for Dynamically Interleaved Multiparty Sessions 25

Reducing a process which is well typed in both type systems we get a process which is well
typed too in the interaction type system with respect to the same sets of assumptions and service
names and we get a smaller or equal csd. Note in fact that only free service or session names can
occur in D and they cannot be created by reduction. Instead, for instance, in a session initiation
a (possibly) free service name is replaced by a restricted session name which is removed from D

by rule {SRES}.

Theorem 6.2 (Subject Reduction for the interaction type system).
If P is well typed in the communication type system and Θ;R;N ;B ` P I D and P−→∗ P′,
then Θ;R;N ;B ` P′ I D ′ for some D ′ ⊆D .

Appendix B contains the proof of this theorem.

For example the processes P1,P2,P′2,P3 and P4 defined at pages 13 and 14 can be typed in
the interaction type system with R = {a,b}. Moreover the process P2 can also be typed with
R = {a} and N = {b}, and clearly the processes P3,P4 can be typed with R = {b} or N = {b}.
Choosing R = {a,b} the csd obtained by typing P1,P′2 is a≺ b, while the csd obtained by typing
P2 is b ≺ a. Therefore P1 | P′2 is typable, while P1 | P2 and P1 | P2 | P3 | P4 are not typable.
Typability is clearly not compositional.

The process P9 at page 18 cannot be typed, since the service a is not nested and it gives a≺ a.
Instead the process P10 can be typed with N = {a}. The processes R1,R2 (see page 19) can be
typed with N = {a} getting the empty csd, and so also R1 | R2 is typable. Instead process R3

(page 19) cannot be typed, in fact by putting a in R we get a ≺ a, and we cannot put a in N

since it does not satisfy the nesting condition. The processes R4,R5,R6 of page 19 can be typed
with N = {a,b}.

Lastly a must be in B for typing the bodies of the restriction on a in the processes R7,R8,R9

of page 20.

Three Buyer Protocol. As an example we consider again the process Bob of the three buyer
protocol (see §2), which we report here for convenience:

Bob = a[1](y).y?(3,quote);y?(2,contrib);
if (quote - contrib < 100) then y⊕〈{2,3},ok〉;y!〈{3},"Address"〉;y?(3,date);0
else b [2](z).z!〈{1},quote - contrib - 99〉;z!〈〈1,y〉〉;z&(1,{ok : 0, quit : 0}).

Table 9 shows in a schematic way the typing derivation for Bob by reporting the csds, and the
applied rules, under the choice R = {a}, N = {b}, B = /0. It is easy to verify that this process
is typable for any choice of disjoint sets R,N ,B such that a ∈R ∪N ∪B, b ∈R ∪N and
b ∈N whenever a ∈N ∪B.

6.3. Progress Theorem

Definition 6.3. A closed user process P is initial if it is typable both in the communication and
in the interaction type systems, i.e. we can find Γ,R,N ,D such that Γ ` P. /0 and /0;R;N ; /0 `
P I D .

Observe that the set of boundable services can be empty, since the process P is never put in a
context. The set of assumptions on process variables can be empty since P is closed.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 26

Process D Rule

z&(1,{ok : 0, quit : 0}) /0 {BRANCH}
z!〈〈1,y〉〉 {z≺ y} {DELEG}
z!〈{1},quote - contrib - 99〉 {z≺ y} {SEND}
b [2](z) /0 {INITN}

y?(3,date);0 /0 {RCV}
y!〈{3},"Address"〉 /0 {SEND}
y⊕〈{1,3},ok〉 /0 {SEL}

if (. . .) /0 {IF}

· · · · · · · · ·
a[2](y) /0 {INITR}

Table 9. Typing of process Bob.

The progress property is assured for all computations that are generated from initial processes,
where all variable are bound but service names can be free. We claim that considering only
processes with bound service names would limit the applicability of this approach to open-ended
scenarios.

Theorem 6.4 (Progress). All initial processes have the progress property.

The proof of this Theorem is the content of Appendix C. To show that a process P has the
progress property we must assure, roughly, that each specific input or output action an a chan-
nel with role occurring in some process P′ obtained by reducing P | Q, where Q is an arbitrary
catalyser, can always be executed finding a reduct of P′ | Q′ for some catalyser Q′ which adds
receipt/accept processes if needed. This could be proved in a (relatively) easy way from the
Subject Reduction Theorem 6.2 if all computations starting from P | Q were finite. In this case
in fact it would be enough to guarantee that a process containing a channel with role always
reduces, possibly in parallel with a suitable catalyser. But note that in the interaction type sys-
tem the information about specific participants is lost, so it is not straightforward to follow the
moves of a process along a specific channel with role, as it would be necessary in processes like
P1 | P2 | P3 | P4 at page 14. To overcome this difficulty we will consider only finite computa-
tions by introducing a notion of “approximate” typed reduction, in which recursive processes are
frozen (i.e. they cannot be further reduced) after a finite number of applications of the [ProcCall]
rule. It is always possible to consider a number of recursion unfoldings large enough to reach the
input process or the message queue considered in the definition of progress.

As an immediate corollary of Theorem 6.4 we get that progress inside a single service is
assured by the communication typing rules in §4.

It is easy to verify that the three buyer protocol can be typed in the interaction type system.
Therefore we obtain:

Corollary 6.5. The three buyer protocol has the progress property.



Global Progress for Dynamically Interleaved Multiparty Sessions 27

It is clear that given two sets R, N , typability in the interaction system of a closed user process
without recursion and whose free session names are included in R ∪N can be easily checked.
Note that the bound service names are put in B. For recursive definitions one can compute the
csd associated to the process variables by iteration, starting from the empty set and stopping
when a fixed-point is reached.

Typability of a process in the interaction type system depends if the free service names of the
process belong to R or N , since we can safely put in B all and only the service names which
are bound in the process. A naive type inference algorithm based directly on the rules of the type
system would require backtracking, resulting in an exponential explosion of the search space.
In (Coppo et al., 2013) we define a deterministic, compositional inference algorithm which is
proved to be sound and complete with respect to the present interaction type system. The algo-
rithm is given in a “natural deduction” style, as a set of inference rules that can be evaluated in
a single-pass analysis according to the structure of processes. The basic idea is to devise a suit-
able data structure that stores the information about all the possible ways a service initiation can
be typed in the interaction type system, postponing the commitment to a specific typing rule as
long as possible. The inference algorithm refines the information in this data structure discard-
ing the typing rules of service initiations that are found to be incompatible with the structure of
the processes being analysed. We are working toward an implementation of this algorithm for
experimenting applicability of our inference system to show progress.

7. Related Work

Multiparty sessions. The first works on multiparty session types are (Bonelli and Compagnoni,
2008) and (Honda et al., 2008). The paper (Bonelli and Compagnoni, 2008) uses a distributed
calculus where each channel connects a master endpoint to one or more slave endpoints; instead
of global types, they solely use (recursion-free) local types. For type checking, local types are
projected to binary sessions, so that type safety is ensured using duality, but it loses sequencing
information: hence progress in a session interleaved with other sessions is not guaranteed.

The present calculus is an essential improvement and simplification of (Honda et al., 2008):
both processes and types in (Honda et al., 2008) share a vector of channels and each communica-
tion uses one of these channels. In the present work, processes and types use indexes for denoting
the participants of a session. The new communication type system improves the one of (Honda
et al., 2008) in three main technical points without sacrificing its expressivity. First, it avoids the
overhead of global linearity-check in (Honda et al., 2008) because our global types automati-
cally satisfy the linearity condition in (Honda et al., 2008) due to the limitation to bi-directional
channel communications. Second, it provides a more liberal policy in the use of variables in
delegation since we do not require to delegate a set of session channels. Finally, it implicitly
provides each participant of a service with a runtime channel indexed by its role on which he
can communicate with all other participants, therefore enabling broadcast communication in a
natural way. The use of indexed channels, moreover, allows to define light-weight interaction
type system. The global types in (Honda et al., 2008) have a parallel composition operator, but
its projectability from global to local types limits to disjoint senders and receivers; hence our
global types do not affect the expressivity.

Further works on multiparty session types include: Java protocol optimisation (Sivaramakr-



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 28

ishnan et al., 2010), a generation of multiparty cryptographic protocols (Bhargavan et al., 2009),
asynchronous commutative multiparty session types for a refinement (Mostrous et al., 2009),
parametrised global types for parallel programming and Web service descriptions (Deniélou
et al., 2012), access control and secrecy (Capecchi et al., 2010a), communication buffered anal-
ysis (Deniélou and Yoshida, 2010), extensions to the sumtype and its encoding (Nielsen et al.,
2010), applications to Healthcare (Henriksen et al., 2013) and exception handling for multiparty
conversations (Capecchi et al., 2010b). Multiparty session types can be extended with logical as-
sertions following design by contract framework (Bocchi et al., 2010). A recent work (Chen and
Honda, 2012) offers more fine-grained property analysis for multiparty session types with state-
ful logical assertions. The inference of global types from a set of local types is studied in (Lange
and Tuosto, 2012). In (Deniélou and Yoshida, 2011) roles are inhabited by an arbitrary number
of participants which can dynamically join and leave. The paper (Swamy et al., 2011) shows
that the multirole session types (Deniélou and Yoshida, 2011) can be naturally represented in a
dependent-typed language. To enhance expressivity and flexibility of multiparty session types,
the work (Demangeon and Honda, 2012) proposes nested, higher-order multiparty session types
and the work (Castagna et al., 2012) studies a generalisation of choices and parallelism. The
paper (Carbone and Montesi, 2013) directly types a global description language (Carbone et al.,
2012) by multiparty session types without using local types. This direct approach can type pro-
cesses which are untypable in the original multiparty session types (i.e. the communication typ-
ing system in this article). The paper (Montesi and Yoshida, 2013) extends the work in (Carbone
and Montesi, 2013) to compositional global languages. The work (Deniélou and Yoshida, 2012)
gives a linkage between communicating automata (Brand and Zafiropulo, 1983) and a general
graphical version of multiparty session types, proving a one-to-one correspondence between the
properties of communicating automata and multiparty session types. The paper (Deniélou and
Yoshida, 2013) studies the sound and complete characterisation of the multiparty session types
in communicating automata and applies the result to the synthesis of the multiparty session types.
The work (Kouzapas and Yoshida, 2013) shows semantics effects of the multiparty session types
in the context of typed bisimulations and reduction-closed theories.

Progress. Our notion of progress is strongly related to, and partly inspired from, the notion of
lock-freedom in (Kobayashi, 2002), where the author develops a type system to assure it. Intu-
itively, a process is lock-free if, no matter how it reduces, every top-level prefix can be eventually
consumed. In our case this roughly corresponds to the property that no process gets stuck on an
input action and that every message in a queue can be received. Kobayashi’s type system seems
capable of a much more fine-grained analysis than our type system. However, despite the similar-
ities between progress and lock-freedom, the two type systems are difficult to compare, because
of several major differences in both processes and types. In addition to the fact that we consider
progress modulo the availability of catalysers, our type system is given for an asynchronous lan-
guage with a native notion of (multiparty) session, while Kobayashi’s type system is defined for
a basic variant of the synchronous, pure π-calculus. A natural way for comparing these analysis
techniques would require compiling a session-based process into the π-calculus (Dardha et al.,
2012), and then using Kobayashi’s type system for reasoning on progress of the original process
in terms of lock-freedom of the one resulting from the compilation. Using this technique we have
been able to prove progress for some processes that are ill-typed according to the interaction type



Global Progress for Dynamically Interleaved Multiparty Sessions 29

system. In general, however, the compilation may also produce processes that are ill-typed ac-
cording to (Kobayashi, 2002) and, in some cases, Kobayashi’s type system is unable to prove
progress even for careful encodings of some session-based processes. For example, the process

def X(y) = y!〈1,75〉.a[2](z).z!〈1,74〉.z?(1,x).X〈y〉 in
def Y (y) = y?(2,x).a[1](z).z?(2,x′).z!〈2,x〉.Y 〈y〉 in
b[2](y).X〈y〉 | b[1](y).Y 〈y〉

which is well typed in both the communication and interaction type systems can be encoded as

∗X?(y).(y!〈75〉 | (νz)a!〈z〉.z!〈74〉.z?(x).X!〈y〉)
| ∗Y ?(y).y?(x).a?(z).z?(x′).(z!〈x〉 | Y !〈y〉)
| (νy)(b!〈y〉 | X!〈y〉) | b?(y).Y !〈y〉

where we represent recursive process definitions with replications, session initiations with bound
outputs, and asynchronous communication with output actions without continuations. Yet Kobayashi’s
type system is unable to prove that this process has the progress property.

A strategy that is alternative to compiling/encoding session-based processes is to lift the tech-
nique underlying Kobayashi’s type system to a session type system for reasoning directly on the
progress properties of processes. Although a formal investigation pursuing this strategy has not
been published yet, some preliminary experiments are very promising (Padovani, 2013): not only
the obtained type system is simpler than the one defined in the present paper, but it is also capable
of proving progress for processes that are ill-typed according to the interaction type system. For
example, the process

a[2](y).b[2](z).y?(1,x).z!〈1,x〉.z?(1,x′).y!〈1,x′〉.y?(1,x′′).z!〈1,x′′〉
| a[1](y).b[1](z).y!〈2,74〉.z?(2,x).z!〈2,75〉.y?(2,x′).y!〈2,x′〉.z?(2,x′′)

is not typable in the interaction type system because of the mutual dependencies between the
a and b service names, but can be typed using Kobayashi’s technique because in that case de-
pendencies are associated with the single actions of a session type, instead of service names.
Interestingly, the structure given by sessions seems capable of simplifying some technical as-
pects of Kobayashi’s original type system as well.

The main obstacle to assure progress for the calculus CaSPiS (Calculus of Sessions and
Pipelines) (Boreale et al., 2008) is the presence of pipes, since sessions are nested and there
is no delegation. For this calculus both (Bruni and Mezzina, 2008) and (Acciai and Boreale,
2008) propose type systems guaranteeing deadlock-freeness: the types in (Acciai and Boreale,
2008) are CCS-like terms and a large set of processes turns out to be typable.

Some ideas for assuring deadlock-freeness for the calculus SSCC (Stream-based Service Cen-
tred Calculus) are discussed in (Lanese et al., 2007). The problem in this case is to avoid a service
waiting for a value from a stream, which can be produced only after the service execution has
been completed.

(Caires and Vieira, 2010) proposes a sophisticated proof system which builds a well-founded
ordering on events (similar to the line of (Yoshida, 1996)) to enforce progress for processes
of the Conversation Calculus (Vieira et al., 2008), also in presence of dynamic join and leave
of participants. Their progress is guaranteed under the assumption that all communications are
matched with sufficient joiners.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 30

Formal theories of contracts using multiparty interaction structures are studied in (Castagna
and Padovani, 2009). Contracts record the overall behaviour of a process, and typable processes
themselves may not always satisfy properties such as progress: it is proved later by checking
whether a whole contract satisfies a certain form. Proving properties with contracts requires an
exploration of all possible interleaved or non-deterministic paths of a protocol.

Most papers on service-oriented calculi only assure that clients are never stuck inside a single
session (Honda et al., 2008; Dezani-Ciancaglini and de’ Liguoro, 2010; Deniélou and Yoshida,
2011). The first papers considering progress for interleaved sessions required the nesting of ses-
sions in Java (Dezani-Ciancaglini et al., 2006; Coppo et al., 2007). These systems can guarantee
progress for only one single active binary session. The papers more related to the present one are
(Dezani-Ciancaglini et al., 2008) and (Carbone and Debois, 2010). In both these papers there are
constructions of processes providing missing participants, which are simpler than our catalysers
since the sessions are dyadic.

The definition of progress in (Dezani-Ciancaglini et al., 2008) is the same as that in (Bettini
et al., 2008), so it has the problem shown by the process P1 | P2 | P3 | P4 at page 14. The calculus
of (Dezani-Ciancaglini et al., 2008) has synchronous communications, a reduction rule for dele-
gation which spawns a new thread with the received channel, and permanent services. Progress
is assured by a type system based on a channel/service dependency similar to the present one, but
which does not consider nested service sets. Therefore the set of processes typable in (Dezani-
Ciancaglini et al., 2008) is strictly included in the set of processes typable by both the commu-
nication and the interaction systems, also when restricting to binary sessions. For example the
process R1 | R2 shown at page 19 is not typable in the system of (Dezani-Ciancaglini et al., 2008).

In (Carbone and Debois, 2010) like in (Dezani-Ciancaglini et al., 2008) communication is syn-
chronous, there are no recursive definitions of processes, and services can be replicated. Services
must be mutually independent. Thanks to these restrictions all closed user processes typable in
a (almost standard) session type system enjoy progress according to a definition similar to ours.
The proof uses an interesting graphical representation of session invocation interdependency.
This methodology allows to assure the progress for the process P13 shown at page 24, which
cannot be typed in the interaction type system. On the other hand the process P1 | P′2 of page 13
does not satisfy the requirement of mutual independence between services, which is enforced by
the type system of (Carbone and Debois, 2010).

Lastly we mention the paper (Buscemi et al., 2012), where progress is assured by taking ad-
vantage of constraints, whose solutions correspond to the executions of logic programs.

8. Conclusions

The programming framework presented in this paper relies on the concept of global types that
can be seen as the language to describe the model of the distributed communications, i.e., an
abstract high-level view of the protocol that all the participants will have to respect in order to
communicate in a multiparty session. The programmer will then write the program to implement
some communication protocols with possible interleavings; our communication and interaction
type systems check the types of the exchanged messages and the progress of the program.

We are currently designing and implementing a modelling and specification language with
multiparty session types (Savara, 2010; Scribble, 2008) for the standards of business and finan-



Global Progress for Dynamically Interleaved Multiparty Sessions 31

cial protocols with our industry collaborators (UNIFI, 2002; Honda et al., 2011; Honda et al.,
2013). This consists of three layers: the first layer is a global type which corresponds to a sig-
nature of class models in UML; the second one is for conversation models where signatures and
variables for multiple conversations are integrated; and the third layer includes extensions of the
existing languages (such as Java (Hu et al., 2008; Hu et al., 2010)) which implement conver-
sation models. We are currently considering to enrich this modelling framework with our type
discipline so that we can specify and ensure progress for executable conversations. The frame-
work of multiparty session types is effectively applicable to dynamic monitoring (Chen et al.,
2012; Bocchi et al., 2013) in Python (Hu et al., 2013) for controlling messaging in a large-
scale cyberinfrustructure for observing oceans (OOI, 2010). Finally multiparty session types can
guide writing safe, deadlock-free message-passing parallel programs: we implemented several
languages and built tool-chains (Ng et al., 2012a; Ng et al., 2011; Yoshida et al., 2008; Ng et al.,
2012b; Neykova et al., 2013) and a verification framework (Honda et al., 2012; Honda et al.,
2013) for high-performance computing which uses extensions of Scribble.

We plan to apply our approach to the multirole calculus of (Deniélou and Yoshida, 2011). We
conjecture that for this calculus catalysers could be avoided, since sessions are not stuck when
there are no participants in some role.

Acknowledgements We are grateful to Kohei Honda for his comments on an early version of
this paper. For session calculi the definition of progress itself is delicate and we acknowledge
Marco Carbone, Pierre-Malo Deniélou, Søren Debois and Fabrizio Montesi for enlightening dis-
cussions. We are indebted to Naoki Kobayashi for helping us in the comparisons between his
and our methodologies and to Gary Brown for his collaboration on an implementation of mul-
tiparty session types. Lastly we thanks the Concur reviewers and the reviewers of the present
submission for their careful reading, since we deeply revised this article following their sug-
gestions. The third author is partially supported by NSF Ocean Observatiries Initiative and EP-
SRC EP/G015635/01, EP/K011715/01 and EP/K034413. The first, second and fourth author
are partially supported by MIUR PRIN Project CINA Prot. 2010LHT4KM and Torino Univer-
sity/Compagnia San Paolo Project SALT.

References

Acciai, L. and Boreale, M. (2008). A Type System for Client Progress in a Service-Oriented Calculus. In
Concurrency, Graphs and Models, volume 5065 of LNCS, pages 642–658. Springer.

Bettini, L., Coppo, M., D’Antoni, L., Luca, M. D., Dezani-Ciancaglini, M., and Yoshida, N. (2008). Global
Progress in Dynamically Interleaved Multiparty Sessions. In CONCUR’08, volume 5201 of LNCS, pages
418–433. Springer.

Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., and Leifer, J. J. (2009). Cryptographic Protocol
Synthesis and Verification for Multiparty Sessions. In CSF’09, pages 124–140. IEEE Computer Society
Press.

Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., and Yoshida, N. (2013). Monitoring Networks through
Multiparty Session Types. In FMOODS/FORTE’13, volume 7892 of LNCS, pages 50–65. Springer.

Bocchi, L., Honda, K., Tuosto, E., and Yoshida, N. (2010). A Theory of Design-by-Contract for Distributed
Multiparty Interactions. In CONCUR’10, volume 6269 of LNCS, pages 162–176. Springer.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 32

Bonelli, E. and Compagnoni, A. (2008). Multipoint Session Types for a Distributed Calculus. In TGC’07,
volume 4912 of LNCS, pages 240–256. Springer.

Boreale, M., Bruni, R., De Nicola, R., and Loreti, M. (2008). Sessions and Pipelines for Structured Service
Programming. In FMOODS’08, volume 5051 of LNCS, pages 19–38. Springer.

Brand, D. and Zafiropulo, P. (1983). On Communicating Finite-State Machines. Journal of the ACM,
30:323–342.

Bruni, R. and Mezzina, L. G. (2008). Types and Deadlock Freedom in a Calculus of Services, Sessions and
Pipelines. In AMAST’08, volume 5140 of LNCS, pages 100–115. Springer.

Buscemi, M. G., Coppo, M., Dezani-Ciancaglini, M., and Montanari, U. (2012). Constraints for Service
Contracts. In TGC’11, volume 7173 of LNCS, pages 104–120. Springer.

Caires, L. and Vieira, H. T. (2010). Conversation Types. Theoretical Computer Science, 411(51-52):4399–
4440.

Capecchi, S., Castellani, I., Dezani-Ciancaglini, M., and Rezk, T. (2010a). Session Types for Access and
Information Flow Control. In CONCUR’10, volume 6269 of LNCS, pages 237–252. Springer.

Capecchi, S., Giachino, E., and Yoshida, N. (2010b). Global Escape in Multiparty Sessions. In FSTTCS’10,
volume 8 of LIPIcs, pages 338–351. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

Carbone, M. and Debois, S. (2010). A Graphical Approach to Progress for Structured Communication in
Web Services. In ICE’10, volume 38 of EPTCS, pages 13–27.

Carbone, M., Honda, K., and Yoshida, N. (2012). Structured Communication-Centered Programming for
Web Services. ACM Transactions on Programming Languages and Systems, 34(2):8.

Carbone, M. and Montesi, F. (2013). Deadlock-freedom-by-design: Multiparty Asynchronous Global Pro-
gramming. In POPL’13, pages 263–274. ACM.

Castagna, G., Dezani-Ciancaglini, M., and Padovani, L. (2012). On Global Types and Multi-Party Session.
Logical Methods in Computer Science, 8(1):24.

Castagna, G. and Padovani, L. (2009). Contracts for Mobile Processes. In CONCUR’09, volume 5710 of
LNCS, pages 211–228. Springer.

Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., and Yoshida, N. (2012). Asynchronous Distributed
Monitoring for Multiparty Session Enforcement. In TGC’11, volume 7173 of LNCS, pages 25–45.
Springer.

Chen, T.-C. and Honda, K. (2012). Specifying Stateful Asynchronous Properties for Distributed Programs.
In CONCUR’12, volume 7454 of LNCS, pages 209–224. Springer.

Coppo, M., Dezani-Ciancaglini, M., Padovani, L., and Yoshida, N. (2013). Inference of Global Progress
Properties for Dynamically Interleaved Multiparty Sessions. In COORDINATION’13, volume 7890 of
LNCS, pages 45–59. Springer.

Coppo, M., Dezani-Ciancaglini, M., and Yoshida, N. (2007). Asynchronous Session Types and Progress
for Object-Oriented Languages. In FMOODS’07, volume 4468 of LNCS, pages 1–31. Springer.

Dardha, O., Giachino, E., and Sangiorgi, D. (2012). Session Types Revisited. In PPDP’12, pages 139–150.
ACM Press.

Demangeon, R. and Honda, K. (2012). Nested Protocols in Session Types. In CONCUR’12, volume 7454
of LNCS, pages 272–286. Springer.

Deniélou, P.-M. and Yoshida, N. (2010). Buffered Communication Analysis in Distributed Multiparty
Sessions. In CONCUR’10, volume 6269 of LNCS, pages 343–357. Springer.

Deniélou, P.-M. and Yoshida, N. (2011). Dynamic Multirole Session Types. In POPL’11, pages 435–446.
ACM Press.

Deniélou, P.-M. and Yoshida, N. (2012). Multiparty Session Types Meet Communicating Automata. In
ESOP’12, volume 7211 of LNCS, pages 194–213. Springer.

Deniélou, P.-M. and Yoshida, N. (2013). Multiparty Compatibility in Communicating Automata: Charac-
terisation and Synthesis of Global Session Types. In ICALP’13, volume 7966 of LNCS, pages 174–186.
Springer.



Global Progress for Dynamically Interleaved Multiparty Sessions 33

Deniélou, P.-M., Yoshida, N., Bejleri, A., and Hu, R. (2012). Parameterised Multiparty Session Types.
Logical Methods in Computer Science, 8(4).

Dezani-Ciancaglini, M. and de’ Liguoro, U. (2010). Sessions and Session Types: an Overview. In WS-
FM’09, volume 6194 of LNCS, pages 1–28. Springer.

Dezani-Ciancaglini, M., de’ Liguoro, U., and Yoshida, N. (2008). On Progress for Structured Communica-
tions. In TGC’07, volume 4912 of LNCS, pages 257–275. Springer.

Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., and Drossopoulou, S. (2006). Session Types for Object-
Oriented Languages. In ECOOP’06, volume 4067 of LNCS, pages 328–352. Springer.

Henriksen, A., Nielsen, L., Hildebrandt, T., Yoshida, N., , and Henglein, F. (2013). Trustworthy Pervasive
Healthcare Services via Multi-party Session Type. In FHIES’12, volume 7789 of LNCS, pages 124–141.

Honda, K., Hu, R., Neykova, R., Chen, T.-C., Demangeon, R., Deniélou, P.-M., and Yoshida, N. (2013).
Structuring Communication with Session Types. In COB’12, LNCS. Springer. To appear.

Honda, K., Marques, E. R. B., Martins, F., Ng, N., Vasconcelos, V. T., and Yoshida, N. (2012). Verification
of MPI Programs Using Session Types. In EuroMPI, volume 7490 of LNCS, pages 291–293. Springer.

Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., and Yoshida, N. (2011). Scribbling Interactions with
a Formal Foundation. In ICDCIT’11, volume 6536 of LNCS, pages 55–75. Springer.

Honda, K., Vasconcelos, V. T., and Kubo, M. (1998). Language Primitives and Type Disciplines for Struc-
tured Communication-based Programming. In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer.

Honda, K., Yoshida, N., and Carbone, M. (2008). Multiparty Asynchronous Session Types. In POPL’08,
pages 273–284. ACM Press.

Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., and Honda, K. (2010). Type-Safe Eventful Sessions in Java.
In ECOOP’10, volume 6183 of LNCS, pages 329–353. Springer.

Hu, R., Neykova, R., Yoshida, N., Demangeon, R., and Honda, K. (2013). Practical Interruptible Conver-
sations: Distributed Dynamic Verification with Session Types and Python. In ICRV’13, LNCS. Springer.
To appear.

Hu, R., Yoshida, N., and Honda, K. (2008). Session-Based Distributed Programming in Java. In ECOOP’08,
volume 5142 of LNCS, pages 516–541. Springer.

Kobayashi, N. (2002). A Type System for Lock-Free Processes. Information and Computation, 177:122–
159.

Kouzapas, D. and Yoshida, N. (2013). Governed Session Semantics. In CONCUR’13, LNCS. Springer. To
appear.

Lanese, I., Vasconcelos, V. T., Martins, F., and Ravara, A. (2007). Disciplining Orchestration and Conver-
sation in Service-Oriented Computing. In SEFM’07, pages 305–314. IEEE Computer Society Press.

Lange, J. and Tuosto, E. (2012). Synthesising Choreographies from Local Session Types. In CONCUR’12,
volume 7454 of LNCS, pages 225–239. Springer.

Milner, R. (1999). Communicating and Mobile Systems: the π-Calculus. Cambridge University Press.
Montesi, F. and Yoshida, N. (2013). Compositional Choreographies. In CONCUR’13, LNCS. Springer. To

appear.
Mostrous, D., Yoshida, N., and Honda, K. (2009). Global Principal Typing in Partially Commutative Asyn-

chronous Sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332. Springer.
Neykova, R., Yoshida, N., and Hu, R. (2013). SPY:Local Verification of Global Protocols. In ICRV’13,

LNCS. Springer. To appear.
Ng, N., Yoshida, N., and Honda, K. (2012a). Multiparty Session C: Safe Parallel Programming with Mes-

sage Optimisation. In TOOLS’12, volume 7304 of LNCS, pages 202–218. Springer.
Ng, N., Yoshida, N., Niu, X., Tsoi, K. H., and Luke, W. (2012b). Session Types: towards Safe and Fast

Reconfigurable Programming. SIGARCH Computer Architecture News, 40(5):22–27.
Ng, N., Yoshida, N., Pernet, O., Hu, R., and Kryftis, Y. (2011). Safe Parallel Programming with Session

Java. In COORDINATION’11, volume 6721 of LNCS, pages 110–126. Springer.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 34

Nielsen, L., Yoshida, N., and Honda, K. (2010). Multiparty Symmetric Sum Types. In EXPRESS’10,
volume 41 of EPTCS, pages 121–135.

OOI (2010). Ocean Observatories Initiative. http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
Padovani, L. (2013). From Lock Freedom to Progress Using Session Types. In PLACES’13, EPTCS. to

appear.
Pierce, B. C. (2002). Types and Programming Languages. MIT Press.
Savara (2010). SAVARA JBoss RedHat Project. http://www.jboss.org/savara.
Scribble (2008). Scribble JBoss RedHat Project. http://www.jboss.org/scribble.
Sivaramakrishnan, K. C., Nagaraj, K., Ziarek, L., and Eugster, P. (2010). Efficient Session Type Guided

Distributed Interaction. In COORDINATION’10, volume 6116 of LNCS, pages 152–167. Springer.
Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., and Yang, J. (2011). Secure Distributed

Programming with Value-Dependent Types. In ICFP’11, pages 266–278. ACM Press.
UNIFI (2002). International Organization for Standardization ISO 20022 UNIversal Financial Industry

message scheme. http://www.iso20022.org.
Vieira, H. T., Caires, L., and Seco, J. (2008). The Conversation Calculus: A Model of Service-Oriented

Computation. In ESOP’08, volume 4960 of LNCS, pages 269–283. Springer.
Web Services Choreography Working Group (2002). Web Services Choreography Description Language.

http://www.w3.org/2002/ws/chor/.
Yoshida, N. (1996). Graph Types for Monadic Mobile Processes. In FSTTCS’96, volume 1180 of LNCS,

pages 371–386. Springer.
Yoshida, N. and Vasconcelos, V. T. (2007). Language Primitives and Type Disciplines for Structured

Communication-based Programming Revisited. In SecRet’06, volume 171 of ENTCS, pages 73–93.
Elsevier.

Yoshida, N., Vasconcelos, V. T., Paulino, H., and Honda, K. (2008). Session-Based Compilation Framework
for Multicore Programming. In FMCO’08, volume 5751 of LNCS, pages 226–246. Springer.

Appendix A. Communication Type System for Processes and its Properties

This appendix completes the description of the communication type system given in §4. §A.1
starts with typing rules for run time processes. Auxiliary lemmas, in particular inversion lemmas,
are the content of §A.2. Lastly §A.3 formulates subject reduction for arbitrary processes and
proves it.

A.1. Types and Typing Rules for Processes

We now extend the communication type system to processes containing queues.

Message Types M ::= !〈Π,U〉 message send
|| ⊕〈Π, l〉 message selection
|| M;M message sequence

Generalised τ ::= T session
|| M message
|| M;T continuation

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.jboss.org/savara
http://www.jboss.org/scribble
http://www.iso20022.org


Global Progress for Dynamically Interleaved Multiparty Sessions 35

(QINIT)
Γ `{s} s : �. /0

Γ `{s} s : h.∆ Γ ` v : S
(QSEND)

Γ `{s} s : h · (q,Π,v).∆;{s[q] : !〈Π,S〉}

Γ `{s} s : h.∆

(QDELEG)
Γ `{s} s : h · (q,p,s′[p′]). (∆;{s[q] : !〈p,T〉}),s′[p′] : T

Γ `{s} s : h.∆

(QSEL)
Γ `{s} s : h · (q,Π, l).∆;{s[q] :⊕〈Π, l〉}

Table 10. Typing rules for queues.

Message types are the types for queues: they represent the messages contained in the queues.
The message send type !〈Π,U〉 expresses the presence in a queue of an element of type U to
be communicated to all participants in Π. The message selection type ⊕〈Π, l〉 represents the
communication to all participants in Π of the label l and M;M represents sequencing of message
types (we assume associativity for “;”). For example ⊕〈{1,3},ok〉 is the message type for the
message (2,{1,3},ok).

A generalised type is either a session type, or a message type, or a message type followed by
a session type. Type M;T represents the continuation of the type M associated to a queue with
the type T associated to a pure process. Examples of generalised types are
⊕〈{1,3},ok〉; !〈3,string〉.?(3,date).end and⊕〈{1,3},ok〉; !〈3,string〉; ?(3,date).end, which only
differ for the replacement of the leftmost “.” by “;”. In the first the type !〈3,string〉 corresponds
to an output action sending a string to participant 3, while in the second type !〈3,string〉 corre-
sponds to a message for participant 3 with a value of type string. See the examples of typing
judgments at the end of this §.

We start by defining the typing rules for single queues, in which the turnstile ` is decorated
with {s} (where s is the session name of the current queue) and the session environments are
mappings from channels to message types. The empty queue has the empty session environment.
Each message adds an output type to the current type of the channel which has the role of the
message sender. Table 10 lists the typing rules for queues, where all types in session environments
are message types. The operator “;” between an arbitrary session environment and a session
environment containing only one association is defined by:

∆;{s[q] : M}=

{
∆′,s[q] : M′;M if ∆ = ∆′,s[q] : M′,

∆,s[q] : M otherwise.

For example we can derive `{s} s : (3,{1,2},ok).{s[3] :⊕〈{1,2},ok〉}.
For typing pure processes in parallel with queues, we need to use generalised types in session

environments and to add further typing rules.
In order to take into account the structural congruence between queues (see Table 4) we con-

sider message types modulo the equivalence relation ≈ induced by the rules shown in Table 11
(with \ ∈ {!,⊕} and Z ∈ {U, l}).

The equivalence relation on message types extends to generalised types by:

M ≈M′ implies M;τ ≈M′;τ



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 36

- M; \〈Π,Z〉; \′〈Π′,Z〉;M′ ≈M; \′〈Π′,Z〉; \〈Π,Z〉;M′ if Π∩Π′ = /0

- M; \〈Π,Z〉;M′ ≈M; \〈Π′,Z〉; \〈Π′′,Z〉;M′ if Π = Π′ ∪Π′′,Π′ ∩Π′′ = /0

Table 11. Equivalence relation on message types.

We say that two session environments ∆ and ∆′ are equivalent (notation ∆ ≈ ∆′) if c : τ ∈ ∆

and τ 6= end imply c : τ ′ ∈ ∆′ with τ ≈ τ ′ and vice versa. The reason for ignoring end types is
that rules (INACT) and (VAR) allow to freely introduce them.

In composing two session environments we want to put in sequence a message type and a
session type for the same channel with role. For this reason we define the partial composition ∗
between generalised types as:

τ ∗ τ ′ =

{
τ;τ ′ if τ is a message type,
τ ′;τ if τ ′ is a message type.

Notice that τ ∗ τ ′ is defined only if at least one between τ and τ ′ is a message type.
We extend ∗ to session environments as expected:

∆∗∆′ = ∆\dom(∆′)∪∆′\dom(∆)∪{c : τ ∗ τ ′ || c : τ ∈ ∆ ∧ c : τ ′ ∈ ∆′}.
Note that ∗ is commutative, i.e., ∆ ∗∆′ = ∆′ ∗∆. Also if we can derive message types only for
channels with roles, we consider channel variables in the definition of ∗ for session environments
since we want to get for example that {y : end} ∗ {y : end} is undefined (message types do not
contain end).

To give the rules for typing processes with queues we introduce consistency of session envi-
ronments, which assures that each pair of participants in a multiparty conversation performs their
mutual communications in a consistent way. Consistency is defined using the notions of projec-
tion of generalised types and of duality, given respectively in Definitions A.1 and A.2. Notice
that projection is not defined for message types.

Definition A.1. The partial projection of the generalised type τ onto q, denoted by τ � q, is
defined by:

(!〈Π,U〉.T ) � q=

{
!U.T � q if q ∈Π,

T � q otherwise.
(?(p,U).T ) � q=

{
?U.T � q if p= q,

T � q otherwise.

( !〈Π,U〉;τ ′) � q=

{
!U ;τ ′ � q if q ∈Π,

τ ′ � q otherwise.
(⊕〈Π, l〉;τ ′) � q=

{
⊕l;τ ′ � q if q ∈Π,

τ ′ � q otherwise.

(⊕〈Π,{li : Ti}i∈I〉) � q=

{
⊕{li : Ti � q}i∈I if q ∈Π,

T1 � q if q 6∈Π and Ti � q= Tj � q for all i, j ∈ I.

(&(p,{li : Ti}i∈I)) � q=

{
&{li : Ti � q}i∈I if q= p,

T1 � q if q 6= p and Ti � q= Tj � q for all i, j ∈ I.

(µt.T ) � q=

{
µt.(T � q) if T � q 6= t,
end otherwise.

t � q= t end � q= end

Definition A.2. The duality relation between projections of generalised types (./) is the minimal
symmetric relation which satisfies:

end ./ end t ./ t T ./ T′ =⇒ µt.T ./ µt.T′



Global Progress for Dynamically Interleaved Multiparty Sessions 37

T ./ T′ =⇒ !U.T ./ ?U.T′ T ./ T′ =⇒ !U ;T ./ ?U.T′

∀i ∈ I Ti ./ T
′
i =⇒ ⊕{li : Ti}i∈I ./ &{li : T′i}i∈I

∃i ∈ I l = li ∧ T ./ Ti =⇒ ⊕l;T ./ &{li : Ti}i∈I

where T ranges over projections of generalised types.

Definition A.3. A session environment ∆ is consistent for the session s (notation co(∆,s)) if
s[p] : τ ∈ ∆ and s[q] : τ ′ ∈ ∆ imply τ � q ./ τ ′ � p. A session environment is consistent if it is
consistent for all sessions which occur in it.

It is easy to check that projections of a same global type are always dual.

Proposition A.4. Let G be a global type and p 6= q. Then (G � p) � q ./ (G � q) � p.

This proposition assures that session environments obtained by projecting global types are always
consistent.

The vice versa is not true, i.e. there are consistent session environments which are not projec-
tions of global types. An example is:

{s[1] :?(2,bool).!〈3,bool〉.end,s[2] :?(3,bool).!〈1,bool〉.end,s[3] :?(1,bool).!〈2,bool〉.end}

Note that for sessions with only two participants, instead, all consistent session environments are
projections of global types.

Table 12 lists the typing rules for processes containing queues. The judgement Γ `Σ P . ∆

means that P contains the queues whose session names are in Σ. Rule (GINIT) promotes the
typing of a pure process to the typing of an arbitrary process without session names, since a
pure process does not contain queues. When two arbitrary processes are put in parallel (rule
(GPAR)) we need to require that each session name is associated to at most one queue (condition
Σ∩ Σ′ = /0). In rule (GSRES) we require the consistency of the session environment ∆ with
respect to the session name s to be restricted (condition co(∆,s)).

Examples of derivable judgements are:

`{s} P | s : (3,{1,2},ok).{s[3] :⊕〈{1,2},ok〉; !〈1,string〉.?(1,date).end}

where P = s[3]!〈1,"Address"〉;s[3]?(1,date);0 and

`{s} P′ | s : (3,{1,2},ok) · (3,1,"Address").{s[3] :⊕〈{1,2},ok〉; !〈1,string〉; ?(1,date).end}

Γ ` P.∆

(GINIT)
Γ ` /0 P.∆

Γ `Σ P.∆ ∆≈ ∆
′

(EQUIV)
Γ `Σ P.∆

′

Γ `Σ P.∆ Γ `Σ′ Q.∆
′

Σ∩Σ
′ = /0

(GPAR)
Γ `Σ∪Σ′ P | Q.∆∗∆

′

Γ `Σ P.∆ co(∆,s)
(GSRES)

Γ `Σ\s (νs)P.∆\ s

Γ,a : G `Σ P.∆

(GNRES)
Γ `Σ (νa : G)P.∆

Γ,X : S t,x : S ` P.{y : T} Γ,X : S µt.T `Σ Q.∆

(GDEF)
Γ `Σ def X(x,y) = P in Q.∆

Table 12. Typing rules for processes.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 38

where P′ = s[3]?(1,date);0. Note that

P | s : (3,{1,2},ok)−→ P′ | s : (3,{1,2},ok) · (3,1,"Address")

A simple example showing that consistency is necessary for subject reduction is the process:

P = s[1]!〈2, true〉.s[1]?(2,x).0 | s[2]?(1,x′).s[2]!〈1,x′+1〉.0

which can be typed with the non consistent session environment

{s[1] :!〈2,bool〉.?(2,nat).end,s[2] :?(1,nat).!〈1,nat〉.end}

In fact P reduces to the process

s[1]?(2,x).0 | s[2]!〈1, true+1〉.0

which cannot be typed and it is stuck.

A.2. Auxiliary Lemmas

We start with inversion lemmas which can be easily shown by induction on derivations.

Lemma A.5 (Inversion Lemma for Pure Processes).

1 If Γ ` u : S, then u : S ∈ Γ.
2 If Γ ` true : S, then S = bool.
3 If Γ ` false : S, then S = bool.
4 If Γ ` e1 and e2 : S, then Γ ` e1 : bool and Γ ` e2 : bool and S = bool.
5 If Γ ` a [p](y).P.∆, then Γ ` a : G and Γ ` P.∆,y : G � p and p= mp(G).
6 If Γ ` a[p](y).P.∆, then Γ ` a : G and Γ ` P.∆,y : G � p and p< mp(G).
7 If Γ ` c!〈Π,e〉.P.∆, then ∆ = ∆′,c : !〈Π,S〉.T and Γ ` e : S and Γ ` P.∆′,c : T .
8 If Γ ` c?(q,x).P.∆, then ∆ = ∆′,c :?(q,S).T and Γ,x : S ` P.∆′,c : T .
9 If Γ ` c!〈〈p,c′〉〉.P.∆, then ∆ = ∆′,c : !〈p,T〉.T,c′ : T and Γ ` P.∆′,c : T .
10 If Γ ` c?((q,y)).P.∆, then ∆ = ∆′,c :?(q,T).T and Γ ` P.∆′,c : T,y : T.
11 If Γ ` c⊕〈Π, l j〉.P.∆, then ∆ = ∆′,c :⊕〈Π,{li : Ti}i∈I〉 and Γ ` P.∆′,c : Tj and j ∈ I.
12 If Γ ` c&(p,{li : Pi}i∈I).∆, then ∆ = ∆′,c : &(p,{li : Ti}i∈I) and Γ ` Pi .∆′,c : Ti ∀i ∈ I.
13 If Γ ` P | Q.∆, then ∆ = ∆′,∆′′ and Γ ` P.∆′ and Γ ` Q.∆′′.
14 If Γ ` if e then P else Q.∆, then Γ ` e : bool and Γ ` P.∆ and Γ ` Q.∆.
15 If Γ ` 0.∆, then ∆ end only.
16 If Γ ` (νa : G)P.∆, then Γ,a : G ` P.∆.
17 If Γ ` X〈e,c〉.∆, then Γ = Γ′,X : S T and ∆ = ∆′,c : T and Γ ` e : S and ∆′ end only.
18 If Γ ` def X(x,y) = P in Q.∆, then Γ,X : S t,x : S ` P.{y : T} and Γ,X : S µt.T ` Q.∆.

Lemma A.6 (Inversion Lemma for Processes).

1 If Γ `Σ P.∆ and P is a pure process, then Σ = /0 and Γ ` P.∆.
2 If Γ `Σ s : h.∆, then Σ = {s}.
3 If Γ `{s} s :�.∆, then ∆ end only.
4 If Γ `{s} s : h · (q,Π,v).∆, then ∆≈ ∆′;{s[q] : !〈Π,S〉} and Γ `{s} s : h.∆′ and Γ ` v : S.
5 If Γ `{s} s : h · (q,p,s′[p′]).∆, then ∆≈ (∆′;{s[q] : !〈p,T〉}),s′[p′] : T and Γ `{s} s : h.∆′.



Global Progress for Dynamically Interleaved Multiparty Sessions 39

6 If Γ `{s} s : h · (q,Π, l).∆, then ∆≈ ∆′;{s[q] :⊕〈Π, l〉} and Γ `{s} s : h.∆′.
7 If Γ `Σ P | Q .∆, then Σ = Σ1 ∪Σ2 and Σ1 ∩Σ2 = /0 and ∆ = ∆1 ∗∆2 and Γ `Σ1 P .∆1 and

Γ `Σ2 Q.∆2.
8 If Γ `Σ (νs)P.∆, then Σ = Σ′ \ s and ∆ = ∆′ \ s and co(∆′,s) and Γ `Σ′ P.∆′.
9 If Γ `Σ (νa : G)P.∆, then Γ,a : G `Σ P.∆.
10 If Γ `Σ def X(x,y) = P in Q.∆, then Γ,X : S t,x : S ` P. y : T and Γ,X : S µt.T `Σ Q.∆.

The following lemma allows to characterise the types due to the messages which occur in
queues. The proof is standard by induction on the lengths of queues.

Lemma A.7.

1 If Γ`{s} s : h1 ·(q,Π,v) ·h2.∆, then ∆=∆1∗{s[q] : !〈Π,S〉}∗∆2 and Γ`{s} s : hi.∆i (i= 1,2)
and Γ ` v : S.
Vice versa Γ `{s} s : hi .∆i (i = 1,2) and Γ ` v : S imply
Γ `{s} s : h1 · (q,Π,v) ·h2 .∆1 ∗{s[q] : !〈Π,S〉}∗∆2.

2 If Γ `{s} s : h1 · (q,p,s′[p′]) ·h2 .∆, then ∆ = (∆1 ∗{s[q] : !〈p,T〉}∗∆2),s′[p′] : T and
Γ `{s} s : hi .∆i (i = 1,2).
Vice versa Γ `{s} s : hi .∆i (i = 1,2) imply
Γ `{s} s : h1 · (q,p,s′[p′]) ·h2 . (∆1 ∗{s[q] : !〈p,T〉}∗∆2),s′[p′] : T.

3 If Γ `{s} s : h1 · (q,Π, l) · h2 . ∆, then ∆ = ∆1 ∗ {s[q] : ⊕〈Π, l〉} ∗ ∆2 and Γ `{s} s : hi . ∆i

(i = 1,2).
Vice versa Γ `{s} s : hi .∆i (i = 1,2) imply
Γ `{s} s : h1 · (q,Π, l) ·h2 .∆1 ∗{s[q] :⊕〈Π, l〉}∗∆2.

We end this § with two classical results: type preservation under substitution and under equiv-
alence of processes.

Lemma A.8 (Substitution lemma).

1 If Γ,x : S ` P.∆ and Γ ` v : S, then Γ ` P{v/x}.∆.
2 If Γ ` P.∆,y : T , then Γ ` P{s[p]/y}.∆,s[p] : T .

Proof. Standard induction on type derivations, with a case analysis on the last applied rule.

Theorem A.9 (Type Preservation under Equivalence). If Γ `Σ P.∆ and P≡ P′, then
Γ `Σ P′ .∆.

Proof. By induction on ≡. We only consider some interesting cases (the other cases are
straightforward).

— P | 0 ≡ P. First we assume Γ `Σ P .∆. From Γ ` /0 0 . /0 by applying (GPAR) to these two
sequents we obtain Γ `Σ P|0.∆.
For the converse direction assume Γ `Σ P|0.∆. Using A.6(7) we obtain: Γ `Σ1 P.∆1,
Γ `Σ2 0.∆2, where ∆ = ∆1 ∗∆2, Σ = Σ1∪Σ2 and Σ1∩Σ2 = /0. Using A.6(1) we get Σ2 = /0,
which implies Σ = Σ1, and Γ ` 0 . ∆2. Using A.5(15) we get ∆2 end only which implies
∆1 ≈ ∆1 ∗∆2, so we conclude Γ `Σ P.∆1 ∗∆2 by applying (EQUIV).

— P | Q≡ Q | P. By the symmetry of the rule we have to show only one direction. Suppose
Γ `Σ P | Q.∆. Using A.6(7) we obtain Γ `Σ1 P.∆1, Γ `Σ2 Q.∆2, where ∆ = ∆1 ∗∆2,



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 40

Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 = /0. Using (GPAR) we get Γ `Σ Q | P .∆2 ∗∆1. Thanks to the
commutativity of ∗, we get ∆2 ∗∆1 = ∆ and so we are done.

— P | (Q | R)≡ (P | Q) | R. Suppose Γ `Σ P | (Q | R).∆. Using A.6(7) we obtain Γ `Σ1 P.∆1,
Γ `Σ2 Q | R .∆2, where ∆ = ∆1 ∗∆2, Σ = Σ1 ∪Σ2 and Σ1 ∩Σ2 = /0. Using A.6(7) we obtain
Γ `Σ21 Q.∆21, Γ `Σ22 R.∆22 where ∆2 = ∆21 ∗∆22, Σ2 = Σ21∪Σ22 and Σ21∩Σ22 = /0. Using
(GPAR) we get Γ `Σ1∪Σ21 P | Q.∆1 ∗∆21. Using (GPAR) again we get
Γ `Σ (P | Q) | R .∆1 ∗∆21 ∗∆22 and so we are done by the associativity of ∗. The proof for
the other direction is similar.

— s : h1 · (q,Π,v) · (q′,Π′,v′) ·h2 ≡ s : h1 · (q′,Π′,v′) · (q,Π,v) ·h2 where Π∩Π′ = /0 or q 6= q′.
We assume Π∩Π′ = /0 and q = q′, the proof in the case q 6= q′ being similar and sim-
pler. If Γ `Σ s : h1 · (q,Π,v) · (q,Π′,v′) ·h2 .∆, then Σ = {s} by Lemma A.6(2). This implies
∆=∆1∗{s[q] : !〈Π,S〉; !〈Π′,S′〉}∗∆2 and Γ`{s} s : hi.∆i (i= 1,2) and Γ` v : S and Γ` v′ : S′

by Lemma A.7(1). By the same lemma we can derive
Γ `{s} s : h1 · (q,Π′,v′) · (q,Π,v) ·h2 .∆1 ∗{s[q] : !〈Π′,S′〉; !〈Π,S〉}∗∆2,

and we conclude using rule (EQUIV), since by definition ∆1 ∗{s[q] : !〈Π′,S′〉; !〈Π,S〉}∗∆2 ≈
∆.

— s : h1 · (q,Π,v) ·h2 ≡ s : h1 · (q,Π′,v) · (q,Π′′,v) ·h2 where Π = Π′∪Π′′ and Π′∩Π′′ = /0. If
Γ `Σ s : h1 · (q,Π,v) ·h2 .∆, then Σ = {s} by Lemma A.6(2). This implies

∆ = ∆1 ∗{s[q] : !〈Π,S〉}∗∆2 and Γ `{s} s : hi .∆i (i = 1,2) and Γ ` v : S
by Lemma A.7(1). By the same lemma we can derive

Γ `{s} s : h1 · (q,Π′,v) · (q,Π′′,v) ·h2 .∆1 ∗{s[q] : !〈Π′,S〉; !〈Π′′,S〉}∗∆2,
and we conclude using rule (EQUIV), since by definition ∆1∗{s[q] : !〈Π′,S〉; !〈Π′′,S〉}∗∆2≈
∆.

A.3. Subject Reduction

Since session environments represent the forthcoming communications, by reducing processes
session environments can change. This can be formalised as in (Honda et al., 2008) by introduc-
ing the notion of reduction of session environments, whose rules are:

— {s[p] : M; !〈Π,U〉.T} ⇒ {s[p] : M; !〈Π,U〉;T}
— {s[p] : !〈q,U〉;τ,s[q] : M; ?(p,U).T} ⇒ {s[p] : τ,s[q] : M;T}
— {s[p] : M;⊕〈Π,{li : Ti}i∈I〉} ⇒ {s[p] : M;⊕(Π, l j);Tj} for j ∈ I
— {s[p] :⊕〈q, l〉;τ,s[q] : M;&(p,{li : Ti}i∈I)} ⇒ {s[p] : τ,s[q] : M;Ti} if l = li
— ∆,∆′′ ⇒ ∆′,∆′′ if ∆ ⇒ ∆′

where M and τ can be missing and message types are considered modulo the equivalence relation
of Table 11.
The first rule corresponds to putting in a queue a message with sender p, set of receivers Π and
content of type U . The second rule corresponds to reading from a queue a message with sender p,
receiver q and content of type U . The third and fourth rules are similar, but a label is transmitted.

Notice that not all the left-hand-sides of the reduction rules for processes are typed by consis-
tent session environments. For example,

Γ `Σ s[1]?(2,x).s[1]?(2,y).0 | s : (2,{1}, true).{s[1] :?(2,bool).?(2,nat).end,s : [2] : !〈bool,1〉}



Global Progress for Dynamically Interleaved Multiparty Sessions 41

Observe that s[1]?(2,x).s[1]?(2,y).0 | s : (2,{1}, true) matches the left-hand-side of the reduction
rule [Rcv] and {s[1] :?(2,bool).?(2,nat).end,s : [2] : !〈bool,1〉} is not consistent. The process ob-
tained by putting this network in parallel with s[2]!〈1,7〉.0 has a consistent session environment.
It is then crucial to show that if the left-hand-side of a reduction rule is typed by a session en-
vironment, which is consistent when composed with some other session environment, then the
same property holds for the right-hand-side too. It is sufficient to consider the reduction rules
which do not contain process reductions as premises, i.e. which are the leaves in the reduction
trees. This is formalised in the following lemma, which is the key step for proving the Subject
Reduction Theorem.

Lemma A.10. (Key Lemma) Let Γ `Σ P .∆, and P −→ P′ be obtained by any reduction rule
different from [Ctxt], [Str], and ∆ ∗∆0 be consistent, for some ∆0. Then there is ∆′ such that
Γ `Σ P′ .∆′ and ∆ ⇒∗ ∆′ and ∆′ ∗∆0 is consistent.

Proof. The proof is by cases on process reduction rules. We only consider some paradigmatic
cases.

— [Init] a[1](y).P1 | ... | a [n](y).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/y} | s :�).
By hypothesis Γ `Σ a[1](y).P1 | a[2](y2).P2 | . . . | a [n](y).Pn .∆; then, since the redex is a
pure process, Σ = /0 and Γ ` a[1](y).P1 | a[2](y2).P2 | . . . | a [n](y).Pn .∆ by Lemma A.6(1).
Using Lemma A.5(13) on all the processes in parallel we have

Γ ` a[i](y).Pi .∆i (1≤ i≤ n−1) (1)

Γ ` a [n](y).Pn .∆n (2)

where ∆ =
⋃n

i=1 ∆i. Using Lemma A.5(6) on (1) we have

Γ ` a : G

Γ ` Pi .∆i,y : G � i (1≤ i≤ n−1). (3)

Using Lemma A.5(5) on (2) we have

Γ ` a : G

Γ ` Pn .∆n,y : G � n (4)

and mp(G) = n. Using Lemma A.8(2) on (4) and (3) we have

Γ ` Pi{s[i]/y}.∆i,s[i] : G � i (1≤ i≤ n). (5)

Using (PAR) on all the processes of (5) we have

Γ ` P1{s[1]/y}|...|Pn{s[n]/y}.
⋃n

i=1(∆i,s[i] : G � i). (6)

Note that
⋃n

i=1(∆i,s[i] : G � i) = ∆,s[1] : G � 1, . . . ,s[n] : G � n. Using (GINIT), (QINIT) and
(GPAR) on (6) we derive

Γ `{s} P1{s[1]/y}|...|Pn{s[n]/y} | s :�.∆,s[1] : G � 1, . . . ,s[n] : G � n. (7)

Using (GSRES) on (7) we conclude

Γ ` /0 (νs)(P1{s[1]/y}|...|Pn{s[n]/y} | s :�).∆



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 42

since {s[1] : G � 1, . . . ,s[n] : G � n} is consistent and (∆,s[1] : G � 1, . . . ,s[n] : G � n)\ s = ∆.

— [Send] s[p]!〈Π,e〉.P | s : h−→ P | s : h · (p,Π,v) (e ↓ v).
By hypothesis, Γ `Σ s[p]!〈Π,e〉.P | s : h . ∆. Using Lemma A.6(7), (1), and (2) we have
Σ = {s} and

Γ ` s[p]!〈Π,e〉.P.∆1 (8)

Γ `{s} s : h.∆2 (9)

where ∆ = ∆2 ∗∆1. Using A.5(7) on (8) we have

∆1 = ∆′1,s[p] : !〈Π,S〉.T
Γ ` e : S (10)

Γ ` P.∆′1,s[p] : T. (11)

From (10) by subject reduction on expressions we have

Γ ` v : S. (12)

Using (QSEND) on (9) and (12) we derive

Γ `{s} s : h · (q,Π,v).∆2;{s[p] : !〈Π,S〉}. (13)

Using (GINIT) on (11) we derive

Γ ` /0 P.∆
′
1,s[p] : T (14)

and then using (GPAR) on (14), (13) we conclude

Γ `{s} P | s : h · (q,Π,v). (∆2;{s[p] : !〈Π,S〉})∗ (∆′1,s[p] : T ).

Note that ∆2∗(∆′1,s[p] : !〈Π,S〉.T ) ⇒ (∆2;{s[p] : !〈Π,S〉})∗(∆′1,s[p] : T ) and the consistency
of (∆2 ∗ (∆′1,s[p] : !〈Π,S〉.T ))∗∆0 implies the consistency of
((∆2;{s[p] : !〈Π,S〉})∗ (∆′1,s[p] : T ))∗∆0.

— [Rcv] s[p]?(q,x).P | s : (q,{p},v) ·h−→ P{v/x} | s : h.
By hypothesis, Γ `Σ s[p]?(q,x).P | s : (q,{p},v) · h .∆. By Lemma A.6(7), (1), and (2) we
have Σ = {s} and

Γ ` s[p]?(q,x).P.∆1 (15)

Γ `{s} s : (q,{p},v) ·h.∆2 (16)

where ∆ = ∆2 ∗∆1. Using Lemma A.5(8) on (15) we have

∆1 = ∆′1,s[p] :?(q,S).T

Γ,x : S ` P.∆′1,s[p] : T (17)

Using Lemma A.7(1) on (16) we have

∆2 = {s[q] : !〈{p},S′〉}∗∆′2

Γ `{s} s : h.∆′2 (18)

Γ ` v : S′. (19)



Global Progress for Dynamically Interleaved Multiparty Sessions 43

The consistency of ∆∗∆0 implies S = S′. Using Lemma A.8(1) from (17) and (19) we get
Γ ` P{v/x}.∆′1,s[p] : T , which implies by rule (GINIT)

Γ ` /0 P{v/x}.∆
′
1,s[p] : T. (20)

Using rule (GPAR) on (20) and (18) we conclude

Γ `{s} P{v/x} | s : h.∆
′
2 ∗ (∆′1,s[p] : T ).

Note that ({s[q] : !〈{p},S〉} ∗∆′2) ∗ (∆′1,s[p] :?(q,S);T ) ⇒ ∆′2 ∗ (∆′1,s[p] : T ) and the con-
sistency of (({s[q] : !〈{p},S〉} ∗∆′2) ∗ (∆′1,s[p] :?(q,S);T )) ∗∆0 implies the consistency of
(∆′2 ∗ (∆′1,s[p] : T ))∗∆0.

— [Sel] s[p]⊕〈Π, l〉.P | s : h−→ P | s : h · (p,Π, l).
By hypothesis, Γ `Σ s[p]⊕〈Π, l〉.P | s : h .∆. Using Lemma A.6(7), (1), and (2) we have
Σ = {s} and

Γ ` s[p]⊕〈Π, l〉.P.∆1 (21)

Γ `{s} s : h.∆2 (22)

where ∆ = ∆2 ∗∆1. Using Lemma A.5(11) on (21) we have for l = l j ( j ∈ I):

∆1 = ∆′1,s[p] :⊕〈Π,{li : Ti}i∈I〉
Γ ` P.∆′1,s[p] : Tj. (23)

Using rule (QSEL) on (22) we derive

Γ `{s} s : h · (p,Π, l).∆2;{s[p] :⊕〈Π, l〉}. (24)

Using (GPAR) on (23) and (24) we conclude

Γ `{s} P | s : h · (p,Π, l). (∆2;{s[p] :⊕〈Π, l〉})∗ (∆′1,s[p] : Tj).

Note that ∆2 ∗ (∆′1,s[p] : ⊕〈Π,{li : Ti}i∈I〉) ⇒ (∆2;{s[p] : ⊕〈Π, l〉}) ∗ (∆′1,s[p] : Tj) and the
consistency of (∆2 ∗ (∆′1,s[p] :⊕〈Π,{li : Ti}i∈I〉))∗∆0 implies the consistency of
((∆2;{s[p] :⊕〈Π, l〉})∗ (∆′1,s[p] : Tj))∗∆0.

— [Branch] s[p]&(q,{li : Pi}i∈I) | s : (q,{p}, l j) ·h−→ Pj | s : h.
By hypothesis, Γ `Σ s[p]&(q,{li : Pi}i∈I) | s : (q,{p}, l j) · h .∆. Using Lemma A.6(7), (1),
and (2) we have Σ = {s} and

Γ ` s[p]&(q,{li : Pi}i∈I).∆1 (25)

Γ `{s} s : (q,{p}, l j) ·h.∆2 (26)

where ∆ = ∆2 ∗∆1. Using Lemma A.5(12) on (25) we have

∆1 = ∆′1,s[p] : &(q,{li : Ti}i∈I)

Γ ` Pi .∆′1,s[p] : Ti ∀i ∈ I. (27)

Using Lemma A.7(3) on (26) we have

∆2 = {s[q] :⊕〈p, l j〉}∗∆′2

Γ `{s} s : h.∆′2. (28)



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 44

Using (GPAR) on (27) and (28) we conclude

Γ `{s} Pj | s : h.∆
′
2 ∗ (∆′1,s[p] : Tj).

Note that

({s[q] :⊕〈p, l j〉}∗∆
′
2)∗ (∆′1,s[p] : &(q,{li : Ti}i∈I)) ⇒ ∆

′
2 ∗ (∆′1,s[p] : Tj).

and the consistency of (({s[q] :⊕〈p, l j〉}∗∆′2)∗ (∆′1,s[p] : &(q,{li : Ti}i∈I)))∗∆0 implies the
consistency of (∆′2 ∗ (∆′1,s[p] : Tj))∗∆0 for j ∈ I.

The main result concerning the communication type system is the subject reduction theorem.
The subject reduction for closed user processes (Theorem 4.3) follows immediately.

Theorem A.11 (Subject Reduction). If Γ `Σ P.∆ with ∆ consistent and P−→∗ P′, then
Γ `Σ P′ .∆′ for some consistent ∆′ such that ∆ ⇒∗ ∆′.

Proof. Let P ≡ E [P0] and P′ ≡ E [P′0], where P0 −→ P′0 by one of the rules considered in
Lemma A.10. By structural equivalence we can assume E = (

−−−→
νa : G)(

−−−−−→
def D in (

−→
νs)([ ] | P1))

without loss of generality. Theorem A.9 and Lemma A.6(9), (10) and (8) applied to Γ `Σ P .∆

give Γ,
−−→
a : G,

−−−−−−→
X : S µt.T `Σ0 P0 .∆0, and Γ,

−−→
a : G,

−−−−−−→
X : S µt.T `Σ1 P1 .∆1 and

−−−−−−−−−−−−−−−−−−−→
Γ,
−−→
a : G,X : S t ` Q.{y : T}, where

−→
D =

−−−−−−−→
X(x,y) = Q, Σ = (Σ0∪Σ1)\−→s and ∆ = (∆0 ∗∆1)\−→s .

The consistency of ∆ implies the consistency of ∆0 ∗∆1 by Lemma A.6(8). By Lemma A.10 there
is ∆′0 such that Γ,

−−→
a : G,

−−−−−−→
X : S µt.T `Σ0 P′0 .∆′0 and ∆0 ⇒∗ ∆′0 and ∆′0 ∗∆1 is consistent. We derive

Γ `Σ P′ .∆′, where ∆′ = (∆0 ∗∆′1)\
−→s by applying typing rules (GPAR), (GSRES), (GDEF) and

(GNRES). Observe that ∆ ⇒∗ ∆′ and ∆′ is consistent.

Note that communication safety (Honda et al., 2008, Theorem 5.5) is a corollary of Theorem
A.11.

Appendix B. Subject Reduction for the Interaction Type System

The structure of this appendix is standard, but for the first lemma which shows that only messages
containing channels contribute to csds. Therefore typing of queues is independent from the order
of messages.

Lemma B.1. If Θ;R;N ;B ` s : h I D , then D = {s≺ s′ | (p,q,s′[p′]) ∈ h}.

Proof. Easy by induction on h.

Lemma B.2 (Substitution Lemma). Let P be well typed in the communication type system and
Θ;R;N ;B ` P I D .

1 Let v ∈S implies v ∈N ∪B. Then Θ;R;N ;B ` P{v/x} I D .
2 Let s 6∈D . Then Θ;R;N ;B ` P{s[p]/y} I D{s/y}.

Proof. By induction on Θ;R;N ;B ` P I D .



Global Progress for Dynamically Interleaved Multiparty Sessions 45

1 The only interesting case is when v is a service name a. The proof is by structural in-
duction on P. Let P ≡ x̃[p](y).P′ and the last applied rule be {INITV}. From {INITV}
we have that Θ;R;N ;B ` P′ I D ′ and fc(P′) ⊆ {y} and D = D ′ \\y. Now, P{a/x} =
ã[p](y).P′{a/x}. By structural induction Θ;R;N ;B ` P′{a/x} I D ′. Since, by hypoth-
esis, fc(P′) ⊆ {y} and a ∈ N ∪B, we can apply either {INITN} or {INITB}, obtaining
Θ;R;N ;B ` ã[p](y).P′ I D .

2 The proof is standard using the definition of f(c).

Theorem B.3 (Type Preservation under Equivalence). If P is well typed in the communication
type system and Θ;R;N ;B ` P I D and P≡ P′, then Θ;R;N ;B ` P′ I D .

Proof. By induction on ≡ using Lemma B.1 for the equivalences on queue.

Proof of Theorem 6.2 (Subject Reduction) By induction on −→ and by cases on the last
applied rule.

— [Init] By hypothesis

Θ;R;N ;B ` a[1](y).P1 | . . . | a[n−1](y).Pn−1 | a [n](y).Pn I D .

This judgement is obtained by applying the inference rule {PAR} to the subprocesses
a[1](y).P1, . . . , a[n−1](y).Pn−1,a [n](y).Pn. Then we have:

– Θ;R;N ;B ` a[1](y).P1 I D1

– . . .
– Θ;R;N ;B ` a[n−1](y).Pn−1 I Dn−1

– Θ;R;N ;B ` a [n](y).Pn I Dn

where D = (
⋃

1≤i≤n Di)
+ is irreflexive. We consider the case a ∈N , the other cases being

similar.
For each i (1 ≤ i ≤ n) we must have Θ;R;N ;B ` Pi I D ′i such that Di = D ′i \\y. Notice
that y is minimal in D ′i . By construction s is fresh and so by Lemma B.2(2) we have

Θ;R;N ;B ` Pi{s[i]/y} I D ′i{s/y}.

By using {QINIT} and {PAR} we derive

Θ;R;N ;B ` P1{s[1]/y}|...|Pn{s[n]/y}|s :� I D ′

where D ′ = (
⋃

1≤i≤n D ′i{s/y})+. Note that D ′ is irreflexive since D is irreflexive and s is
minimal in D ′.
By using {SRES} we conclude

Θ;R;N ;B ` (νs)(P1{s[1]/y}|...|Pn{s[n]/y}|s :�) I D ′ \ s

Finally it is easy to see that D ′ \ s = D by the minimality of the y in D ′i for all i ∈ I and of s
in D ′.

— [Send] By hypothesis, Θ;R;N ;B ` s[p]!〈Π,e〉.P | s : h I D , which is obtained by applying
rule {PAR}. Thus, we get

Θ;R;N ;B ` s[p]!〈Π,e〉.P I D1 Θ;R;N ;B ` s : h I D2



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 46

where D = (D1∪D2)
+. The first judgement can only be obtained by {SEND}, i.e.,

Θ;R;N ;B ` P I D1 and e ∈S implies e ∈N ∪B. By using rules {QADDVAL} and
{PAR} we conclude

Θ;R;N ;B ` P | s : h · (p,Π,v) I (D1∪D2)
+

where e ↓ v.

— [Deleg] By reasoning as in the previous case, we get

Θ;R;N ;B ` s[p]!〈〈q,s′[p′]〉〉.P I D1 Θ;R;N ;B ` s : h I D2

where D = (D1∪D2)
+. By inverting rule {DELEG}we obtain Θ;R;N ;B `P I D ′1 where

D1 = {s≺ s′}∪D ′1. By using rules {QADDSESS} and {PAR} we conclude

Θ;R;N ;B ` P | s : h · (q,p,s′[p′]) I D ′1∪{s≺ s′}∪D2.

— [Sel] Similar to [Send] but simpler (using rule {QSEL} instead of {QADDVAL}).

— [Rcv] By hypothesis, Θ;R;N ;B ` s[p]?(q,x).P | s : (q,{p},v) · h I D . By reasoning as
in the case of rule [Send], we get

Θ;R;N ;B ` s[p]?(q,x).P I D1 Θ;R;N ;B ` s : (q,{p},v) ·h I D2

where D = (D1∪D2)
+. By inverting rule {RCV} we obtain Θ;R;N ;B ` P I D ′1, where

D1 = (pre(s[p], fc(P))∪D ′1)
+. By inverting rule {QADDVAL} we have

Θ;R;N ;B ` s : h I D2 and v ∈S implies v ∈N ∪B. By Lemma B.2(1) Θ;R;N ;B `
P{v/x} I D ′1. Applying {PAR} we conclude

Θ;R;N ;B ` P{v/x} | s : h I (D ′1∪D2)
+.

Note that (D ′1∪D2)
+ ⊆ (D1∪D2)

+.

— [SRcv] By hypothesis, Θ;R;N ;B ` s[p]?((q,y)).P | s : (q,p,s′[p′]) ·h I D . As before we
get

Θ;R;N ;B ` s[p]?((q,y)).P I D1 Θ;R;N ;B ` s : (q,p,s′[p′]) ·h I D2

where D = (D1 ∪D2)
+. Inverting rule {SRCV}) we have Θ;R;N ;B ` P I D ′1 where

D1 = D ′1 \{y} and D ′1 \S ⊆ {s≺ y}. Moreover, by Lemma B.1 it folllows that
Θ;R;N ;B ` s : h I D ′2 with D2 = ({s ≺ s′}∪D ′2)

+. By Lemma B.2(2), it follows that
Θ;R;N ;B ` P{s′[p′]/y} I D ′′1 where D ′′1 = D ′1{s′/y}. By applying rule {PAR} we con-
clude

Θ;R;N ;B ` P{s′[p′]/y} | s : h I (D ′′1 ∪D ′2)
+.

Lastly it is easy to see that that (D ′′1 ∪D ′2)
+ ⊆D .

— [Branch] By hypothesis, Θ;R;N ;B ` s[p]&(q,{li : Pi}i∈I) | s : (q,Π, l j) · h I D . By
inverting the rules we have

– Θ;R;N ;B ` Pi I Di ∀i ∈ I
– Θ;R;N ;B ` s : (q,{p}, l j) ·h I D ′



Global Progress for Dynamically Interleaved Multiparty Sessions 47

– D = (pre(s[p],
⋃

i∈I fc(Pi))∪
⋃

i∈I Di∪D ′)+.

By Lemma B.1 we get

Θ;R;N ;B ` s : h I D ′.

By applying rule {PAR} to the reduced process we conclude

Θ;R;N ;B ` Pj | s : h I D j ∪D ′

which implies the result.

— [If-T], [If-F] Straightforward.

— [ProcCall] Let’s assume Θ;R;N ;B ` def X(x,y) = P in (X〈e,s[p]〉 | Q) I D . By inspect-
ing the inference rule, as before, we must have:

1 Θ′;R;N ;B ` P I D ′;
2 Θ′;R;N ;B ` X〈e,s[p]〉 I D ′{s/y};
3 Θ′;R;N ;B ` Q I D ′′;

where Θ′ = Θ,X [y] I D ′ and D = (D ′{s/y}∪D ′′)+ and e ∈S implies e ∈N ∪B.
Note that by rule (DEF) y is the only free channel which can occur P and then s 6∈ D ′. Let
e ↓ v. By Lemma B.2(1) and (2) we have Θ′;R;N ;B ` P{v/x}{s[p]/y} I D ′{s/y}.
By rule {PAR} we derive Θ′;R;N ;B ` P{v/x}{s[p]/y} | Q I D . By rule {DEF} we
conclude

Θ;R;N ;B ` def X(x,y) = P in (P{v/x}{s[p]/y} | Q) I D .

— [Ctxt] The thesis follows from the induction hypothesis.
— [Str] The thesis follows from Theorem B.3 and the induction hypothesis.

�

Appendix C. Proof of the Progress Theorem

In this section we will prove that a process typable in both type systems has the progress prop-
erty. Typability in the communication type system is needed as shown by the simple example
a[1](y).y!〈2, true〉.y?(2,x).0 | a [2](y).y?(1,x′).y!〈2,x′+ 1〉.0, which reduces to a stuck process
on the evaluation of 1+ true.

Our proof will go through the following steps:

- We first enrich processes by adding a “session mark” s : G for each current session name
s, where G is an extended closed global type which represents the actions that are still ex-
pected in session s. Note that recursive global types, through unfolding, can represent infinite
behaviours. “Marked” reductions will update the session marks according to the actions per-
formed by the process. The Inversion Lemmas (Lemmas A.5 and A.6) of the communication
type system assure, essentially, that session marks follows exactly the reductions of processes
(§C.1).

- We then “approximate” global types by allowing only a finite number of unfoldings, after
which the global types are ended and the corresponding reductions (recursive calls in par-
ticular) are forbidden. We need to start from global types which are unfolded as least as the



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 48

processes they type. For this reason we consider an iso-recursive version of the communi-
cation type system with a subtyping for global types allowing unfolding. Through a suitable
notion of measure we can then prove that marked reductions with approximate global types in
session marks always terminate. Until their end is not reached the approximate global types
follow the exact ones, assuring the correct matching between process actions and session
marks (§C.2).

- Lastly we will introduce a notion of “pseudo-progress” as a handy tool to prove Theorem
6.4. Pseudo-progress requires that choosing suitable catalysers all approximated marked re-
ductions terminate with only end as global type in session marks. We show that initial pro-
cesses (see Definition 6.3) have pseudo-progress. The finiteness of reduction allows also to
build the catalysers used in both the definitions of progress and pseudo progress. Finally the
pseudo-progress will be proved to imply progress as defined in Definition 5.4 (§C.3).

C.1. Typed Operational Semantics

In our typed operational semantics the type information (represented by global types) is explicitly
added to processes via session marks. The global type associated to a session will be “consumed”
following the execution of the actions it represents. To allow this we need extended global types
which are defined by adding to the syntax of global types (§4.1) the clauses:

G := p99KΠ : 〈U〉.G || p99KΠ : 〈l〉.G

The meaning of p99KΠ : 〈U〉.G is that the output of a value or channel of type U has been
executed by participant p and that the value or channel is currently on the associated queue
waiting to be received by the participants in Π. The meaning of p99KΠ : 〈l〉.G is similar.

From now on we will often use simply “global type” to refer to extended global types.

The functions γ , δ (see Table 13) register, respectively, the execution of a value, channel or
label communication performed by a participant q on an extended closed global type G, so they
can be undefined when no more communication actions for q are allowed by G. The function
δ has also the communicated label as parameter. This is used to simplify multiple choices in
the global type after that a label corresponding to that choice has been sent. Notice that both
functions are undefined for the global type end. By “-” we denote either an exchange type or a
label.

The syntax of marked processes (range over by P) is defined as in Table 2 by adding the clause:

P ::= s : G session mark

where G is an extended closed global type and s is a session name. We say that G is the mark
of s. Marks occurring in a process P are intended to correspond in a one-one way to the session
names (either public of private) occurring in P. A closed user process then, having no opened
sessions, can also be seen as a (trivially) marked process. The erasure |P| of a marked process
P is defined as the process obtained by deleting from it all session marks. We extend evaluation
contexts (see Table 2) to marked processes by adding session marks and we use E to range over
them.



Global Progress for Dynamically Interleaved Multiparty Sessions 49

γ(p→Π : 〈U〉.G,q) =

{
p99KΠ : 〈U〉.G if p= q,

p→Π : 〈U〉.γ(G,q) otherwise.

γ(p→Π : {li : Gi}i∈I ,q) =

{
p→Π : {li : γ(Gi,q)}i∈I if q 6∈Π∪{p}
undefined otherwise

γ(p99KΠ : 〈-〉.G,q) =


G if Π = {q},
p99KΠ\q : 〈-〉.G if q ∈Π and Π\q 6= /0
p99KΠ : 〈-〉.γ(G,q) otherwise

γ(µt.G,q) = γ(G{µt.G/t},q)

δ (p→Π : 〈U〉.G,q, l) =

{
p→Π : 〈U〉.δ (G,q, l) if q 6∈Π∪{p}
undefined otherwise

δ (p→Π : {li : Gi}i∈I ,q, l) =

{
p99KΠ : 〈li〉.Gi if p= q and l = li
p→Π : {li : δ (Gi,q, l)}i∈I otherwise

δ (p99KΠ : 〈-〉.G,q, l) =

{
p99KΠ : 〈-〉.δ (G,q, l) if q 6∈Π

undefined otherwise

δ (µt.G,q, l) = δ (G{µt.G/t},q, l)

Table 13. The functions γ and δ .

Table 14 gives the reduction rules parameterised on a standard environment Γ for marked pro-
cesses. The environment is used in session initiation to generate the right session mark. So the
global types which occur in marked processes are types of initiated sessions, while the global
types which occur in standard environments are types of services. We call marked reductions
or Γ-reductions (if we want to specify the environment) such reductions. Note that in corre-
spondence of output and input actions we update the marks of the involved sessions using the
functions γ , δ . So the reduction rules give a correspondence between communication actions and

applications of γ , δ . We use Γ ∗−→ and Γ n−→ with the standard meanings. It is understood that a
reduction cannot be performed if the corresponding γ or δ function is undefined.

In the remaining of this § we will show the correspondence between marked reductions (Table
14) and the reductions defined in Table 3 (Lemma C.1 and Theorem C.4).

As expected there is no problem in getting standard reductions which mimic marked reduc-
tions.

Lemma C.1. If P0
Γ ∗−→ P, then |P0| −→∗ |P|.

Proof. Easy since the rules of Table 14 only add conditions to the rules of Table 3.

To show the vice versa we need to extended session types to mirror global types in which
alternative choices are simplified according to the δ function. The extended session types are



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 50

a[1](y).P1 | ... | a[n−1](y).Pn | a [n](y).Pn
Γ−→

(νs)(P1{s[1]/y} | ... | Pn{s[n]/y} | s : � | s : G) (Γ ` a : G) [InitM]

s[p]!〈Π,e〉.P | s : h | s : G Γ−→ P | s : h · (p,Π,v) | s : γ(G,p) (e↓v) [SendM]

s[p]!〈〈q,s′[p′]〉〉.P | s : h | s : G Γ−→ P | s : h · (p,q,s′[p′]) | s : γ(G,p) [DelegM]

s[p]⊕〈Π, l〉.P | s : h | s : G Γ−→ P | s : h · (p,Π, l) | s : δ (G,p, l) [SelM]

s[p]?(q,x).P | s : (q,p,v) ·h | s : G Γ−→ P{v/x} | s : h | s : γ(G,p) [RcvM]

s[p]?((q,y)).P | s : (q,p,s′[p′]) ·h | s : G Γ−→P{s′[p′]/y} | s : h | s : γ(G,p) [SRcvM]

s[p]&(q,{li : Pi}i∈I) | s : (q,p, l j) ·h | s : G Γ−→ Pj | s : h | s : γ(G,p) ( j ∈ I) [BranchM]

if e then P else Q Γ−→ P (e ↓ true) if e then P else Q Γ−→ Q (e ↓ false) [If-T, If-F -M]

def X(x,y) = P in (X〈e,s[p]〉 | s : G | P) Γ−→ def X(x,y) = P in (P{v/x}{s[p]/y} | s : G | P) (e ↓ v) [ProcCallM]

P
Γ,a:G−→ P′ ⇒ (νa : G)P Γ−→ (νa : G)P′ P

Γ−→ P′ ⇒ (νs)P Γ−→ (νs)P′ [ScopM]

P
Γ−→ P′ ⇒ P | P0

Γ−→ P′ | P0 [ParM]

P
Γ−→ P′ ⇒ def D in P

Γ−→ def D in P′ [DefinM]

P1 ≡ P′1 and P′1
Γ−→ P′2 and P′2 ≡ P2 ⇒ P1

Γ−→ P2 [StrM]

Table 14. Γ-reduction rules.

obtained by adding to the syntax of session types (Table 5) the clause:

T := &(p, l).T unique branch

Extended session environments are defined as expected.

The projection G � q from extended global types to extended session types is defined by adding
to Definition 4.1:

(p99KΠ : 〈U〉.G) � q=


!〈Π,U〉;(G � q) if q= p,

?(p,U).(G � q) if q ∈Π,

G � q otherwise.

(p99KΠ : 〈l〉.G) � q=


⊕〈Π, l〉;(G � q) if q= p

&(p, l).(G � q) if q ∈Π

G � q otherwise.

Note that since in an extended global type a dashed arrow of the form p99KΠ : 〈U〉.G represents
an output action already performed (with the corresponding value on the queue), its projection
onto p starts with a message type (see §A.1). Similarly the projection of p99KΠ : 〈l〉.G onto p

starts with a message type. Instead the projection of p99KΠ : 〈l〉.G onto q ∈Π is a unique branch
type.

By projecting extended global types we obtain extended session environments, so to relate
session marks with session environments we give a mapping from session environments to ex-
tended session environments. The mapping is defined by means of a reduction rule which re-
places branching types by unique branch types when the session environment already contains
the message selection type. We need some definitions. The syntax of contexts for extended ses-



Global Progress for Dynamically Interleaved Multiparty Sessions 51

sion types (ranged over by T ) is given by:

T ::= [ ] || !〈Π,U〉.T || ?(p,U).T || ⊕ 〈Π,{l : T , li : Ti}i∈I〉 || &(p,{l : T , li : Ti}i∈I) ||
!〈Π,U〉;T || ⊕ 〈Π, l〉;T || &(p, l).T || µt.T

The projection of contexts for extended session types is obtained by adding to the clauses of
Definition A.1:

[ ] � p= [ ] &(p, l).T � q=

{
&l.T � q if p= q,

T � q otherwise.

The duality relation between projections of contexts for extended session types is obtained
from Definition A.2 by erasing the last clause and by adding the clauses:

[ ] ./ [ ] T ./T′ =⇒ ⊕l;T ./ &l.T′

where T ranges over projections of contexts for extended session types.

We can then define the reduction rule as:

{s[q] : T [&(p,{li : Ti}i∈I)],s[p] : T ′[⊕〈Π, l j〉;τ]}; {s[q] : T [&(p, l j).Tj],s[p] : T ′[⊕〈Π, l j〉;τ]}
if q ∈Π and j ∈ I and T � p ./ T ′ � q

where the condition T � p ./ T ′ � q guarantees that a message selection modifies a branching
only if they “correspond to each other”. In order to formalise this correspondence we introduce
contexts for global types (ranged over by C ) defined by:

C ::= [ ] || p→Π : 〈U〉.C || p→Π : {l : C , li : Gi}i∈I || µt.C || p99KΠ : 〈U〉.C || p99KΠ : 〈l〉.C

Then we can show:

Lemma C.2. If T � p ./ T ′ � q, then there is a global type context C such that T =C � q and
T ′ = C � p.

Proof. Standard by cases on the definitions of projection and duality. For example let T =

⊕〈Π, l〉;T1 and T ′ = &(p, l).T2, then T1 � p ./ T2 � q by definition of duality. By induction
there is a context C ′ such that T1 = C ′ � q and T2 = C ′ � p. Therefore we can choose C =

p99KΠ : 〈l〉.C ′.

We denote by η(∆) the extended session environment obtained by applying the reduction rule
(;) to subsets of the session environment ∆ whenever possible.

We can now formulate the relation between session marks and extended session environments
(Lemma C.3) which will be the key to show that marked reductions mimic standard reduction
(Theorem C.4).

Lemma C.3. Let P0 be a closed pure process such that Γ ` P0 . /0. If P0
Γ ∗−→ (νs)(P | s : G) and

Γ ` |P|.∆, then

{s[p] : G � p | G � p 6= end}= η({s[p] : T | s[p] : T ∈ ∆ ∧ T 6= end}).



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 52

Proof. By Lemma C.1 and the Subject Reduction Theorem |P| is typable from Γ in the com-
munication type system. The proof is by induction on Γ-reductions and by cases on the last ap-
plied rule using the inversion Lemmas A.5 and A.6 and the consistency of session environments
(Definition A.3).

We only consider the case in which the last applied rule is [SelM], the other cases being
similar and simpler. Let P ≡ (ν

−−→
a : G)E [s[p]⊕〈Π, l〉.P | s : h] where E does not contain service

restrictions. We get:

s[p]⊕〈Π, l〉.P | s : h | s : G
Γ,
−→
a:G−→ P | s : h · (p,Π, l) | s : δ (G,p, l)

Let ∆, ∆′ be the session environments obtained by typing the erasures of the processes in the
left-hand-side and in the right-hand-side of the shown reduction step, respectively.

By Lemmas A.5(11) and A.6(7) the type of s[p] in ∆ must be T [⊕〈Π,{li : Ti}i∈I〉] for some
T , Ti, li such that l = l j and j ∈ I. By the consistency of ∆ this implies that the types of s[q] in ∆

for all q ∈Π must be Tq[&(p,{li : T (q)
i }i∈I)] for some Tq, T (q)

i .
By induction G � p is T̂ [⊕〈Π,{li : T̂i}i∈I〉] and G � q is T̂q[&(p,{li : T̂ (q)

i }i∈I)] for all q ∈Π,
where ˆ is the mapping induced by the reduction rule of extended session environments, if appli-
cable. Therefore G must be of the form C [p→Π : {li : Gi}i∈I ] for some C , Gi such that
(p→ Π : {li : Gi}i∈I) � p= ⊕〈Π,{li : T̂i}i∈I〉 and (p→ Π : {li : Gi}i∈I) � q= &(p,{li : T̂ (q)

i }i∈I)

for all q∈Π. This implies δ (G,p, l) =C [p99KΠ : 〈l〉.G j] and δ (G,p, l) � p= T̂ [⊕〈Π, l〉; T̂j] and
δ (G,p, l) � q= T̂q[&(p, l); T̂ (q)

j ] for all q ∈Π.
By the proof of the Subject Reduction Theorem (Theorem 4.3) and Lemma A.6(6) the envi-

ronment ∆′ contains s[p] : T [⊕〈Π, l〉;Tj] and s[q] : Tq[&(p,{li : T (q)
i }i∈I)] for all q ∈ Π. This

completes the proof by definition of the mapping ˆ and since:

{s[q] : Tq[&(p,{li : T (q)
i }i∈I)],s[p] : T [⊕〈Π, l〉;Tj]}; {s[q] : Tq[&(p, l).Tj],s[p] : T [⊕〈Π, l〉;Tj]}

Theorem C.4. Let P0 be a closed pure process such that Γ ` P0 . /0. If P0 −→∗ P, then P0
Γ ∗−→ P

where |P| ≡ P.

Proof. We show under the hypotheses of the theorem that:

If P−→ P′, then P
Γ−→ P′ where |P′| ≡ P′.

The proof is by a case analysis on the last applied rule using Lemmas C.3, A.5 and A.6. The
interesting cases are the communication rules, for which we need to assure that γ or δ are defined.
We consider as paradigmatic case that of rule [Sel]:

s[p]⊕〈Π, l〉.P | s : h−→ P | s : h · (p,Π, l)

By Lemmas A.5(11) and A.6(7) the session environment for typing the left-hand-side must con-
tain s[p] : T [⊕〈Π,{li : Ti}i∈I〉] for some T , Ti, li such that l = l j and j ∈ I. By Lemma C.3
the global type G in the mark of s is such that G � p = T̂ [⊕〈Π,{li : T̂i}i∈I〉], where ˆ is the
mapping induced by the reduction rule of extended session environments. Therefore G must be
C [p→Π : {li : Gi}i∈I ] for some C , Gi. We conclude that δ (G,p, l) is defined.



Global Progress for Dynamically Interleaved Multiparty Sessions 53

C.2. Approximate Typed Operational Semantics

We want to define approximate marked reductions in such a way that:

1 all computations are finite (Theorem C.11);
2 standard reductions mimic them (Lemma C.12);
3 they mimic all marked reductions with a finite number of steps (Theorem C.14).

We start by introducing an iso-recursive version of the communication type system. I.e. we
do not allow fold/unfold of global and session types and we modify the rules for typing session
initiation as follows:

Γ ` u : G ∃G′ ≤ G Γ ` P.∆,y : G′ � p p= mp(G)
(MCAST≤)

Γ ` u [p](y).P.∆

Γ ` u : G ∃G′ ≤ G Γ ` P.∆,y : G′ � p p< mp(G)
(MACC≤)

Γ ` u[p](y).P.∆

where ≤ is the partial order induced by the contextual closure of µt.G ≤ G{µt.G/t} and by
that of µt.T ≤ T{µt.T/t}. Notice that this means that also the global and session types which
occur in exchanges can be related by ≤. We denote by `≤ derivability in the obtained system.
The feature of this system is to oblige the global and session types to be unfolded at least as
the processes are, without losing typability with respect to the original system, as proved in the
following theorem. We extend ≤ to environments and processes in the expected way.

Theorem C.5. If Γ `≤ P.∆, then Γ ` P.∆. If Γ ` P.∆, then there are Γ′ ≥ Γ and P′ ≥ P such
that Γ′ `≤ P′ .∆.

Proof. Clearly when types are equi-recursive rules (MCAST≤), (MACC≤) coincide with rules
(MCAST), (MACC), and so a derivation in the new system is also a derivation in the original
one. For the vice versa we need to:

- choose as recursive session types in channel exchanges exactly the types required for typing
channel receptions, possibly unfolding the corresponding global types;

- unfold global types in Γ and in P until rules (MCAST≤), (MACC≤) become applicable.

We can now define approximants in a rather standard way. We say that a global type is finite
if it does not contain recursions. A standard environment is finite if it contains only finite global
types.

Definition C.6.

1 The direct approximant of the global type G (notation α(G)) is the finite global type defined
by:

α(p→Π : 〈U〉.G) = p→Π : 〈β (U)〉.α(G) α(p99KΠ : 〈-〉.G) = p99KΠ : 〈-〉.α(G)

α(p→Π : {li : Gi}i∈I) = p→Π : {li : α(Gi)}i∈I α(µt.G) = α(end) = end



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 54

where

β (U) =

{
α(U) if U is a global or a session type,

U if U is a base type

α(!〈Π,U〉.T ) = !〈Π,β (U)〉.α(T ) α(?(p,U).T ) =?(p,β (U)).α(T )
α(⊕〈Π,{li : Ti}i∈I〉) =⊕〈Π,{li : α(Ti)}i∈I〉 α(&(p,{li : Ti}i∈I)) = &(p,{li : α(Ti)}i∈I)

α(µt.T ) = α(end) = end

2 A finite global type G is an approximant of a global type G′ (notation G v G′) if there is a
global type G′′ ≥ G′ and G=α(G′′).

3 A finite standard environment Γ is an approximant of a standard environment Γ′ (notation
ΓvΓ′) if Γ is obtained from Γ′ by replacing each global type in Γ′ by one of its approximants.

4 A marked process P is an approximant of a marked process P′ (notation P v P′) if P is
obtained from P′ by replacing each global type occurring in P′ by one of its approximants.

5 A process P is well marked from Γ if there is a closed user process P0 such that Γ `≤ P0 . /0
and P0

Γ ∗−→ P.
6 A marked process P is approximate for a finite standard environment Γ if there are P′, Γ′

such that Pv P′ and Γv Γ′ and P′ is well marked for Γ′.

The use of `≤ instead of ` in the definition of well-marked processes from a given environment
(point 5 of Definition C.6) is needed to assure that recursive global types are enough unfolded.
For example the process

def X(x,y) = y!〈x,2〉.X(x,y) in def Y (x,y) = y?(x′,1).Y (x,y) in
a[1](z).z!〈true,2〉.X〈true,z〉 | a [2](z).Y 〈false,z〉

can be typed from {a : µt.1→ 2 : 〈bool〉.t} in the system `. Instead in the system `≤ it can
be typed only from {a : 1→ 2 : 〈bool〉.µt.1→ 2 : 〈bool〉.t} and further unfoldings. With the
finite environment {a : end} (which is an approximant of {a : µt.1→ 2 : 〈bool〉.t}, but not of
{a : 1→ 2 : 〈bool〉.µt.1→ 2 : 〈bool〉.t}), this process reduces to a process contaning an output
action which cannot be executed since γ is undefined.

Notice that to build a process approximate for an environment (point 6 of Definition C.6)
we can choose the approximants of global types in an arbitrary way. In fact as already noted
at page 49 the global types in a process control the open sessions, while the global types in an
environment are used in rule [InitM] for opening new sessions.

Obviously a recursive global type has infinitely many approximants. Note that approximate
marked processes cannot be typed using as types for the restricted services the declared global
types, since these global types are approximants of the original ones.

We want to define approximate marked reductions for approximate marked processes. Since
approximate marked processes can contain recursive process calls we use the notion of commu-
nication number (Definition C.7) to bound the number of calls in computations. The communi-
cation number of participant p in an extended global type G represents the maximum number of
input-output actions that p can do in a session whose mark is G, if this number is finite, and it is
undefined otherwise. So the communication number is always defined for finite global types.



Global Progress for Dynamically Interleaved Multiparty Sessions 55

Definition C.7. The communication number of a participant p in an extended global type G

(notation #(G,p)) is defined by:

#(p→Π : 〈U〉.G′,q) =

{
1+#(G′,q) if p= q or q ∈Π,

#(G′,q) otherwise

#(p→Π : {li : Gi}i∈I ,q) =

{
1+max{#(Gi,q)}i∈I if p= q or q ∈Π,

max{#(Gi,q)}i∈I otherwise

#(p99KΠ : 〈-〉.G′,q) =

{
1+#(G′,q) if q ∈Π,

#(G′,q) otherwise
#(end,p) = 0 #(µt.G′,p) = 0 if G′ � p= t

We are now able to define approximate marked reductions.

Definition C.8. A Γ-reduction is approximate if the marked processes are approximate for Γ and
rule [ProcCallM] is applied only if #(G,p) 6= 0.

Note that by definition if a Γ-reduction is approximate, then Γ is finite.

The next lemma shows that in approximate reductions the communication actions correspond
to defined applications of γ and δ . This lemma implies that approximate reductions and standard
reductions can reduce the same communication actions that occur in approximate processes. The
difference between approximate reductions and standard reductions is the applicability of rule
[ProcCallM], since the associated mark can forbid it.

Lemma C.9. Let Γ0 `≤ P0 . /0 and Pv P0 and Γv Γ0 and P Γ ∗−→ P. If P contains a communi-
cation action, then the application of the corresponding γ or δ is defined.

Proof. A communication action in P can be either an action in P0 or an action in a process
obtained by replacing a recursion variable with an application of rule [ProcCallM]. In the first
case the result follows from the fact that the type system is iso-recursive. In the second case
observe that an application of rule [ProcCallM] corresponds exactly to an unfolding of the global
type in the current mark.

To prove the termination of approximate reductions we start by defining the length of a finite
extended global type G as the maximum number of input-output actions that can be performed
in a session whose mark is G.

Definition C.10. The length of a finite global type G (notation `(G)) is defined by:

`(p→Π : 〈U〉.G′) = 1+n+ `(G′) `(p→Π : {li : Gi}i∈I) = 1+n+max{`(Gi)}i∈I
`(p99KΠ : 〈-〉.G′) = n+ `(G′) `(end) = 0

where n is the cardinality of Π.

We define, for each marked processes P which is approximate for Γ, a well funded weight
0(P,Γ) such that P Γ−→ P′ implies 0(P,Γ) > 0(P′,Γ) in lexicographic order. This weight is a
triple of natural numbers with the following meanings:



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 56

ω(ũ[p](y).P,Γ,V ,G)= 〈1,0〉 + ω(P,Γ,V ,G)

ω((νs)P,Γ,V ,G)= ω(y!〈Π,e〉.P,Γ,V ,G)= ω(y?(p,x).P,Γ,V ,G)=ω(P,Γ,V ,G)

ω(y!〈〈p,c〉〉.P,Γ,V ,G)=ω(y?((q,y′)).P,Γ,V ,G)=ω(y⊕〈Π, l〉.P,Γ,V ,G)=ω(P,Γ,V ,G)

ω(y&(p,{li : Pi}i∈I),Γ,V ,G)=max{ω(Pi,Γ,V ,G)}i∈I

ω(s[p]!〈Π,e〉.P,Γ,V ,G)= ω(s[p]?(q,x).P,Γ,V ,G)=


ω(P,Γ,V ,G′ ∪{s : γ(G,p)}) ifG=G′ ∪{s : G}

and γ(G,p) is defined,
〈0,0〉 otherwise.

ω(s[p]!〈〈q,c〉〉.P,Γ,V ,G)=ω(s[p]?((y,q)).P,Γ,V ,G)=


ω(P,Γ,V ,G′ ∪{s : γ(G,p)}) ifG=G′ ∪{s : G}

and γ(G,p) is defined,
〈0,0〉 otherwise.

ω(s[p]⊕〈Π, l〉.P,Γ,V ,G)=


ω(P,Γ,V ,G′ ∪{s : δ (G,p, l)}) ifG=G′ ∪{s : G}

and δ (G,p, l) is defined,
〈0,0〉 otherwise.

ω(s[p]&(q,{li : Pi}i∈I),Γ,V ,G)=


max{ω(Pi,Γ,V ,G′ ∪{s : γ(G,p)})}i∈I ifG=G′ ∪{s : G}

and γ(G,p) is defined,
〈0,0〉 otherwise.

ω(if e then P else Q,Γ,V ,G)=〈0,1〉 +max{ω(P,Γ,V ,G),ω(Q,Γ,V ,G)}

ω(P | Q,Γ,V ,G)= ω(P,Γ,V ,G)+ω(Q,Γ,V ,G) ω(0,Γ,V ,G)= ω(s : h,Γ,V ,G)= 〈0,0〉

ω((νa : G)P,Γ,V ,G)= ω(P,Γ∪{a : G},V ,G)

ω(def X(x,y) = P in Q,Γ,V ,G)=ω(Q,Γ,V ∪{X(x,y) 7→ (P,k0)},G) where k0 = max{`(G) | u : G ∈ Γ}

ω(X〈e,y〉,Γ,V ,G)=

{
〈0,0〉 if V = V ′ ∪{X(x,y′) 7→ (P,0)}
〈0,1〉+ω(P,Γ,V ′ ∪{X(x,y′) 7→ (P,k)},G) if V = V ′ ∪{X(x,y′) 7→ (P,k+1)}.

ω(X〈e,s[p]〉,Γ,V ,G)=


〈0,0〉 if V = V ′ ∪{X(x,y) 7→ (P,0)}
〈0,1〉+ω(P{v/x}{s[p]/y},Γ,V ′ ∪{X(x,y) 7→ (P,k′)},G) otherwise, where e ↓ v and

s : G ∈G and k′ = #(G,p).

Table 15. The mapping ω .

1 the first number bounds the number of request or accept that could start (possibly with the
help of catalysers) by Γ-reducing the process;

2 the second number is the sum of the lengths of the global types which occur as marks in the
process, i.e. of the global types of the sessions already started;

3 the third number bounds the number of possible applications of rules [If-M] and [ProcCallM]
by Γ-reducing the process.

Let P≡ (
−→
νs)(P | Πi∈I(si : Gi)), where P does not contain session marks and session restrictions.

The weight of P and Γ is the triple 〈n,Σi∈I`(Gi),m〉where 〈n,m〉= ω(P,Γ, /0,G) and the function
ω is defined in Table 15 and G = {si : Gi | i ∈ I}. In this table the sum and the maximum of



Global Progress for Dynamically Interleaved Multiparty Sessions 57

natural pairs are component-wise and V is a mapping from term variables to pairs of processes
and naturals.

Using this weight we can show the termination of all approximate marked reductions.

Theorem C.11. Every approximate marked reduction terminates.

Proof. We can show that each reduction rule decreases the weight of processes and standard
environments. It is immediate to see that the weight decreases at every communication action (in
the second component) and at every conditional choice (in the last component). The opening of a
service increases the second component but decreases the first one thus reducing the weight. As
for the recursive definitions note that the weight decreases by 1 in the third component at every
process call. Moreover the condition that recursive calls are guarded (see §4.1) assures that in the
recursive definition of ω the next call will be executed with a smaller natural associated to the
term variable.

The more interesting case is rule [ProcCallM]. The crucial observation is that
ω(P{v/x}{s[p]/y},Γ,{X(x,y) 7→ (P,k1)},G) = ω(P{v/x}{s[p]/y},Γ,{X(x,y) 7→ (P,k2)},G)

for all positive k1,k2. This follows from the definition of ω(X〈e,s[p]〉,Γ,V ,G), which in this
case replaces #(G,p) to the (positive) values k1,k2, where s : G ∈G.
Let P1 = def X(x,y) = P in (X〈e,s[p]〉 | s : G | P) and P2 = def X(x,y) = P in (P{v/x}{s[p]/y} | s : G | P)
and e ↓ v and k0 = max{`(G′) | u : G′ ∈ Γ} and P≡ R | Πi∈I(si : Gi) and G= {si : Gi | i ∈ I}. We
have:

ω(P1,Γ, /0,G∪{s : G}) = ω(X〈e,s[p]〉 | R,Γ,{X(x,y) 7→ (P,k0)},G∪{s : G})
= ω(X〈e,s[p]〉,Γ,{X(x,y) 7→ (P,k0)},G∪{s : G})+

ω(R,Γ,{X(x,y) 7→ (P,k0)},G∪{s : G})
= 〈0,1〉+ω(P{v/x}{s[p]/y},Γ,{X(x,y) 7→ (P,#(G,p))},G∪{s : G})+

ω(R,Γ,{X(x,y) 7→ (P,k0)},G∪{s : G})
ω(P2,Γ, /0,G∪{s : G}) = ω(P{v/x}{s[p]/y} | R,Γ,{X(x,y) 7→ (P,k0)},G∪{s : G})

= ω(P{v/x}{s[p]/y},Γ,{X(x,y) 7→ (P,k0)},G∪{s : G})+
ω(R,Γ,{X(x,y) 7→ (P,k0)},G∪{s : G})

where P1 = def X(x,y) = P in (X〈e,s[p]〉 | R) and P2 = def X(x,y) = P in (P{v/x}{s[p]/y} | R). Since
the application of rule [ProcCallM] requires #(G,p) 6= 0 we conclude

ω(P1,Γ, /0,{s : G})> ω(P2,Γ, /0,{s : G}).

It is easy to check that approximate marked reductions become standard reductions by erasing
the session marks.

Lemma C.12. If P Γ ∗−→ P′ is an approximate marked reduction, then |P| −→∗ |P′|.

For the vice versa it is useful to show how communication numbers decrease in approximate
reductions.

Lemma C.13. If P | s : G Γ n−→ P′ | s : G′ and G, G′ are finite, then #(G,p)≤ #(G′,p)+n for all
p.

Proof. The communication number of a participant decreases only if the applied reduction
rule is a communication rule in which the participant sends or receives a message.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 58

We prove that for each finite marked reduction there is an approximate reduction producing
the same final process (modulo session marks).

Theorem C.14. If P0 is well marked from Γ and P0
Γ ∗−→ P, then there are P′0 v P0 and Γ′ v Γ

such that P′0
Γ′ ∗−→ P′ and P′ v P.

Proof. The key observation here is that by definition of well-marking the global types in P0

and Γ have been unfolded at least as the corresponding processes in P0. This is assured by
typability in `≤ of the original process. If P0

Γ n−→ P we choose all approximate global types
in P′0 and Γ′ as direct approximants of the given global types, where all recursions have been
unfolded at least n times. Then by Lemmas C.9 and C.13 all Γ-reduction steps starting from P0

can also be performed as Γ′-reduction steps from P′0, i.e. P′0
Γ′ ∗−→ P′ where P′ v P.

C.3. Pseudo-progress

Building on approximate reductions we introduce now pseudo-progress. The main difference
between progress (Definition 5.4) and pseudo-progress is that instead of asking that a specific
input or output request is satisfied we ask that an approximate process can be reduced until all
marks are end.

Definition C.15. A closed user process P has the pseudo-progress if for all Γ,Γ′,P′,P with

Γ `≤ P . /0 and Γ′ v Γ and P′ v P and P′ Γ′ ∗−→ P, there is a catalyser Q which is approximate

for an environment Γ′′ ⊇ Γ′ such that P | Q Γ′′ ∗−→ P′ and all marks in P′ are end.

Notice that closed user processes are marked processes (as observed at page 48) and therefore v
between them is defined.

To get that initial processes have progress we will show that:

1 if P is initial, then P | Q has pseudo-progress for all catalysers Q such that P | Q is typable in
the communication system (Theorem C.22);

2 if P | Q has pseudo-progress for all catalysers Q such that P | Q is typable in the communi-
cation system, then P has progress (Theorem C.23).

We start with some technical definitions and lemmas which are handy for the proof of point
1. The first two lemmas consider the relation between occurrences of communication actions,
and to formulate them it is useful to define when an action is at the top of another one and
when a channel with role precedes another one. By action we mean a communication action, an
accept/request or a conditional.

Definition C.16.
1 The occurrence φ of an action is at the top of the occurrence ψ of an action or process call

in the process P= E [P] if one of the following conditions holds:

(a) P = φ .P′ and ψ occurs in P′;

(b) P = φ = if e then P1 else P2 and ψ occurs in P1 or P2;

(c) P = φ = c&(p,{li : Pi}i∈I) and ψ occurs in Pi for some i ∈ I.



Global Progress for Dynamically Interleaved Multiparty Sessions 59

2 The channel s[p] precedes the channel s′[q] in the process P if P contains:

(a) a communication action on channel s[p] which is at the top of a communication action on
channel s′[q];

(b) a delegation s[p]!〈〈p′,s′[q]〉〉 for some p′;

(c) a message (p,p′,s′[q]) for some p′ in the queue s.

3 The channel s[p] strongly precedes the channel s′[q] in the process P if s[p] precedes s′[q] in
P and in case (a) the communication action on s[p] is an input action.

It is easy to verify by structural induction on processes that strong precedence between chan-
nels is recorded in csds.

Lemma C.17. If Θ ;R; N ; B ` P I D and s[p] strongly precedes s′[q] in P and s 6= s′, then
s≺ s′ ∈D .

A key property assured only by typability in both type systems is that two channels of the
same session with different participants can never precede each other.

Lemma C.18. Let P be initial and P−→∗ P′.

1 If s[p] precedes s′[q] in P′, then either s 6= s′ or p= q;
2 If P′ ≡ P′′ | s : h′ · (p,q,s′[p′]) ·h, then s′ 6= s.

Proof. We show both points simultaneously by induction on −→∗. In an initial P there are no
channels with roles. As for the induction step we discuss the more interesting cases.
- Rule [Init] creates a new channel with a unique distinguished role for each parallel process.
Both points (1) and (2) follow trivially by the induction hypothesis.
- Let us apply rule [SRcv] to s[p]?(q,x).R | s : (q,p,s′[p′]) ·h. By induction hypothesis we must
have s 6= s′. By Theorem 6.2 we can derive a csd for s[p]?(q,x).R using the interaction typing
rule {SRCV}. Therefore s[p] and s′[p′] are the only channels with role in R{s′[p′]/y} and point
(1) follows. Point (2) is immediate by induction hypothesis.
- When rule [Deleg] is used note that the session delegation command must have been typed in
the communication type system by rule (DELEG). For this reason we get s[p] 6= s′[p′]. Since s[p]
precedes s′[p′] in the session delegation command, by induction hypothesis s = s′ implies p= p′.
We then conclude s 6= s′ proving point (2). Point (1) is immediate by induction hypothesis.

The next lemma assures that no free channel will occur in a process after a request/accept on
a service name which can be bound.

Lemma C.19. If Θ ;R; N ; B ` ã[p](y).P I D and a ∈ B, then y is the only free channel
which occurs in P.

Proof. The last applied rule must be {INITB}, then the condition fc(P) ⊆ {y} assures the
statement.

The last two lemmas consider how the global types restrict csds and processes in well-marked
processes.

Lemma C.20. If P | s : end is a well marked process and Θ ;R; N ; B ` |P| I D , then we
have s≺ s′ ∈D for no s′.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 60

σ(ũ[p](y).P) = σ(c?(p,x).P)=σ(c!〈〈p,c′〉〉.P)=σ(c?((q,y)).P)=σ(y⊕〈Π, l〉.P)=σ(P)

σ(c!〈Π,e〉.P)=

{a}∪σ(P) if e = a,

σ(P) otherwise.
σ(c&(p,{li : Pi}i∈I))=

⋃
i∈I σ(Pi)

σ(if e then P else Q)=σ(P | Q)= σ(def X(x,y) = P in Q)= σ(P)∪σ(Q)

σ(0)= σ(s : h)= σ(X〈e,y〉)=/0 σ((νa : G)P)= σ((νs)P)= σ(P)

Table 16. The mapping σ .

Proof. It is easy to verify by induction on reduction of well-marked processes that, if the mark
of s is end, then a channel s[p] for some p can occur only in process calls, and by definition a csd
associated to a process variable can contain at most one channel.

Lemma C.21. Let P = E [s : G] be a well marked process, where G 6= end is finite. Then P

contains at least one of the following:

- an output action on a channel s[p];
- an input action on a channel s[p] and a corresponding message on the top of the s queue;
- a process call on a channel s[p] and #(G,p) 6= 0;

for some p.

Proof. By induction on marked reductions it is easy to show that:

- If G= p→Π : 〈S〉.G′, then the process P contains either an action of the shape s[p]!〈Π,e〉.P,
where e is an expression of type S, or a process call on the channel s[p];

- If G= p→Π : 〈T〉.G′, then the process P contains either an action of the shape s[p]!〈〈p,c〉〉.P,
where c is a channel of type T, or a process call on the channel s[p];

- If G= p→Π : {li : Gi}i∈I , then the process P contains either an action of the shape
s[p]⊕〈Π, l j〉.P for some j ∈ I, or a process call on the channel s[p];

- If G= p99KΠ : 〈S〉.G′, then, for all q∈Π, the process P contains either an action of the shape
s[q]?(p,x).P and the queue s : h is such that h ≡ (p,Π,v) ·h′ for some value v of type S and
some queue h′, or a process call on the channel s[q];

- If G= p99Kq : 〈T〉.G′, then the process P contains either an action of the shape s[q]?((p,y)).P
and the queue s : h is such that h≡ (p,q,s′[p′]) ·h′ for some channel s′[p′] of type T and some
queue h′, or a process call on the channel s[q];

- If G = p99KΠ : 〈l j〉.G′, then, for all q ∈ Π, the process P contains either an action of the
shape s[q]&(p,{li : Pi}i∈I) with j ∈ I and the queue s : h is such that h ≡ (p,Π, l j) · h′ for
some queue h′, or a process call on the channel s[q].

We conclude by proving points 1 and 2 as discussed at page 58.

Theorem C.22. If P is initial, then P | Q has the pseudo-progress for all catalysers Q such that
P | Q is well typed in the communication type system.

Proof. Let Γ,Γ′,P′ and P be such that Γ`≤ P |Q. /0 and P′vP |Q and Γ′vΓ and P′ Γ′ ∗−→ P.
If all marks in P are end there is nothing to prove.

Otherwise we build a catalyser Q′ and a finite environment Γ′′ ⊇ Γ′ such that Q′ is approximate



Global Progress for Dynamically Interleaved Multiparty Sessions 61

ρ(ã[p](y).P,Γ,V ,A )= {{a}}]ρ(P,Γ,V ,A ) ρ(x̃[p](y).P,Γ,V ,A )= A ]ρ(P,Γ,V ,A )

ρ(c!〈Π,e〉.P,Γ,V ,A )= ρ(c?(p,x).P,Γ,V ,A )=ρ(c!〈〈p,c′〉〉.P,Γ,V ,A )=ρ(c?((q,y′)).P,Γ,V ,A )=ρ(P,Γ,V ,A )

ρ(c⊕〈Π, l〉.P,Γ,V ,A )=ρ((νa : G)P,Γ,V ,A )= ρ((νs)P,Γ,V ,A )= ρ(P,Γ,V ,A )

ρ(c&(p,{li : Pi}i∈I),Γ,V ,A )=
⊎

i∈I ρ(Pi,Γ,V ,A )

ρ(if e then P else Q,Γ,V ,A )=ρ(P | Q,Γ,V ,A )= ρ(P,Γ,V ,A )]ρ(Q,Γ,V ,A )

ρ(0,Γ,V ,A )= ρ(s : h,Γ,V ,A )= /0

ρ(def X(x,y) = P in Q,Γ,V ,A )=ρ(Q,Γ,V ∪{X(x,y) 7→ (P,k0)},A )
where k0 = max{`(G) | u : G ∈ Γ}

ρ(X〈e,c〉,Γ,V ,A )=

{
ρ(P,Γ,V ′ ∪{X(x,y) 7→ (P,k)},A ) if V = V ′ ∪{X(x,y) 7→ (P,k+1)},
/0 if V = V ′ ∪{X(x,y) 7→ (P,0)}.

Table 17. The mapping ρ .

for Γ′′ and it has all needed service participants. We show that if P |Q′ Γ′′ ∗−→ P′ and not all marks
in P′ are end, then P′ can be Γ′′-reduced. This is enough thanks to the termination of approximate
reductions (Theorem C.11).

The definition of Q′ uses the mappings σ and ρ defined in Tables 16 and 17. The mapping σ

collects all service names which are sent. The mapping ρ gives an upper bound to the multiset§of
service names which could ask for missing participants in the reducts of P | Q′. It uses σ to deal
with requests/accepts on variables. If ρ(|P|,Γ′, /0,σ(|P|)) = {{ai | i ∈ I}} and ai : Gi ∈ Γ′ for i ∈ I,
then Q′ = Πi∈IQ(ai,Gi), where Q(a,G) is given by

Q(a,G) = a[1](y).P(G � 1,y, /0) | . . . | a[n−1](y).P(G � (n−1),y, /0) | a [n](y).P(G � n,y, /0)

with n = mp(G). It is easy to verify that: {a : G}∪
⋃

1≤ j≤n ¶(G � j) `Q(a,G). /0.
To build Γ′′ we use the length of a closed session type T (notation `(T)) defined by:

`(!〈Π,U〉.T′) = 1+n+ `(T′) `(?(p,U).T′) = 1+ `(T′)

`(⊕〈Π,{li : Ti}i∈I〉) = 1+n+max{`(Ti)}i∈I `(&(p,{li : Ti}i∈I)) = 1+max{`(Ti)}i∈I
`(µt.T ) = 0 `(end) = 0

where n is the cardinality of Π.
Let Γ0 =

⋃
i∈I

⋃
1≤ j≤ni

¶(Gi � j) where ni = mp(Gi) for i ∈ I. By construction Γ,Γ0 ` Q′ . /0.
We define Γ′0 v Γ0 by unfolding m times each global type in Γ0, where m is the maximum of the
lengths of the session types which occur in Gi for i ∈ I. Lastly we choose Γ′′ = Γ′,Γ′0. Since we
typed P | Q from Γ in the iso-recursive system `≤ we are sure that the reduction of P | Q′ can
execute all process calls in Q′ for dealing with delegations whenever the corresponding processes
in P require these calls.

We say that a process R is ready inside a process R if R= E [R] for some evaluation context E .
Note that:

- if a ready process in P′ is an output, then P′ can be reduced by Lemma C.9;
- if a ready process in P′ is a conditional, then P′ can be reduced, since P′ is closed (being

P | Q | Q′ closed) and any closed boolean value is either true or false;
- no ready process in P′ is an request/accept on a variable since P′ is closed;

§ We use {{ }} to denote multisets and ] to denote multiset union.



M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani 62

- if a ready process in P′ is a request/accept on a free service name, then we can apply rule
[InitM] since Q′ by construction allows to complete any service call by providing the missing
participants.

Otherwise notice that if P is initial, then P | Q is initial for all catalysers Q. Therefore by
Lemma C.12 and the Subject Reduction property of the interaction system (Theorem 6.2) the
process |P′| can be typed in the interaction system. Let |P′| = (

−→
νs)P′′, where −→s is the set of all

session names which occur in P′. This implies /0;R;N ; /0 ` P′′ I D for some R, N , D .
Let s be a session name with a mark G different from end and such that s′ ≺ s ∈ D for no s′.

The existence of such an s is assured by the fact that D is loop free and by Lemma C.20.
By Lemma C.21 P′ must contain:

1 an output action on a channel s[p] with γ/δ defined by Lemma C.9 or
2 input action on a channel s[p] and the corresponding message on the top of the queue s with

γ defined by Lemma C.9 or
3 a process call on a channel s[p] with #(G,p) 6= 0

for some p. We claim that we can reduce this communication action or this process call since no
other action can be at its top. In fact this action at top cannot be:

1 a communication on a channel s[q] for some q 6= p by Lemma C.18;
2 an output, request/accept on a free service name or conditional action since we reduced all

them already;
3 a request/accept on a bound service name by Lemma C.19;
4 an input action on a channel s′[q], since otherwise s′ ≺ s ∈D by Lemma C.17.

We conclude that P′ must contain some ready process which can be reduced.

Theorem C.23. If P | Q has the pseudo-progress for all catalysers Q, then P has progress.

Proof. Let Γ`≤ P |Q. /0 and P |Q−→∗ E [R], where R is an input process or a message queue.

This implies by Theorems C.5 and C.4 that P | Q Γ ∗−→ P and |P|=E [R]. By Theorem C.14 there

is Γ′ such that Γ′ v Γ and P | Q Γ′ ∗−→ P′ with P′ v P. By definition of pseudo-progress there is a

catalyser Q′ which is approximate for some Γ′′ ⊇ Γ such that P′ | Q′ Γ′′ ∗−→ R and R is a marked
process in which all marks are end. In particular the mark of s has to be end, and this implies that
R has been reduced thanks to a dual message queue or input process.


	Introduction
	The Three Buyer Protocol
	The Calculus for Multiparty Sessions
	Syntax
	Operational Semantics

	Communication Type System for Pure Processes
	Global and Session Types 
	Typing Rules for Pure Processes
	Subject Reduction

	Progress
	The Notion of Progress for Multiparty Sessions (Informal)
	The Notion of Progress for Multiparty Sessions (Formal)

	Interaction Type System
	Channel/Service Dependency and Sets of Service Names
	Typing Rules
	Progress Theorem

	Related Work
	Conclusions
	References
	 Communication Type System for Processes and its Properties
	Types and Typing Rules for Processes
	Auxiliary Lemmas
	Subject Reduction

	 Subject Reduction for the Interaction Type System
	 Proof of the Progress Theorem
	Typed Operational Semantics
	Approximate Typed Operational Semantics
	Pseudo-progress


